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Abstract
In this paper we prove that the problem whether the termination of a given rewrite system can be
shown by a polynomial interpretation in the natural numbers is undecidable.
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1 Introduction

Proving termination of a rewrite system by using a polynomial interpretation over the
natural numbers goes back to Lankford [4]. Two problems need to be addressed when using
polynomial interpretations for proving termination, whether by hand or by a tool:
1. finding suitable polynomials for the function symbols,
2. showing that the induced order constraints on polynomials are valid.
The latter problem amounts to (⋆) proving P (x1, . . . , xn) > 0 for all natural numbers
x1, . . . , xn ∈ N, for polynomials P ∈ Z[x1, . . . , xn]. This is known to be undecidable, as a
consequence of Hilbert’s 10th Problem, see e.g., Zantema [6, Proposition 6.2.11]. Heuristics
for the former problem are presented in [2, 6]. In this paper we prove the undecidability of
the existence of a termination proof by a polynomial interpretation in N by a reduction from
(⋆). This result is not surprising, but we are not aware of a proof of undecidability in the
literature, and the construction is not entirely obvious. We construct a family of rewrite
systems RP parameterized by polynomials P ∈ Z[x1, . . . , xn] such that RP is polynomially
terminating over N if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N. The construction
is based on techniques from [5], in which specific rewrite rules enforce the interpretations of
certain function symbols.

2 Undecidability of Polynomial Termination

We assume familiarity with term rewriting [1], but recall the definition of polynomial
termination over N. Given a signature F , a well-founded monotone F -algebra (A, >) consists
of a non-empty F -algebra A = (A, {fA }f ∈F ) and a well-founded order > on the carrier A of
A such that every algebra operation is strictly monotone in all its coordinates, i.e., if f ∈ F
has arity n ⩾ 1 then fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A

and i ∈ {1, . . . , n} with ai > b. The induced order >A on terms is a reduction order that
ensures the termination of any compatible (i.e., ℓ >A r for all rewrite rules ℓ → r) TRS
R. We call R polynomially terminating over N if compatibility holds when the underlying
algebra A is restricted to the set of natural numbers N with standard order >N such that
every n-ary function symbol f is interpreted as a monotone polynomial fN in Z[x1, . . . , xn].
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Table 1 The TRS R.

g(s(x)) → s(s(g(x))) (A)
q(g(x)) → g(g(q(x))) (B)

g(x) → a(x, x) (C)
s(x) → a(0, x) (D)
s(x) → a(x, 0) (E)

a(q(x), g(x)) → q(s(x)) (F)

s(s(0)) → q(s(0)) (G)
s(0) → q(0) (H)

q(s(0)) → 0 (I)
s5(0) → q(s(s(0))) (J)

q(s(s(0))) → s3(0) (K)
s(a(x, x)) → d(x) (L)

s(d(x)) → a(x, x) (M)
s(a(q(a(x, y)), d(a(x, y)))) → a(a(q(x), q(y)), d(m(x, y))) (N)

s(a(a(q(x), q(y)), d(m(x, y)))) → a(q(a(x, y)), d(a(x, y))) (O)

Whereas well-founded monotone algebras are complete for termination, polynomial
termination gives rise to a much more restricted class of TRSs. For instance, Hofbauer and
Lautemann [3] proved that polynomially terminating TRSs induce a double-exponential
upper bound on the derivational complexity.

Our rewrite systems RP consists of three parts: a fixed component R, which is extended
to Rn for some n ∈ N depending on the exponents in P , and a single rewrite rule that
encodes the positiveness of P . For the latter we need function symbols that are interpreted
as addition and multiplication. That is the purpose of the TRS R, whose rules are presented
in Table 1. It is a simplified and modified version of the TRS R2 in [5]. Since multiplication
is not strictly monotone on N, the rules (N) and (O) restrict the interpretation of m to
xy + x + y, which suffices for the reduction.

▶ Lemma 1. The TRS R is polynomially terminating over N.

Proof. The well-founded algebra (N, >N) with interpretations

0N = 0 sN(x) = x + 1 aN(x, y) = x + y qN(x) = x2

dN(x) = 2x gN(x) = 4x + 6 mN(x, y) = xy + x + y

is monotone and compatible with R. Hence R is polynomially terminating. ◀

Note that this polynomial interpretation is found by the termination tool TTT2 with the
strategy poly -direct -nl2 -ib 4 -ob 6.

More importantly, to ensure termination in (N, >N), the rewrite rules of R mandate that
the interpretation of some of the function symbols is unique. The proof of the following
lemma closely follows the reasoning in [5, Lemmata 4.4 and 5.2].

