
Journal of Automated Reasoning (2023) 67:14
https://doi.org/10.1007/s10817-023-09661-7

RESEARCH

First-Order Theory of Rewriting for Linear Variable-Separated
Rewrite Systems: Automation, Formalization, Certification

Aart Middeldorp1 · Alexander Lochmann1 · Fabian Mitterwallner1

Received: 22 April 2022 / Accepted: 19 January 2023
© The Author(s) 2023

Abstract
The first-order theory of rewriting is decidable for linear variable-separated rewrite systems.
We present a new decision procedure which is the basis of FORT, a decision and synthesis
tool for properties expressible in the theory. The decision procedure is based on tree automata
techniques and verified in Isabelle. Several extensions make the theory more expressive and
FORT more versatile. We present a certificate language that enables the output of FORT to be
certified by the certifier FORTify generated from the formalization, and we provide extensive
experiments.

Keywords Term rewriting · First-order theory · Tree automata · Formalization

1 Introduction

Many properties of rewrite systems can be expressed as logical formulas in the first-order
theory of rewriting. This theory is decidable for the class of linear variable-separated rewrite
systems, which includes all ground rewrite systems. The decision procedure is based on tree
automata techniques and goes back to Dauchet and Tison [10]. It is implemented in FORT
[46, 48], which takes as input one or more rewrite systemsR0,R1, . . . and a formula ϕ, and
determines whether the rewrite systems satisfy the property expressed by ϕ, in which case it
reports yes or no. FORT may not reach a conclusion due to limited resources.

For properties related to confluence and termination, designated competitions (CoCo [41],
termCOMP [23]) of software tools take place regularly. Occasionally, yes/no conflicts appear.
Since the participating tools typically couple a plethora of techniques with sophisticated
search strategies, human inspection of the output of tools to determine the correct answer
is often not feasible. Hence certified categories were created in which tools must output
a formal certificate. This certificate is verified by CeTA [53], an automatically generated
Haskell program using the code generation feature of Isabelle. This requires not only that the
underlying techniques are formalized in Isabelle, but the formalization must be executable
for code generation to apply. During the time-consuming formalization process, mistakes in

B Aart Middeldorp
aart.middeldorp@uibk.ac.at

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09661-7&domain=pdf
http://orcid.org/0000-0001-7366-8464
http://orcid.org/0000-0002-6145-3893
https://orcid.org/0000-0001-5992-9517

 14 Page 2 of 76 A. Middeldorp et al.

papers are sometimes brought to light. An additional outcome is that formalization efforts
may give rise to simpler and more efficient constructions and algorithms.

Since 2017 we are concerned with the question of how to ensure the correctness of the
answers produced by FORT. The certifier CeTA supports a great many techniques for estab-
lishing concrete properties like termination and confluence, but the formalizations in the
underlying Isabelle Formalization of Rewriting (IsaFoR)1 are orthogonal to the ones required
for supporting the decision procedure underlying FORT. We present a certificate language
which is rich enough to express the various automata operations in decision procedures for
the first-order theory of rewriting as well as numerous predicate symbols that may appear
in formulas in this theory. FORTify, the verified Haskell program obtained from the Isabelle
formalization, validates certificates in this language.

The decision procedure implemented in FORT and formalized in Isabelle is based on three
different tree automatamodels.We use standard bottom-up tree automata to represent various
sets of ground terms. For (most) binary relations on ground terms, we use anchored ground
tree transducers. These are a simplification of the ground tree transducers used in the literature
[8–10, 12, 18] with better closure properties, reducing the number of constructions needed
to represent the first-order theory of rewriting. Some of these closure properties are proved
(and formalized) using the simple but equivalent class of pair automata. The third model are
standard tree automata operating on a different signature in order to represent n-ary relations
on ground terms, for arbitrary n (including n = 2). In the next section we present the basic
definitions. Section3 introduces the first-order theory of rewriting. In Sect. 4 we introduce
in a systematic way several context closure operations on binary relations that are used to
represent the binary predicates in the first-order theory of rewriting. Detailed proofs of the
various results concerning the three tree automata models that are required for the decision
procedure are presented in Sect. 5. Many of the results and tree automata constructions in this
section are well-known, but are included for completeness and because the implementation
in FORT and the subsequent formalization are directly based on them. Tree automata operate
on ground terms. In Sect. 6 we present the formalized signature extension results that allow
to reduce certain properties on arbitrary terms to properties on ground terms. In Sect. 7 the
decision and synthesis modes of FORT are described, and a new undecidability proof related
to the latter is presented.We also discuss the representation of formulas in certificates and the
certificate language, and we explain how certificates are validated by FORTify, the verified
Haskell program obtained from the Isabelle formalization. Experimental results are presented
in Sect. 8, before we conclude in Sect. 9. In an appendix the input syntax and the interface of
the tools is presented.

The formalization is based on Isabelle/HOL. Our contribution is split into three parts,
which are published as separate entries in the Archive of Formal Proofs.2 The first part [35]
contains general results about bottom-up tree automata, ported from IsaFoR, extended with
constructions and results about anchored ground tree transducers, pair automata, and regular
relation automata. The second part [33] formalizes primitive constructions needed to decide
the first-order theory of rewriting. Moreover, it connects the logical semantic entailment of
first-order formulas to regular tree languages. This connection gives rise to a natural descrip-
tion of the decision procedure. The specification allows tool authors to generate certificates
(which can be viewed as a formal proof claim using appropriate automata construction for the
corresponding logical connectives and predicates). We rely on the code generation facility

1 http://cl-informatik.uibk.ac.at/isafor/
2 https://www.isa-afp.org

123

http://cl-informatik.uibk.ac.at/isafor/
https://www.isa-afp.org

First-Order Theory of Rewriting… Page 3 of 76 14

of Isabelle/HOL to obtain the certifier FORTify that is able to verify the integrity of such
certificates. The third part [32] is independent, and covers the results in Sect. 6.

The formalization can be accessed via the following links:

• https://www.isa-afp.org/entries/Regular_Tree_Relations.html
• https://www.isa-afp.org/entries/FO_Theory_Rewriting.html
• https://www.isa-afp.org/entries/Rewrite_Properties_Reduction.html

Most definitions, theorems, and lemmata in this paper directly correspond to the formal-
ization. These are indicated by the � symbol, which links to an HTML rendering of our
formalization, for those who like to dive right into the actual Isabelle code. In the running
text (traditional) proof details are given.

This article combines and extends earlier papers that appeared in conference and informal
workshop proceedings. These cover system descriptions of earlier versions of FORT [46, 48],
formalization and certification aspects [22, 34, 36, 42], as well as results for dealing with
properties on non-ground terms [37, 38, 47]. Many new examples to illustrate the various
constructionswere added and the presentation is self-contained. The efficiency improvements
described in Sect. 7 are new. The same is true for the undecidability result in Sect. 7.5. Also
several of the experiments that we present in Sect. 8 have not been described before.

2 Preliminaries

In this preliminary section we recall basic definitions and notations of term rewriting [3] and
tree automata [8].

2.1 Term Rewriting

We assume a finite signature F containing at least one constant symbol and a disjoint set
of variables V . The set of terms built up from F and V is denoted by T (F,V), while T (F)

denotes the (non-empty) set of ground terms. The set of variables occurring in a term t is
denoted by Var(t). A term is linear if it does not contain multiple occurrences of the same
variable. Positions are strings of positive integers which are used to address subterms. The
set of positions in a term t is denoted by Pos(t) and the root position by ε. The function
symbol at position p ∈ Pos(t) is denoted by t(p) and t[u]p denotes the result of replacing
the subterm t |p of t at position p by the term u. The height height(t) of a term t is the length
of a longest position in Pos(t). A substitution is a mapping σ from variables to terms and
tσ denotes the result of applying σ to a term t . A context C is a term that contains exactly
one hole, denoted by the special constant � /∈ F . We write C[t] for the result of replacing
the hole in C by the term t . A term rewrite system (TRS) R is a set of rules �→ r between
terms �, r ∈ T (F,V). A TRS R is linear if its rewrite rules consist of linear terms. We call
R variable-separated if Var(�) ∩ Var(r) = ∅ for every �→ r ∈ R.

In this paper we are concerned with finite, linear, variable-separated TRSs R and we
(mostly) consider rewriting on ground terms: t →R u for ground terms t , u if there exist
a context C , a rewrite rule � → r ∈ R, and a substitution σ such that t = C[�σ] and
u = C[rσ]. We write→∗R for the reflexive and transitive closure of→R. Further relations
on terms will be introduced in the next section. We drop the subscript R when it can be
inferred from the context. A ground normal form is a ground term t such that t →R u for
no term u. We write NF(R) for the set of ground normal forms of R.

123

https://www.isa-afp.org/entries/Regular_Tree_Relations.html
https://www.isa-afp.org/entries/FO_Theory_Rewriting.html
https://www.isa-afp.org/entries/Rewrite_Properties_Reduction.html

 14 Page 4 of 76 A. Middeldorp et al.

Example 1 We use the TRS R consisting of the rewrite rules

a→ b f(a)→ b g(a, x)→ f(a)

over the signature F = {a,b, f,g} as leading example in this paper. We have

f(g(a,b)) →R f(f(a)) →R f(b)

with ground normal form f(b).

2.2 Tree Automata

A (finite bottom-up) tree automaton A = (F, Q, Q f ,�) consists of a finite signature F , a
finite set Q of states, disjoint from F , a subset Q f ⊆ Q of final states, and a set of transition
rules �. Every transition rule has one of the following two shapes:

• f (p1, . . . , pn)→ q with f ∈ F and p1, . . . , pn, q ∈ Q, or
• p→ q with p, q ∈ Q.

Transition rules of the second shape are called ε-transitions. Transition rules can be viewed as
rewrite rules between ground terms in T (F ∪ Q,V). The induced rewrite relation is denoted
by→� or→A. A ground term t ∈ T (F) is accepted by A if t →∗� q for some q ∈ Q f .
The set of all accepted terms is denoted by L(A) and a set L of ground terms is regular
if L = L(A) for some tree automaton A. A tree automaton A is deterministic if there are
no ε-transitions and no two transition rules with the same left-hand side. We say that A is
completely defined if it contains a transition rule with left-hand side f (p1, . . . , pn) for every
n-ary function symbol f and every combination p1, . . . , pn of states. All regular sets are
accepted by a completely defined, deterministic tree automaton. The class of regular sets
is effectively closed under Boolean operations. Moreover, membership and emptiness are
decidable.

For relations on ground terms two different types of automata are used. The first one is
restricted to binary relations. A ground tree transducer (GTT for short) is a pair G = (A,B)

of tree automata over the same signatureF . Let s and t be ground terms in T (F). We say that
the pair (s, t) is accepted by G if s →∗A u →∗

B t for some term u ∈ T (F ∪ Q). Here Q is the
combined set of states ofA and B. The set of all such pairs is denoted by L(G). Observe that
L(G) is a binary relation on T (F). A binary relation �	 on ground terms is a GTT relation
if there exists a GTT G such that �	 = L(G). In FORT we deal with anchored GTTs, which
are GTTs with a different acceptance condition: A pair (s, t) of ground terms is accepted by
an anchored GTT G if s →∗A q →∗

B t for some (common) state q . The set of all such pairs
is denoted by La(G). It can be shown that the resulting language class coincides with binary
Rec× which is defined in [8, Sect. 3.2.1] as the class of finite unions of Cartesian products
of regular sets. The more operational view above benefits the developments described in
subsequent sections. We obviously have La(G) ⊆ L(G). Anchored GTT relations have the
advantage that they can represent the root-step relation→ε , which is not possible with GTT
relations as the latter are always reflexive. Moreover, they have better closure properties than
GTT relations. When we speak of “anchored GTTs”, we always have La(G) in mind.

The secondmethod for representing relations on ground terms uses standard tree automata
operating on an encoding of the relation as a set of ground terms over a special signature. For
a signature F and n � 0 we let F (n) = (F ∪ {⊥})n . Here, ⊥ /∈ F is a fresh constant. The
arity of a symbol f1 . . . fn ∈ F (n) is the maximum of the arities of f1, . . . , fn and 0 if n = 0.
Given n terms t1, . . . , tn ∈ T (F), the term 〈 t1, . . . , tn 〉 is the unique term u ∈ T (F (n)) such

123

First-Order Theory of Rewriting… Page 5 of 76 14

thatPos(u) = Pos(t1)∪· · ·∪Pos(tn) and u(p) = f1 · · · fn where fi = ti (p) if p ∈ Pos(ti)
and ⊥ otherwise, for all positions p ∈ Pos(u). If n = 0 then Pos(u) = {ε } and u(ε) is the
empty sequence.

Example 2 For F = {a,b, f,g} in Example 1 we have

〈g(a, f(b)), f(a)〉 = gf(aa, f⊥(b⊥)) ∈ T (F (2))

〈a, f(f(b)),g(b, a)〉 = afg(⊥fb(⊥b⊥),⊥⊥a) ∈ T (F (3))

An n-ary relation R on T (F) is regular if its encoding {〈 t1, . . . , tn 〉 | (t1, . . . , tn) ∈
R } is regular. The class of all n-ary regular relations is denoted by RRn . Every (anchored)
GTT relation belongs to RR2. The well-known construction (presented later in the proof of
Theorem 10) is used to decide membership for anchored GTT relations.

3 First-Order Theory of Rewriting

We consider first-order logic over a language L without function symbols. The language
contains the following binary predicate symbols:

→ →∗ =
Further predicate symbols will be added toL later in this paper. As models we consider finite
linear variable-separated TRSs (F,R) such that the set of ground terms T (F) is non-empty,
which is equivalent to the requirement that the signature F contains at least one constant
symbol. The set of ground terms serves as domain for the variables in formulas over L. The
interpretation of the predicate symbol→ in (F,R) is the one-step rewrite relation→R over
T (F),→∗ denotes its transitive-reflexive closure, and= is interpreted as equality on ground
terms.

Variable-separated TRSs appear naturally when approximating TRSs that satisfy the usual
variable restriction (Var(r) ⊆ Var(�) for every rewrite rule � → r), to achieve regularity
of the set of reachable terms starting from a regular set of ground terms. The support for
linear variable-separated TRSs opens up the possibility of using FORT to compute depen-
dency graphs based on the non-variable approximation for termination analysis [40], check
infeasibility of conditional critical pairs for confluence analysis of conditional TRSs [51],
and compute needed redexes based on the strong and non-variable approximations for the
analysis of optimal normalizing strategies [18].

The following example gives an idea of the decision procedure for the first-order theory
of rewriting. It shows how (closure) operations on tree automata and GTTs are used to obtain
tree automata, each of which represent tuples of ground terms satisfying subformulas of the
formula of interest. These operations are presented in Sect. 5 together with correctness proofs
that have been formalized.

Example 3 Consider the formula

ϕ = ∀ s ∃ t (s →∗ t ∧ ¬∃ u (t → u))

which expresses the normalization property of TRSs. To determine whether a given linear
variable-separated TRS R over a signature F satisfies ϕ, we construct automata for the
subterms of the formula in a bottom-up fashion. We start with an RR1 automaton A1 that

123

 14 Page 6 of 76 A. Middeldorp et al.

accepts the ground normal forms in T (F), using an algorithm first described in [6] and
covered in Sect. 5.4:

RR1 A1 L(A1) = { t | t ∈ NF(R)} (Theorem 15)

Here t ∈ NF(R) stands for ¬∃ u (t → u). Next we construct an anchored GTT G1 accepting
the root-step relation of R:

GTT G1 La(G1) = {(s, t) | s →ε t } (Theorem 4)

Using a modified transitive closure operation, we obtain an anchored GTT G2:

GTT G2 La(G2) = {(s, t) | s →∗ · →ε · →∗ t } (Theorem 8)

Since anchored GTT relations are also RR2 relations we can construct an equivalent RR2
automaton A2:

RR2 A2 L(A2) = {〈s, t 〉 | s →∗ · →ε · →∗ t } (Theorem 10)

Using a special context closure operation, we obtain an RR2 automaton A3 accepting the
encoding of→∗:

RR2 A3 L(A3) = {〈s, t 〉 | s →∗ t } (Theorem 11)

Before the conjunction in s →∗ t ∧ t ∈ NF(R) can be constructed, the arities of the RR2
automaton A3 and the RR1 automaton A1 have to match. With this goal A1 is cylindrified
(C1) to construct the RR2 automaton A4. Here care has to be taken that not only the arities
match, but also that terms, taking the place of variables shared by both formulas, are at the
same position i in the encoding 〈 t1, . . . , ti , . . . , tn 〉 of both automata:

RR2 A4 L(A4) = {〈s, t 〉 | t ∈ NF(R)} (Theorem 14)

After this, the intersection with A3 results in the RR2 automaton A5 that models the
conjunction:

RR2 A5 L(A5) = {〈s, t 〉 | s →∗ t ∧ t ∈ NF(R)} (Theorem 12)

Applying the second projection (�2, which removes the second component) produces the
RR1 automaton A6:

RR1 A6 L(A6) = {s | ∃ t (s →∗ t ∧ t ∈ NF(R))} (Theorem 14)

At this point ϕ holds if and only if L(A6) = T (F). In FORT the ∀ quantifier is transformed
into the equivalent ¬∃¬. Hence complementation is used to obtain an RR1 automaton A7

RR1 A7 L(A7) = {s | ¬ ∃ t (s →∗ t ∧ t ∈ NF(R))} (Theorem 13)

and the existential quantifier is implemented using projection. This gives an RR0 automaton
A8 which either accepts the empty relation∅ or the singleton set {()} consisting of the nullary
tuple (). The outermost negation gives rise to another complementation step. The final RR0
automatonA9 is tested for emptiness: L(A9) = ∅ if and only the TRSR does not satisfy ϕ.

123

First-Order Theory of Rewriting… Page 7 of 76 14

Fig. 1 Automata operations for the predicates in the first-order theory of rewriting

In order to express termination in the first-order theory of rewriting, we extend L with
the binary predicate symbol→+ (which denotes the transitive closure of→) and the unary
predicate defined below (which goes back to a technical report by Dauchet and Tison [11]).

