
Formalized Signature Extension Results for Equivalence∗

Alexander Lochmann1, Fabian Mitterwallner1, Aart Middeldorp1

Department of Computer Science, University of Innsbruck, Austria
alexander.lochmann@student.uibk.ac.at,

{fabian.mitterwallner,aart.middeldorp}@uibk.ac.at

Abstract

Conversion equivalence and normalization equivalence are important properties of two
rewrite systems. We investigate how many constants are needed to reduce these properties
to their ground versions for linear variable-separated rewrite systems. Our results are
implemented in the decision tool FORT-h and formalized in Isabelle/HOL. The latter
enables the validation of the proofs produced by the former in the certifier FORTify.

1 Introduction

FORT-s is a tool to synthesize rewrite systems (TRSs) that satisfy a given property expressible
in the first-order theory of rewriting. It is based on FORT-h, a tool that implements a decision
procedure for the first-order theory of rewriting for the class of linear variable-separated TRSs,
which comprises all left-linear right-ground TRSs. We refer to [3, 4, 6] for further details. It is
of interest to synthesize TRSs that depend on one or more other TRSs. This can be done by
passing additional TRSs to FORT-s in addition to a formula which references multiple systems.
The additional systems are then also passed to the decision procedure. For example, if we want
to transform the TRS R consisting of the rules

a → b f(a) → b g(a, x) → f(a)

into an equivalent complete (confluent and terminating) TRS, the command

fort-s "[0](WCR & SN) & forall s, t ([0] s <->* t <=> [1] s <->* t)" file.trs

with file.trs containing R (in COPS format) is executed. The latter is referred to by the
index 1 in the formula whereas 0 refers to the TRS to be synthesized. The command returns
the TRS S consisting of the rules

a → b f(b) → g(a, a) g(b, b) → a

The result is complete (as demanded by "[0](WCR & SN)"), but not equivalent to R! The reason
is that "forall s, t ([0] s <->* t <=> [1] s <->* t)" ensures equivalence on ground terms
(since the decision procedure implemented in FORT-h is based on tree automata techniques) but
this is not the same as equivalence on all terms; we have g(a, x) ↔∗

R a but g(a, x) ↔∗
S a does

not hold.
In [2] we presented formalized results that allow reducing confluence-related properties

(confluence CR, unique normal forms with respect to reduction UNR and conversion UNC,
commutation COM) to properties on ground terms by adding fresh constants to the underlying
signature. In this note we present similar results for two different notions of equivalence,
conversion equivalence and normalization equivalence.

∗This work was supported by the Austrian Science Fund (FWF) project P30301.



Formalized Signature Extension Results for Equivalence Lochmann, Mitterwallner, Middeldorp

2 Preliminaries

In this paper we drop the usual constraints on TRSs by allowing terms on the right-hand sides
of rules to contain variables not appearing on the left, and left-hand sides to be variables. A
rule ℓ → r is called variable-separated if Var(ℓ) ∩ Var(r) = ∅. A TRS is variable-separated if all
its rules are variable-separated. Two TRSs R and S over a common signature F are conversion
equivalent (CE) if the relations ↔∗

R and ↔∗
S coincide on T (F ,V). They are ground conversion

equivalent (GCE) if the relations coincide on the set T (F) of ground terms. We call R and S
normalization equivalent (NE) if the relations →!

R and →!
S coincide on T (F ,V) and ground

normalization equivalent (GNE) if this holds for T (F).
A binary predicate P on terms over a given signature F is closed under multi-hole contexts if

P (C[s1, . . . , sn], C[t1, . . . , tn]) holds whenever C is a multi-hole context over F with n ⩾ 0 holes
and P (si, ti) holds for all 1 ⩽ i ⩽ n. In the results presented in the next section we make use
of the following result from [2]. Here →∗ϵ∗

A abbreviates →∗
A · →ϵ

A · →∗
A, so s →∗ϵ∗

A t if s →∗
A t

contains a root step.

Lemma 1. Let A be a TRS over some signature F and let P be a binary predicate that is
closed under multi-hole contexts over F . If s →∗ϵ∗

A t =⇒ P (s, t) for all terms s and t then
s →∗

A t =⇒ P (s, t) for all terms s and t.

Rewrite sequences involving root steps play an important role for linear variable-separated
TRSs since they permit the use of different substitutions for the left and right-hand side of the
employed rewrite rule, due to variable separation. We also make use of [2, Lemma 8].

Lemma 2. Let R be a linear TRS over a signature F that contains a constant c which does
not appear in R. If s →∗

R t with c ∈ Fun(s) \ Fun(t) then s[u]p →∗
R t using the same rewrite

rules at the same positions, for all terms u and positions p ∈ Pos(s) such that s|p = c.