▶ Lemma 2. Any monotone polynomial interpretation (N, >N) compatible with R must
interpret the function symbols 0, s, d, a, m and q as follows:

0N = 0 sN(x) = x + 1 aN(x, y) = x + y

dN(x) = 2x mN(x, y) = xy + x + y qN(x) = x2

Proof. Compatibility with (A) implies

deg(gN) · deg(sN) ⩾ deg(sN)2 · deg(gN)



This is only possible if deg(sN) ⩽ 1. Together with the strict monotonicity of sN we obtain
deg(sN) = 1. Hence s must be interpreted by a linear polynomial: sN(x) = s1x + s0 with
s1 ⩾ 1 and s0 ⩾ 0. The same reasoning applied to (B) yields gN(x) = g1x + g0 for some
g1 ⩾ 1 and g0 ⩾ 0. The compatibility constraint imposed by rule (A) further gives rise to
the inequality

g1s1x + g1s0 + g0 > g1s2
1x + g0s2

1 + s1s0 + s0 (1)

for all x ∈ N. Since s1 ⩾ 1 and g1 ⩾ 1, this only holds if s1 = 1. Simplifying (1) we obtain
g1s0 > 2s0, which implies s0 > 0 and g1 > 2. If qN were linear, the same reasoning could be
applied to (B) resulting in g1 = 1, contradicting g1 > 2. Hence qN is at least quadratic.

Next we turn our attention to the rewrite rules (C) – (F). Because gN is linear, compatib-
ility with (C) and strict monotonicity of aN ensures deg(aN) = 1. Hence, aN = a2x + a1y + a0
with a2 ⩾ 1, a1 ⩾ 1 and a0 ⩾ 0. From compatibility with rules (D) and (E) we obtain a1 = 1
and a2 = 1. Using the current shapes of aN, gN and sN, compatibility with rule (F) yields
the inequality gN(x) + a0 > qN(x + s0) − qN(x) for all x ∈ N. This can only be the case if
deg(gN(x) + a0) ⩾ deg(qN(x + s0) − qN(x)), which in turn simplifies to 1 ⩾ deg(qN(x)) − 1.
Hence qN(x) = q2x2 + q1x + q0 with q2 ⩾ 1. From monotonicity we also have qN(1) > qN(0),
which leads to q2 + q1 ⩾ 1.

To further constrain sN we consider the rewrite rule (G). The compatibility constraint
gives rise to

0N + 2s0 > q2(0N + s0)2 + q1(0N + s0) + q0

= q2 02
N + q2s2

0 + 0N(2q2s0 + q1) + q1s0 + q0

⩾ q2s2
0 + 0N + (1 − q2)s0 (q2 + q1 ⩾ 1 and q0, q2, s0 ⩾ 1)

= q2s0(s0 − 1) + 0N + s0

⩾ s2
0 + 0N (s0 ⩾ 1)

Hence the inequality 2s0 > s2
0 holds, which is only true if s0 = 1. Therefore sN(x) = x + 1.

Compatibility with (D) now amounts to x + 1 > 0N + x + a0, which implies 0N = a0 = 0.
At this point we have uniquely constrained 0N, sN and aN. To fully constrain qN we turn
to (H), which implies q0 = 0, the rules (G) and (I), which together imply 2 > qN(1) > 0
and thus qN(1) = q2 + q1 = 1, and the rules (J) and (K), which imply 5 > qN(2) > 3
and thus qN(2) = 4q2 + 2q1 = 4. Consequently, q2 = 1 and q1 = 0. Hence qN(x) = x2.
Compatibility with the rules (L) and (M) yields x + x + 1 > dN(x) and dN(x) + 1 > x + x

which imply dN(x) = 2x. Finally, compatibility with the rules (N) and (O) amounts to
(x + y)2 + 2x + 2y + 1 > x2 + y2 + 2mN(x, y) ⩾ (x + 1)2 + 2x + 2y, which uniquely determines
mN(x, y) = xy + x + y. ◀

Using the previously fixed interpretations we can now add new function symbols, and
more easily mandate their interpretations. By adding the two rules

s(t) → u s(u) → t

for some terms t and u, we enforce an equality constraint on the interpretations of t and u,
assuming the system remains polynomially terminating.

To represent the exponents in the polynomial P we add symbols pi for 1 ⩽ i ⩽ n, where n

is the maximal exponent in P . To fix (pi)N(x) = xi, we add two rules per symbol, according
to the following definition.



