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Abstract

Having development closed critical pairs is a well-known sufficient condition for confluence
of left-linear term rewrite systems. We present formalized results involving proof terms and
unification that play an important role in the proof.

1 Introduction

In recent years several confluence criteria for first-order rewrite systems have been formalized
in a proof assistant [3–5]. A well-known condition that has eluded all attempts so far is the
result by van Oostrom [8] that a left-linear rewrite system is confluent if its critical pairs are
development closed. In [1] it is suggested to use proof terms [7, Chapter 8] to obtain a rigorous
proof. In [3] it is further suggested that a formalization of residual theory might be helpful.
Here we pursue these suggestions further and present formalizations of several results that we
believe will lead to a formal proof of the development closedness condition.

Our formalization is based on IsaFoR1 and uses the existing formalizations of unifi-
cation and critical pairs described in [6]. Our own development can be found at http:

//informatik-protem.uibk.ac.at/DC. To help readers negotiate the theory files we have
annotated important results in this paper by a ✓-symbol which directly links to the HTML
presentation of the corresponding result in our formalization.

2 Proof Terms

We use Greek letters for rule symbols which are used in proof terms. If α is a rule symbol
then lhs(α) (rhs(α)) denotes the left-hand (right-hand) side of the rewrite rule denoted by
α. Furthermore var(α) denotes the list (x1, . . . , xn) of variables appearing in α in some fixed
order. The length of this list is the arity of α. The list varpos(α) = (p1, . . . , pn) denotes
the corresponding variable positions in lhs(α) such that lhs(α)|pi

= xi. Given a rule symbol
α with var(α) = (x1, . . . , xn) and terms t1, . . . , tn, we write ⟨t1, . . . , tn⟩α for the substitution
{xi 7→ ti | 1 ⩽ i ⩽ n}. Given a proof term A, its source src(A) and target tgt(A) are computed
by the following equations for st ∈ {src, tgt}:

st(x) = x

st(f(A1, . . . , An)) = f(st(A1), . . . , st(An))

src(α(A1, . . . , An)) = lhs(α)⟨src(A1), . . . , src(An)⟩α
tgt(α(A1, . . . , An)) = rhs(α)⟨tgt(A1), . . . , tgt(An)⟩α

Proof terms A and B are said to be co-initial if they have the same source. The proof term A
can be seen as a witness of the multi-step src(A) ◦−→ tgt(A).For every multi-step there exists
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a proof term witnessing it. In the setting of left-linear TRSs we can extend the definition of
src to contexts of proof terms by adding the clause src(□) = □. Doing the same for tgt or for
arbitrary TRSs however could lead to more than one hole appearing in the result. The following
result is an easy consequence of the idempotence of src and tgt.

Lemma 1. For any substitution σ, proof term context C, and proof term A we have

src(Aσ) = src(src(A)σ) tgt(Aσ) = tgt(tgt(A)σ)

src(C[A]) = src(C[src(A)]) = src(C)[src(A)]) tgt(C[A]) = tgt(C[tgt(A)])

For co-initial proof terms A and B we can define partial operations residual (/), join (⊔),
and deletion (−). The residual A / B is used to compute which redexes in A remain after
contracting the redexes of B, A ⊔B is used to obtain a single proof term containing all redexes
of A and B, and A−B is used to delete the redexes of B from A. The definitions can be found
in Appendix ??. Straightforward induction proofs on the definitions yield the following result.

Lemma 2. 1. If A / B and B / A are defined then src(B / A) = tgt(A) and tgt(A / B) =
tgt(B / A).

2. If A ⋆ B is defined then src(A ⋆ B) = src(A) = src(B) for ⋆ ∈ {⊔,−}.

The rules below can be used to compute joins, residuals, and deletions if the proof terms
involved adhere to certain patterns.

Lemma 3. Let ⋆ ∈ {⊔, /,−}.

1. A ⋆ src(A) = A

2. If A ⋆ B = D then C[A] ⋆ src(C)[B] = C[D] for any proof term context C.

3. If σ(x) = src(τ(x)) for all x ∈ Var(A) then Aσ ⊔ src(A)τ = Aτ .

Since the residual and deletion operations are not symmetric (as opposed to join) there is no
obvious extension of the last item to / and −.

3 Development Closed Critical Pairs

To show that a left-linear TRS is confluent if it is development closed it suffices to show that ◦−→
has the diamond property. A sketch of this proof is depicted in Figure 3. There the multi-step
s ◦−→ t is witnessed by the proof term A, the multi-step s ◦−→ u is witnessed by the proof
term B, and we need to show t ◦−→ v ◦←− u for some term v. The idea is to use well-founded
induction on the amount of overlap between A and B. The case where A and B do not overlap
is straightforward since then the proof terms A / B and B / A are well-defined and have the
same target (Lemma 2). In the other case we can use the fact that the TRS is development
closed to show that the co-initial proof terms A /∆1 and D ⊔ (B −∆2) /∆1 can be constructed
and that the overlap between these is less than between A and B. A key ingredient for the
proof is the notion of an innermost overlap between A and B. Here an overlap is simply a pair
of positions (p, q) such that the redex in A at position p overlaps with the redex in B at position
q. An innermost overlap is one where no other overlap occurs below it. Formal definitions can
be found in Appendix ??.

