
Confluence Criteria for Logically
Constrained Rewrite Systems

Jonas Schöpf(B) and Aart Middeldorp

Department of Computer Science, Universität Innsbruck, Innsbruck, Austria
{jonas.schoepf,aart.middeldorp}@uibk.ac.at

Abstract. Numerous confluence criteria for plain term rewrite systems
are known. For logically constrained rewrite system, an attractive exten-
sion of term rewriting in which rules are equipped with logical con-
straints, much less is known. In this paper we extend the strongly-closed
and (almost) parallel-closed critical pair criteria of Huet and Toyama to
the logically constrained setting. We discuss the challenges for automa-
tion and present crest, a new tool for logically constrained rewriting in
which the confluence criteria are implemented, together with experimen-
tal data.

Keywords: Confluence · Term Rewriting · Constraints · Automation

1 Introduction

Logically constrained rewrite systems constitute a general rewrite formalism with
native support for constraints that are handled by SMT solvers. They are use-
ful for program analysis, as illustrated in numerous papers [2,3,5,13]. Several
results from term rewriting have been lifted to constrained rewriting. We men-
tion termination analysis [6,7,12], rewriting induction [3], completion [12] as well
as runtime complexity analysis [13].

In this paper we are concerned with confluence analysis of logically con-
strained rewrite systems (LCTRSs for short). Only two sufficient conditions for
confluence of LCTRSs are known. Kop and Nishida considered (weak) orthogo-
nality in [8]. Orthogonality is the combination of left-linearity and the absence
of critical pairs, in a weakly orthogonal system trivial critical pairs are allowed.
Completion of LCTRSs is the topic of [12] and the underlying confluence con-
dition of completion is the combination of termination and joinability of critical
pairs. In this paper we add two further confluence criteria. Both of these extend
known conditions for standard term rewriting to the constrained setting. The
first is the combination of linearity and strong closedness of critical pairs, intro-
duced by Huet [4]. The second, also due to [4], is the combination of left-linearity
and parallel closedness of critical pairs. We also consider an extension of the lat-
ter, due to Toyama [11].

This research is supported by FWF (Austrian Science Fund) Project I 5943-N.
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 474–490, 2023.
https://doi.org/10.1007/978-3-031-38499-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_27&domain=pdf
http://orcid.org/0000-0001-5908-8519
http://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-031-38499-8_27

Confluence Criteria for Logically Constrained Rewrite Systems 475

Overview. The remainder of this paper is organized as follows. In the next
section we summarize the relevant background. Section 3 recalls the existing
confluence criteria for LCTRSs and some of the underlying results. The new
confluence criteria for LCTRSs are reported in Sect. 4. In Sect. 5 the automation
challenges we faced are described and we present our prototype implementation
crest. Experimental results are reported in Sect. 6, before we conclude in Sect. 7.

2 Preliminaries

We assume familiarity with the basic notions of term rewrite systems (TRSs) [1],
but shortly recapitulate terminology and notation that we use in the remainder.
In particular, we recall the notion of logically constrained rewriting as defined
in [3,8].

We assume a many-sorted signature F and a set V of (many-sorted) variables
disjoint from F . The signature F is split into term symbols from Fte and theory
symbols from Fth. The set T (F ,V) contains the well-sorted terms over this
signature and T (Fth) denotes the set of well-sorted ground terms that consist
entirely of theory symbols. We assume a mapping I which assigns to every
sort ι occurring in Fth a carrier set I(ι), and an interpretation J that assigns
to every symbol f ∈ Fth with sort declaration ι1 × · · · × ιn → κ a function
fJ : I(ι1) × · · · × I(ιn) → I(κ). Moreover, for every sort ι occurring in Fth we
assume a set Valι ⊆ Fth of value symbols, such that all c ∈ Valι are constants
of sort ι and J constitutes a bijective mapping between Valι and I(ι). Thus
there exists a constant symbol in Fth for every value in the carrier set. The
interpretation J naturally extends to a mapping [[·]] from ground terms in T (Fth)
to values in Val =

⋃
ι∈Dom(I) Valι: [[f(t1, . . . , tn)]] = fJ ([[t1]], . . . , [[tn]]) for all

f(t1, . . . , tn) ∈ T (Fth). So every ground term in T (Fth) has a unique value.
We demand that theory symbols and term symbols overlap only on values, i.e.,
Fte ∩ Fth ⊆ Val. A term in T (Fth,V) is called a logical term.

Positions are strings of positive natural numbers used to address subterms.
The empty string is denoted by ε. We write q � p and say that p is below q if
qq′ = p for some position q′, in which case p\q is defined to be q′. Furthermore,
q < p if q � p and q �= p. Finally, positions q and p are parallel, written as q ‖ p, if
neither q � p nor p < q. The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable or a constant, and as Pos(t) = {ε} ∪ {iq | 1 � i � n and q ∈
Pos(ti)} if t = f(t1, . . . , tn) with n � 1. The subterm of t at position p ∈ Pos(t)
is defined as t|p = t if p = ε and as t|p = ti|q if p = iq and t = f(t1, . . . , tn). We
write s[t]p for the result of replacing the subterm at position p of s with t. We
write PosV(t) for {p ∈ Pos(t) | t|p ∈ V } and PosF (t) for Pos(t) \ PosV(t). The
set of variables occurring in the term t is denoted by Var(t). A term t is linear
if every variable occurs at most once in it. A substitution is a mapping σ from
V to T (F ,V) such that its domain {x ∈ V | σ(x) �= x} is finite. We write tσ for
the result of applying σ to the term t.

We assume the existence of a sort bool such that I(bool) = B = {	,⊥},
Valbool = {true, false}, [[true]] = 	, and [[false]] = ⊥ hold. Logical terms of sort

476 J. Schöpf and A. Middeldorp

bool are called constraints. A constraint ϕ is valid if [[ϕγ]] = 	 for all substitutions
γ such that γ(x) ∈ Val for all x ∈ Var(ϕ).