3 Results

The results in this section are formalized in Isabelle/HOL [1]. Similar to the example in the
introduction, the following example shows that the two equivalence properties are not equivalent
to their ground versions.

Example 3. The linear variable-separated TRSs

R : f(x) → a S : f(a) → a f(f(a)) → a

over the signature F = {f, a} are neither normalization equivalent nor conversion equivalent as
can be seen from f(x) →!

R a and f(x) ̸↔∗
S a. Since every ground term rewrites in R and S to the

unique ground normal form a, the TRSs are ground normalization equivalent as well as ground
conversion equivalent. However, adding a single fresh constant c to the signature is sufficient
to reproduce the counterexample: f(c) →!

R a and f(c) ̸↔∗
S a. So the TRSs are neither ground

normalization equivalent nor ground conversion equivalent over the extended signature F ⊎ {c}.
In later proofs we will limit the rewrite sequences under consideration to those containing

root steps by instantiating Lemma 1

• with P1(s, t) : s →∗
S∪S− t and R∪R− for A in proofs related to CE, and

• with P2(s, t) : t ∈ NFR =⇒ s →∗
S t and R for A in proofs related to NE.

2



Formalized Signature Extension Results for Equivalence Lochmann, Mitterwallner, Middeldorp

Note the identity →R∪R− = ↔R in the first case. We also use the symmetric instances, with
R and S switching places, for both properties. Both P1 and P2 are closed under multi-hole
contexts. By considering only sequences containing root steps we can use different substitutions
on the left and right of the sequence, due to variable-separation. These substitutions will usually
introduce fresh constants in the terms. We will also use Lemma 2 in subsequent proofs to remove
these additional constants from rewrite sequences as follows. Let σc denote the substitution
mapping all variables to c. If sσc →∗

R t then s →∗
R t by repeatedly applying Lemma 2 (to each

occurrence of c in sσc), assuming c appears neither in R nor in t.
A single fresh constant suffices to reduce conversion equivalence to ground conversion

equivalence.

Theorem 4. Linear variable-separated TRSs R and S over a common signature F such that
T (F) ̸= ∅ are conversion equivalent if and only if R and S are ground conversion equivalent
over the signature F ⊎ {c}.

Proof. For the if direction we assume that R and S are ground conversion equivalent over
F ⊎ {c}. Due to Lemma 1 (instantiated with P1) and symmetry, it suffices to show the
inclusion ↔∗ϵ∗

R ⊆ ↔∗
S on terms in T (F ,V). Suppose s ↔∗ϵ∗

R t. Let d ∈ F be a constant, whose
existence is guaranteed by the assumption T (F) ̸= ∅, and consider the substitutions σc and σd

mapping all variables to the constants c and d respectively. Closure under substitutions and
variable separation yields sσc ↔∗ϵ∗

R tσc and sσc ↔∗ϵ∗
R tσd. Ground conversion equivalence gives

sσc ↔∗
S tσc and sσc ↔∗

S tσd, and thus also tσc ↔∗
S tσd. Using Lemma 2 yields s ↔∗

S tσd and
t ↔∗

S tσd. Hence s ↔∗
S t as desired.

For the only-if direction we assume that R and S are conversion equivalent over F . Consider
s ↔∗

R t with s, t ∈ T (F ⊎ {c}) and let ϕc
x(·) be the function that replaces all occurrences of the

constant c with the variable x in terms. Since the constant c does not appear in R, we obtain
ϕc
x(s) ↔∗

R ϕc
x(t) from s ↔∗

R t. Conversion equivalence yields ϕc
x(s) ↔∗

S ϕc
x(t). By choosing a

variable x /∈ Var(s) ∪ Var(t), the latter implies s ↔∗
S t by closure under substitutions.

Two fresh constants are required to reduce normalization equivalence to its ground version.

Theorem 5. Linear variable-separated TRSs R and S over a common signature F are normal-
ization equivalent if and only if R and S are ground normalization equivalent over F ⊎ {c, d}.

Proof. The only-if direction can be proved with the methods used in the proof of Theorem 4.
For the if direction we assume that R and S are ground normalization equivalent over F ⊎{c, d},
which implies NFR = NFS . Hence, it remains to show that s →∗ϵ∗

R t with t ∈ NFR implies s →∗
S t

due to Lemma 1 (instantiated with P2) and symmetry. From s →∗ϵ∗
R t we obtain sσc →∗

R tσd,
as the involved root step allows independent substitutions on the left and right-hand sides.
Moreover, tσd ∈ NFR, since d does not occur in R. From ground normalization equivalence we
obtain sσc →∗

S tσd. Finally, Lemma 2 allows the removal of the substitutions, resulting in the
desired rewrite sequence s →∗

S t.