▶ Definition 3. We define a family of TRSs (Rn)n⩾0 as follows:

R0 = R
R1 = R0 ∪ {s(p1(x)) → x, s(x) → p1(x)}

Rn+1 = Rn ∪

{
s(a(pn+1(x), a(x, pn(x)))) → m(x, pn(x))

s(m(x, pn(x))) → a(pn+1(x), a(x, pn(x)))

}
▶ Lemma 4. For any n ⩾ 0, the TRS Rn is polynomially terminating over N if and only if
(pi)N(x) = xi for all 1 ⩽ i ⩽ n.

Proof. From Lemma 1 we know that R is polynomially terminating and the interpretations
are unique due to Lemma 2. Hence the Lemma holds for R0. For n ⩾ 1, the if direction
holds, since the interpretations (pi)N are monotone and the polynomial interpretation is
compatible with Rn:

x + 1 > x x + 1 > x

for R1 \ R0 and

xn + x + xn−1 + 1 > xxn−1 + x + xn−1 xxn−1 + x + xn−1 + 1 > xxn + x + xn−1

for Rn \ Rn−1. For the only if direction we show that compatibility with the additional
rules implies (pi)N(x) = xi for all 1 ⩽ i ⩽ n. This is done by induction on n. For n = 1 the
two rules in R1 \ R enforce (pi)N(x) + 1 > x and x + 1 > (pi)N(x). Hence (pi)N(x) = x. For
n > 1 the rules in Rn \ Rn−1 enforce (pn)N(x) = x · (pn−1)N(x) by the same reasoning. From
the induction hypothesis we obtain (pn−1)N(x) = xn−1 and hence (pn)N = xn as desired. ◀

The fixed interpretations can now be used to construct arbitrary polynomials. Since
non-monotone operations, such as subtraction (negative coefficients) and multiplication,
cannot serve as interpretations for function symbols, we model these using the difference of
two terms. In the following we write [t]N for the polynomial that is the interpretation of the
term t, according to the interpretations stated in Lemmata 2 and 4.

▶ Lemma 5. For any monomial M = cxi1
1 · · · xim

m with i1, . . . , im > 0 and c ̸= 0 there exist
terms ℓM and rM over the signature of Rmax(0,i1,...,im), such that M = [ℓM ]N − [rM ]N and
Var(ℓM ) = Var(rM ).

Proof. First we assume the coefficient c is positive. We construct ℓM and rM by induction
on m. If m = 0 then M = c and we take ℓM = sc(0) and rM = 0. We trivially have
Var(ℓM ) = ∅ = Var(rM ) and [ℓM ]N − [rM ]N = c − 0 = M . For m > 0 we have M = M ′xim

m

with M ′ = cxi1
1 · · · x

im−1
m−1 . The induction hypothesis yields terms ℓM ′ and rM ′ with M ′ =

[ℓM ′ ]N − [rM ′ ]N and Var(ℓM ′) = Var(rM ′). Hence

M = M ′xim
m = [ℓM ′ ]Nxim

m − [rM ′ ]Nxim
m

= (mN([ℓM ′ ]N, xim
m ) − [ℓM ′ ]N − xim

m ) − (mN([rM ′ ]N, xim
m ) − [rM ′ ]N − xim

m )
= (mN([ℓM ′ ]N, (pj)N(xm)) + [rM ′ ]N) − (mN([rM ′ ]N, (pj)N(xm)) + [ℓM ′ ]N)

and thus we can take ℓM = a(m(ℓM ′ , pj(xm)), rM ′) and rM = a(m(rM ′ , pj(xm)), ℓM ′). Note
that Var(ℓM ) = Var(ℓM ′) ∪ {xm } ∪ Var(rM ′) = Var(rM ).

If c < 0 then we take ℓM = r−M and rM = ℓ−M . We obviously have Var(ℓM ) =
Var(r−M ) = Var(ℓ−M ) = Var(rM ). Moreover, M = −(−M) = −([ℓ−M ]N − [r−M ]N) =
−([rM ]N − [ℓM ]N) = [ℓM ]N − [rM ]N. ◀



▶ Definition 6. Let P = M1 + · · · + Mk−1 + Mk ∈ Z[x1, . . . , xn] be a sum of monomials. We
denote by ℓP the term a(ℓ1, · · · a(ℓk−1, ℓk) · · · ) and by rP the term a(r1, · · · a(rk−1, rk) · · · ).
Here ℓi and ri are the terms from applying Lemma 5 to Mi for 1 ⩽ i ⩽ k. Moreover,
ℓ0 = r0 = 0. We define the TRS RP as the extension of Rn with the single rule ℓP → rP .
Here n is the maximal exponent occurring in P .