A constrained rewrite rule is a triple � → r [ϕ] where �, r ∈ T (F ,V) are terms
of the same sort such that root(�) ∈ Fte \Fth and ϕ is a logical term of sort bool.
If ϕ = true then the constraint is often omitted, and the rule is denoted as � → r.
We denote the set Var(ϕ)∪(Var(r)\Var(�)) of logical variables in ρ : � → r [ϕ] by
LVar(ρ). We write EVar(ρ) for the set Var(r)\ (Var(�)∪Var(ϕ)) of variables that
appear only in the right-hand side of ρ. Note that extra variables in right-hand
sides are allowed, but they may only be instantiated by values. This is useful
to model user input or random choice [3]. A set of constrained rewrite rules is
called a logically constrained rewrite system (LCTRS for short).

The LCTRS R introduced in the example below computes the maximum of
two integers.

Example 1. Before giving the rules, we need to define the term and theory sym-
bols, the carrier sets and interpretation functions:

Fte = {max : int × int ⇒ int} ∪ {0, 1, . . . : int} Ibool = B Iint = Z

Fth = {0, 1, . . . : int} ∪ {true, false : bool} ∪ {¬ : bool ⇒ bool}
∪ {− : int ⇒ int} ∪ {∧ : bool × bool ⇒ bool}
∪ {+,− : int × int ⇒ int} ∪ {≤,≥, <,>,= : int × int ⇒ bool}

The interpretations for theory symbols follow the usual semantics given in the
SMT-LIB theory Ints1 used by the SMT-LIB logic QF_LIA. The LCTRS R
consists of the following constrained rewrite rules

max(x, y) → x [x ≥ y] max(x, y) → y [y ≥ x] max(x, y) → max(y, x)

In later examples we refrain from spelling out the signature and interpreta-
tions of the theory Ints. We now define rewriting using constrained rewrite rules.
LCTRSs admit two kinds of rewrite steps. Rewrite rules give rise to rule steps,
provided the constraint of the rule is satisfied. In addition, theory calls of the
form f(v1, . . . , vn) with f ∈ Fth \Val and values v1, . . . , vn can be evaluated in a
calculation step. In the definition below, a substitution σ is said to respect a rule
ρ : � → r [ϕ], denoted by σ � ρ, if Dom(σ) = Var(�)∪Var(r)∪Var(ϕ), σ(x) ∈ Val
for all x ∈ LVar(ρ), and ϕσ is valid. Moreover, a constraint ϕ is respected by σ,
denoted by σ � ϕ, if σ(x) ∈ Val for all x ∈ Var(ϕ) and ϕσ is valid.

Definition 1. Let R be an LCTRS. A rule step s →ru t satisfies s|p = �σ
and t = s[rσ]p for some position p and constrained rewrite rule � → r [ϕ] that
is respected by the substitution σ. A calculation step s →ca t satisfies s|p =
f(v1, . . . , vn) and t = s[v]p for some f ∈ Fth \ Val, v1, . . . , vn ∈ Val with v =
[[f(v1, . . . , vn)]]. In this case f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] with a fresh
variable y is a calculation rule. The set of all calculation rules is denoted by Rca.
The relation →R associated with R is the union of →ru ∪ →ca.
1 http://smtlib.cs.uiowa.edu/Theories/Ints.smt2.

http://smtlib.cs.uiowa.edu/Theories/Ints.smt2

Confluence Criteria for Logically Constrained Rewrite Systems 477

We sometimes write →p |ρ |σ to indicate that the rewrite step takes place at
position p, using the constrained rewrite rule ρ with substitution σ.

Example 2. We have max(1 + 2, 4) →R max(3, 4) →R max(4, 3) →R 4 in the
LCTRS of Example 1. The first step is a calculation step. In the third step we
apply the rule max(x, y) → x [x ≥ y] with substitution σ = {x �→ 4, y �→ 3}.

3 Confluence

In this paper we are concerned with the confluence of LCTRSs. An LCTRS R
is confluent if t →∗

R · ∗
R← u for all terms s, t and u such that t ∗

R← s →∗
R u.

Confluence criteria for TRSs are based on critical pairs. Critical pairs for LCTRS
were introduced in [8]. The difference with the definition below is that we add
dummy constraints for extra variables in right-hand sides of rewrite rules.

Definition 2. An overlap of an LCTRS R is a triple 〈ρ1, p, ρ2〉 with rules
ρ1 : �1 → r1 [ϕ1] and ρ2 : �2 → r2 [ϕ2], satisfying the following conditions:

1. ρ1 and ρ2 are variable-disjoint variants of rewrite rules in R ∪ Rca,
2. p ∈ PosF (�2),
3. �1 and �2|p are unifiable with a mgu σ such that σ(x) ∈ Val ∪ V for all

x ∈ LVar(ρ1) ∪ LVar(ρ2),
4. ϕ1σ ∧ ϕ2σ is satisfiable, and
5. if p = ε then ρ1 and ρ2 are not variants, or Var(r1) � Var(�1).

In this case we call �2σ[r1σ]p ≈ r2σ [ϕ1σ ∧ϕ2σ ∧ψσ] a constrained critical pair
obtained from the overlap 〈ρ1, p, ρ2〉. Here

ψ =
∧

{x = x | x ∈ EVar(ρ1) ∪ EVar(ρ2)}

The set of all constrained critical pairs of R is denoted by CCP(R).

In the following we drop “constrained” and speak of critical pairs. The con-
dition Var(r1) � Var(�1) in the fifth condition is essential to correctly deal with
extra variables in rewrite rules. The equations (ψ) added to the constraint of a
critical pair save the information which variables in a critical pair were intro-
duced by variables only occurring in the right-hand side of a rewrite rule and
therefore should only be instantiated by values. Critical pairs as defined in [8,12]
lack this information. The proof of Theorem 2 in the next section makes clear
why those trivial equations are essential for our confluence criteria, see also
Example 9.

Example 3. Consider the LCTRS consisting of the rule

ρ : f(x) → z [x = z^2]

The variable z does not occur in the left-hand side and the condition Var(r1) �

Var(�1) ensures that ρ overlaps with (a variant of) itself at the root position.
Note that R is not confluent due to the non-joinable local peak −4 ← f(16) → 4.