Definition 1 Let �	 be an arbitrary binary relation on T (F). We write INF�	 for the set
{ t ∈ T (F) | t �	 u for infinitely many terms u ∈ T (F)}.

If we instantiate INF�	 by taking �	 = →∗, we obtain the predicate INF→∗ that is satisfied
by ground terms that have infinitely many reducts. By forbidding cycles, we obtain the
formula

¬∃ t (INF→∗(t) ∨ t →+ t)

that expresses termination of finite variable-separated TRSs.
The grammar in Fig. 1lists the formalized (closure) operations for the predicates in the

first-order theory of rewriting. Here A are anchored GTT relations, R are RR2 relations, and
T are regular sets of ground terms. Some of the operations will be introduced in subsequent
sections. The TRS R enters the picture in three places. First of all, →ε is the root-step
relation of R. Secondly, NF denotes the set of ground normal forms of R. Finally, T (F)

denotes the set of ground terms, which depends on the signature F of R.
Every atomic subformula (predicate) will be represented as an RR1 or RR2 relation. The

logical structure of formulas in the first-order theory of rewriting is taken care of by additional
closure operations on RRn relations.

4 Context Operations

In the next section we describe formalized automata constructions to decide the first-order
theory of rewriting. To save considerable formalization efforts, we introduce a few primitives
that operate on binary relations that are accepted by various kinds of tree automata. These
primitives are sufficient to generate all binary rewrite relations supported by FORT. For

123

 14 Page 8 of 76 A. Middeldorp et al.

defining the semantics of the primitives, we introduce some context operations on binary
relations in this section.

Definition 2 Let F be a signature. A multi-hole context is an element of T (F � {�}) where
� is a fresh constant symbol, called hole. If C is a multi-hole context with n � 0 holes and
t1, . . . , tn are terms in T (F) then C[t1, . . . , tn] denotes the term in T (F) obtained from C
by replacing the holes from left to right with t1, . . . , tn . We write C for the set of all multi-
hole contexts. Given a binary relation �	 on ground terms in T (F) and a set of multi-hole
contexts D ⊆ C, we write D(�) for the relation {(C[t1, . . . , tn],C[u1, . . . , un]) | C ∈
D has n holes and ti �	 ui for all 1 � i � n }.

We consider two ways to restrict multi-hole contexts: restricting the number of holes and
restricting the position of the holes.

• Wedenote the set ofmulti-hole contextswith exactly one hole by C1. The set ofmulti-hole
contexts with at least one hole is denoted by C>. Moreover C� simply denotes C.
• We denote the set of multi-hole contexts with the property that every hole occurs below

the root position by C>. This includes the set T (F) of ground terms (which are multi-
hole contexts without holes). Similarly, Cε denotes the set of multi-hole contexts with
the property that every hole occurs at the root position. So Cε = {�} ∪T (F). Moreover,
C� simply denotes C.

By combining both types of restrictions, we obtain nine ways for defining new binary
relations.

Definition 3 Let �	 be a binary relation on T (F). Given a number constraint n ∈ {�, 1,>}
and a position constraint p ∈ {�, ε,>}, we define the binary relation �	np on T (F) as
(Cn ∩ Cp)(�).

Note that �	�ε = �	= and �	1ε = �	>ε = �	, for any �	. Here �	= = �	 ∪ {=} denotes the
reflexive closure of �	.
Example 4 Recall the TRSR from our leading example and consider the multi-hole contexts

C1 = � C2 = f(�) C3 = g(�, a) C4 = g(�,�) C5 = f(a)

We have C1,C2,C3 ∈ C1, C1,C2,C3,C4 ∈ C>, C1,C5 ∈ Cε, and C2,C3,C4,C5 ∈ C>.
Moreover, (C2[a],C2[b]) ∈ (→R)1> and (C4[a, a],C4[b,b]) /∈ (→R)1>.

Because C� = C� = C, the relation �	�� is the multi-hole context closure of �	 . Using
the root-step relation→ε induced by a linear, variable-separated TRS R as �	, we obtain
eight different relations for (→ε)

n
p:

(→ε)
�
� = −→‖ (→ε)

1
� = → (→ε)

>
� = −→̇‖

(→ε)
�
ε = →=ε (→ε)

1
ε = →ε (→ε)

>
ε = →ε

(→ε)
�
> = −→‖ >ε (→ε)

1
> = →>ε (→ε)

>
> = −→̇‖ >ε

Here −→‖ denotes a parallel step (which is the multi-hole context closure of→), −→̇‖ a non-
empty parallel step, −→‖ >ε a parallel step where only redexes below the root are contracted,
and −→̇‖ >ε a non-empty parallel step where only redexes below the root are contracted.

Example 5 Consider the term pairs π1 = (g(a, a),g(b,b)), π2 = (g(a, a), f(a)), and π3 =
(g(a, a),g(a, a)).We haveπ1, π2, π3 ∈ −→‖ ,π1, π2 ∈ −→̇‖ ,π1 ∈ −→̇‖ >ε , andπ3 ∈ −→‖ >ε\−→̇‖ >ε .

123

First-Order Theory of Rewriting… Page 9 of 76 14

5 Formalized Tree Automata Constructions

In this section we present constructions on tree automata and (anchored) GTTs that are
required for the decision procedure. Most of the results are known [8]. We give explicit
proofs, providing detailed constructions that form the basis of the implementation of the
decision procedure in FORT as well as the formalization in Isabelle.

Let A = (F, Q, Q f ,�) be a tree automaton. A state q ∈ Q is reachable if t →∗� q for
some term t ∈ T (F). We say that q is productive if C[q] →∗� q f for some ground context
C and final state q f ∈ Q f . The automaton A is trim if all states are both reachable and
productive. Any tree automaton can be transformed into an equivalent trim automaton. This
result has been formalized in IsaFoR by Felgenhauer and Thiemann [21]. The construction
preserves determinism. The following results are well-known.

Lemma 1 (T ::= T (F)) The set of ground terms over a finite signature F is regular. �

Theorem 1 (T ::= T ∪ T | T ∩ T | T c) The class of regular sets is effectively closed under
union, intersection, and complement. ���

Before we turn to the infinity predicate (T ::= INFR), we present an important closure
operation on regular relations. Other closure operations will be presented in Sect. 5.3.

Definition 4 Let R be an n-ary relation over T (F). If n � 1 and 1 � i � n then the i-th
projection of R is the relation �i (R) = {(t1, . . . , ti−1, ti+1, . . . , tn) | (t1, . . . , tn) ∈ R }.

Note that �1 removes the first component of an RRn relation. So for a binary regular
relation R, �1(R) coincides with π2(R) in the grammar in Fig. 1.

Theorem 2 (T ::= π1(R) | π2(R)) The class of regular relations is effectively closed under
projection. ��

Proof (construction) Let A = (F (n), Q, Q f ,�) be a tree automaton that accepts 〈R 〉.
Assume n � 1 and let 1 � i � n. We construct a tree automaton that accept 〈�i (R)〉. We
assume that all states of A are reachable and define A�i = (F (n−1), Q, Q f ,��i) where
��i is obtained from � by replacing every transition rule of the form

f1 · · · fi−1 fi fi+1 · · · fn(p1, . . . , pm)→ q

with

f1 · · · fi−1 fi+1 · · · fn(p1, . . . , pk)→ q

provided n = 1 or f1 · · · fi−1 fi+1 · · · fn �= ⊥n−1 for n > 1. Here k � m is the arity of
f1 · · · fi−1 fi+1 · · · fn . Epsilon transitions in � are not affected. Note that for n = 1 this
results in an automaton over the signature containing only a single constant () (the nullary
tuple). The proof that L(A�i) = 〈�i (R)〉 is given at the end of Sect. 5.3. ��
Example 6 Consider the tree automaton A = (F (2), {0, . . . , 6}, {6},�) with F =
{a,b, f,g} and � consisting of the transition rules

aa→ 0 bb→ 0 gg(0)→ 0 ff(0, 0)→ 0

ab→ 1 bb→ 1 gb(2)→ 1 fb(2, 2)→ 1

a⊥→ 2 b⊥→ 2 g⊥(2)→ 2 f⊥(2, 2)→ 2

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.true_RRn_spec|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Tree_Automata.html#Tree_Automata.\<L>_union|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Tree_Automata.html#Tree_Automata.\<L>_intersect|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Tree_Automata_Complement.html#Tree_Automata_Complement.\<L>_complement_reg|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.proj_1|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.proj_2|thm

 14 Page 10 of 76 A. Middeldorp et al.

a⊥→ 3 ⊥b→ 5 fg(1, 3)→ 6 gf(4, 5)→ 6

aa→ 4 gg(6)→ 6 ff(6, 0)→ 6 ff(0, 6)→ 6

This automaton accepts the encoding of→R on T (F) induced by the TRS R consisting of
the rewrite rules

f(x, a)→ g(b) g(a)→ f(a,b)

For the first projection we obtain the automaton �1(A) consisting of the transition rules

a→ 0 b→ 0 g(0)→ 0 f(0, 0)→ 0

b→ 1 b→ 5 g(1)→ 6 f(4, 5)→ 6

a→ 4 g(6)→ 6 f(6, 0)→ 6 f(0, 6)→ 6

Note that the third row of transitions in � disappeared completely. The rule fg(1, 3) → 6
is transformed into g(1) → 6, so state 3 is dropped. The second projection results in the
automaton �2(A) that accepts the reducible ground terms of R:

a→ 0 b→ 0 g(0)→ 0 f(0, 0)→ 0

a→ 1 b→ 1 g(2)→ 1 f(2, 2)→ 1

a→ 2 b→ 2 g(2)→ 2 f(2, 2)→ 2

a→ 3 f(1, 3)→ 6 g(4)→ 6

a→ 4 g(6)→ 6 f(6, 0)→ 6 f(0, 6)→ 6

We now present a formalized proof of a version of the pumping lemma that we need for
the infinity predicate INFR (in the proof of Theorem 3 below).

Lemma 2 Let A = (F, Q, Q f ,�) be a tree automaton and t →∗� q with t ∈ T (F) and
q ∈ Q. If height(t) > |Q| then there exist contexts C1 and C2 �= �, a term u, and a state p
such that t = C1[C2[u]], u →∗� p, C2[p] →∗� p, and C1[p] →∗� q. �

Proof From the assumptions t →∗� q and height(t) > |Q| we obtain a sequence

(t1, . . . , tn+1, q1, . . . , qn+1, D1, . . . , Dn)

consisting of ground terms, states, and non-empty contexts with n > |Q| such that
• ti →∗� qi for all i � n + 1,
• Di [ti] = ti+1 and Di [qi] →∗� qi+1 for all i � n, and
• qn+1 = q and tn+1 = t

by a straightforward induction proof on t . Because n > |Q| there exist indices 1 � i <

j � n such that qi = q j . We construct the contexts C1 = Dn[. . . [Dj] . . .] and C2 =
Dj−1[. . . [Di] . . .]. Note that C2 �= � as i < j . We obtain C2[qi] →∗� q j and C1[q j] →∗�
qn+1 by induction on the difference j − i . By letting p = qi = q j and u = ti we obtain the
desired result. ��

5.1 Infinity Predicate

Below we show that INFR is regular for every RR2 relation R. The following definition
originates from [11] and plays an important role in the proof.

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Tree_Automata_Pumping.html#Tree_Automata_Pumping.pigeonhole_tree_automata|thm

First-Order Theory of Rewriting… Page 11 of 76 14

Definition 5 Given a tree automaton A = (F (2), Q, Q f ,�), the set Q∞ ⊆ Q consists of
all states q ∈ Q such that 〈⊥, t 〉 →∗� q for infinitely many terms t ∈ T (F).

Example 7 Consider the binary relation

R = {(f(a,gn(b)),gm(f(a,b))) | n = 2 and m � 1 or n � 3 and m = 1}
over T (F) with F = {a,b, f,g}. Its encoding 〈R 〉 is accepted by the automaton A =
(F (2), Q, Q f ,�) with Q = {0, . . . , 11}, Q f = {0}, and � consisting of the following
transition rules:

fg(1, 2)→ 0 ⊥f(3, 4)→ 5 g⊥(6)→ 2 b⊥→ 7

fg(8, 9)→ 0 ⊥g(5)→ 5 g⊥(7)→ 6 b⊥→ 11

af(3, 4)→ 1 ⊥a→ 3 g⊥(10)→ 9 ag(5)→ 1

af(3, 4)→ 8 ⊥b→ 4 g⊥(11)→ 10 g⊥(11)→ 11

For instance,

〈 f(a,g(g(b))),g(f(a,b))〉 = fg(af(⊥a,⊥b),g⊥(g⊥(b⊥)))

→∗� fg(af(3, 4),g⊥(g⊥(7))) →∗� fg(1,g⊥(6)) →� fg(1, 2) →� 0

but 〈 f(a,g(b), f(a,b))〉 = ff(aa,gb(b⊥)) is not accepted. We have Q∞ = {5}. State 5 is
reached by 〈⊥,gn(f(a,b))〉 for all n � 0.

Definition 6 Given A = (F (2), Q, Q f ,�), we define the tree automaton

A∞ = (F (2), Q ∪ Q̄, Q̄ f ,� ∪ �̄)

Here Q̄ is a copy of Q where every state is dashed: q̄ ∈ Q̄ if and only if q ∈ Q. For every
transition rule f g(q1, . . . , qn)→ q ∈ � we have the following transition rules in �̄:

f g(q1, . . . , qn)→ q̄ if q ∈ Q∞ and f = ⊥ (1)

f g(q1, . . . , qi−1, q̄i , qi+1, . . . , qn)→ q̄ for all 1 � i � n (2)

Moreover, for every ε-transition p→ q ∈ � we add

p̄→ q̄ (3)

to �̄. We write �′ for � ∪ �̄.

Dashed states are created by rules of shape (1) and propagated by rules of shapes (2) and
(3). The above construction differs from the one in [11]; instead of (1) the latter contains
f g(q1, . . . , qn) → q̄ if qi ∈ Q∞ for some i > arity(f). In an implementation, rather
than adding all dashed states and all transition rules of shape (2), the necessary rules would
be computed by propagating the dashes created by (1) in order to avoid the appearance of
unreachable dashed states. When A∞ is used in isolation, a single bit suffices to record that
a dashed state occurred during a computation.

Example 8 For the tree automatonA from Example 7 we obtainA∞ by adding the following
transition rules (the missing rules of shape (2) involve unreachable states):

⊥f(3, 4)→ 5̄ ⊥g(5)→ 5̄ ⊥g(5̄)→ 5̄ ag(5̄)→ 1̄ fg(1̄, 2)→ 0̄

The unique final state ofA∞ is 0̄. We have 〈 f(a,g(g(b))),g(f(a,b))〉 ∈ L(A∞) but there is
no term u such that 〈 f(a(g(b)), u 〉 ∈ L(A∞).

123

 14 Page 12 of 76 A. Middeldorp et al.

The following preliminary lemma is used in the proof of the theorem below and provides
a characterization of the ground terms that reduce to a dashed state.

Lemma 3 Let t be a term in T (F (2)). If t →∗A∞ p̄ then there exist a state q ∈ Q∞, a
context C, and a term s such that t = C[s], root(s) = ⊥ f with f ∈ F , s →∗A∞ q̄, and
C[q̄] →∗A∞ p̄. �

Proof Write t = g f (t1, . . . , tn). We distinguish two cases, depending on when the dash is
introduced in t →∗A∞ p̄. In the first case the dash is created by a root step:

t →∗� g f (q1, . . . , qn)→�′ q̄ →∗�′ p̄
We have g = ⊥ and q ∈ Q∞ by (1). Hence we can take s = t and C = �. Note that
root(s) = g f = ⊥ f . In the second case the dash is created during the evaluation of an
argument ti of t , and hence the given sequence t →∗A∞ p̄ can be rearranged as

t →∗A∞ g f (t1, . . . , r̄ , . . . , tn)→∗A∞ p̄

The induction hypothesis yields a state q ∈ Q∞, a context C ′, and a term s such that
ti = C ′[s], root(s) = ⊥ f ′ with f ′ ∈ F , s →∗A∞ q̄ , and C ′[q̄] →∗A∞ r̄ . In this case we
simply take C = t[C ′]i = g f (t1, . . . ,C ′, . . . , tn). We have t = t[ti]i = t[C ′[s′]]i = C[s]
and C[q̄] = g f (t1, . . . ,C ′[q̄], . . . , tn)→∗A∞ g f (t1, . . . , r̄ , . . . , tn)→∗A∞ p̄. ��

The following result goes back to a technical report by Dauchet and Tison [11].

Theorem 3 (T ::= INFR) The set INFR is regular for every RR2 relation R. ��

Proof Let A = (F (2), Q, Q f ,�) be a tree automaton that accepts 〈R 〉. We show that
INFR = �2(L(A∞)). The regularity of INFR then follows from Theorem 2.