Contrary to Theorem 4 one fresh constant is not sufficient as shown in the following example.

Example 6. Consider the two linear variable-separated TRSs

R : a → b f(f(x, y), z) → f(b, b) f(b, x) → f(b, b)

f(x, a) → f(z, b)

S : a → b f(f(x, y), z) → f(b, b) f(b, x) → f(b, b)

f(b, a) → f(z, b) f(f(x, y), a) → f(z, b)

3



Formalized Signature Extension Results for Equivalence Lochmann, Mitterwallner, Middeldorp

They are not normalization equivalent since f(x, a) →!
R f(z, b) and f(x, a) ̸→∗

S f(z, b). The TRSs
are however ground normalization equivalent over the signature F ⊎ {c}. First observe that the
only ground normal forms reachable via a rewrite sequence involving a root step are b and f(c, b).
The normal form b is reached (using a root step) only from a, in both R and S. The normal
form f(c, b) can be reached from all ground terms of the shape f(t, a). For R this is obvious and
for S this can be seen by a case analysis on the root symbol of t. Adding a second constant d
allows one to mimick the original counterexample since f(c, a) →!

R f(d, b) and f(c, a) ̸→∗
S f(d, b).

For left-linear right-ground TRSs, a single fresh constant is enough to reduce normalization
equivalence to ground normalization equivalence.

Theorem 7. Left-linear right-ground TRSs R and S over a common signature F are normal-
ization equivalent if and only if R and S are ground normalization equivalent over F ⊎ {c}.

Proof. We mention the differences with the proof of Theorem 5. For the identity of NFR and
NFS for arbitrary terms, a single constant suffices. If s →∗ϵ∗

R t then t is ground. Hence sσc →∗
R t

and thus sσc →∗
S t by ground normalization equivalence. Lemma 2 gives s →∗

S t.

Each additional constant increases the execution time of FORT-h significantly. Hence results
that reduce the required number are of obvious interest. For example, ground TRSs need no
additional constants for the properties described in this paper. In the remainder of this section we
present results for TRSs over monadic signatures, which are signatures that consist of constants
and unary function symbols. In [6, Lemma 6] it is shown that for left-linear right-ground TRSs
and properties related to confluence, no additional constants are needed. The same holds for
commutation, which is a new (and formalized) result.

Theorem 8. Right-ground TRSs R and S over a common monadic signature F commute if
and only if R and S ground commute.

Proof. The only-if direction trivially holds. For the if direction we assume that R and S
ground commute. Consider s →∗

R t and s →∗
S u for s, t, u ∈ T (F ,V). If s = t or s = u, then

t →∗
S · →∗

R u obviously holds. So suppose s →+
R t and s →+

S u. Since F is monadic and R
and S are right-ground, we infer that t and u are ground terms. Let r ∈ T (F) be an arbitrary
ground term and let σr be the substitution which replaces all variables in Var(s) by r. Since
tσr = t, uσr = u and →+ is closed under substitution, we obtain sσr →+

R t and sσr →+
S u.

Ground commutation yields the desired joining sequence t →∗
S · →∗

R u.

Note that Theorem 8 cannot be extended to linear variable-separated TRSs which require
two constants even for monadic signatures, as seen by the TRS {a → x}. It does not commute
with itself, since a → x and a → y, but it ground commutes with itself over the signatures {a}
and {a, c}.

Unlike commutation, the properties NE and CE require additional constants for TRSs over
monadic signatures even for left-linear right-ground systems, as can be seen from Example 3.
Nevertheless, we can reduce the number of constants to one if the signature is monadic, even
if the restriction to left-linear right-ground TRSs is dropped. A key observation is that in
non-empty rewrite sequences in a linear variable-separated TRS over a monadic signature fresh
constants can be replaced by arbitrary terms.

Lemma 9. Let R be a variable-separated TRS over a monadic signature F that contains a
constant c which does not appear in R. If s →+

R t and p ∈ Pos(s) such that s|p = c then
s[u]p →+

R t using the same rewrite rules at the same positions, for all terms u.

4



Formalized Signature Extension Results for Equivalence Lochmann, Mitterwallner, Middeldorp

Table 1: Additional constants required to reduce a property P to ground P .

property left-linear right-ground TRSs linear variable-separated TRSs

CE 1 (1) 1 (1) (Theorem 4)
NE 1 (1) 2 (1) (Theorems 5, 7, 10)

COM 1† (0) 2† (2) (Theorem 8)
CR 1*† (0)* 2† (2)

SCR 1* (0)* 2 (2)
WCR 1* (0)* 2 (2)
UNR 1*† (0)* 2† (2)
UNC 2*† (0)* 2† (2)
NFP 1* (0)* 2 (2)

As variable-separated TRSs are closed under inverse we can immediately deduce that rewrite
sequences of the shape sσc →+

R tσc imply s →+
R t for monadic systems. With this we are ready

to prove our claim.