478 J. Schöpf and A. Middeldorp

Example 4. The LCTRS R of Example 1 admits the following critical pairs:

x ≈ y [x ≥ y ∧ y ≥ x] 〈1, ε, 2〉
x ≈ max(y, x) [x ≥ y] 〈1, ε, 3〉
y ≈ max(y, x) [y ≥ x] 〈2, ε, 3〉

The originating overlap is given on the right, where we number the rewrite rules
from left to right in Example 1.

Actually, there are three more overlaps since the position of overlap (ε) is
the root position. Such overlaps are called overlays and always come in pairs.
For instance, max(y, x) ≈ x [x ≥ y] is the critial pair originating from 〈3, ε, 1〉.
For confluence criteria based on symmetric joinability conditions of critical pairs
(like weak orthogonality and joinability of critical pairs for terminating systems)
we need to consider just one critical pair, but this is not true for the criteria
presented in the next section.

Logically constrained rewriting aims to rewrite (unconstrained) terms with
constrained rules. However, for the sake of analysis, rewriting constrained terms
is useful. In particular, since critical pairs in LCTRSs come with a constraint,
confluence criteria need to consider constrained terms. The relevant notions
defined below originate from [3,8].

Definition 3. A constrained term is a pair s [ϕ] of a term s and a constraint ϕ.
Two constrained terms s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼ t [ψ],
if for every substitution γ respecting ϕ there is some substitution δ that respects
ψ such that sγ = tδ, and vice versa. Let R be an LCTRS and s [ϕ] a constrained
term. If s|p = �σ for some constrained rewrite rule ρ : � → r [ψ], position p, and
substitution σ such that σ(x) ∈ Val∪ Var(ϕ) for all x ∈ LVar(ρ), ϕ is satisfiable
and ϕ ⇒ ψσ is valid then

s [ϕ] →ru s[rσ]p [ϕ]

is a rule step. If s|p = f(s1, . . . , sn) with f ∈ Fth \ Fte and s1, . . . , sn ∈ Val ∪
Var(ϕ) then

s [ϕ] →ca s[x]p [ϕ ∧ x = f(s1, . . . , sn)]

is a calculation step. Here x is a fresh variable. We write →R for →ru ∪ →ca

and the rewrite relation ∼→R on constrained terms is defined as ∼ · →R · ∼.

Positions in connection with ∼→R steps always refer to the underlying steps
in →R. We give an example of constrained rewriting.

Example 5. Consider again the LCTRS R of Example 1. We have

max(x + y, 6) [x ≥ 2 ∧ y ≥ 4] →R max(z, 6) [x ≥ 2 ∧ y ≥ 4 ∧ z = x + y]
→R z [x ≥ 2 ∧ y ≥ 4 ∧ z = x + y]

The first step is a calculation step. The second step is a rule step using the rule
max(x, y) → x [x ≥ y] with the substitution σ = {x �→ z, y �→ 6}. Note that the
constraint (x ≥ 2 ∧ y ≥ 4 ∧ z = x + y) ⇒ z ≥ 6 is valid.

Confluence Criteria for Logically Constrained Rewrite Systems 479

Definition 4. A critical pair s ≈ t [ϕ] is trivial if sσ = tσ for every substitution
σ with σ � ϕ.2 A left-linear LCTRS having only trivial critical pairs is called
weakly orthogonal. A left-linear TRS without critical pairs is called orthogonal.

The following result is from [8].

Theorem 1. Weakly orthogonal LCTRS are confluent. ��
Example 6. The following left-linear LCTRS computes the Ackermann function
using term symbols from Fte = {ack : int × int ⇒ int} ∪ {0, 1, · · · : int} and the
same theory symbols, carrier sets and interpretations as in Example 1:

ack(0, n) → n + 1 [n ≥ 0]
ack(m, 0) → ack(m − 1, 1) [m > 0]
ack(m,n) → ack(m − 1, ack(m,n − 1)) [m > 0 ∧ n > 0]
ack(m,n) → 0 [m < 0 ∨ n < 0]

Since the conjunction of any two constraints is unsatisfiable, R lacks critical
pairs. Hence R is confluent by Theorem 1.

The following result is proved in [12] and forms the basis of completion of
LCTRSs.

Lemma 1. Let R be an LCTRS. If t R← s →R u then t ↓R u or t ←−−−→
CCP(R)

u.
��

In combination with Newman’s Lemma, the following confluence criterion is
obtained.

Corollary 1. A terminating LCTRS is confluent if all critical pairs are join-
able.

This is less obvious than it seems. Joinability of a critical pair s ≈ t [ϕ]
cannot simply be defined as s [ϕ] ∼→∗

R · ∗
R

∼← t [ϕ], as the following example
shows.

Example 7. Consider the terminating LCTRS R consisting of the rewrite rules

f(x, y) → g(x, 1+ 1) h(f(x, y)) → h(g(y, 1+ 1))

The single critical pair h(g(x, 1 + 1)) ≈ h(g(y, 1 + 1)) should not be joinable
because R is not confluent, but we do have

h(g(x, 1+ 1)) →ca h(g(x, z)) [z = 1+ 1] ∼ h(g(y, v)) [v = 1+ 1]
h(g(y, 1+ 1)) →ca h(g(y, v)) [v = 1+ 1]

due to the equivalence relation ∼ on constrained terms; since x and y do not
appear in the constraints, there is no demand that they must be instantiated
with values.
2 The triviality condition in [8] is wrong. Here we use the corrected version in an

update of [8] announced on Cynthia Kop’s website (accessible at https://www.cs.ru.
nl/~cynthiakop/frocos13.pdf).

https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
https://www.cs.ru.nl/~cynthiakop/frocos13.pdf

480 J. Schöpf and A. Middeldorp

The solution is not to treat the two sides of a critical pair in isolation but
define joinability based on rewriting constrained term pairs. So we view the
symbol ≈ in a constrained equation s ≈ t [ϕ] as a binary constructor symbol
such that the constrained equation can be viewed as a constrained term. Steps
in s take place at positions � 1 whereas steps in t use positions � 2. The same
is done in completion of LCTRSs [12].

Definition 5. We call a constrained equation s ≈ t [ϕ] trivial if sσ = tσ for any
substitution σ with σ � ϕ. A critical pair s ≈ t [ϕ] is joinable if s ≈ t [ϕ] ∼→∗

R
u ≈ v [ψ] and u ≈ v [ψ] is trivial.