First suppose t ∈ INFR . So 〈 t, u 〉 ∈ L(A) for infinitely many terms u ∈ T (F). Since
the signature F is finite, there are only finitely many ground terms of any given height.
Moreover, height(〈 t, u 〉) = max (height(t),height(u)). Hence there must exist a term
u ∈ T (F) with 〈 t, u 〉 ∈ L(A) such that height(t) + |Q| + 1 < height(u). This is only
possible if there are positions p and q such that p /∈ Pos(t), pq ∈ Pos(u), and |Q| < |q|.
From Pos(〈 t, u 〉) = Pos(t)∪Pos(u) we obtain 〈 t, u 〉|p = 〈⊥, u|p 〉. Since 〈 t, u 〉 ∈ L(A)

there exist states r ∈ Q and q f ∈ Q f such that

〈 t, u 〉 = 〈 t, u 〉[〈⊥, u|p 〉]p →∗A 〈 t, u 〉[r]p →∗A q f

where we assume without loss of generality that the final step in the subsequence
〈⊥, u|p 〉 →∗A r uses a non-ε-transition rule. From |Q| < |q| and pq ∈ Pos(u) we infer
|Q| < height(〈⊥, u|p 〉). Hence we can use the pumping lemma (Lemma 2) to conclude the
existence of infinitely many terms v ∈ T (F) such that 〈⊥, v 〉 →∗A r . Hence r ∈ Q∞ by
Definition 5. Since the final step in 〈⊥, u|p 〉 →∗A r uses a non-ε-transition rule, we obtain
〈⊥, u|p 〉 →∗A∞ r̄ from the construction ofA∞ with a final application of a rule of shape (1).
We obtain 〈 t, u 〉[r̄]p →∗A∞ q̄ f from 〈 t, u 〉[r]p →∗A q f . Hence 〈 t, u 〉 →∗A∞ q̄ f and since

q̄ f ∈ Q̄ f , 〈 t, u 〉 ∈ L(A∞) and thus t ∈ �2(L(A∞)).
Next suppose t ∈ �2(L(A∞)). So 〈 t, u 〉 ∈ L(A∞) for some ground terms u. There exists

a final state q̄ f ∈ Q̄ with 〈 t, u 〉 →∗A∞ q̄ f . Using Lemma 3, we obtain a context C , a term s
with root(s) = ⊥ f for some f ∈ F , and a state q ∈ Q∞ such thatC[s] = 〈 t, u 〉, s →∗A∞ q̄,
andC[q̄] →∗A∞ q̄ f . Let p be the position of the hole inC . FromC[s] = 〈 t, u 〉 and root(s) =
⊥ f , we infer p ∈ Pos(u) \ Pos(t). Since q ∈ Q∞ the set {v ∈ T (F) | 〈⊥, v 〉 →∗A q } is

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RR2_Infinite.html#RR2_Infinite.CInr_Inf_automata_to_q_state|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RR2_Infinite.html#RR2_Infinite.Inf_to_automata|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RR2_Infinite.html#RR2_Infinite.Inf_automata_to_Inf|thm

First-Order Theory of Rewriting… Page 13 of 76 14

Fig. 2 Inference rules for computing Qe∞

infinite. Hence the set S = {u[v]p ∈ T (F) | 〈⊥, v 〉 →∗A q } is infinite, too. Let u[w]p ∈ S.
So 〈⊥, w 〉 →∗A q . We obtain C[q] →∗A q f from C[q̄] →∗A∞ q̄ f by erasing all dashes. We
haveC[w] = 〈 t, u[w]p 〉 as p ∈ Pos(u)\Pos(t). It follows that 〈 t, u[w]p 〉 ∈ L(A) and thus
there are infinitely many terms u′ such that 〈 t, u′ 〉 ∈ L(A). Since 〈R 〉 = L(A) we conclude
t ∈ INFR as desired. ��

Due to the definition of Q∞, the automatonA∞ defined in Definition 6 is not executable.
We present an equivalent but executable definition, which we name Qe∞:

Qe∞ = {q | p � p and p � q for some state p ∈ Q }
Here the relation � is defined using the inference rules in Fig. 2 . Intuitively, the first rule
initializes the relation. Finding a cycle p �+ p ensures the existence of infinitely many
terms 〈⊥, s 〉 that reduce to p. The other two rules are used to collapse cycles (and other
non-empty sequences of ε-transitions) into single steps.

Before proving that the two definitions are equivalent, we illustrate the definition of Qe∞
by revisiting Example 7.

Example 9 We obtain 3 � 5 and 4 � 5 by applying the first inference rule to the transition
rule ⊥f(3, 4)→ 5. Similarly, ⊥g(5)→ 5 gives rise to 5 � 5. Since A has no ε-transitions,
no further inferences can be made. It follows that Qe∞ = {5}.

We call a term in T ({⊥} × F) right-only. A term in T (({⊥} × F) ∪ {�}) with exactly
one occurrence of the hole � is a right-only context.

Definition 7 We denote the composition of→�¬ε
and→∗�ε

by ��.

The proof of the next lemma is straightforward. Note that the relations→∗� and �∗� do
not coincide on mixed terms, involving function symbols and states.

Lemma 4 Let C be a ground context. We have C[p] →∗� q if and only if p →∗� p′ and
C[p′]�∗� q for some state p′. �

Proof First we show t �∗� q if t →∗� q , for all ground terms t and states q . We use
induction on t = f (t1, . . . , tn). The given derivation t →∗� q may be written as t →∗�
f (q1, . . . , qn) →�¬ε

q ′ →∗� q . We obtain ti �∗� qi for 1 � i � n from the induction
hypothesis. Clearly, f (q1, . . . , qn) �� q and hence t �∗� q as desired.

Next we prove the statement of the lemma. The if direction is trivial. For the only-if
direction we use induction on the ground context C . Let C[p] →∗� q . If C = � then we take
p′ = q . Suppose C = f (t1, . . . ,C ′, . . . , tn). We may write the derivation C[p] →∗� q as
t →∗� f (q1, . . . , qn)→�¬ε

q ′ →∗� q . The induction hypothesis yields a state p′ such that
p →∗� p′ and C ′[p′] �∗� qi and we obtain t j �∗� q j for j �= i from the first part of the
proof. We have f (q1, . . . , qn) �� q and hence C[p′] = f (t1, . . . ,C ′[p′], . . . , tn) �∗� q .

��
Lemma 5 Q∞ ⊆ Qe∞ �

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RR2_Infinite_Q_infinity.html#RR2_Infinite_Q_infinity.ta_der_to_ta_strict|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RR2_Infinite_Q_infinity.html#RR2_Infinite_Q_infinity.Q_inf_impl_Q_inf_exec|thm

 14 Page 14 of 76 A. Middeldorp et al.

Proof We start by proving the following claim:

if C[p]�∗� q and C is a non-empty right-only context then p � q (4)

We use induction on the structure of C . If C = � there is nothing to show. Suppose C =
⊥ f (t1, . . . ,C ′, . . . , tn) where C ′ is the i-th subterm of C . The sequence C[p]�∗� q can be
rearranged as C[p] = ⊥ f (t1, . . . ,C ′[p], . . . , tn) �∗� ⊥ f (q1, . . . , qn)→� q ′ →∗� q . We
obtain qi � q ′ and subsequently qi � q by using the inference rules in Fig. 2. If C ′ = �
then p = qi and if C ′ �= � then the induction hypothesis yields p � qi and thus p � q by
transitivity. This concludes the proof of (4).

Assume q ∈ Q∞, so there exist infinitely many terms t such that 〈⊥, t 〉 →∗� q . Since
the signature is finite, there exist terms of arbitrary height. Thus there exists an arbitrary
but fixed term t such that the height of t is greater than the number of states of Q. Write
t = f (t1, . . . , tn). Since the height of t is greater than the number of the states in Q, there
exist a subterm s of t , a state p, and contexts C1 and C2 �= � such that

1. 〈⊥, t 〉 = C1[C2[〈⊥, s 〉]],
2. 〈⊥, s 〉 →∗� p,
3. C2[p] →∗� p, and
4. C1[p] →∗� q .

From Lemma 4 we obtain a state q ′ such that p→∗� q ′ and C2[q ′]�∗� p. Hence q ′ � p by
(4). We obtain q ′ � q ′ from q ′ � p in connection with the inference rule for ε-transitions.
We perform a case analysis of the context C1.

• If C1 = � then p →∗� q and thus q ′ � q follows from q ′ � p in connection with the
inference rule for ε-transitions. Hence q ∈ Qe∞.
• If C1 �= � then Lemma 4 yields a state q ′′ such that p′ →∗� q ′′ and C1[q ′′] �∗� q .

Hence q ′′ � q by (4). We also have C2[q ′]�∗� q ′′ and thus q ′ � q ′′ by (4). We obtain
q ′ � q from the transitivity rule. Hence also in this case we obtain q ∈ Qe∞. ��
For the following lemma, we need the fact thatA can be assumed to be trim, so every state

is productive and reachable. We may do so because Theorem 3 talks about regular relations,
and any automaton that accepts the same language as A will witness the fact that the given
relation R is regular.

Lemma 6 Qe∞ ⊆ Q∞, provided that A is trim. �

Proof In connection with the fact that A accepts R ⊆ T (F)× T (F), trimness of A entails
that any run t →∗� q is embedded into an accepting run C[t] →∗� C[q] →∗� q f ∈ Q f . So
C[t] = 〈u, v 〉 for some (u, v) ∈ R, and hence t must be a well-formed term. Moreover, if
root(t) = ⊥ f for some f ∈ F then t = 〈⊥, u 〉 for some term u ∈ T (F). We now show the
converse of claim (4) in the proof of Lemma 5 for the relation→∗�:

if p � q then C[p] →∗� q for some ground right-only context C �= � (5)

We prove the claim by induction on the derivation of p � q . First suppose p � q is
derived from the transition rule ⊥ f (p1, . . . , pi , . . . , pn) → q in � with pi = p. Because
all states are reachable by well-formed terms, there exist terms t1, . . . , tn ∈ T (F) such that
〈⊥, t 〉 →∗� pi for all 1 � i � n. LetC1 = ⊥ f (〈⊥, t1 〉, . . . ,�, . . . , 〈⊥, tn 〉)where the hole
is the i-th argument. We have C1[p] →∗� ⊥ f (p1, . . . , pi , . . . , pn) →� q . Next suppose
p � q is derived from p � q ′ and q ′ →� q . The induction hypothesis yields a ground
right-only context C �= � such that C[p] →∗� q ′. Hence also C[p] →∗� q . Finally, suppose

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RR2_Infinite_Q_infinity.html#RR2_Infinite_Q_infinity.Q_inf_exec_impl_Q_inf|thm

First-Order Theory of Rewriting… Page 15 of 76 14

p � q is derived from p � r and r � q . The induction hypothesis yields non-empty ground
right-only contexts C1 and C2 such that C1[p] →∗� r and C2[r] →∗� q . Hence C[p] →∗� q
for the context C = C2[C1]. This concludes the proof of (5).

Now let q ∈ Qe∞. So there exists a state p such that p � p and p � q . Using (5),
we obtain non-empty ground right-only contexts C1 and C2 such that C1[p] →∗� p and
C2[p] →∗� q . Since all states are reachable, there exists a ground term t ∈ T (F (2)) such that
t →∗� p. Hence C2[t] →∗� q and, by the observation made at the beginning of the proof,
C2[t] is a well-formed term. Since C2 is right-only, it follows that t = 〈⊥, u 〉 for some term
u ∈ T (F). Now consider the infinitely many terms tn = C2[Cn

1 [t]] for n � 0. We have
tn →∗� q and tn is right-only by construction. Hence q ∈ Q∞. ��
Corollary 1 If A is trim then Qe∞ = Q∞. ��

5.2 Anchored GTT Relations

Next we turn our attention to formalized constructions on (anchored) GTTs. Many of the
results and automata constructions in this subsection are known. In the formalization we also
employ an equivalent but more flexible definition of anchored GTT.

Definition 8 A pair automaton is a triple P = (Q,A,B) where A, B are tree automata and
Q ⊆ QA × QB . We define L(P) = {(s, t) | s →∗A p and t →∗B q with (p, q) ∈ Q }.
Lemma 7 Anchored GTTs and pair automata are equivalent. �

Proof If G = (A,B) is a GTT then La(G) = L(P) for the pair automaton P = (Q,A,B)

with Q = {(p, p) | p ∈ QA ∩ QB }. Conversely, given a pair automaton P = (Q,A,B),
we first rename the states of B to obtain an equivalent tree automaton B′ such that A and B′
do not share states. We add an ε-transition p → q ′ to A for every (p, q) ∈ Q, resulting in
the tree automaton A′. Here q ′ is the (renamed) state in B′ that corresponds to state q in B.
The GTT G = (A′,B′) satisfies La(G) = L(P). ��

The above lemma will be used in the sequel without mention.

Lemma 8 (A ::= T × T) If T and U are regular sets of ground terms then T × U is an
anchored GTT relation.

Proof Let A = (F, QA, Q f A,�A) and B = (F, QB , Q f B ,�B) be tree automata that
accept T and U . The set T × U is accepted by the pair automaton P = (Q,A,B) with
Q = Q f A × Q f B . ��

There are several ways to associate a GTT G = (A,B) with a linear variable-separated
TRS R. The one in [9] uses for each rewrite rule � → r of R a unique interface state i ,
common to A and B, and transition rules and states specific to A (B) that accept all ground
instances of � (r) in state i . No states are shared between different rewrite rules. The resulting
GTT accepts −→‖ and→ε when viewed as an anchored GTT. The second way to associate a
GTTwith a linear variable-separated TRSR originates fromDauchet et al. [12]. The resulting
GTT accepts a relation in between −→‖ and→∗. The construction that we formalized can be
seen as a pair automaton version of the construction in [9].

Theorem 4 [A ::= →ε] The relation →ε is an anchored GTT relation for every linear
variable-separated TRS R. �

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Pair_Automaton.html#Pair_Automaton.pair_at_agtt_cost|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/LV_to_GTT.html#LV_to_GTT.agtt_grrstep_set|thm

 14 Page 16 of 76 A. Middeldorp et al.

Proof Let R be a linear variable-separated TRS over a signature F . We denote the set of
left-hand (right-hand) sides of the rules inR by lhs(R) (rhs(R)). Given a set of terms T , we
write s � T if s is a subterm of some term in T . Given a term s we write ŝ for the ground
term obtained from s by replacing each variable with a designated (fresh) constant ∗. Let Q
be the set of states 〈t̂〉 for each t � lhs(R) ∪ rhs(R). The set �lhs consists of the transitions

f (〈 t̂1〉, . . . , 〈 t̂n〉) → 〈 f (t1, . . . , tn)̂〉
for every f (t1, . . . , tn) � lhs(R) and, if some term in lhs(R) contains a variable,

f (〈∗〉, . . . , 〈∗〉) → 〈∗〉
for every f ∈ F . The set �rhs is defined similarly, using rhs(R) instead of lhs(R) for
generating the rules. We now define PR = (Q,�lhs,�rhs) with Q = {(〈�̂〉, 〈r̂〉) | �→ r ∈
R}. It is easy to prove that La(PR) =→ε. ��

The other binary relations associated with a TRSR (like−→‖ R and↔∗R) will be obtained
from the root-step relation →ε by automata constructions that operate on anchored GTT
relations and RR2 relations.

Example 10 The pair automaton PR = (Q,A,B) constructed in the above proof consists of
the transition rules

�A : a→ 〈∗〉 b→ 〈∗〉 f(〈∗〉)→ 〈∗〉 g(〈∗〉, 〈∗〉)→ 〈∗〉
a→ 〈a〉 f(〈a〉)→ 〈 f(a)〉 g(〈a〉, 〈∗〉)→ 〈g(a, ∗)〉

�B : a→ 〈a〉 b→ 〈b〉 f(〈a〉)→ 〈 f(a)〉
Q : (〈a〉, 〈b〉) (〈 f(a)〉, 〈b〉) 〈g(a, ∗)〉, 〈 f(a)〉)

and accepts the root-step relation→ε of our leading TRSR. The state pairs in Q are presented
as ε-transitions and perform the transfer from left-hand sides to right-hand sides of R. For
instance, g(a, f(f(b))) →ε f(a) is witnessed by g(a, f(f(b))) →∗A 〈g(a, ∗)〉 → 〈 f(a)〉 →∗

B
f(a). To shorten the notation in subsequent examples, we number the states as follows:

0 = 〈∗〉 1 = 〈a〉 2 = 〈 f(a)〉 3 = 〈g(a, ∗)〉 4 = 〈b〉
Hence the transition rules are presented as follows:

�A : a→ 0 b→ 0 f(0)→ 0 g(0, 0)→ 0

a→ 1 f(1)→ 2 g(1, 0)→ 3

�B : a→ 1 b→ 4 f(1)→ 2

Q : (1,4) (2,4) (3,2)

To turn PR into an equivalent anchored GTT GR = (A′,B′) we rename states 1 and 2 in B
into 5 and 6 and add the pairs in Q as ε-transitions toA, after applying the renaming to their
targets:

�′A : a→ 0 b→ 0 f(0)→ 0 g(0, 0)→ 0

a→ 1 f(1)→ 2 g(1, 0)→ 3

1→ 4 2→ 4 3→ 6

�B : a→ 5 b→ 4 f(5)→ 6

Next we turn to composition and transitive closure.

123

First-Order Theory of Rewriting… Page 17 of 76 14

Fig. 3 �ε(A,B)

Definition 9 Given tree automata A and B, �ε(A,B) is the set of ε-transitions � defined
by the inference rules in Fig. 3.

The inference rule [c] appeared first in [17]. Since there are only finitelymany ε-transitions
between states in Q,�ε(A,B) can be effectively computed. The next result provides a useful
equivalent characterization (which is presented as a definition in [8, 12]).

Example 11 For the (anchored) GTT GR of Example 10, which will be referred to as G =
(A,B) in the following, the set �ε(A,B) consists of the following seven ε-transitions:

0 � 5 [c] (0 A← a→B 5) 0 � 6 [c] (0 A← f(0) � f(5)→B 6)

1 � 5 [c] (1 A← a→B 5) 2 � 6 [c] (2 A← f(1) � f(5)→B 6)

0 � 4 [c] (0 A← b→B 4) 4 � 5 [a] (4 A← 1 � 5)

4 � 6 [a] (4 A← 2 � 6)

Since B does not contain ε-transitions, the inference rule [b] is not used here.

Lemma 9 If A and B are tree automata over a signature F then

�ε(A,B) = { p � q | p →∗
A t →∗B q for some ground term t ∈ T (F)} �

Proof First suppose there exists a ground term t ∈ T (F) with p →∗
A t →∗B q for states

p of A and q of B. We show p � q by induction on t = f (t1, . . . , tn). The sequence
t →∗A p can be written as t →∗A f (p1, . . . , pn)→A p′ →∗A p with states p1, . . . , pn, p′ of
A. Similarly, t →∗B f (q1, . . . , qn) →B q ′ →∗B q with states q1, . . . , qn, q ′ of B. We have
pi →∗

A ti →∗B qi and thus pi � qi by the induction hypothesis, for 1 � i � n. Hence we
obtain p′ � q ′ by [c]. Repeated applications of the inference rules [a] and [b] in connection
with p′ →∗A p and q ′ →∗B q yields p � q . Hence p � q ∈ �ε(A,B) as desired.