Note that the rewrite rule ℓP → rP in RP is well-defined; ℓP is not a variable and
Var(ℓP ) = Var(rP ) as a consequence of Lemma 5.

▶ Example 7. The polynomial P = 2x2y −xy + 3 is first split into its monomials M1 = 2x2y,
M2 = −xy and M3 = 3. Hence we obtain the TRS RP1 = R2 ∪ {a(ℓM1 , a(ℓM2 , ℓM3)) →
a(rM1 , a(rM2 , rM3))}, where

ℓM1 = a(m( a(m(s2(0), p2(x)), 0)︸ ︷︷ ︸
ℓ2x2

, p1(y)), a(m(0, p2(x)), s2(0))︸ ︷︷ ︸
r2x2

)

rM1 = a(m( a(m(0, p2(x)), s2(0))︸ ︷︷ ︸
r2x2

, p1(y)), a(m(s2(0), p2(x)), 0)︸ ︷︷ ︸
ℓ2x2

)

ℓM2 = a(m( a(m(0, p1(x)), s(0))︸ ︷︷ ︸
rx

, p1(y)), a(m(s(0), p1(x)), 0)︸ ︷︷ ︸
ℓx

)

rM2 = a(m( a(m(s(0), p1(x)), 0)︸ ︷︷ ︸
ℓx

, p1(y)), a(m(0, p1(x)), s(0))︸ ︷︷ ︸
rx

)

ℓM3 = s3(0) rM3 = 0

Note that in the terms ℓM2 and rM2 the ℓ and r of the recursive call are switched since M2
has a negative coefficient.

▶ Theorem 8. For any polynomial P ∈ Z[x1, . . . , xn], the TRS RP is polynomially termin-
ating over N if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N.

Proof. First suppose RP is polynomially terminating over N. So there exists a monotone
polynomial interpretation in (N, >) that orients the rules of RP from left to right. Let n be
the maximum exponent in P . From Lemma 2 and Lemma 4 we infer that the interpretations
of the function symbols 0, s, a, m, and pi for 1 ⩽ i ⩽ n are fixed such that, according to
Lemma 5, P = [ℓP ]N − [rP ]N. Since the rule ℓP → rP belongs to RP , P (x1, . . . , xn) > 0 for
all x1, . . . , xn ∈ N by compatibility.

For the if direction, we assume that P ∈ Z[x1, . . . , xn] satisfies P (x1, . . . , xn) > 0 for all
x1, . . . , xn ∈ N. By construction of ℓP → rP and Lemma 5, the interpretations in Lemma 2
and Lemma 4 orient the rule ℓP → rP from left to right. The same holds for rules Rn. Hence
RP is polynomially terminating over N. ◀

▶ Corollary 9. It is undecidable whether a finite TRS is polynomially terminating over N.

3 Conclusion

We proved the undecidability of polynomial termination over the natural numbers, by
a reduction from a variant of Hilbert’s 10th problem. This was done by constructing a
TRS RP , for any polynomial P ∈ Z[x1, . . . , xn], which can be shown to be polynomially
terminating if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N. To construct this system
we used techniques from [5] to fix the interpretation of function symbols. Using the fixed
interpretations we constructed two terms ℓP and rP , such that P = [ℓP ]N − [rP ]N. This



allowed us to encode the inequality P > 0 as the compatibility constraint associated with
the rule ℓP → rP .

In our proof we allow interpretations to be polynomials with integer coefficients. However,
it equally applies if interpretations are limited to natural number coefficients, since the
construction stays the same. We conclude the paper by mentioning two open questions.

1. Is polynomial termination over N decidable for terminating TRSs?
The construction in this paper may produce non-terminating systems. Take for example
the polynomial P1 = −1. The resulting TRS RP1 = R ∪ {0 → s(0)} is obviously not
terminating.

2. Is incremental polynomial termination over N, where we take the lexicographic extension
of the order induced by the polynomial interpretations, decidable?
We expect the answer is negative, but the construction in this paper needs to be modified.
Consider for instance the polynomial P2 = x. We obtain ℓP2 = a(m(s(0), p1(x)), 0) and
rP2 = a(m(0, p1(x)), s(0)). As a result, the TRS RP2 is not polynomially terminating
since [ℓP2 ]N = 2x + 1 ≯ x + 1 = [rP2 ]N for x = 0. However, if we take a second
algebra A over N where the interpretation of m is changed to mA(x, y) = 2x + y, then
[ℓP2 ]A = x + 2 > x + 1 = [rP2 ]A for all x ∈ N. Hence the lexicographic order (>N, >A) is
a reduction order compatible with RP2 .
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