We revisit Example 7.

Example 8. For the critical pair in Example 7 we obtain

h(g(x,1+ 1)) ≈ h(g(y, 1+ 1))
→ca h(g(x, v)) ≈ h(g(y, 1+ 1)) [v = 1+ 1]
→ca h(g(x, v)) ≈ h(g(y, z)) [v = 1+ 1 ∧ z = 1+ 1]

The substitution σ = {v �→ 2, z �→ 2} respects the constraint v = 1+1∧z = 1+1
but does not equate h(g(x, v)) and h(g(y, z)).

The converse of Corollary 1 also holds, but note that in contrast to TRSs,
joinability of critical pairs is not a decidable criterion for terminating LCTRSs,
due to the undecidable triviality condition. Moreover, for the converse to hold,
it is essential that critical pairs contain the trivial equations ψ in Definition 2.

Example 9. Consider the LCTRS R consisting of the rules

f(x) → g(y) g(y) → a [y = y]

which admits the critical pair g(y) ≈ g(y′) [y = y ∧ y′ = y′] originating from the
overlap 〈f(x) → g(y), ε, f(x′) → g(y′)〉. This critical pair is joinable as y and y′

are restricted to values and thus both sides rewrite to a using the second rule.
As R is also terminating, it is confluent by Corollary 1. If we were to drop ψ in
Definition 2, we would obtain the non-joinable critical pair g(y) ≈ g(y′) instead
and wrongly conclude non-confluence.

4 Main Results

We start with extending a confluence result of Huet [4] for linear TRSs. Below
we write →�p to indicate that the position of the contracted redex in the step
is below position p.

Definition 6. A critical pair s ≈ t [ϕ] is strongly closed if

1. s ≈ t [ϕ] ∼→∗
�1 · ∼→=

�2 u ≈ v [ψ] for some trivial u ≈ v [ψ], and
2. s ≈ t [ϕ] ∼→∗

�2 · ∼→=
�1 u ≈ v [ψ] for some trivial u ≈ v [ψ].

Confluence Criteria for Logically Constrained Rewrite Systems 481

A binary relation → on terms is strongly confluent if t →∗ · =← u for all
terms s, t and u with t ← s → u. (By symmetry, also t →= · ∗← u is required.)
Strong confluence is a well-known sufficient condition for confluence. Huet [4]
proved that linear TRSs are strongly confluent if all critical pairs are strongly
closed. Below we extend this result to LCTRSs, using the above definition of
strongly closed constrained critical pairs.

Theorem 2. A linear LCTRS is strongly confluent if all its critical pairs are
strongly closed.

We give full proof details in order to illustrate the complications caused by
constrained rewrite rules. The following result from [12] plays an important role.

Lemma 2. Suppose s ≈ t [ϕ] ∼→p u ≈ v [ψ] and γ � ϕ. If p � 1 then sγ → uδ
and tγ = vδ for some substitution δ with δ � ψ. If p � 2 then sγ = uδ and
tγ → vδ for some substitution δ with δ � ψ. ��

Proof (of Theorem 2). Consider an arbitrary local peak

t ←p1 |ρ1 |σ1 s →p2 |ρ2 |σ2 u

with rewrite rules ρ1 : �1 → r1 [ϕ1] and ρ2 : �2 → r2 [ϕ2] from R ∪ Rca. We
may assume that ρ1 and ρ2 have no variables in common, and consequently
Dom(σ1) ∩ Dom(σ2) = ∅. We have s|p1 = �1σ1, t = s[r1σ1]p1 and σ1 � ϕ1.
Likewise, s|p2 = �2σ2, u = s[r2σ2]p2 and σ2 � ϕ2. If p1 ‖ p2 then

t →p2 |ρ2 |σ2 t[r2σ2]p2 = u[r1σ1]p1 ←p1 |ρ1 |σ1 u

Hence both t →∗ · =← u and t →= · ∗← u. If p1 and p2 are not parallel
then p1 � p2 or p2 < p1. Without loss of generality, we consider p1 � p2. Let
q = p2\p1. We do a case analysis on whether or not q ∈ PosF (�1).

– First suppose q /∈ PosF (�1). Let q = q1q2 such that q1 ∈ PosV(�1) and let x be
the variable in �1 at position q1. We have �2σ2 = xσ1|q2 and thus σ1(x) /∈ Val.
Define the substitution σ′

1 as follows:

σ′
1(y) =

{
xσ1[r2σ2]q2 if y = x

σ1(y) otherwise

We show t →= s[r1σ′
1]p1 ← u, which yields t →∗ · =← u and t →= · ∗← u.

Since R is left-linear, �1σ
′
1 = �1σ1[xσ′

1]q1 = �1σ1[xσ1[r2σ2]q2]q1 = �1σ1[r2σ2]q
and thus u = s[r2σ2]p2 = s[�1σ1[r2σ2]q]p1 = s[�1σ′

1]p1 . If we can show σ′
1 � ρ1

then u → s[r1σ′
1]p1 . Consider an arbitrary variable y ∈ LVar(ρ1). If y �= x

then σ′
1(y) = σ1(y) ∈ Val since σ1 � ρ1. If y = x then x ∈ Var(ϕ) since

x ∈ Var(�1). However, this contradicts σ1 � ρ1 as σ1(x) /∈ Val. So σ′
1(y) =

σ1(y) for all y ∈ LVar(ρ1) and thus σ′
1 � ρ1 is an immediate consequence of

σ1 � ρ1. It remains to show t →= s[r1σ′
1]p1 . If x /∈ Var(r1) then r1σ

′
1 = r1σ1

and thus t = s[r1σ′
1]p1 . If x ∈ Var(r1) then there exists a unique position

482 J. Schöpf and A. Middeldorp

q′ ∈ PosV(r1) such that r1|q′ = x, due to the right-linearity of R. Hence
r1σ

′
1 = r1σ1[xσ1[r2σ2]q2]q′ = r1σ1[r2σ2]q′q2 . Since r1σ1|q′q2 = �2σ2 we obtain

t = s[r1σ1]p1 →p1q′q2 |ρ2 |σ2 s[r1σ′
1]p1 as desired.