Next suppose p � q ∈ �ε(A,B). We show the existence of a ground term t ∈ T (F)

such that p →∗
A t →∗B q by induction on the derivation of p � q . In the base case [c] is

used with p →A a and a →B q for some constant a and hence we can take t = a. For the
induction step we consider three cases, depending on which inference rule is used to derive
p � q . First suppose [c] is used. So there exist transition rules f (p1, . . . , pn)→ p inA and
f (q1, . . . , qn)→ q in B such that pi � qi for 1 � i � n. The induction hypothesis yields
ground terms t1, . . . , tn such that pi →∗

A ti →∗B qi for 1 � i � n. Hence p →∗
A t →∗B q

for t = f (t1, . . . , tn). Next suppose [a] is applied to derive p � q . So there exists a state
p′ such that p →A p′ � q . The induction hypothesis yields a ground term t ∈ T (F) such
that p′ →∗

A t →∗B q and hence also p →∗
A t →∗B q . The reasoning for [b] is the same. ��

Theorem 5 (A ::= A ◦ A) Anchored GTT relations are effectively closed under
composition. �

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT_Compose.html#GTT_Compose.\<Delta>\<^sub>\<epsilon>_def'|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/AGTT.html#AGTT.AGTT_comp_sound|thm

 14 Page 18 of 76 A. Middeldorp et al.

Fig. 4 �+(P) for P = (Q,A,B)

Proof Let P1 = (Q1,A1,B1) and P2 = (Q2,A2,B2) be pair automata (operating on terms
over the same signature). We construct the pair automaton P = (Q,A1,B2) with

Q = Q1 ◦ �ε(B1,A2) ◦ Q2

We claim that L(P) = L(P1) ◦ L(P2). First let (s, t) ∈ L(P). We have s →∗A1
p and

t →∗B2
q for some (p, q) ∈ Q. The definition of Q2 yields states p′ and q ′ such that

(p, p′) ∈ Q1, (p′, q ′) ∈ �ε(B1,A2), and (q ′, q) ∈ Q2. According to Lemma 9 there
exists a ground term u such that u →∗B1

p′ and u →∗A2
q ′. Hence (s, u) ∈ L(P1) and

(u, t) ∈ L(P2) and thus (s, t) ∈ L(P1) ◦ L(P2).
For the converse, let (s, t) ∈ L(P1) ◦ L(P2). So there exists a ground term u such that

(s, u) ∈ L(P1) and (u, t) ∈ L(P2). Hence there are pairs (p1, q1) ∈ Q1 and (p2, q2) ∈ Q2

such that s →∗A1
p1, u →∗B1

q1, u →∗A2
p2, and t →∗B2

q2. Lemma 9 yields (q1, p2) ∈
�ε(B1,A2). Hence (p1, q2) ∈ Q and thus (s, t) ∈ L(P). ��
Example 12 We compose the pair automaton PR = (Q,A,B) of Example 10 with itself.
We have �ε(B,A) = �ε(A,B)− = {(1, 0), (1, 1), (4, 0), (2, 2), (2, 0)}. Hence we obtain
the pair automaton P ′ = (Q′,A,B) with Q′ = Q ◦ �ε(B,A) ◦ Q = {(3, 4)}. We
have L(A, 3) = {g(a, t) | t ∈ T (F)} and L(B, 4) = {b}. Hence, we obtain L(P ′) =
L(A, 3)× L(B, 4) =→2

ε as expected.

Theorem 6 (A ::= A+) Anchored GTT relations are effectively closed under transitive
closure. �

Proof Let P = (Q,A,B) be a pair automaton. We construct the pair automaton P+ =
(�+(P),A,B) where �+(P) is the binary relation on states defined by the inference rules
in Fig. 4 . We claim that L(P+) = L(P)+. From the first inference rule we immediately
obtain L(P) ⊆ L(P+). The second inference rule, together with the definition of Q in the
proof of Theorem 5, yields L(P+) ◦ L(P+) ⊆ L(P+). Hence L(P)+ ⊆ L(P+).

For the converse, let (s, t) ∈ L(P+). So there exists a pair p � q such that s →∗A p and
t →∗B q . We prove (s, t) ∈ L(P)+ by induction on the derivation of p � q . If (p, q) ∈ Q
then (s, t) ∈ L(P). Suppose p � p′, (p′, q ′) ∈ �ε(B,A), and q ′ � q . According to
Lemma 9 there exists a ground term u such that u →∗B p′ and u →∗A q ′. The induction
hypothesis yields (s, u) ∈ L(P)+ and (u, t) ∈ L(P)+. Hence also (s, t) ∈ L(P)+. ��
Example 13 Consider the pair automaton PR = (Q,A,B) of Example 10. As observed
in Example 12, �ε(B,A) = {(1, 0), (1, 1), (4, 0), (2, 2), (2, 0)}. Hence we obtain the pair
automaton P+ = (�+(P),A,B) with �+(P) = {(1, 4), (2, 4), (3, 2), (3, 4)}. The pair
(3, 4) is obtained from the second inference rules with p = 3, q = q ′ = 2 and r = 4. We
have g(a,b)→ε f(a)→ε b and the pair (g(a,b),b) is accepted byP+ as g(a,b)→∗A 3 and
b→B 4 with (3, 4) ∈ �+(P). Furthermore, g(a,b)→ε f(a)→ f(b) but g(a,b)→+ε f(b)

does not hold, and one readily checks that the pair (g(a,b), f(b)) is not accepted by P+.

Two further closure operations on anchored GTT relations are inverse and union. Recall
that GTT relations are not closed under union.

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/AGTT.html#AGTT.AGTT_trancl_sound|thm

First-Order Theory of Rewriting… Page 19 of 76 14

Lemma 10 (A ::= A− | A∪ A) Anchored GTT relations are effectively closed under inverse
and union. �

Proof Given a pair automaton P = (Q,A,B), we have L(P)− = L(P−) for the pair
automaton P− = (Q−,B,A). Here Q− = {(q, p) | (p, q) ∈ Q }. Given pair automata
P1 = (Q1,A1,B1) andP2 = (Q2,A2,B2)without common states, L(P1)∪L(P2) = L(P)

for the pair automaton P = (Q1 ∪ Q2,A1 ∪A2,B1 ∪ B2). ��
Next we present a modified composition operation ◦̂ that preserves anchored GTT

relations.

Definition 10 Given two binary relations �	1 and �	2 on the same set of ground terms, their
modified composition �	1 ◦̂ �	2 is defined as the relation

�	1 ◦̂ �	2 = �	1 ◦ (�	2)�� ∪ (�	1)�� ◦ �	2

We have (�	1 ◦̂ �	2)�� = (�	1)�� ◦ (�	2)��. The proof that anchored GTT relations are
closed under ◦̂ requires a preliminary result on the interplay between GTTs and anchored
GTTs.

Lemma 11 The composition of an anchored GTT relation and a GTT relation is an anchored
GTT relation.

Proof Let P = (Q,A1,B1) be a pair automaton and G = (A2,B2) a GTT. Without loss of
generality we assume that P and G do not share states. Define the pair automaton

P ′ = (Q,A1,B1 ∪�ε(A2,B1) ∪ B2)

We claim that L(P ′) = L(P) ◦ L(G). First let (s, t) ∈ L(P ′). So s →∗A1
p and t →∗B′ q

with (p, q) ∈ Q and B′ abbreviating B1 ∪�ε(A2,B1) ∪ B2. Because P and G do not share
states, the sequence t →∗B′ q can be rearranged as follows:

t = C[t1, . . . , tn] →∗B2
C[q1, . . . , qn] →∗�ε(A2,B1)

C[r1, . . . , rn] →∗B1
q

Here C is a multi-hole context with n � 0 holes. Using Lemma 9 we obtain ground terms
u1, . . . , un such that ui →∗A2

qi and u →∗B1
ri for all 1 � i � n. Define the term u =

C[u1, . . . , un]. We have u →∗B1
C[r1, . . . , rn] →∗B1

q and thus (s, u) ∈ L(P). Furthermore,
u →∗A2

C[q1, . . . , qn] and thus also (u, t) ∈ L(G). Hence (s, t) ∈ L(P) ◦ L(G).
For the converse direction, let (s, t) ∈ L(P) and (t, u) ∈ L(G). So s →∗A1

p and
t →∗B1

q with (p, q) ∈ Q. Moreover, there exists a multi-hole context C with n � 0
holes, terms t1, . . . , tn, u1, . . . , un , and states r1, . . . , rn such that t = C[t1, . . . , tn], u =
C[u1, . . . , un], and ti →∗A2

ri and ui →∗B2
ri for all 1 � i � n. The sequence t →∗B1

q
can be written as t = C[t1, . . . , tn] →∗B1

C[q1, . . . , qn] →∗B1
q for some states q1, . . . , qn .

By Lemma 9, ri → qi is a transition rule in �ε(A2,B1). Hence u = C[u1, . . . , un] →∗B2
C[r1, . . . , rn] →∗�ε(A2,B1)

C[q1, . . . , qn] →∗B1
q and thus (s, u) ∈ L(P ′) as desired. ��

Example 14 We consider the pair automaton PR and the GTT GR of Example 10. The
construction in the above proof requires that PR and GR do not share states, so we
rename the states of GR (by adding a prime). We obtain the pair automaton P ′ =
({(1, 4), (2, 4), (3, 2)},A′,B′) with

A′ : a→ 0 b→ 0 f(0)→ 0 g(0, 0)→ 0

a→ 1 f(1)→ 2 g(1, 0)→ 3

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/AGTT.html#AGTT.AGTT_union'_sound|thm

 14 Page 20 of 76 A. Middeldorp et al.

Fig. 5 �+(A,B)

B′ : a→ 1 b→ 4 f(1)→ 2 0′ → 1 1′ → 1

a→ 5′ b→ 4′ f(5′)→ 6′ 0′ → 4 0′ → 2

2′ → 2 4′ → 1 4′ → 2

We can also trim the resulting pair automata by trimming the underlying automata A′ and
B′. We declare a state q of A′ to be productive if C[q] →∗A′ r for some context C and state
r ∈ { p | (p, p′) ∈ Q }. For the automaton B′ we use the second components { p′ | (p, p′) ∈
Q }. In our case A′ is already trim, but B′ simplifies to

a→ 1 b→ 4 f(1)→ 2 b→ 4′ 4′ → 1 4′ → 2

We have L(P ′) = {(f(a),b), (a,b)} ∪ {g(a, t) | t ∈ T (F)} × {b, f(a), f(b)}, which indeed
coincides with the relation→ε · −→‖ induced by our leading TRS R.

Theorem 7 (A ::= A ◦̂ A) Anchored GTT relations are effectively closed under modified
composition. � �

Proof The construction L(P)× L(G) �→ L(P ′) in the proof of Lemma 11 and its symmetric
counterpart L(G)× L(P) �→ L(P ′) in connection with Lemma 10 ensure that �	1 ◦̂ �	2 is
an anchored GTT relation. ��

In Theorem6wehave seen that anchoredGTT relations are closed under transitive closure.
GTT relations are also closedunder transitive closure,which is the reason theywere developed
in the first place, but the construction is different from the one for anchored GTT relations
and the correctness proof is considerably more involved. We present this construction as a
modified transitive closure operation that preserves anchored GTT relations.

Definition 11 The modified transitive closure �	̂+ of a binary relation �	 on ground terms is
defined as the relation

�	̂+ = (�	��)+ ◦ �	 ◦ (�	��)+

We have (�	̂+)
�
� = (�	��)+. The proof that anchored GTT relations are effectively closed

under ̂+ employs the set �+(A,B) consisting of ε-transitions p � q that are computed by
the inference rules in Fig. 5.

Definition 12 Given a GTT G = (A,B), we write A+ for A ∪ �+(B,A) and B+ for B ∪
�+(A,B). The GTT G+ is defined as (A+,B+).

According to the following lemma, the multi-hole context closure of an anchored GTT
relation is a GTT relation using the same GTT.

Lemma 12 For every GTT G, L(G) = La(G)
�
�. ��

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT_Compose.html#GTT_Compose.gtt_comp'_alang|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Ground_Closure.html#Ground_Closure.gcomp_rel|const
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT.html#GTT.gtt_accept|const
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT.html#GTT.gtt_accept_exI|thm

First-Order Theory of Rewriting… Page 21 of 76 14

Proof Let G = (A,B). If (s, t) ∈ L(G) then there exist a context C with n � 0 holes, terms
s1, . . . , sn, t1, . . . , tn , and states q1, . . . , qn with s = C[s1, . . . , sn], t = C[t1, . . . , tn], and
si →∗A qi →∗

B ti for all 1 � i � n. We have (si , ti) ∈ La(G) for all 1 � i � n by definition

of anchored GTTs.Moreover,C ∈ C�∩C�. Hence (s, t) ∈ La(G)
�
�. The converse is equally

easy. ��
Lemma 13 Let G = (A,B) be a GTT. If (p, q) ∈ �+(A,B) then (s, t) ∈ L(G−)+ for some
ground terms s ∈ L(A, p) and t ∈ L(B, q). �

Proof We use induction on the relation� defined by the inference rules in Fig. 5. In the base
case [c] is used with p →A a and a →B q for some constant a and hence we can take
s = t = a. For the induction step we consider four cases, depending on which inference
rule is used to derive p � q . First suppose [c] is used. So there exist transition rules
f (p1, . . . , pn)→ p inA and f (q1, . . . , qn)→ q inB such that pi � qi for 1 � i � n. The
induction hypothesis yields ground terms s1, . . . , sn , t1, . . . , tn such that (si , ti) ∈ L(G−)+,
si ∈ L(A, pi), and ti ∈ L(B, qi) for 1 � i � n. Let s = f (s1, . . . , sn) and t = f (t1, . . . , tn).
We have s ∈ L(A, p) and t ∈ L(B, q). Moreover, (s, t) ∈ L(G−)+ because the transitive
closure of a parallel relation is parallel. Next suppose [a] is applied to derive p � q . So there
exists a state p′ such that p →A p′ � q . The induction hypothesis yields ground terms s and
t such that (s, t) ∈ L(G−)+, s ∈ L(A, p′), and t ∈ L(B, q). Hence also s ∈ L(A, p). The
reasoning for [b] is similar. The final case is the transitivity rule [t]. So p � r and r � q for
some state r . The inductionhypothesis yields terms s, t ,u,v such that (s, u), (v, t) ∈ L(G−)+,
s ∈ L(A, p), u ∈ L(B, r), v ∈ L(A, r), and t ∈ L(B, q). From u ∈ L(B, r) and v ∈ L(A, r)
we infer (u, v) ∈ L(G−). Together with (s, u), (v, t) ∈ L(G−)+, we obtain the desired
(s, t) ∈ L(G−)+. ��
Lemma 14 Let G = (A,B) be a GTT. Let G+ = (A+,B+). If s →∗A+ q then t →∗A q for

some ground term t with (s, t) ∈ L(G)+. �

Proof We proceed by induction on the length of the reduction s →∗A+ p. If the last step
is an epsilon transition q → p then the induction hypothesis yields a ground term u with
(s, u) ∈ L(G)+ and u ∈ L(A, q). If q → p is a transition from A then u ∈ L(A, p),
and we conclude by letting t = u; otherwise, q → p must come from �+(B,A), and
using Lemma 13 we obtain ground terms v and w with v ∈ L(B, q), w ∈ L(A, p), and
(v,w) ∈ L(G)+. This implies (u, v) ∈ L(G) and thus (s, w) ∈ L(G)+ by transitivity. Letting
t = w gives the desired result. If the last step is not an ε-transition, then it must be a transition
f (p1, . . . , pn) → p from A, and we have s = f (s1, . . . , sn) for suitable s1, . . . , sn . We
apply the induction hypothesis to each argument position, resulting in t1, . . . , tn with (si , ti) ∈
L(G)+ and ti ∈ L(A, pi) for 1 � i � n. Let t = f (t1, . . . , tn). We have t ∈ L(A, p). Since
L(G)+ is transitive and closed under contexts, we obtain (s, t) ∈ L(G)∗. Since L(G) is
reflexive, we actually have (s, t) ∈ L(G)+ as desired. ��
Lemma 15 Let G = (A,B) be a GTT. If G+ = (A+,B+) then �ε(A+,B+)

= �+(A,B). �

Proof We first show �ε(A+,B+) ⊆ �+(A,B) via induction on the relation � defined by
the inference rules in Fig. 3. We proceed by case analysis, so assume (p, q) ∈ �ε(A+,B+)

is derived from a congruence step [c]. Hence we obtain (p, q) ∈ �+(A,B) by a congruence
step [c] of Fig. 5, the fact that the constructions only add ε-transitions, and the induction
hypothesis. Next assume thatwe derived (q, r) ∈ �ε(A+,B+) by an ε-step [a]. So p→A+ q

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT_Transitive_Closure.html#GTT_Transitive_Closure.\<Delta>_trancl_sound|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT_Transitive_Closure.html#GTT_Transitive_Closure.GTT_trancl_sound_aux|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT_Transitive_Closure.html#GTT_Transitive_Closure.\<Delta>\<^sub>\<epsilon>_tr_incl|thm

 14 Page 22 of 76 A. Middeldorp et al.

and p � r . We have A+ = A ∪ �+(B,A). The result trivially follows for p →A q .
So let (p, q) ∈ �+(B,A). Hence (q, p) ∈ �+(A,B). The induction hypothesis yields
(p, r) ∈ �+(A,B) and therefore (q, r) ∈ �+(A,B) using the transitivity rule [t]. The
ε-step [b] case is obtained in the same way.

For the reverse inclusion we use induction on the relation� defined by the inference rules
in Fig. 5 and argue in a similar fashion. Hence �ε(A+,B+) = �+(A,B) as desired. ��
Theorem 8 (A ::= Â+) Anchored GTT relations are effectively closed under modified
transitive closure. � �

Proof Let G = (A,B) be a GTT. We show La(G+) = La(G)
̂+. First let (s, t) ∈ La(G+).