Assuming that A and B have overlap, we select an innermost overlap (p, q) and assume
q ⩽ p without loss of generality. Now let q′ = p\q, varpos(lhs(α)) = (p1, . . . , pn), var(lhs(α)) =
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(x1, . . . , xn), varpos(lhs(β)) = (q1, . . . , qm), and var(lhs(β)) = (y1, . . . , ym). We assume without
loss of generality Var(lhs(α)) ∩ Var(lhs(β)) = ∅ and define a substitution σ that maps the
variables of lhs(α) and lhs(β) to subterms of s such that lhs(α)σ = s|p and lhs(β)σ = s|q:

σ = {xi 7→ s|ppi
| 1 ⩽ i ⩽ n} ∪ {yj 7→ s|qqj | 1 ⩽ j ⩽ m}

Furthermore we can use Lemma ?? of Appendix ?? to obtain another substitution τ which
is an mgu of lhs(α) and lhs(β)|q′ :

τ ={xi 7→ lhs(β)|q′pi
| 1 ⩽ i ⩽ n and q′pi ∈ Pos(lhs(β))} ∪

{yj 7→ lhs(α)|qj\q′ | 1 ⩽ j ⩽ m and qj\q′ ∈ PosF (lhs(α))}

Hence we obtain the critical peak

lhs(β)[rhs(α)τ ]q′
q′←−−
α

lhs(β)[lhs(α)τ ]q′ = lhs(β)τ
ϵ−−→
β

rhs(β)τ ✓

Assuming that the given TRS is development closed, we know there exists a multi-step
lhs(β)[rhs(α)τ ]q′ ◦−→ rhs(β)τ . Let D′ be the proof term representation of such a multi-step and
define D = s[D′σ]q. Then we can prove the following result.

Lemma 4. The proof term D witnesses the multi-step tgt(∆1) ◦−→ tgt(∆2). ✓

Ultimately we need to also show that D ⊔ (B − ∆2) / ∆1 is well-defined and witnesses
tgt(∆1) ◦−→ tgt(B). For this purpose we introduce another substitution ρ:

ρ = {yj 7→ Bj | 1 ⩽ j ⩽ m} ∪ {xi 7→ lhs(β)⟨B1, . . . , Bm⟩β |q′pi
| 1 ⩽ i ⩽ n}

Note the similarity to σ: ρ maps to subterms of B while σ maps to the sources of these proof
terms. The key property that makes ρ useful for computing (B −∆2) /∆1 is the following:

Lemma 5. If 1 ⩽ j ⩽ m then τ(yj)ρ = Bj. ✓

Proof. We distinguish two cases: τ(yj) = yj and τ(yj) ̸= yj . In the first case we immediately
obtain τ(yj)ρ = ρ(yj) = Bj from the definition of ρ. For the second case first observe that if
all function symbols of lhs(α) also appear in lhs(β)⟨B1, . . . , Bm⟩β |q′ (i.e., no rule symbols are in
the way) then it follows from the definition of ρ that

lhs(α)ρ = lhs(β)⟨B1, . . . , Bm⟩β |q′ (∗)

Checking that all function symbols of lhs(α) also appear in lhs(β)⟨B1, . . . , Bm⟩β |q′ can be done
by verifying

p′ ∈ PosF (lhs(α)) =⇒ src♯(lhs(β)⟨B1, . . . , Bm⟩β |q′)(p′) is unlabeled ✓

which relies on the fact that having a labeled function symbol at such a position p′ would
contradict the assumption that (p, q) is an innermost overlap of A and B. With (∗) we obtain
τ(yj)ρ = lhs(α)|qj\q′ρ = (lhs(β)⟨B1, . . . , Bm⟩β |q′)|qj\q′ = lhs(β)⟨B1, . . . , Bm⟩β |qj = Bj .

The term s = src(A) = src(B) contains a redex with respect to β at position q. In the
following we denote by qβ the corresponding position of the rule symbol β in the proof term
B, i.e., the position qβ such that B = B[β(B1, . . . , Bm)]qβ and src(B)[ ]q = src(B[ ]qβ ). It
can be shown that such a position exists for arbitrary proof terms B and positions q where
src♯(B)(q) = β0. ✓
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Lemma 6. 1. D ⊔ (B −∆2) /∆1 = B[D′ρ]qβ ✓