– Next suppose q ∈ PosF (�1). The substitution σ′ = σ1 ∪ σ2 satisfies �1|qσ′ =
�1|qσ1 = �2σ2 = �2σ

′ and thus is a unifier of �1|q and �2. Since σ1 � ρ1
and σ2 � ρ2, σ′(x) ∈ Val for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Let σ be an
mgu of �1|q and �2. Since σ is at least as general as σ′, σ(x) ∈ Val ∪ V
for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Since ϕ1σ

′ = ϕ1σ1 and ϕ2σ
′ = ϕ2σ2 are

valid, ϕ1σ ∧ ϕ2σ is satisfiable. Hence conditions 1, 2, 3 and 4 in Definition 2
hold for the triple 〈ρ2, q, ρ1〉. If condition 5 is not fulfilled then q = ε (and
thus p1 = p2), ρ2 and ρ1 are variants, and Var(r2) ⊆ Var(�2) (and thus also
Var(r1) ⊆ Var(�1)). Hence �1σ1 = �2σ2 and r1σ1 = r2σ2, and thus t = u. In
the remaining case condition 5 holds and hence 〈ρ2, q, ρ1〉 is an overlap. By
definition, �1σ[r2σ]q ≈ r1σ [ϕ2σ ∧ ϕ1σ ∧ ψσ] with

ψ =
∧

{x = x | x ∈ EVar(ρ1) ∪ EVar(ρ2)}

is a critical pair. To simplify the notation, we abbreviate �1σ[r2σ]q to s′,
r1σ to t′, and ϕ2σ ∧ ϕ1σ ∧ ψσ to ϕ′. Critical pairs are strongly closed by
assumption, and thus both
1. s′ ≈ t′ [ϕ′] ∼→∗

�1 · ∼→=
�2 u ≈ v [ψ′] for some trivial u ≈ v [ψ′], and

2. s′ ≈ t′ [ϕ′] ∼→∗
�2 · ∼→=

�1 u ≈ v [ψ′] for some trivial u ≈ v [ψ′].
Let γ be the substitution such that σγ = σ′. We claim that γ respects ϕ′. So
let x ∈ Var(ϕ′) = Var(ϕ2σ ∧ ϕ1σ ∧ ψσ). We have

LVar(ρ1) = Var(ϕ1) ∪ EVar(ρ1) LVar(ρ2) = Var(ϕ2) ∪ EVar(ρ2)

Together with Var(ψ) = EVar(ρ1) ∪ EVar(ρ2) we obtain

LVar(ρ1) ∪ LVar(ρ2) = Var(ϕ1) ∪ Var(ϕ2) ∪ Var(ψ)

Since σ′(x) ∈ Val for all x ∈ LVar(ρ1) ∪ LVar(ρ2), we obtain γ(x) ∈ Val
for all x ∈ Var(ϕ′) and thus γ � ϕ′. At this point repeated applications of
Lemma 2 to the constrained rewrite sequence in item 1 yields a substitution
δ respecting ψ′ such that s′γ →∗ uδ and t′γ = vδ. Since u ≈ v [ψ′] is trivial,
uδ = vδ and hence s′γ →∗ · =← t′γ. Likewise, s′γ →= · ∗← t′γ is obtained
from item 2. We have

s′γ = (�1σ[r2σ]q)γ = �1σ
′[r2σ′]q = �1σ1[r2σ2]q t′γ = r1σ

′ = r1σ1

Moreover, t = s[r1σ1]p1 = s[t′γ]p1 and u = s[�1σ1[r2σ2]q]p1 = s[s′γ]p1 . Since
rewriting is closed under contexts, we obtain u →∗ · =← t and u →= · ∗← t.
This completes the proof. ��

Example 10. Consider the LCTRS R of Example 1 and its critical pairs in Exam-
ple 4. The critical pair

x ≈ max(y, x) [x ≥ y]

Confluence Criteria for Logically Constrained Rewrite Systems 483

is not trivial, so Theorem 1 is not applicable and the rule max(x, y) → max(y, x)
precludes the use of Corollary 1 to infer confluence. We do have

x ≈ max(y, x) [x ≥ y]
�2−−→ x ≈ x [x ≥ y]

by applying the rule max(x, y) → y [y ≥ x] and the resulting constrained equa-
tion x ≈ x [x ≥ y] is obviously trivial. The same reasoning applies to the critical
pair y ≈ max(y, x) [y ≥ x]. The first critical pair x ≈ y [x ≥ y ∧ y ≥ x]
in Example 4 is trivial since any (value) substitution satisfying its constraint
x ≥ y ∧ y ≥ x equates x and y. By symmetry, all critical pairs of R are strongly
closed. Since R is linear, confluence follows from Theorem 2.

The second main result is the extension of Huet’s parallel closedness condition
on critical pairs in left-linear TRSs [4] to LCTRSs. To this end, we first define
parallel rewriting for LCTRSs.

Definition 7. Let R be an LCTRS. The relation −→‖ R is defined on terms induc-
tively as follows:

1. x −→‖ R x for all variables x,
2. f(s1, . . . , sn) −→‖ R f(t1, . . . , tn) if si −→‖ R ti for all 1 � i � n,
3. �σ −→‖ R rσ with � → r [ϕ] ∈ R and σ � � → r [ϕ],
4. f(v1, . . . , vn) −→‖ v with f ∈ Fth \ Val, v1, . . . , vn ∈ Val and

v = [[f(v1, . . . , vn)]].

We write −→‖ �p to indicate that all positions of contracted redexes in the
parallel step are below p. In the next definition we add constraints to parallel
rewriting.

Definition 8. Let R be an LCTRS. The relation −→‖ R is defined on constrained
terms inductively as follows:

1. x [ϕ] −→‖ R x [ϕ] for all variables x,
2. f(s1, . . . , sn) [ϕ] −→‖ R f(t1, . . . , tn) [ϕ ∧ ψ] if si [ϕ] −→‖ R ti [ϕ ∧ ψi] for all

1 � i � n and ψ = ψ1 ∧ · · · ∧ ψn,
3. �σ [ϕ] −→‖ R rσ [ϕ] with ρ : � → r [ω] ∈ R, σ(x) ∈ Val ∪ Var(ϕ) for all

x ∈ LVar(ρ), ϕ is satisfiable and ϕ ⇒ ωσ is valid,
4. f(v1, . . . , vn) [ϕ] −→‖ v [ϕ ∧ v = f(v1, . . . , vn)] with v1, . . . , vn ∈ Val∪ Var(ϕ),

f ∈ Fth \ Val and v is a fresh variable.