So there exists a state q such that s →∗A+ q and t →∗B+ q . Lemma 14 yields a ground
term u such that u →∗A q and (s, u) ∈ L(G)+. Applied to G− = (B,A), Lemma 14 yields
a ground term v such that v →∗B q and (t, v) ∈ L(G−)+. Hence (u, v) ∈ La(G) and
(v, t) ∈ L(G)+. Consequently, (s, t) ∈ L(G)+ ◦ La(G) ◦ L(G)+ and, using Lemma 12,
L(G)+ ◦ La(G) ◦ L(G)+ = La(G)

̂+.
For the other direction we apply the modified composition operation ◦̂ of Definition 10

with �	1 = �	2 = La(G+) and obtain

La(G+) ◦ L(G+) ∪ L(G+) ◦ La(G+) ⊆ La(G+) ◦̂ La(G+) = La(G+)

with the help of Lemma 15. Note that we do not get equality, as one direction in the proof of
Lemma 11 requires disjoint state sets. Since La(G) ⊆ La(G+) we also have

La(G) ◦ L(G+) ∪ L(G+) ◦ La(G) ⊆ La(G+)

At this point we can use the following well-known result in Kleene algebra

A ⊆ X ∧ B ◦ X ⊆ X ∧ X ◦ C ⊆ X �⇒ B∗ ◦ A ◦ C∗ ⊆ X

with A = La(G), B = C = L(G), and X = La(G+). Since L(G)∗ = L(G)+, we are done. ��
Example 15 For the GTT G = (A,B) of Example 11 we have �+(A,B) = �ε(A,B).
Hence G+ = (A+,B+) adds the pairs of �+(B,A) = {(5, 0), (5, 1), (4, 0), (6, 0),
(6, 2), (5, 4), (6, 4)} as ε-transitions to A and those of �+(A,B) = �+(B,A)− to B. We
have (g(a,b), f(b)) ∈ La(G+) as g(a,b) →∗A+ 6 and f(b) →B+ f(4) →B+ f(5) →B+ 6.
The term pair (f(a), f(b)) does not belong to La(G+).

The penultimate operation on anchored GTT relations that we consider is complement.
This requires the determinization of pair automata.

Lemma 16 For every pair automaton P = (Q,A,B) there exist deterministic tree automata
A′ and B′ and a binary relation Qd such that L(P) = L((Qd ,A′,B′)). �

Proof We use the subset construction to determinize A and B into equivalent deterministic
tree automataA′ and B′. As the binary state relation we take Qd = {(X , Y) | (p, q) ∈ Q for
some p ∈ X ⊆ QA and q ∈ Y ⊆ QB }. We have L(P) = L((Qd ,A′,B′)) by the correctness
of the subset construction. ��
Theorem 9 (A ::= Ac) Anchored GTT relations are effectively closed under complement.�

Proof Let G be an anchored GTT. According to Lemma 16 we may assume that L(G) is
accepted by a deterministic pair automaton P = (Q,A,B). Without loss of generality we
may further assume thatA andB are completely defined. It follows that L(P)c = (Qc,A,B)

where Qc = (QA × QB)\Q. ��

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/GTT_Transitive_Closure.html#GTT_Transitive_Closure.GTT_trancl_alang|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Ground_Closure.html#Ground_Closure.gtrancl_rel|const
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Pair_Automaton.html#Pair_Automaton.pair_automaton_det_lang_sound_complete|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/Pair_Automaton.html#Pair_Automaton.pair_automaton_complement_sound_complete|thm

First-Order Theory of Rewriting… Page 23 of 76 14

It is worth noting that GTT relations are not closed under complement [8, Exercise 3.4].

Example 16 For the pair automaton PR = (Q,A,B) of Example 10 we have Q =
{(1, 4), (2, 4), (3, 2)}. Determinizing A yields the tree automaton A′ with the following
transition rules:

a→ A b→ B f(X)→
{

C if X = A

B otherwise
g(X , Y)→

{

D if X = A

B otherwise

for all X , Y ∈ { A, B,C, D }. Here A = {0, 1}, B = {0}, C = {0, 2}, and D = {0, 3}. Next
we determinize B to obtain the tree automaton B′ consisting of the following transition rules:

a→ E b→ F f(X)→
{

G if X = E

H otherwise
g(X , Y)→ H

for all X , Y ∈ {E, F,G, H }. Here E = {1}, F = {4},G = {2}, and H = ∅. The transition
rules for g are added to make B′ completely defined. Now the complement L(G)c of L(G) is
accepted by the pair automaton (Q′,A′,B′) with

Q′ = ({ A, B,C, D } × {E, F,G, H }) \ {(A, F), (C, F), (D,G)}
The final closure property of anchored GTT relations that we mention is intersection.

Lemma 17 (A ::= A∩ A) Anchored GTT relations are effectively closed under intersection.

Proof This follows from Theorem 9 and Lemma 10. ��
The formalized proof uses a more efficient product construction, to avoid the subset

construction of the complement.

5.3 Regular Relations

We continuewith operations on regular relations. Again, most of the results and constructions
are known.We provide detailed proofs that form the basis of the formalization. The following
lemma takes care of transforming anchored GTT relations into binary regular (i.e., RR2)
relations.

Theorem 10 (R ::= A) Every anchored GTT relation is an RR2 relation. �

Proof Let G = (A,B) be a GTT. We construct an RR2 automaton that accepts La(G). We
use a product construction with states pq where p is a state of A or ⊥, and q is a state of B
or ⊥; the state ⊥⊥ is not used. The transitions are

f g(p1q1, . . . , pkqk)→ pq

f⊥(p1⊥, . . . , pn⊥)→ p⊥
⊥g(⊥q1, . . . ,⊥qm)→⊥q

for all f (p1, . . . , pn) → p ∈ A and g(q1, . . . , qm) → q ∈ B, where k = max(n,m) and
pi = ⊥ if n < i � k and q j = ⊥ if m < j � k, and

pq → p′q for all p→ p′ ∈ A and q ∈ QB ∪ {⊥}
pq → pq ′ for all q → q ′ ∈ B and p ∈ QA ∪ {⊥}

123

https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.GTT_to_RR2_root|thm

 14 Page 24 of 76 A. Middeldorp et al.

These transitions accept 〈s, t 〉 in state pq if and only if s ∈ L(A, p) and t ∈ L(B, q). As
final states we pick pp with p ∈ QA ∩ QB. A straightforward induction proof reveals that
the resulting tree automaton accepts La(G). ��

We illustrate the construction on our leading example.

Example 17 For the anchored GTT G of Example 11 we obtain the RR2 automaton A =
(F (2), Q, Q f ,�) with Q = ({0, 1, 2, 3, 4, 6,⊥} × {4, 5, 6,⊥})\{⊥⊥}, Q f = {44, 66},
and � consisting of the following transition rules:

aa→ 05 ab→ 04 af(⊥5)→ 06

aa→ 15 ab→ 14 af(⊥5)→ 16

ba→ 05 bb→ 04 bf(⊥5)→ 06

fa(0⊥)→ 05 fb(0⊥)→ 04 ff(05)→ 06

fa(1⊥)→ 25 fb(1⊥)→ 24 ff(15)→ 26

ga(0⊥, 0⊥)→ 05 gb(0⊥, 0⊥)→ 04 gf(05, 0⊥)→ 06

ga(1⊥, 0⊥)→ 35 gb(1⊥, 0⊥)→ 34 gf(15, 0⊥)→ 36

a⊥→ 0⊥ b⊥→ 0⊥ ⊥a→⊥5
a⊥→ 1⊥ ⊥b→⊥4

f⊥(0⊥)→ 0⊥ f⊥(1⊥)→ 2⊥ ⊥f(⊥5)→⊥6
g⊥(0⊥, 0⊥)→ 0⊥ g⊥(1⊥, 0⊥)→ 3⊥

14→ 44 24→ 44 34→ 64

15→ 45 25→ 45 35→ 65

16→ 46 26→ 46 36→ 66

1⊥→ 4⊥ 2⊥→ 4⊥ 3⊥→ 6⊥
We have

〈g(a, f(b)), f(a)〉 = gf(aa, f⊥(b⊥))→∗� gf(15, f⊥(0⊥))→� gf(15, 0⊥)→∗� 66

The various context closure operations are taken care of in the following general result.

Theorem 11 (R ::= Rn
p) If R is an RR2 relation then R n

p is an RR2 relation, for all n ∈
{�, 1,>} and p ∈ {�, ε,>}. ���������

Proof Let A = (F (2), Q, Q f ,�) be the RR2 automaton that accepts R. We add two new
states ∗ and �. In the former the encoding of the identity relation on ground terms will be
accepted. The latter will serve as the unique final state (unless specified otherwise). This
is achieved by extending � with the transitions f f (∗, . . . , ∗) → ∗ for every f ∈ F and
q → � for every q ∈ Q f . The resulting automaton A′ = (F (2), Q ∪ {�, ∗}, {�},�′) is
equivalent to A and the starting point for the various context closure operations.

• For n = 1 and p = � we extend � with all rules of the form

f f (∗, . . . , ∗,�, ∗, . . . , ∗)→ �

• For p = > we need a new final state �′ to ensure that the surrounding context is
non-empty:

f f (∗, . . . , ∗,�, ∗, . . . , ∗)→ �′ f f (∗, . . . , ∗,�′, ∗, . . . , ∗)→ �′

123

https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.root_single_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.root_strictparallel_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.reflcl_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.parallel_closure_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.ctxt_closure_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.mctxt_closure_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.nhole_ctxt_closure_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.nhole_mctxt_closure_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/GTT_RRn.html#GTT_RRn.nhole_mctxt_reflcl_automaton|thm

First-Order Theory of Rewriting… Page 25 of 76 14

This is sufficient for n = 1. For n = > we add the single ε-transition � → ∗ and for
n = � we additionally add a new final state ∗′ together with transition rules ensuring
that the accepted relation is reflexive:

f f (∗′, . . . , ∗′)→ ∗′
• For n = p = �wemake ∗ the new (and only) final state and add the ε-transition�→ ∗.
• For p = ε and n ∈ {1,>}we have Rn

p = R and thus we can just take the RR2 automaton
A. For n = � we have Rn

p = R= and declare ∗ as an additional final state.
• In the remaining case we have p = � and n = >. We extend � with all rules of the

form

f f (∗, . . . , ∗,�, ∗, . . . , ∗)→ �

and the single ε-transition �→ ∗.
The proof details can be found in the formalization. ��
Example 18 The following transition rules are added to the RR2 automaton of Example 17 to
model the relation La(G)>> = −→̇‖ >ε:

aa→ ∗ 44→ � ff(�)→ �′ ff(�′)→ �′

bb→ ∗ 66→ � gg(�, ∗)→ �′ gg(�′, ∗)→ �′

ff(∗)→ ∗ �→ ∗ gg(∗,�)→ �′ gg(∗,�′)→ �′

gg(∗, ∗)→ ∗
The encoding of the term pair (g(f(a), f(a)),g(b, f(b))) is accepted: gg(fb(a⊥),ff(ab))→∗
gg(fb(1⊥),ff(14))→∗ gg(24,ff(44))→∗ gg(44,ff(�))→∗ gg(�,�′)→ gg(∗,�′)→
�′.

We present one more operation that turns a regular set into an RR2 relation. Here =T

consists of all pairs (t, t) with t ∈ T .

Lemma 18 (R ::= =T) If T ⊆ T (F) is regular then =T is an RR2 relation. �

Proof Let A = (F, Q, Q f ,�) be a tree automaton that accepts T . We turn A into the
automaton B = (F (2), Q, Q f ,�

′), where �′ is obtained from � by modifying every tran-
sition rule f (p1, . . . , pn)→ q of � into f f (p1, . . . , pn)→ q . The ε-transitions of � are
kept. It is a trivial exercise to show that L(B) = =L(A) = =T . ��

The following result is an immediate consequence of the corresponding closure properties
on regular sets (Theorem 1).

Theorem 12 (R ::= R ∪ R | R ∩ R) The class of n-ary regular relations is effectively closed
under union and intersection for any n � 0. ��

The final closure operations on regular relations are required for the logical structure of
formulas in the first-order theory of rewriting.

Theorem 13 (R ::= Rc) The class of regular relations is effectively closed under comple-
ment. �

Given a regular relation R, its complement is denoted by Rc. Note that 〈Rc 〉 �= 〈R 〉c.
The former is the topic of Theorem 13 and is used to model logical negation.

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.diagonal_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.union_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.intersect_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.RRn_difference|thm

 14 Page 26 of 76 A. Middeldorp et al.

Proof Let R ⊆ T (F)n be a regular relation. We have 〈Rc 〉 = 〈R 〉c\Wc where

W = { t ∈ T (F (n)) | t = 〈 t1, . . . , tn 〉 for some t1, . . . , tn ∈ T (F)}
is the set of encodings of n-tuples of ground terms. It is not difficult to show that W is
regular. The set 〈R 〉 is regular by assumption. Hence the regularity of 〈Rc 〉 is a consequence
of Theorem 1. ��
Definition 13 Let R be an n-ary relation over T (F). If 1 � i � n + 1 then the i-th
cylindrification of R is the relation

Ci (R) = {(t1, . . . , ti−1, u, ti , . . . , tn) | (t1, . . . , tn) ∈ R and u ∈ T (F)}
Moreover, if σ is a permutation on {1, . . . , n } then

σ(R) = {(tσ(1), . . . , tσ(n)) | (t1, . . . , tn) ∈ R }
Theorem 14 The class of regular relations is effectively closed under cylindrification and
permutation. ��

In [8, Proposition 3.2.12] the closure under cylindrification is obtained via an inverse
homomorphic image, resulting in a shorter proof. The proof of the latter operates on
completely defined deterministic tree automata. The (formalized) proof below operates on
arbitrary tree automata.

Proof Let A = (F (n), Q, Q f ,�) be a tree automaton that accepts 〈R 〉. We construct
tree automata that accept 〈Ci (R)〉 and 〈σ(R)〉. We first consider permutation. Let σ be
a permutation on {1, . . . , n } and define Aσ = (F (n), Q, Q f ,�σ) where �σ is obtained
from � by replacing every transition rule of the form f1 · · · fn(p1, . . . , pm) → q with
fσ(1) · · · fσ(n)(p1, . . . , pm) → q . Epsilon transitions in � are not affected. To conclude
L(Aσ) = 〈σ(R)〉, we first define the effect of σ on terms in T (F (n)):

σ(t) = fσ(1) · · · fσ(n)(σ (t1), . . . , σ (tm))

for t = f1 · · · fn(t1, . . . , tm). The following preliminary fact

〈 tσ(1), . . . , tσ(n) 〉 = σ(〈 t1, . . . , tn〉) (∗σ)

is proved as follows. We have

Pos(〈 tσ(1), . . . , tσ(n) 〉) = Pos(t1) ∪ · · · ∪ Pos(tn) = Pos(〈 t 〉) = Pos(σ (〈 t 〉))
and, for every position p ∈ Pos(〈 tσ(1), . . . , tσ(n) 〉),

〈 tσ(1), . . . , tσ(n) 〉(p) = f1 · · · fn = σ(〈 t 〉)(p)
where fi = tσ(i)(p) if p ∈ Pos(tσ(i)) and fi = ⊥ otherwise. We now prove

〈 t1, . . . , tn〉 →∗A q ⇐⇒ 〈 tσ(1), . . . , tσ(n) 〉 →∗σ(A) q (6)

for all terms t1, . . . , tn ∈ T (F ∪ {⊥}) and states q ∈ Q. Suppose

〈 t1, . . . , tn〉 = f1 · · · fn(u1, . . . , um) →∗A q

So there exists a transition rule f1 · · · fn(q1, . . . , qm)→ p ∈ �with p→∗A q and ui →∗A qi
for all 1 � i � m. We have fσ(1) · · · fσ(n)(q1, . . . , qm)→ p ∈ �σ and p→∗σ(A) q . Using
(∗σ) the induction hypothesis yields σ(ui)→∗σ(A) qi for 1 � i � m and thus

〈 tσ(1), . . . , tσ(n) 〉 = fσ(1) · · · fσ(n)(σ (u1), . . . , σ (un)) →∗σ(A) q

123

https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.append_automaton|thm
https://www.isa-afp.org/browser_info/current/AFP/Regular_Tree_Relations/RRn_Automata.html#RRn_Automata.permute_automaton|thm

First-Order Theory of Rewriting… Page 27 of 76 14

The converse is proved in a similar fashion. By specializing (6) to terms t1, . . . , tn ∈ T (F)

and states q ∈ Q f we obtain L(σ (A)) = {σ(〈 t1, . . . , tn〉) | 〈 t1, . . . , tn〉 ∈ L(A)} =
L(〈σ(R)〉).