2. D ⊔ (B −∆2) /∆1 witnesses tgt(∆1) ◦−→ tgt(B) ✓ ✓

Proof. From Lemma 3 we obtain B −∆2 = B[lhs(β)⟨B1, . . . , Bm⟩β ]qβ and with Lemma 5 we
further obtain B[lhs(β)⟨B1, . . . , Bm⟩β ]qβ = B[lhs(β)τρ]qβ = B[lhs(β)[lhs(α)τ ]q′ρ]qβ . Another
application of Lemma 3 yields (B −∆2) /∆1 = B[lhs(β)[rhs(α)τ ]q′ρ]qβ . From Lemma 3(3) we
obtain D′σ ⊔ lhs(β)[rhs(α)τ ]q′ρ = D′ρ and since src(B[ ]qβ ) = s[ ]q and D = s[D′σ]q we can
apply Lemma 3(2) (modulo symmetry of ⊔) to obtain the desired D⊔ (B−∆2)/∆1 = B[D′ρ]qβ .
From Lemma 2 and Lemma 4 we obtain src((B − ∆2) / ∆1) = tgt(∆1) = src(D) and hence
src(D ⊔ (B −∆2) /∆1) = tgt(∆1). It remains to show that tgt(D ⊔ (B −∆2) /∆1) = tgt(B).
We have

tgt(D ⊔ (B −∆2) /∆1) = tgt(B[D′ρ]qβ )

= tgt(B[tgt(rhs(β)τρ)]qβ ) (Lemma 1 and definition of D′)

= tgt(B[tgt(rhs(β)⟨B1, . . . , Bm⟩β)]qβ ) (Lemma 5)

= tgt(B[β(B1, . . . , Bm)]qβ ) (Lemma 1)

= tgt(B)

In order to apply the induction hypothesis and to conclude the proof in Figure 3 it remains
to show that the amount of overlap between the proof terms A /∆1 and D ⊔ (B −∆2) /∆1 is
less than the amount of overlap between A and B. Like the proof of Lemma 5 this relies on
the fact that we chose an innermost overlap (p, q) during the construction of D. At the time of
writing the formalization of this fact is still work in progress.

The example below illustrates the constructions of Lemma 6 for specific proof terms A and
B. It can be retraced in the tool ProTeM [2] where we implemented all important operations.

Example 7. Consider the left-linear and development closed TRS R consisting of the rules

α : f(x1, g(x2))→ f(x1, g(x1)) β : f(g(y1), y2)→ f(g(y1), g(y1)) γ : g(a)→ g(b) δ : b→ a

and the proof terms A = g(α(γ, a)) and B = g(β(a,γ)). We have src(A) = src(B) =
g(f(g(a), g(a))) and overlaps(A,B) = {(1, 1), (1, 12), (11, 1)} where both the second and third
overlap are innermost. For the overlap (11, 1) we obtain the substitution τ = {y1 7→ a} with
corresponding critical peak

f(g(b), y2)
1←−−
γ

f(g(a), y2)
ϵ−−→
β

f(g(a), g(a))

This critical peak can be closed by applying β at the root and δ at position 11 in the term
f(g(b), y2) as witnessed by the proof term D′ = β(δ, y2). Since σ = {y1 7→ a, y2 7→ g(a)}
we have D = s[D′σ]1 = s[β(δ, g(a))]1 = g(β(δ, g(a))). Furthermore, ∆1 = g(f(γ, g(a))),
∆2 = g(β(a, g(a))), ρ = {y1 7→ a, y2 7→ γ} and hence

B −∆2 = g(f(g(a),γ)) = B[lhs(β)τρ]1

(B −∆2) /∆1 = g(f(g(b),γ)) = B[lhs(β)[rhs(γ)τ ]1ρ]1

D ⊔ (B −∆2) /∆1 = g(β(δ,γ)) = B[D′ρ]1

For the non-innermost overlap (1, 1) the term (B − ∆2) / ∆1 as well as the substitution
ρ are not well-defined. We have ∆1 = g(α(g(a), a)) and ∆2 = g(β(a, g(a))) and hence B −
∆2 = s[(f(g(a),γ))]1. Since f(g(a),γ) does not match lhs(α) the result of (B − ∆2) / ∆1

is undefined. Also the substitution ρ cannot be computed since the variable binding x2 7→
lhs(β)⟨B1, . . . , Bm⟩β |21 = f(g(a),γ)|21 does not make sense.
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induction hypothesis

s u′ u

t′

t

∆2 B /∆2

∆1

A /∆1

D

D ⊔ (
(B −

∆2) /
∆1)

Figure 1: Picture proof.

References

[1] Nao Hirokawa and Aart Middeldorp. Commutation via relative termination. In Proc. 2th IWC,
pages 29–33, 2013.

[2] Christina Kohl and Aart Middeldorp. ProTeM: A proof term manipulator (system description). In
Proc. 3rd FSCD, volume 108 of LIPIcs, pages 31:1–31:8, 2018. doi:10.4230/LIPIcs.FSCD.2018.31.

[3] Julian Nagele and Aart Middeldorp. Certification of classical confluence results for left-linear
term rewrite systems. In Proc. 7th ITP, volume 9807 of LNCS, pages 290–306, 2016. doi:

10.1007/978-3-319-43144-4_18.

[4] Julian Nagele and Harald Zankl. Certified rule labeling. In Proc. 26th RTA, volume 36 of LIPIcs,
pages 269–284, 2015. doi:10.4230/LIPIcs.RTA.2015.269.
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