Here we assume that different applications to case 4 result in different fresh
variables. The constraint ψ in case 2 collects the assignments introduced in earlier
applications of case 4. (If there are none, ψ = true is omitted.) The same holds
for ψ1, . . . , ψn. We write ∼−→‖ for the relation ∼ · −→‖ R · ∼.

In light of the earlier developments, the following definition is the obvious
adaptation of parallel closedness for LCTRSs.

484 J. Schöpf and A. Middeldorp

Definition 9. A critical pair s ≈ t [ϕ] is parallel closed if

s ≈ t [ϕ] ∼−→‖ �1 u ≈ v [ψ]

for some trivial u ≈ v [ψ].

Note that the right-hand side t of the constrained equation s ≈ t [ϕ] may
change due to the equivalence relation ∼, cf. the statement of Lemma 2.

Theorem 3. A left-linear LCTRS is confluent if its critical pairs are parallel
closed.

To prove this result, we adapted the formalized proof presented in [10] to
the constrained setting. The required changes are very similar to the ones in the
proof of Theorem 2.

Example 11. Consider the LCTRS R with rules

f(x, y) → g(a, y + y) [y ≥ x ∧ y = 1] a → b

h(f(x, y)) → h(g(b, 2)) [x ≥ y] g(x, y) → g(y, x)

The single critical pair h(g(a, y + y)) ≈ h(g(b, 2)) [y ≥ x ∧ y = 1 ∧ x ≥ y] is
parallel closed:

h(g(a, y + y)) ≈ h(g(b, 2)) [y ≥ x ∧ y = 1 ∧ x ≥ y]
−→‖ �1 h(g(b, z)) ≈ h(g(b, 2)) [y ≥ x ∧ y = 1 ∧ x ≥ y ∧ z = y + y]

and the obtained equation is trivial. Hence R is confluent by Theorem 3. Note
that the earlier confluence criteria do not apply.

We also consider the extension of Huet’s result by Toyama [11], which has a
less restricted joinability condition on critical pairs stemming from overlapping
rules at the root position. Such critical pairs are called overlays whereas critical
pairs originating from overlaps 〈ρ1, p, ρ2〉 with p > ε are called inner critical
pairs.

Definition 10. An LCTRS R is almost parallel-closed if every inner critical
pair is parallel closed and every overlay s ≈ t [ϕ] satisfies

s ≈ t [ϕ] ∼−→‖ �1 · ∼→∗
�2 u ≈ v [ψ]

for some trivial u ≈ v [ψ].

Theorem 4. Left-linear almost parallel-closed LCTRSs are confluent.

Again, the formalized proof of the corresponding result for plain TRSs in [10]
can be adapted to the constrained setting.

Example 12. Consider the following variation of the LCTRS R in Example 11:

f(x, y) → g(a, y + y) [y ≥ x ∧ y = 1] a → b

f(x, y) → g(b, 2) [x ≥ y] g(x, y) → g(y, x)

The overlay g(b, 2) ≈ g(a, y + y) [x ≥ y ∧ y ≥ x ∧ y = 1] is not parallel closed
but one readily confirms that the condition in Definition 10 applies.

Confluence Criteria for Logically Constrained Rewrite Systems 485

5 Automation

As it is very inconvenient and tedious to test by hand if an LCTRS satisfies
one of the confluence criteria presented in the preceding sections, we provide an
implementation. The natural choice would be to extend the existing tool Ctrl [9]
because it is currently the only tool capable of analyzing confluence of LCTRSs.
However, Ctrl is not actively maintained and not very well documented, so we
decided to develop a new tool for the analysis of LCTRSs. Our tool is called crest
(constrained rewriting software). It is written in Haskell, based on the Haskell
term-rewriting3 library and allows the logics QF_LIA, QF_NIA, QF_LRA.

The input format of crest is described on its website.4 After parsing the input,
crest checks that the resulting LCTRS is well-typed. Missing sort information
is inferred. Next it is checked concurrently whether one of the implemented
confluence criteria applies. crest supports (weak) orthogonality, strong closedness
and (almost) parallel closedness. The tool outputs the computed critical pairs
and a “proof” describing how these are closed, based on the first criterion that
reports a YES result. Below we describe some of the challenges that one faces
when automating the confluence criteria presented in the preceding sections.

First of all, how can we determine whether a constrained critical pair or
more generally a constrained equation s ≈ t [ϕ] is trivial? The following result
explains how this can be solved by an SMT solver.

Definition 11. Given a constrained equation s ≈ t [ϕ], the formula T (s, t, ϕ)
is inductively defined as follows:

T (s, t, ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

true if s = t

s = t if s, t ∈ Val ∪ Var(ϕ)
n∧

i=1

T (si, ti, ϕ) if s = f(s1, . . . , sn) and t = f(t1, . . . , tn)

false otherwise

Lemma 3. A constrained equation s ≈ t [ϕ] is trivial if and only if the formula
ϕ =⇒ T (s, t, ϕ) is valid.

Proof. First suppose ϕ =⇒ T (s, t, ϕ) is valid. Let σ be a substitution with
σ � ϕ. Since σ(x) ∈ Val for all x ∈ Var(ϕ), we can apply σ to the formula
ϕ =⇒ T (s, t, ϕ). We obtain [[ϕσ]] = 	 from σ � ϕ. Hence also [[T (s, t, ϕ)σ]] = 	.
Since T (s, t, ϕ) is a conjunction, the final case in the definition of T (s, t, ϕ) is
not used. Hence Pos(s) = Pos(t), s(p) = t(p) for all internal positions p in s and
t, and s|pσ = t|pσ for all leaf positions p in s and t. Consequently, sσ = tσ. This
concludes the triviality proof of s ≈ t [ϕ].