Next we consider cylindrification. Let i ∈ {1, . . . , n + 1}. We define the tree automaton
ACi = (F (n+1), (Q ∪ {⊥})× {!,⊥}, Q f × {!},�Ci) where ⊥ is a fresh state and �Ci is
obtained from � by replacing every transition rule of the form

f1 · · · fi−1 fi · · · fn(p1, . . . , pm)→ q

with the transitions

f1 · · · fi−1g fi · · · fn(p1q1, . . . , pmqm, . . . , pkqk)→ q!
f1 · · · fi−1⊥ fi · · · fn(p1⊥, . . . , pm⊥)→ q⊥

for all l-ary g ∈ F . Here k = max(m, l) is the arity of f1 · · · fi−1g fi · · · fn . Moreover,
p j = ⊥ for all m < j � k, and

q j =
{

! if j � l

⊥ if j > l

for all 1 � j � k. Additionally, �Ci contains the transition rule

⊥ · · ·⊥g⊥ · · ·⊥(⊥!, . . . ,⊥!)→⊥!
for every g ∈ F . Here g is the i-th element in⊥ · · ·⊥g⊥ · · ·⊥. Finally, for every ε-transition
p→ q in�we add p!→ q! and p⊥→ q⊥ to�Ci . The purpose of the second component
⊥/! in states ofACi is tomarkwhether states are reached by termswhere (!) the i-th position
in the encoded tuple is a term in T (F), or (⊥) it is ⊥. In order to show L(ACi) = 〈Ci (R)〉,
we simplify the notation by considering i = 1, which entails no loss of generality as regular
relations are closed under permutation. Again, first we define the effect of C1 on terms in
T (F (1))× T (F (n)):

C1(s, t) = f f1 · · · fn(C1(s1, u1), . . . ,C1(sk, uk))

for s = f (s1, . . . , sl) and t = f1 · · · fn(u1, . . . , um). Here k = max(l,m) is the arity of
f f1 · · · fn , s j = ⊥ for l < j and u j = ⊥n for m < j . By induction on s ∈ T (F (1)) and
t ∈ T (F (n)) we show the preliminary statements

Pos(C1(⊥, t)) = Pos(t) and C1(⊥, t)(p) = ⊥t(p) for all p ∈ Pos(t) (7)

Pos(C1(s,⊥n)) = Pos(s) and C1(s,⊥n)(p) = s(p)⊥n for all p ∈ Pos(s) (8)

Let t = f1 · · · fn(u1, . . . , um). We have C1(⊥, t) = ⊥ f1 · · · fn(C1(⊥, u1), . . . ,C1(⊥, uk))
and obtain Pos(C1(⊥, ui)) = Pos(ui) and C1(⊥, ui)(q) = ⊥ui (q) for all i p ∈ Pos(t)
from the induction hypothesis. Note that i p ∈ Pos(t) if and only if p ∈ Pos(ui). For
p = ε we have C1(⊥, t)(p) = ⊥ f1 · · · fn = ⊥t(p). This establishes (7). The proof of
(8) is similar and omitted. These statements are used to prove Pos(C1(s, t)) = Pos(s) ∪
Pos(t) and C1(s, t)(p) = s(p)t(p) for all p ∈ Pos(s) ∪ Pos(t), by induction on |s| + |t |.
Let s = f (s1, . . . , sl) and t = f1 · · · fn(u1, . . . , um). Let k = max(l,m) be the arity of
f f1 · · · fn . We have Pos(C1(si , ui)) = Pos(si) ∪ Pos(ui) and C1(si , ui)(p) = si (p)ui (p)
for all p ∈ Pos(si) ∪ Pos(ui) for all 1 � i � k. For i � min(l,m) this follows from
the induction hypothesis and for i > min(l,m) this follows from (7) or (8). Moreover,

123

 14 Page 28 of 76 A. Middeldorp et al.

C1(s, t)(ε) = f f1 · · · fn = s(ε)t(ε) so the second statement also holds for p = ε. From
these statements we immediately obtain

C1(s, t) = 〈s, t1, . . . , tn 〉 (∗C)

for all terms s ∈ T (F (1)) and t = 〈 t1, . . . , tn〉 ∈ T (F (n)). The following two properties are
easily proved by induction:

C1(s,⊥n) →∗C1(A) ⊥! (9)

for all terms s ∈ T (F) and

t →∗A q ⇐⇒ C1(⊥, t) →∗C1(A) q⊥ (10)

for all terms t ∈ T (F (n)). For the first one we use induction on s = f (s1, . . . , sl). We
have C1(s,⊥n) = f⊥n(C1(s1,⊥n), . . . ,C1(s�,⊥n)) and obtain C1(si ,⊥n) →∗C1(A) ⊥!
for 1 � l � n from the induction hypothesis. By construction f⊥n(⊥!, . . . ,⊥!) →
⊥! ∈ �C1 . Hence C1(s,⊥n) →∗C1(A) ⊥!. The second property is proved by induction
on t = f1 · · · fn(u1, . . . , um). We haveC1(⊥, t) = ⊥ f1 · · · fn(C1(⊥, u1), . . . ,C1(⊥, um)).
First assume t →∗A q . So there exists a transition rule f1 · · · fn(q1, . . . , qm) → p ∈ �

with p →∗A q and ui →∗A qi for all 1 � i � m. The induction hypothesis yields
C1(⊥, ui) →∗C1(A) qi⊥ for 1 � i � m. By construction ⊥ f1 · · · fn(q1⊥, . . . , qm⊥) →
p⊥ ∈ �C1 and p⊥ →∗C1(A) q⊥. Combining all this yields C1(⊥, t) →∗C1(A) q⊥. For the
converse, assumeC1(⊥, t)→∗C1(A) q⊥. So there exists a rule⊥ f1 · · · fn(q1⊥, . . . , qm⊥)→
p⊥ ∈ �C1 with p⊥ →∗C1A q⊥ and C1(⊥, ui) →∗C1(A) qi⊥ for all 1 � i � m. The
induction hypothesis yields ui →∗A qi for 1 � i � m. Furthermore, the transition rule
⊥ f1 · · · fn(q1⊥, . . . , qm⊥)→ p⊥ originates from f1 · · · fn(q1, . . . , qm)→ p ∈ � and we
obtain p⊥→∗C1(A) q⊥ from p→∗A q . Hence t →∗A q as desired. This completes the proofs
of (9) and (10). Next we prove

t →∗A q ⇐⇒ C1(s, t) →∗C1(A) q! (11)

for all s ∈ T (F), t ∈ T (F (n)) and q ∈ Q. For the only-if direction we use induc-
tion on t = f1 · · · fn(u1, . . . , um). Let s = f (s1, . . . , sl). From t →∗A q we obtain
f1 · · · fn(p1, . . . , pm) → p ∈ � with p →∗A q and ui →∗A pi for all 1 � i � m. We
have

f f1 · · · fn(p1q1, . . . , pmqm, . . . , pkqk)→ p! ∈ �C1

by construction. Here k = max(l,m) is the arity of f f1 · · · fn , pi = ⊥ for all m < i � k,
qi = ! if 1 � i � l and qi = ⊥ if l < i � k. We have p! →∗C1(A) q! and C1(s, t) =
f f1 · · · fn(C1(s1, u1), . . . ,C1(sk, uk)) with si = ⊥ for l < i � k and ui = ⊥n for m <

i � k. The induction hypothesis yields C1(si , ui) →∗C1(A) pi! for all 1 � i � min(l,m).
Note that ! = qi . For min(l,m) < i � k we distinguish two cases.

• If min(l,m) = m thenm < i and thus ui = ⊥n . We obtain C1(si , ui)→∗C1(A) ⊥! from
(9). Note that pi = ⊥ and qi = !.
• If min(l,m) = l then l < i and thus si = ⊥. We obtain C1(si , ui) →∗C1(A) pi⊥ from

(10). Note that qi = ⊥.
So in all cases we have C1(si , ui)→∗C1(A) piqi . Hence

C1(s, t) →∗C1(A) f f1 · · · fn(p1q1, . . . , pmqm, . . . , pkqk) →C1(A) p! →∗C1(A) q!

123

First-Order Theory of Rewriting… Page 29 of 76 14

as desired. The if-direction of (11) is proved in a similar fashion. From

C1(s, t) = f f1 · · · fn(C1(s1, u1), . . . ,C1(sk, uk)) →∗C1(A) q!
we obtain a rule f f1 · · · fn(p1q1, . . . , pmqm, . . . , pkqk) → p! ∈ �C1 with p! →∗C1(A)

q! and C1(si , ui)→∗C1(A) piqi for 1 � i � k. We have f1 · · · fn(p1, . . . , pm)→ p ∈ �

and p →∗A q due to the construction of �C1 . The induction hypothesis yields ui →∗A pi
for 1 � i � m and thus t = f1 · · · fn(u1, . . . , um) →∗A q . Specializing (11) to terms
t = 〈 t1, . . . , tn〉 with t1, . . . , tn ∈ T (F) and q ∈ Q f yields L(C1(A)) = {〈s, t1, . . . , tn 〉 |
〈 t1, . . . , tn〉 ∈ L(A) and s ∈ T (F)} = 〈C1(R)〉. ��

Note that for every RR2 relation R, its inverse R− is the same as σ(R) for the permutation
σ = (12).

Corollary 2 (R ::= R−) The class of binary regular relations is effectively closed under
inverse. ��
Example 19 Consider theRR2 automatonA = (F (2), Q, Q f ,�)ofExample 17.We compute
C2({(s, t, u) | s →ε u and t ∈ T (F)}. To this end, we transformA by the construction in the
above proof. This results in an automaton B = (F (3), Q′, Q′f ,�′) with Q′ = (Q ∪ {⊥})×
{!,⊥}, Q′f = {44!, 66!}, and �′ consisting of 183 transitions. Every non-ε-transition in
� gives rise to five transitions in �′. For instance, the transitions

aaa→ 05! afa(⊥!)→ 05! aga(⊥!,⊥!)→ 05!
aba→ 05! a⊥a→ 05⊥

originate from aa→ 05 and the transitions

⊥af(⊥5!)→⊥6! ⊥ff(⊥5!)→⊥6! ⊥gf(⊥5!,⊥!)→⊥6!
⊥bf(⊥5!)→⊥6! ⊥⊥f(⊥5⊥)→⊥6⊥

originate from ⊥f(⊥5) → ⊥6. Moreover, every ε-transition in � is duplicated in �′. For
instance, 25 → 45 gives rise to 25! → 45! and 25⊥ → 45⊥. Finally, �′ contains the
transitions

⊥a⊥→ ⊥! ⊥b⊥→ ⊥! ⊥f⊥(⊥!)→⊥! ⊥g⊥(⊥!,⊥!)→⊥!
So in total there are 31× 5+ 12× 2+ 4 = 183 transitions in �′.

In Theorem 14 and its proof we have finally introduced all concepts needed to complete
the proof that RRn relations are closed under projection (Theorem 2). It remains to be shown
that L(A�i) = 〈�i (R)〉.
Proof of Theorem 2 (cont’d) To simplify the notation, we consider �1 (which entails no loss
of generality as regular relations are closed under permutation). Again, first we define the
effect of �1 on terms in T (F (n)):

�1(t) = f2 · · · fn(�1(u1), . . . , �1(uk))

for t = f1 · · · fn(u1, . . . , um). Here k � m is the arity of f2 · · · fn . We show

�1(C1(s, t)) = t (12)

123

 14 Page 30 of 76 A. Middeldorp et al.

for all terms s ∈ T (F (1)) and t ∈ T (F (n)) by induction on |s| + |t |. So let s = f (s1, . . . , sl)
and t = f1 · · · fn(u1, . . . , um). We have

�1(C1(s, t)) = �1(f f1 · · · fn(C1(s1, u1), . . . ,C1(sk, uk)))

= f1 · · · fn(�1(C1(s1, ui)), . . . ,�1(C1(sm, um)))

= f1 · · · fn(u1, . . . , um) = t

Here k = max(l,m) is the arity of f f1 · · · fn , s j = ⊥ for l < j , u j = ⊥n form < j , and the
induction hypothesis is applied to �1(C1(si , ui)) for 1 � i � m. Now we can easily show

�1(〈 t1, . . . , tn〉) = 〈 t2, . . . , tn 〉 (∗�)
for all terms 〈 t1, . . . , tn〉 ∈ T (F (n)). From (∗C) in the proof of Theorem 14 we obtain

〈 t1, t2, . . . , tn 〉 = C1(t1, 〈 t2, . . . , tn 〉)
and thus �1(〈 t1, . . . , tn〉) = �1(C1(t1, 〈 t2, . . . , tn 〉)) = 〈 t2, . . . , tn 〉 using (12). We now
prove the following two statements:

t →∗A q �⇒ �1(t) →∗�1(A) q (13)

for all terms t ∈ T (F (n)) and states q ∈ Q, and

u →∗�1(A) q �⇒ t →∗A q for some term t ∈ T (F (n)) with �1(t) = u (14)

for all terms u ∈ T (F (n)). We prove the first statement by induction on t . Suppose

t = f1 · · · fn(u1, . . . , um) →∗A q

So there exist a transition rule f1 · · · fn(q1, . . . , qm) → p ∈ � with p →∗A q such
that ui →∗A qi for all 1 � i � m. To simplify the reasoning, we assume that the con-
dition f2 · · · fn �= ⊥n−1 in the definition of ��1 is temporarily lifted. This entails that
f2 · · · fn(q1, . . . , qk)→ p is a transition rule in ��1 . Here k � m is the arity of f2 · · · fn .
We have p →∗�1(A) q . The induction hypothesis yields �(ui) →∗�1(A) qi for 1 � i � m.
Hence

�1(t) = f2 · · · fn(�1(u1), . . . , �1(uk)) →∗�1(A) f2 · · · fn(q1, . . . , qk) →∗�1(A) q

as desired. For the second statement, suppose u = f2 · · · fn(u1, . . . , uk) →∗�1(A) q and
so there exists a transition rule f2 · · · fn(q1, . . . , qk) → p ∈ ��1 with p →∗�1(A) q and
ui →∗�1(A) qi for all 1 � i � k. By construction of�1(A), there exist a function symbol f1 ∈
F ∪ {⊥} and states qk+1, . . . , qm such that f1 f2 · · · fn(q1, . . . , qm)→ p ∈ �. Here m � k
is the arity of f1 · · · fn . From the induction hypothesis we obtain terms v1, . . . , vk ∈ T (F (n))

such that vi →∗A qi and �1(vi) = ui for 1 � i � k. Because all states of A are reachable,
there exist terms vk+1, . . . , vm ∈ T (F (n)) such that v j →∗A q j for k + 1 � j � m. Now let
t = f1 · · · fn(v1, . . . , vm). We clearly have t →∗A f1 · · · fn(q1, . . . , qm) →∗A p Moreover,
�1(t) = f2 · · · fn(�1(v1), . . . , �1(vk)) = f2 · · · fn(u1, . . . , uk) = u. This concludes the
proof of the two statements. Specializing statement (13) to t = 〈 t1, . . . , tn〉where t1, . . . , tn ∈
T (F) and states q ∈ Q f yields �1(L(A)) ⊆ L(�1(A)). From statement (14) we conclude
L(�1(A)) ⊆ �1(L(A)) and hence

L(�1(A)) = {�1(〈 t1, . . . , tn〉) | 〈 t1, . . . , tn〉 ∈ L(A)} = 〈�1(R)〉
It remains to show that the automaton�1(A) does not use any rule⊥n−1 → p to accept terms
when n > 1. Since L(�1(A)) = 〈�1(R)〉 and �1(R) ⊆ T (F)n−1, no term in 〈�1(R)〉
contains the function symbol ⊥n−1. ��

123

First-Order Theory of Rewriting… Page 31 of 76 14

5.4 Normal Form Predicate

At this point we have formalized proofs for the constructs in the grammar in Fig. 1, with
the exception of the normal form predicate (T ::= NF). This predicate can be defined in the
first-order theory of rewriting as

NF(t) ⇐⇒ ¬∃ u (t → u)

which gives rise to the following procedure:

1. Using Theorems 4, 10 and 11 an RR2 automaton is constructed that accepts the encoding
of the rewrite relation→.

2. Using Theorem 2 the RR2 automaton of step 1 is projected into a tree automaton that
accepts the set of reducible ground terms, corresponding to the subformula ∃ u (t → u).

3. Complementation (Theorem 13) is applied to the automaton of step 2 to obtain a tree
automaton that accepts the set of ground normal forms.

Since projection may transform a deterministic tree automaton into a non-deterministic one,
this is inefficient. In this section we provide a direct construction of a tree automaton that
accepts the set of ground normal forms of a left-linear TRS, which goes back to Comon
[6], and present a formalized correctness proof. Throughout this section R is assumed to be
left-linear.

We start with defining some preliminary concepts.

Definition 14 Given a signature F , we write F⊥ for the extension of F with a fresh constant
symbol ⊥. Given t ∈ T (F,V), t⊥ denotes the result of replacing all variables in t by ⊥:

x⊥ = ⊥ f (t1, . . . , tn)
⊥ = f (t⊥1 , . . . , t⊥n)

We define the partial order � on T (F⊥) as the least congruence that satisfies ⊥ � t for all
terms t ∈ T (F⊥):

⊥ � t
t1 � u1 · · · tn � un

f (t1, . . . , tn) � f (u1, . . . , un)

The partial map ↑: T (F⊥)× T (F⊥)→ T (F⊥) is defined as follows:

⊥ ↑ t = t ↑ ⊥ = t f (t1, . . . , tn) ↑ f (u1, . . . , un) = f (t1 ↑ u1, . . . , tn ↑ un)

It is not difficult to show that t ↑ u is the least upper bound of comparable terms t and u.

Definition 15 Let R be a TRS over a signature F . We write T⊥ for the set { t⊥ | t 	
� for some �→ r ∈ R} ∪ {⊥}. The set T↑ is obtained by closing T⊥ under ↑.
Example 20 Consider the TRS R consisting of following rules:

h(f(g(a), x, y))→ g(a) g(f(x,h(x), y)))→ x h(f(x, y,h(a)))→ h(x)

We start by collecting the subterms of the left-hand sides:

T⊥ = {⊥, a,g(a),h(⊥),h(a), f(g(a),⊥,⊥), f(⊥,h(⊥),⊥), f(⊥,⊥,h(a))}
Closing T⊥ under ↑ adds the following terms:

f(g(a),⊥,⊥) ↑ f(⊥,h(⊥),⊥) = f(g(a),h(⊥),⊥)

f(⊥,⊥,h(a)) ↑ f(⊥,h(⊥),⊥) = f(⊥,h(⊥),h(a))

f(g(a),h(⊥),⊥) ↑ f(⊥,h(⊥),h(a)) = f(g(a),h(⊥),h(a))

123

 14 Page 32 of 76 A. Middeldorp et al.

Lemma 19 The set T↑ is finite. �

Proof If t ↑ u is defined then Pos(t ↑ u) = Pos(t) ∪ Pos(u). It follows that the positions
of terms in T↑\T⊥ are positions of terms in T⊥. Since T⊥ is finite, there are only finitely
many such positions. Hence the finiteness of T↑ follows from the finiteness of F . ��

Although the above proof is simple enough, we formalized the proof belowwhich is based
on a concrete algorithm to compute T↑. Actually, the algorithm presented below is based on
a general saturation procedure, which is of independent interest.

Definition 16 Let f : U ×U → U be a (possibly partial) function and let S be a finite subset
of U . The closure C f (S) is the least extension of S with the property that f (a, b) ∈ C f (S)

whenever a, b ∈ C f (S) and f (a, b) is defined.