Theorem 10. Variable-separated TRSs R and S over a common monadic signature F are
normalization equivalent if and only if R and S are ground normalization equivalent over F⊎{c}.

Proof. Note that TRSs over a monadic signature are necessarily linear. We mention the
differences with the proof of Theorem 5. A single constant suffices to prove NFR = NFS .
Consider a rewrite sequence s →∗ϵ∗

R t with t ∈ NFR. Ground normalization equivalence and
substitution closure yields sσc →!

S tσc. Furthermore, since the sequence s →∗ϵ∗
R t is non-empty

by definition, sσc /∈ NFR = NFS and thus sσc ̸= tσc as tσc ∈ NFS . Hence sσc →+
S tσc. Applying

Lemma 9 twice allows us to replace all occurrences of c in sσc and tσc by the corresponding
variables, resulting in s →∗

S t.

In Table 1 we summarize the results of this paper as well as the related results (the final
six rows) from [2]. The numbers for TRSs over monadic signatures are given in parentheses.
The underlined numbers are new results. The results marked with an asterisk are proved in [5],
those marked with a dagger are formalized in [2].

4 Conclusion

In this paper we presented new signature extension results allowing us to reduce the problem of
proving CE and NE to GCE and GNE respectively for linear variable-separated TRSs (Theorems 4
and 5). This is done by adding fresh constants to the signature. We also showed that the number
of required fresh constants for reducing NE to GNE can be reduced for left-linear right-ground
TRSs as well as for monadic systems (Theorem 10). The latter was also shown for the property
COM (Theorem 8). All results are formalized in Isabelle/HOL [1] and implemented in the tools
FORT-h, FORT-s, and the certifier FORTify. Binaries of the tools can be obtained from

https://fortissimo.uibk.ac.at/fort(ify)/

The implemented results enable FORT-s to find an equivalent complete TRS of our leading
example using the formula

5

https://fortissimo.uibk.ac.at/fort(ify)/


Formalized Signature Extension Results for Equivalence Lochmann, Mitterwallner, Middeldorp

"[0](WCR & SN) & {+1} forall s, t ([0] s <->* t <=> [1] s <->* t)"

The {+1} instructs the decision procedure to add one fresh constant to the signature when
evaluating the subformula for CE. Calling FORT-s with this formula on our leading example R
produces the TRS:

a → b f(b) → g(a, a) g(a, x) → a

which is indeed complete and equivalent to R on all terms (not just ground terms). For ease
of use we also added the shorthands CE and NE to the formula language. When using these
the tools FORT-h, FORT-s and FORTify add the appropriate amount of constants for any given
input TRS.

References

[1] Alexander Lochmann. Reducing rewrite properties to properties on ground terms. Archive of Formal
Proofs, 2022. https://isa-afp.org/entries/Rewrite_Properties_Reduction.html, Formal proof
development.

[2] Alexander Lochmann, Fabian Mitterwallner, and Aart Middeldorp. Formalized signature extension
results for confluence, commutation and unique normal forms. In Proc. 10th International Workshop
on Confluence, pages 25–30, 2021.

[3] Fabian Mitterwallner, Alexander Lochmann, Aart Middeldorp, and Bertram Felgenhauer. Certifying
proofs in the first-order theory of rewriting. In Proc. 27th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 12652 of Lecture Notes in Computer
Science, pages 127–144, 2021. doi:10.1007/978-3-030-72013-1_7.

[4] Franziska Rapp and Aart Middeldorp. Automating the first-order theory of left-linear right-ground
term rewrite systems. In Proc. 1st FSCD, volume 52 of Leibniz International Proceedings in
Informatics, pages 36:1–36:12, 2016. doi:10.4230/LIPIcs.FSCD.2016.36.

[5] Franziska Rapp and Aart Middeldorp. Confluence properties on open terms in the first-order theory
of rewriting. In Proc. 5th International Workshop on Confluence, pages 26–30, 2016.

[6] Franziska Rapp and Aart Middeldorp. FORT 2.0. In Proc. 9th International Joint Conference on
Automated Reasoning, volume 10900 of Lecture Notes in Artificial Intelligence, pages 81–88, 2018.
doi:10.1007/978-3-319-94205-6_6.

6

https://isa-afp.org/entries/Rewrite_Properties_Reduction.html
https://doi.org/10.1007/978-3-030-72013-1_7
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/978-3-319-94205-6_6

	Introduction
	Preliminaries
	Results
	Conclusion