For the only if direction, suppose s ≈ t [ϕ] is trivial. Note that the variables
appearing in the formula ϕ =⇒ T (s, t, ϕ) are those of ϕ. Let σ be an arbitrary

3 https://hackage.haskell.org/package/term-rewriting-0.4.0.2.
4 http://cl-informatik.uibk.ac.at/software/crest/.

https://hackage.haskell.org/package/term-rewriting-0.4.0.2
http://cl-informatik.uibk.ac.at/software/crest/

486 J. Schöpf and A. Middeldorp

assignment such that [[ϕσ]] = 	. We need to show [[T (s, t, ϕ)σ]] = 	. We can
view σ as a substitution with σ(x) ∈ Val for all x ∈ Var(ϕ). We have σ � ϕ and
thus sσ = tσ by the triviality of s ≈ t [ϕ]. Hence T (s, t, ϕ) is a conjunction of
equations between values and variables in ϕ, which are turned into identities by
σ. Hence [[T (s, t, ϕ)σ]] = 	 as desired. ��

The second challenge is how to implement rewriting on constrained equations
in particular, how to deal with the equivalence relation ∼ defined in Definition 3.

Example 13. The LCTRS R

f(x) → z [z = 3] g(f(x)) → a g(3) → a

over the integers admits two critical pairs:

z ≈ z′ [z = 3 ∧ z′ = 3] g(z) ≈ a [z = 3]

The first one is trivial, but to join the second one, an initial equivalence step is
required:

g(z) ≈ a [z = 3] ∼ g(3) ≈ a [z = 3] → a ≈ a [z = 3]

The transformation introduced below avoids having to look for an initial
equivalence step before a rule becomes applicable.

Definition 12. Let R be an LCTRS. Given a term t ∈ T (F ,V), we replace
values in t by fresh variables and return the modified term together with the
constraint that collects the bindings:

tf(t) =

⎧
⎪⎨

⎪⎩

(t, true) if t ∈ V
(z, z = t) if t ∈ Val and z is a fresh variable
(f(s1, . . . , sn), ϕ1 ∧ · · · ∧ ϕn) if t = f(t1, . . . , tn)and tf(ti) = (si, ϕi)

Applying the transformation tf to the left-hand sides of the rules in R produces

tf(R) = {�′ → r [ϕ ∧ ψ] | � → r [ϕ] ∈ R and tf(�) = (�′, ψ)}

Example 14. Applying the transformation tf to the LCTRS R of Example 13
produces the rules

f(x) → z [z = 3] g(f(x)) → a g(z) → a [z = 3]

The critical pair g(z) ≈ a [z = 3] can now be joined by an application of the
modified third rule. Note that the modified rule does not overlap with the second
rule because z may not be instantiated with f(x). Hence the modified LCTRS
tf(R) is strongly closed and, because it is linear, also confluent.

In the following we show the correctness of the transformation. In particular
we prove that the initial rewrite relation is preserved.

Confluence Criteria for Logically Constrained Rewrite Systems 487

Table 1. Specific experimental results.

result method time (in ms)

[12, Example 23] Timeout – 10017.70
[12, Example 23] corrected YES strongly closed 103.71
Example 6 YES orthogonal 34.35
[8, Example 3] YES weakly orthogonal 50.87
Example 1 YES strongly closed 115.33
[10, Example 1] YES strongly closed 3806.84
Example 11 YES parallel closed 38.42
Example 12 YES almost parallel closed 130.36

Lemma 4. The relations →R and →tf(R) coincide on unconstrained terms.

Proof. Consider s, t ∈ T (F ,V). Since the transformation tf does not affect cal-
culation steps, it suffices to consider rule steps. First assume s = C[�σ] →ru

C[rσ] = t by applying the rule � → r [ϕ] ∈ R and let �′ → r [ϕ′] ∈ tf(R) be its
transformation. So tf(�) = (�′, ψ) and ϕ′ = ϕ ∧ ψ. Define the substitution

σ′ = {�′|p �→ �|p | (�′, ψ) = tf(�), p ∈ Pos(�) and �|p ∈ Val}

and let τ = σ ∪ σ′. Since Dom(σ) ∩ Dom(σ′) = ∅ by construction, τ is well-
defined. From σ � � → r [ϕ] and σ′ � ψ we immediately obtain τ � �′ → r [ϕ′],
which yields s = C[�′τ] →ru C[rτ] = t in tf(R).

For the other direction consider s = C[�′σ] →ru C[r′σ] = t by applying the
rule �′ → r′ [ϕ′] ∈ tf(R). The difference between �′ and its originating left-
hand side � in R is that value positions in � are occupied by fresh variables in
�′. Because σ′ respects ϕ′ = ϕ ∧ ψ, σ′ substitutes the required values at these
positions in �. As σ � �′ → r′ [ϕ′], there exists a rule � → r [ϕ] which is respected
by σ and thus s = C[�σ] →ru C[rσ] = t in R. ��

As the transformation is used in the implementation and rewriting on con-
strained terms plays a key role, the following result is needed. The proof is similar
to the first half of the proof of Lemma 4 and omitted.

Lemma 5. The inclusion →R ⊆ →tf(R) holds on constrained terms.

6 Experimental Results

In order to evaluate our tool we performed some experiments. As there is no
official database of interesting confluence problems for LCTRSs, we collected
several LCTRSs from the literature and the repository of Ctrl. The problem files
in the latter that contain an equivalence problem of two functions for rewriting
induction were split into two separate files. The experiments were performed
on an AMD Ryzen 7 PRO 4750U CPU with a base clock speed of 1.7GHz, 8

488 J. Schöpf and A. Middeldorp

Table 2. Comparison between confluence criteria implemented in crest.

O W S P A

orthogonality (O) 74 74 11 74 74
weak orthogonality (W) 78 13 78 78
strongly closed (S) 20 16 20
parallel closed (P) 83 83
almost parallel closed (A) 89

cores and 32 GB of RAM. The full set of benchmarks consists of 127 problems
of which crest can prove 90 confluent, 11 result in MAYBE and 26 in a timeout.
With a timeout of 5 s crest needs 141.09 s to analyze the set of benchmarks.
We have tested the implementation with 3 well-known SMT solvers: Z3, Yices
and CVC5. Among those Z3 gives the best performance regarding time and the
handling of non-linear arithmetic. Hence we use Z3 as the default SMT solver in
our implementation. In Table 1 we list some interesting systems from this paper
and the relevant literature. Full details are available from the website of crest.
We choose 5 as the maximum number of steps in the →∗ parts of the strongly
closed and almost parallel closed criteria.