The following lemma provides a sufficient condition for closures to exist. The proof gives
a concrete algorithm to compute the closure.

Lemma 20 If f is a total, associative, commutative, and idempotent function then C f (S)

exists and is finite. �

Proof If S = ∅ then C f (S) = ∅ and the claim trivially holds. Suppose S �= ∅ and let a be
an arbitrary element in S. We show

C f (S) = C f (S \ {a }) ∪ {a } ∪ { f (a, c) | c ∈ C f (S \ {a })}
Since S is finite, this gives rise to the following iterative algorithm to compute C f (S):

I := ∅;
for all x ∈ S do

I := I ∪ {x } ∪ { f (x, y) | y ∈ I }
return I

In each iteration only finitely many elements are added. Hence C f (S) is finite. It remains to
show the above equation. The inclusion from left to right is immediate from the definition of
C f (S). Let b be an arbitrary element of C f (S). If b ∈ S then b ∈ C f (S\{a })∪{a }. If b /∈ S
then b = f (a1, f (a2, . . . f (an−1, an) . . .)) for some sequence of elements a1, . . . , an ∈ S.
If a is an element of this sequence then, using the properties of f , we may assume a appears
exactly once in the sequence. Hence b = f (a, c) for some element c ∈ C f (S\{a }). If a is
not an element of a1, . . . , an then b ∈ C f (S \ {a }). This completes the proof. ��

Since our function ↑ is partial, we need to lift it to a total function that preserves associa-
tivity and commutativity. In our abstract setting this entails finding a binary predicate P on
U such that f (a, b) is defined if P(a, b) holds. In addition, the following properties need to
be fulfilled:

• P is reflexive and symmetric,
• if P(a, f (b, c)) and P(b, c) hold then P(a, b) and P(f (a, b), c) hold as well, for all

a, b, c ∈ U .

For the details we refer to the formalization.

Definition 17 The tree automaton ANF(R) = (F, Q, Q f ,�) is defined as follows: Q =
Q f = T↑ and � consists of all transition rules f (p1, . . . , pn)→ q such that f (p1, . . . , pn)
is no redex of R and q is the maximal element of Q satisfying q � f (p1, . . . , pn).3

3 Since states are terms from T↑ ⊆ T (F⊥) here, Definition 14 applies.

123

https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.finite_R_finite_states|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/Saturation.html#Saturation.set_closure_oprator.finite_S_finite_closure|fact

First-Order Theory of Rewriting… Page 33 of 76 14

Example 21 For the TRS R of Example 20, the tree automaton ANF(R) consists of the
following transition rules:

a→ 1 g(p)→
{

2 if p = 1

0 if p /∈ {1, 6, 9, 10} h(p)→
{

4 if p = 1

3 if p /∈ {1, 8, 10}

f(p, q, r)→

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

5 if p = 2, q /∈ {3, 4}
6 if p �= 2, q ∈ {3, 4}, r �= 4

7 if q /∈ {3, 4}, r = 4

8 if p = 2, q ∈ {3, 4}, r �= 4

f(p, q, r)→

⎧

⎪

⎨

⎪

⎩

9 if p �= 2, q ∈ {3, 4}, r = 4

10 if p = 2, q ∈ {3, 4}, r = 4

0 otherwise

Here we use the following abbreviations:

0 = ⊥ 3 = h(⊥) 6 = f(⊥,h(⊥),⊥) 8 = f(g(a),h(⊥),⊥)

1 = a 4 = h(a) 7 = f(⊥,⊥,h(a)) 9 = f(⊥,h(⊥),h(a))

2 = g(a) 5 = f(g(a),⊥,⊥) 10 = f(g(a),h(⊥),h(a))

As can be seen from the above example, the tree automaton ANF(R) is not completely
defined. Unlike the construction in [6], we do not have an additional state that is reached by
all reducible ground terms.

Before proving that ANF(R) accepts the ground normal forms of R, we first show that
ANF(R) is well-defined, which amounts to showing that for every f (p1, . . . , pn)with f ∈ F
and p1, . . . , pn ∈ T↑ the set of states q such that q � f (p1, . . . , pn) has amaximum element
with respect to the partial order �.

Lemma 21 For every term t ∈ T (F⊥) the set {s ∈ T↑ | s � t } has a unique maximal
element. ��

Proof Let S = {s ∈ T↑ | s � t }. Because ⊥ � t and ⊥ ∈ T↑, S �= ∅. If s1, s2 ∈ S then
s1 � t and s2 � t and thus s1 ↑ s2 is defined and satisfies s1 ↑ s2 � t . Since T↑ is closed
under ↑, s1 ↑ s2 ∈ T↑ and thus s1 ↑ s2 ∈ S. Consequently, S has a unique maximal element.
��

The next lemma is a trivial consequence of the fact that ANF(R) has no ε-transitions.

Lemma 22 The tree automaton ANF(R) is deterministic. �

Lemma 23 If t ∈ T (F) with t →∗� q and s⊥ � t⊥ for a proper subterm s of some left-hand
side of R then s⊥ � q. �

Proof We use induction on t . Let t = f (t1, . . . , tn). We have t →∗� f (q1, . . . , qn)→� q .
We proceed by case analysis on s. If s is a variable then s⊥ = ⊥ and, as ⊥ is minimal
in �, we obtain s⊥ � q . Otherwise we must have root(s) = f from the assumption
s⊥ � t⊥. So we may write s = f (s1, . . . , sn). The induction hypothesis yields s⊥i � qi for
all 1 � i � n. Hence s⊥ = f (s⊥1 , . . . , s⊥n) � f (q1, . . . , qn). Additionally we have s⊥ ∈ Q
by Definition 17 as s is a proper subterm of a left-hand side ofR. Since f (q1, . . . , qn)→ q
is a transition rule, we obtain f (s1, . . . , sn)⊥ � q from the maximality of q . ��

123

https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.bound_max_sound|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.bound_max_exists|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.nf_ta_det|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.subt_less_eq_res_less_eq|thm

 14 Page 34 of 76 A. Middeldorp et al.

Table 1 Summary of (formalized) closure properties

Operation GTTs Anchored GTTs RR2 Operation Regular relations

Union × � � Union �
Intersection × � � Intersection �
Complement × � � Complement �
Composition � �∗ � Projection �
Inverse � � � Cylindrification �
Transitive closure � �∗ × Permutation �
Context closure × �

Using the previous result we can prove that no redex of R reaches a state in ANF(R).

Lemma 24 If t ∈ T (F) is a redex then t →∗� q for no state q ∈ T↑. �

Proof We have �⊥ � t for some left-hand side � ofR. For a proof by contradiction, assume
t →∗� q . Write t = f (t1, . . . , tn). We have t →∗� f (q1, . . . , qn) →� q and obtain
�⊥ � f (q1, . . . , qn) by a case analysis on � and Lemma 23. Therefore the transition rule
f (q1, . . . , qn)→� q cannot exist by Definition 17. ��
Lemma 25 If t →∗� q and t ∈ T (F) then q � t . �

Proof We use induction on t . Let t = f (t1, . . . , tn). We have t →∗� f (q1, . . . , qn)→∗� q .
The induction hypothesis yields qi � ti for all 1 � i � n and thus also f (q1, . . . , qn) �
f (t1, . . . , tn). We have q � f (q1, . . . , qn) by Definition 17 and thus q � t by the transitivity
of �. ��
Lemma 26 If t ∈ NF(R) then t →∗� q for some state q ∈ T↑. �

Proof We use induction on t . Let t = f (t1, . . . , tn). Since t1, . . . , tn ∈ NF(R) we obtain
f (t1, . . . , tn) →∗� f (q1, . . . , qn) from the induction hypothesis. Suppose f (q1, . . . , qn) is
a redex, so �⊥ � f (q1, . . . , qn) for some left-hand side � of R. From Lemma 25 we obtain
qi � ti for all 1 � i � n and thus f (q1, . . . , qn) � f (t1, . . . , tn). Hence �⊥ � f (t1, . . . , tn).
This however contradicts the assumption that t is a normal form. (Here we need left-linearity
ofR.) Therefore f (q1, . . . , qn) is no redex and thus, using Lemma 21, there exists a transition
f (q1, . . . , qn)→ q in � and thus t →∗� q . ��
Theorem 15 (T ::= NF) If R is a left-linear TRS then L(ANF(R)) = NF(R).

Proof Let t ∈ T (F). If t ∈ NF(R) then t →∗� q for some state q ∈ T↑ by Lemma 26. Since
all states in T↑ are final, t ∈ L(ANF(R)). Next assume t /∈ NF(R). Hence t = C[s] for some
redex s. According to Lemma 24 s does not reach a state in ANF(R). Hence also t cannot
reach a state and thus t /∈ L(ANF(R)). ��

5.5 Decision Procedure

In Table 1we summarize the effective closure properties that were presented in detail in
this section and formalized in Isabelle. The asterisks indicate that for anchored GTTs we
have two closure properties each. The underlined result (the closure of RR2 relations under

123

https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.ta_nf_sound1|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.term_instance_of_reach_state|thm
https://www.isa-afp.org/browser_info/current/AFP/FO_Theory_Rewriting/NF.html#NF.ta_nf_sound2|thm

First-Order Theory of Rewriting… Page 35 of 76 14

Table 2 Binary predicates as RR2 relations

→ = (→ε)
1
� ← = ((→ε)

1
�)−

→ε = (→ε)
1
ε

→+ = ((→ε)
̂+)>�

→>ε = (→ε)
1
> →∗>ε = ((→ε)

̂+)
�
>

−→‖ = (→ε)
�
� →∗ = ((→ε)

̂+)
�
�

→+ε = ((→ε)
+)1ε ↔∗ = (((→ε)

− ∪→ε)
̂+)

�
�

↔ = ((→ε)
− ∪ →ε)

1
� ↓ = ((→ε)

̂+ ◦̂ (→−ε)
̂+)

�
�

→! = ((→ε)
̂+)

�
� ∩ (T (F)× NF)

composition) is not used in the decision procedure but does hold: If R1 and R2 are RR2
relations then R1 ◦ R2 = �2(C3(R1) ∩ C1(R1)). Concerning the empty entry in the table,
it can be shown that GTT relations are closed under the context operation (·)np if and only
if n ∈ {�, 1,>} and p ∈ {�, ε }. The second and third columns in the left part of Table 1
correspond to the A and R parts of the grammar in Fig. 1.

The logical structure of formulas in the first-order theory of rewriting is taken care of by
the closure operations on regular relations listed in the second half of Table 1.

In Table 2we show how some of the common binary predicates in term rewriting are
represented as RR2 relations using the corresponding operations. These are added to the
language L of the first-order theory of rewriting without compromising the decidability
result that is presented below.

Theorem 16 The first-order theory of rewriting is decidable for finite linear variable-
separated TRSs.

Proof Let ϕ(x1, . . . , xn) be a first-order formula over the language L with free variables
x1, . . . , xn . LetR be a finite linear variable-separated TRS over a signature F . We construct
an RRn automaton that accepts the encoding of the relation [[ϕ]] = {(t1, . . . , tn) | R

ϕ(t1, . . . , tn)}. For closed formulas, checking R
 ϕ then boils down to checking non-
emptiness of 〈[[ϕ]]〉, which is decidable. We prove the (correctness of the) construction by
structural induction on ϕ. In the base case ϕ is an atomic formula and we distinguish the
following cases.

1. If ϕ = (x → y) then we use Theorem 4 to obtain an anchored GTT for →ε , which
is transformed into an RR2 automaton for 〈→ε 〉 by Theorem 10. An application of
Theorem 11 with n = 1 and p = � yields an RR2 automaton for 〈(→ε)

1
� 〉 = [[ϕ]].

2. If ϕ = (x →∗ y) then we repeat the constructions in the previous case, with an additional
application ofmodified transitive closure (Theorem 8) before Theorem 11 (with n = p =
�) is applied.

3. If ϕ = (x = y) then [[ϕ]] is regular by Lemma 18.

Here we assume that x �= y. If x and y are the same variable then [[ϕ]] is a set of ground
terms and the above constructions need to be modified as follows. If ϕ = (x = x) then
〈[[ϕ]]〉 = {〈 t 〉 | t ∈ T (F)} = T (F) is accepted by the tree automaton (F, {q }, {q },�)

with� consisting of all rules f (q, . . . , q)→ q for f ∈ F . Consider ϕ = (x → x). We have
{〈 t, t 〉 | t →R t } = {〈 t, u 〉 | t →R u and t = u }. The latter is regular (cases 1 and 3 above

123

 14 Page 36 of 76 A. Middeldorp et al.

together with Theorem 12) and hence the regularity of 〈[[ϕ]]〉 = {〈 t 〉 | t →R t } follows
by an application of Theorem 2. In the remaining case (ϕ = (x →∗ x)) we reason as in the
previous case (using cases 2 and 3 above). Next we consider the propositional connectives.

4. Suppose ϕ = ¬ψ . The induction hypothesis yields an RRn automaton that accepts
〈[[ψ]]〉. Since the class of n-ary regular relations is effectively closed under complement
(Theorem 13), we obtain an RRn automaton that accepts 〈[[ϕ]]〉.

5. Supposeϕ = ψ1∧ψ2. Sinceψ1 andψ2 may have less free variables thanϕ, we cannot use
Theorem 12without further ado. Let y1, . . . , yk be the free variables inψ1 and z1, . . . , zm
be the free variables inψ2.Wehave {x1, . . . , xn } = { y1, . . . , yk }∪{z1, . . . , zm }. Because
regular relations are closed under permutation (Theorem 14), we may assume that the
variables in y1, . . . , yk and z1, . . . , zm are listed in the same order as in x1, . . . , xn . The
induction hypothesis yields an RRk automatonA1 for 〈[[ψ1]]〉 and an RRm automatonA2

for 〈[[ψ2]]〉. Using 2n − (k + m) applications of cylindrification (Theorem 14), these
automata are turned into RRn automata. Since n-ary regular relations are closed under
intersection (Theorem 12), we obtain an RRn automaton for 〈[[ϕ]]〉.

6. The other binary connectives are handled exactly like conjunction.

The final cases involve the two quantifiers.

7. Supposeϕ = ∃ xψ . If x does not occur free inψ then 〈[[ϕ]]〉 = 〈[[ψ]]〉 andhence the result
follows immediately from the induction hypothesis. So we assume that x occurs free in
ψ and n � 0. The induction hypothesis yields an RRn+1 automaton that accepts 〈[[ψ]]〉.
Since the class of regular relations is effectively closed under projection (Theorem 2),
we obtain an RRn automation that accepts 〈[[ϕ]]〉.

8. The case ϕ = ∀ x ψ reduces to the preceding case by the well-known equivalence
∀ x ψ ≡ ¬∃ x ¬ψ . ��

6 Properties on Non-ground Terms

Since tree automata operate on ground terms, the decision procedure presented in the pre-
ceding section is restricted to properties on ground terms. The following example shows that
ground-confluence, i.e., confluence restricted to ground terms, is not the same as confluence.

Example 22 The left-linear right-ground TRS R consisting of the rules

a→ b f(a, x)→ b f(b,b)→ b

over the signature F = {a,b, f} is ground-confluent because every ground term in T (F)

rewrites to b. Confluence does not hold; the term f(a, x) rewrites to the different normal
forms b and f(b, x).

In this section we present results that allow the use of FORT on (certain) properties over
arbitrary terms. The main idea is to extend the given signature F with constants to replace
variables in terms. The required number of additional constants depends on the property
under consideration. We consider the following confluence-related properties:

CR : ∀ s ∀ t ∀ u (s →∗ t ∧ s →∗ u �⇒ t ↓ u) confluence

SCR : ∀ s ∀ t ∀ u (s → t ∧ s → u �⇒ ∃ v (t →= v ∧ u →∗ v)) strong confluence

WCR : ∀ s ∀ t ∀ u (s → t ∧ s → u �⇒ t ↓ u) local confluence

123

First-Order Theory of Rewriting… Page 37 of 76 14

Fig. 6 Confluence-related
properties on ground and
non-ground terms

NFP : ∀ s ∀ t ∀ u (s →∗ t ∧ s →! u �⇒ t →! u) normal form property

UNR : ∀ s ∀ t ∀ u (s →! t ∧ s →! u �⇒ t = u)

unique normal forms with respect to reduction

UNC : ∀ t ∀ u (t ↔∗ u ∧ NF(t) ∧ NF(u) �⇒ t = u)

unique normal forms with respect to conversion
Here t ↓ u denotes joinability: ∃v (t →∗ v ∧ u →∗ v). Let P1 be the collection of these
properties. We also consider the following properties involving two TRSs R and S:

COM : ∀ s ∀ t ∀ u (s →∗R t ∧ s →∗S u �⇒ ∃ v (t →∗S v ∧ u →∗R v)) commutation

CE : ∀ s ∀ t (s ↔∗R t ⇐⇒ s ↔∗S t) conversion equivalence

NE : ∀ s ∀ t (s →!R t ⇐⇒ s →!S t) normalization equivalence

LetP2 = {COM,CE,NE}. For a property P ∈ P1∪P2, GP denotes the property P restricted
to ground terms. The diagram in Fig. 6summarizes the relationships between properties P
and GP for P ∈ P1. The properties CE,NE ∈ P2 are unrelated.

According to the following result, all considered properties are closed under signature
extension.

Lemma 27 Let R and S be linear variable-separated TRSs over a common signature F .