From Table 2 the relative power of each implemented confluence criterion on
our benchmark can be inferred, i.e., it depicts how many of the 127 problems
both methods can prove confluent. This illustrates that the relative applicability
in theory (e.g., weakly orthogonal LCTRSs are parallel closed), is preserved in
our implementation. We conclude this section with an interesting observation
discovered by crest when testing [12, Example 23].

We also tested the applicability of Corollary 1, using the tool Ctrl as a black
box for proving termination. Of the 127 problems, Ctrl claims 102 to be termi-
nating and 67 of those can be shown locally confluent by crest, where we limit
the number of steps in the joining sequence to 100. It is interesting to note that
all of these problems are orthogonal, and so proving termination and finding a
joining sequence is not necessary to conclude confluence, on the current set of
problems. Of the remaining 35 problems, crest can show confluence of 5 of these
by almost parallel closedness.

Example 15. The LCTRS R is obtained by completing a system consisting of
four constrained equations:

1. f(x, y) → f(z, y) + 1 [x ≥ 1 ∧ z = x − 1]
2. f(x, 0) → g(1, x) [x ≤ 1]
3. g(0, y) → y [x ≤ 0] 5. h(x) → g(1, x) + 1 [x ≤ 1]
4. g(1, 1) → g(1, 0) + 1 6. h(x) → f(x − 1, 0) + 2 [x ≥ 1]

Calling crest on R results in a timeout. As a matter of fact, the LCTRS is not
confluent because the critical pair

g(1, x) + 1 ≈ f(x − 1, 0) + 2 [x ≤ 1 ∧ x ≥ 1]

Confluence Criteria for Logically Constrained Rewrite Systems 489

between rules 5 and 6 is not joinable. Inspecting the steps in [12, Example 23]
reveals some incorrect applications of the inference rules of constrained comple-
tion, which causes rule 6 to be wrong. Replacing it with the correct rule

6′. h(x) → (f(z, 0) + 1) + 1 [x > 1 ∧ z = x − 1]

causes crest to report confluence by strong closedness.

7 Concluding Remarks

In this paper we presented new confluence criteria for LCTRSs as well as a new
tool in which these criteria have been implemented. We clarified the subtleties
that arise when analyzing joinability of critical pairs in LCTRSs and reported
experimental results.

For plain rewrite systems many more confluence criteria are known and imple-
mented in powerful tools that compete in the yearly Confluence Competition
(CoCo).5 In the near future we will investigate which of these can be lifted to
LCTRSs. We will also advance the creation of a competition category on con-
fluence of LCTRSs in CoCo.

Our tool crest has currently no support for termination. Implementing ter-
mination techniques in crest is of clear interest. The starting point here are the
methods reported in [6,7,12]. Many LCTRSs coming from applications are actu-
ally non-confluent.6 So developing more powerful techniques for LCTRSs is on
our agenda as well.

Acknowledgments. We thank Fabian Mitterwallner for valuable discussions on the
presented topics and our Haskell implementation. The detailed comments by the
reviewers improved the presentation. Cynthia Kop and Deivid Vale kindly provided
us with instructions and a working implementation of Ctrl.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998). https://doi.org/10.1017/CBO9781139172752

2. Ciobâcă, Ş, Lucanu, D.: A coinductive approach to proving reachability proper-
ties in logically constrained term rewriting systems. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 295–311. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_20

3. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM Trans. Comput. Log. 18(2), 14:1–14:50 (2017). https://
doi.org/10.1145/3060143

4. Huet, G.: Confluent reductions: abstract properties and applications to term
rewriting systems. J. ACM 27(4), 797–821 (1980). https://doi.org/10.1145/322217.
322230

5 http://project-coco.uibk.ac.at/.
6 Naoki Nishida, personal communication (February 2023).

https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-319-94205-6_20
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/322217.322230
http://project-coco.uibk.ac.at/

490 J. Schöpf and A. Middeldorp

5. Kojima, M., Nishida, N.: From starvation freedom to all-path reachability problems
in constrained rewriting. In: Hanus, M., Inclezan, D. (eds.) PADL 2023. LNCS,
vol. 13880, pp. 161–179. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-24841-2_11

6. Kop, C.: Termination of LCTRSs. In: Proceedings of the 13th International Work-
shop on Termination, pp. 59–63 (2013)

7. Kop, C.: Termination of LCTRSs. CoRR abs/1601.03206 (2016). https://doi.org/
10.48550/ARXIV.1601.03206

8. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.
343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-
4_24

9. Kop, C., Nishida, N.: Constrained term rewriting tool. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 549–557.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_38

10. Nagele, J., Middeldorp, A.: Certification of classical confluence results for left-
linear term rewrite systems. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS,
vol. 9807, pp. 290–306. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43144-4_18

11. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland
(1988)

12. Winkler, S., Middeldorp, A.: Completion for logically constrained rewriting. In:
Kirchner, H. (ed.) Proceedings of the 3rd International Conference on Formal
Structures for Computation and Deduction. Leibniz International Proceedings
in Informatics, vol. 108, pp. 30:1–30:18 (2018). https://doi.org/10.4230/LIPIcs.
FSCD.2018.30

13. Winkler, S., Moser, G.: Runtime complexity analysis of logically constrained rewrit-
ing. In: LOPSTR 2020. LNCS, vol. 12561, pp. 37–55. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-68446-4_2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-24841-2_11
https://doi.org/10.1007/978-3-031-24841-2_11
https://doi.org/10.48550/ARXIV.1601.03206
https://doi.org/10.48550/ARXIV.1601.03206
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/978-3-319-43144-4_18
https://doi.org/10.1007/978-3-319-43144-4_18
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.1007/978-3-030-68446-4_2
http://creativecommons.org/licenses/by/4.0/

	Confluence Criteria for Logically Constrained Rewrite Systems
	1 Introduction
	2 Preliminaries
	3 Confluence
	4 Main Results
	5 Automation
	6 Experimental Results
	7 Concluding Remarks
	References