1. If P ∈ P1 and (F,R)
 P then (F � {c},R)
 P.
2. If P ∈ P2 and (F,R,S)
 P then (F � {c},R,S)
 P.

Proof Let U be a linear variable-separated TRS not containing the constant c. For any x ∈ V ,
the mapping φx

c : T (F � {c},V) → T (F,V) replaces all occurrences of c in terms by the
variable x :

φx
c (t) =

⎧

⎪

⎨

⎪

⎩

x if t = c

t if t ∈ V
f (φx

c (t1), . . . , φx
c (tn)) if t = f (t1, . . . , tn)

A straightforward induction proof reveals that φx
c (s) →∗U φx

c (t) whenever s →∗U t . By
choosing x /∈ Var(s) ∪ Var(t), the reverse direction holds as well. Moreover, since linear
variable-separatedTRSs are closed under rule inversion, the equivalence also holds for↔∗U =→∗U ∪U− . The lemma is an easy consequence of these facts. We illustrate this for COM.
Given s →∗R t and s →∗S u, with s, t, u ∈ T (F � {c},V), we obtain φx

c (s) →∗R φx
c (t)

and φx
c (s) →∗S φx

c (u). Commutation of (F,R,S) yields a term v ∈ T (F,V) such that
φx
c (t) →∗S v and φx

c (u) →∗R v. By taking x /∈ Var(t) ∪ Var(u), we obtain t →∗S v′ and
u →∗R v′ for v′ = v{x �→ c} by closure of rewriting under substitutions. ���

So adding constants preserves the properties of interest. For removing constants more
effort is required. For the properties in P1 ∪ P2, root steps will play a major role. Root

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Terms_Positions.html#Terms_Positions.term_to_sig|const
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting.html#Rewriting.rstep_trancl_sig_step_l|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting.html#Rewriting.rstep_trancl_sig_step_r|thm

 14 Page 38 of 76 A. Middeldorp et al.

steps are important since they permit the use of different substitutions for the left and right-
hand side of the employed rewrite rule, due to variable separation. We therefore start with a
preliminary result (Lemma 28) which provides abstract conditions that permit the restriction
to rewrite sequences containing root steps.Wewrite→∗ε∗R for the relation→∗R · →ε

R · →∗R.
The proof of Lemma 28 is obtained by a straightforward induction on the term structure and
the multi-hole context closure of the rewrite relation, and is omitted.

Definition 18 A binary predicate P on terms over a given signature F is closed under multi-
hole contexts if P(C[s1, . . . , sn],C[t1, . . . , tn]) holds whenever C is a multi-hole context
over F with n � 0 holes and P(si , ti) holds for all 1 � i � n. �

Lemma 28 LetA and B be TRSs over the same signature F and let P be a binary predicate
that is closed under multi-hole contexts over F .

1. If s →∗ε∗A t �⇒ P(s, t) for all terms s and t then s →∗A t �⇒ P(s, t) for all terms
s and t.

2. If s →∗ε∗A · →∗B t ∨ s →∗A · →∗ε∗B t �⇒ P(s, t) for all terms s and t then
s →∗A · →∗B t �⇒ P(s, t) for all terms s and t. ��

For example, in the results below (Lemmata 34 and 35) for NFP we make use of this
lemma by instantiating part 2 with P1(s, t) : NF(t) �⇒ s →∗R t , R− for A, and R for B.
This results in the statement that if

s →∗ε∗R− · →∗R t ∨ s →∗R− · →∗ε∗R t �⇒ NF(t) �⇒ s →∗R t

then

s →∗R− · →∗R t �⇒ NF(t) �⇒ s →∗R t

Using the identity →R− = R← and the definition of NFP, it follows that NFP is a
consequence of the statement

s →∗ε∗
R · →∗R t ∨ s →∗

R · →∗ε∗R t �⇒ NF(t) �⇒ s →∗R t

for all s, t ∈ T (F). Hence we only need to consider rewrite sequences involving root
steps, which together with variable separation significantly simplifies the proof. For the
other properties of interest, Lemma 28 is instantiated as follows.

• For UNC we use part 1 with P2(s, t) : NF(s) ∧ NF(t) �⇒ s = t and R ∪R− for A.
• For UNR we use part 2 with the same predicate P2 and R− for A and R for B.
• For COM we use part 2 with P3(s, t) : s →∗S · →∗R− t and R− for A and S for B.
• For CR we use part 2 with the same predicate P3 and replace S by R.
• For NE we use part 1 twice, with P4(s, t) : NFR(t) �⇒ s →∗S t andR forA, and with

P5(s, t) : NFS(t) �⇒ s →∗R t and S for A.
• For CE we use part 1 twice, with P6(s, t) : s →∗S∪S− t and R ∪ R− for A, and with

P7(s, t) : s →∗R∪R− t and S ∪ S− for A.

In addition, we make use of the identities→∗ε∗R∪R− = ↔∗ε∗R and→∗R∪R− = ↔∗R for UNC
and CE.

Lemma 29 The properties P1, . . . , P7 are closed under multi-hole contexts. ����

Strong confluence (SCR) and local confluence (WCR) cannot be reduced to root steps with
Lemma 28, because they involve single steps in their definition, which are not multi-hole
context closed. However, by investigating the positions involved in s → t and s → u we
easily deduce a reduction to root steps for both properties.

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.prop_mctxt_cl|const
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.reduction_relations_to_root_step|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.reduction_join_relations_to_root_step|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.prop_mctxt_cl_NFP_redp|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.prop_mctxt_cl_UN_redp|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.commute_redp_mctxt_cl|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.prop_mctxt_cl_NE_redp|thm

First-Order Theory of Rewriting… Page 39 of 76 14

Lemma 30 A TRS is local confluent if and only if

s →ε t ∧ s → u �⇒ t ↓ u

for all terms s, t and u. A TRS is strongly confluent if and only if

s →ε t ∧ s → u ∨ s → t ∧ s →ε u �⇒ t →= · →∗ u

for all terms s, t and u. ��

The next lemma is a key result. It allows the removal of introduced fresh constants while
preserving the reachability relation. Note that variable-separation is not required.

Lemma 31 Let R be a linear TRS over a signature F that contains a constant c which does
not appear in R. If s →∗R t with c ∈ Fun(s)\Fun(t) then s[u]p →∗R t using the same
rewrite rules at the same positions, for all terms u and positions p ∈ Pos(s) such that
s|p = c. ��

The restriction to linear TRSs can also be lifted, at the expense of a more complicated
replacement function and proof. Since the decision procedure implemented in FORT-h relies
on linearity and variable-separation, we present a simple proof for linear TRSs. Due to
calculations involving positions, the formalization in Isabelle/HOL was anything but simple.

Proof We use induction on the length of s →∗R t . If this length is zero then there is nothing
to show as Fun(s)\Fun(t) = ∅. Suppose s →R v →∗R t and write s = C[�σ] →R
C[rσ] = v. Let p′ be the position of the hole in C and let p ∈ Pos(s) with s|p = c. We
distinguish two cases.

If p′ ‖ p then s[u]p = (C[u]p)[�σ]p′ →R v′ with v′ = (C[u]p)[rσ]p′ . Since v|p =
C |p = c we can apply the induction hypothesis to v→∗R t . This yields v′ →∗R t and hence
s[u]p →∗R t as desired.

In the remaining case, p′ � p. From s|p = c and the fact that c does not appear in R we
infer that there exists a variable y ∈ Var(�) such that c ∈ Fun(σ (y)). Let q be the (unique)
position of y in � and consider the substitution

τ(x) =
{

σ(y)[u]q ′ if x = y

σ(x) otherwise

Here q ′ = p\(p′q) is the position of c in σ(y). If y /∈ Var(r) then v = C[rσ] = C[rτ]
and thus s[u]p = C[�τ] →R C[rτ] = v →∗R t . If y ∈ Var(r) then there exists a unique
position q ′′ ∈ Pos(r) such that r |q ′′ = y. So v|p′q ′′q ′ = c and we obtain s[u]p = C[�τ] →R
C[rτ] = v[u]p′q ′′q ′ →∗R t from the induction hypothesis. ��

In the proofs below Lemma 31 (also for R−) is used as follows. Let σc denote the sub-
stitution mapping all variables to c. If sσc →∗R t then s →∗R t by repeated applications of
Lemma 31 (if the conditions are satisfied).

We now prove that two fresh constants are sufficient to reduce commutation (COM),
confluence (CR), local confluence (WCR), unique normal forms (UNC and UNR), and the
normal form property (NFP) to the corresponding ground properties.

Lemma 32 Linear variable-separated TRSs R and S over a common signature F commute
if and only if R and S ground-commute over F � {c, d }. �

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.WCR_rrstep_intro|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_Properties.html#Rewriting_Properties.SCR_rrstep_intro|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Replace_Constant.html#Replace_Constant.fresh_const_steps_replace|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Replace_Constant.html#Replace_Constant.remove_const_subst_steps|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv_two_sys.lv_commute|thm

 14 Page 40 of 76 A. Middeldorp et al.

Proof The only-if direction follows from Lemma 27. For the if direction suppose R and S
ground-commute on terms in T (F � {c, d }). In order to conclude thatR and S commute on
terms in T (F,V), according to Lemma 28, it suffices to show the inclusions

→∗ε∗R− · →∗S ⊆ →∗S · →∗R− →∗R− · →∗ε∗S ⊆ →∗S · →∗R−
on terms in T (F,V). Suppose s →∗ε∗R− · →∗S t . Let the substitution σc map all variables
to c and let σd map all variables to d . Since rewriting is closed under substitutions and
the variable-separated rule used in the root step→ε

R− allows changing the substitution, we
obtain sσc →∗ε∗R− · →∗S tσd . From ground commutation we obtain sσc →∗S · →∗R− tσd .
Note that s and t are terms in T (F,V) and hence do not contain the constants c and d .
Therefore, d /∈ Fun(sσc) and c /∈ Fun(tσd). As a consequence, repeated applications of
Lemma 31 transform sσc →∗S · →∗R− tσd into a sequence s →∗S · →∗R− t in which c and d
do not appear, proving the first inclusion. Note that in our setting TRSs are closed under rule
reversal. Hence we can apply Lemma 31 in both directions, which allows us to remove the
constant d from the term t . The second inclusion→∗R− · →∗ε∗S ⊆ →∗S · →∗R− is obtained
in the same way. ��

If the TRSsR and S are left-linear right-ground (as opposed to linear variable-separated)
then the term t in the above proof is ground due to the root step involved. Hence tσd = t ,
which allows us to simplify the proof and strengthen the statement to use only one additional
constant.

Lemma 33 Left-linear right-ground TRSs R and S over a common signature F commute if
and only if R and S ground-commute over F � {c}. �

The proof for confluence follows directly from commutation. The proofs for the other
properties in P1 are obtained in a similar manner. We present the proof details for strong
confluence since it requires a bit more effort.

Lemma 34 Let R be a linear variable-separated TRS over a signature F . If P ∈ P1 then

(F,R)
 P ⇐⇒ (F � {c, d },R)
 GP ������

Proof We present the if direction for P = SCR. First we use Lemma 30 to reduce the problem
to local peaks involving a root step. Following the reasoning in the proof of Lemma 32, we
obtain awitness v such that tσd →=R v →∗

R uσc. If tσd = v then uσc →∗R tσd andwe obtain
u →∗R t with the help of Lemma 31. So assume uσc →∗R · →R− tσd . Using Lemma 31
and induction on the number of variables in u we deduce u →∗R · →R− tσd . The same
argument applied to t produces u →∗R w →R− t . Note that w may contain occurrences of
the constants c and d sinceR is a variable-separated TRS.We use themap defined in the proof
of Lemma 27 to eliminate these: u = φx

c (φx
d (u))→∗R φx

c (φx
d (w))→R− φx

c (φx
d (t)) = t . ��

Lemma 35 Let R be a left-linear right-ground TRS over a signature F . If P ∈ P1 \ {UNC}
then

(F,R)
 P ⇐⇒ (F � {c},R)
 GP

Moreover,

(F,R)
 UNC ⇐⇒ (F � {c, d },R)
 GUNC �����

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_commute|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv.lv_CR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv.lv_WCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv.lv_SCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv.lv_NFP|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv.lv_UNF|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv.lv_UNC|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_CR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_WCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_SCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_NFP|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_UNF|thm

First-Order Theory of Rewriting… Page 41 of 76 14

The simplification in the proof of Lemma 32 for left-linear right-ground systems is not
applicable for UNC as conversion can introduce variables. The following example shows that
adding a single fresh constant is indeed insufficient for UNC.

Example 23 The left-linear right-ground TRS R consisting of the rules

a→ b f(x, a)→ f(b,b) f(b, x)→ f(b,b) f(f(x, y), z)→ f(b,b)

does not satisfy UNC since f(x,b)← f(x, a)→ f(b,b)← f(y, a)→ f(y,b) is a conversion
between distinct normal forms. Adding a single fresh constant c is not enough to violate
GUNC as the last two rewrite rules ensure that f(c,b) is the only ground instance of f(x,b)

that is a normal form. Adding another fresh constant d, GUNC is lost: f(c,b)← f(c, a)→
f(b,b)← f(d, a)→ f(d,b).

The following example shows that at least two fresh constants are required to reduce
confluence to ground-confluence for linear variable-separated TRSs.

Example 24 Consider the linear variable-separatedTRSR consisting of the single rule a→ x
over the signature F = {a}. Since x R← a →R y with distinct variables x and y, R is
not confluent. Ground-confluence holds trivially as a→R a is the only rewrite step between
ground terms. Adding a single fresh constant b does not destroy ground-confluence (a→R a
and a→R b are the only steps). By adding a second fresh constant c, ground-confluence is
lost: b R← a→R c.

We now turn our attention to the equivalence properties (CE and NE) inP2. For conversion
equivalence a single fresh constant suffices to reduce it to ground conversion equivalence.

Lemma 36 Linear variable-separated TRSs R and S over a common signature F such that
T (F) �= ∅ are conversion equivalent if and only ifR andS are ground conversion equivalent
over F � {c}. �

Proof For the if direction we assume that R and S are ground conversion equivalent over
F � {c}. Due Lemma 28 and symmetry, it suffices to show the inclusion ↔∗ε∗R ⊆ ↔∗S
on terms in T (F,V). Suppose s ↔∗ε∗R t . Let d ∈ F be a constant, whose existence is
guaranteed by the assumption T (F) �= ∅, and consider the substitutions σc and σd in the
proof of Lemma 32. Closure under substitutions and variable separation yields sσc ↔∗ε∗R tσc
and sσc ↔∗ε∗R tσd . Ground conversion equivalence gives sσc ↔∗S tσc and sσc ↔∗S tσd , and
thus also tσc ↔∗S tσd . Using Lemma 31 yields s ↔∗S tσd and t ↔∗S tσd . Hence s ↔∗S t as
desired. The only-if direction easily follows from Lemma 27. ��

Two fresh constants are required to reduce normalization equivalence to its ground version.

Lemma 37 Linear variable-separated TRSs R and S over a common signature F are nor-
malization equivalent if and only if R and S are ground normalization equivalent over
F � {c, d }. �

Proof For the if direction we assume thatR and S are ground normalization equivalent over
F � {c, d }. Note that this implies that NFR(t) ⇐⇒ NFS(t) for all terms t . We apply
Lemma 28 and symmetry, reducing the problem to s →∗ε∗R t �⇒ NFR(t) �⇒ s →∗S t .
Let σc and σd be substitutions replacing all variables by c and d respectively. Closure under
substitution and variable separation yields sσc →∗ε∗R tσd , and NFR(tσd) since d does not
appear inR. Ground normalization equivalence gives sσc →∗S tσd . Applying Lemma 31 we
obtain the desired s →∗S t . The only-if direction follows from Lemma 27. ��

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.lv_CE|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.open_terms_two_const_lv_two_sys.lv_NE|thm

 14 Page 42 of 76 A. Middeldorp et al.

Contrary to Lemma 36 one fresh constant is not sufficient as seen by the following
counterexample.

Example 25 Consider the two linear variable-separated TRSs

R : a→ b f(f(x, y), z)→ f(b,b) f(b, x)→ f(b,b)

f(x, a)→ f(z,b)

S : a→ b f(f(x, y), z)→ f(b,b) f(b, x)→ f(b,b)

f(b, a)→ f(z,b) f(f(x, y), a)→ f(z,b)

They are not normalization equivalent since f(x, a) →!R f(z,b) and f(x, a) �→S ∗f(z,b).
The TRSs are however ground normalization equivalent over the signature F � {c}. First
observe that the only ground normal forms reachable via a rewrite sequence involving a root
step are b and f(c,b). The normal form b is reached (using a root step) only from a, in
both R and S. The normal form f(c,b) can be reached from all ground terms of the shape
f(t, a). ForR this is obvious and for S this can be seen by a case analysis on the root symbol
of t . Adding a second constant d allows one to mimick the original counterexample since
f(c, a)→!R f(d,b) and f(c, a) �→S ∗f(d,b).

For left-linear right-groundTRSs, a single fresh constant is enough to reduce normalization
equivalence to ground normalization equivalence.

Lemma 38 Left-linear right-ground TRSs R and S over a common signature F are nor-
malization equivalent if and only if R and S are ground normalization equivalent over
F � {c}. �

Proof Wemention the differenceswith the proof of Lemma37. For the equivalence ofNFR(t)
and NFS(t) for arbitrary terms t ∈ T (F,V), a single constant suffices. If s →∗ε∗R t then t
is ground. Hence sσc →∗R t and thus sσc →∗S t by ground normalization equivalence.
Lemma 31 gives s →∗S t . ��

Each additional constant can increases the execution time of FORT-h significantly, as seen
later in Example 36. Hence results that reduce the required number are of obvious interest. In
the remainder of this section we present results for ground TRSs and for TRSs overmonadic
signatures, which are signatures that consist of constants and unary function symbols.

Lemma 39 LetR and S be right-ground TRSs over a signature F . IfR and S are ground or
F is monadic then

(F,R)
 P ⇐⇒ (F,R)
 GP for all P ∈ P1

������������

(F,R,S)
 COM ⇐⇒ (F,R,S)
 GCOM ��

Proof First assume that R is ground. In this case only ground subterms can be rewritten.
Given a term t ∈ T (F,V), we write t = C[[t1, . . . , tn]] if t = C[t1, . . . , tn] and t1, . . . , tn are
the maximal ground subterms of t . So all variables appearing in t occur in C . The following
property is obvious:

(a) if t = C[[t1, . . . , tn]] →∗R u then u = C[[u1, . . . , un]] and ti →∗R ui for all 1 � i � n.

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.llrg_NE|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_CR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_WCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_SCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_NFP|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_UNF|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_UNC|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_CR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_WCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_SCR|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_NFP|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_UNF|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_UNC|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LLRG.html#Ground_Reduction_on_LLRG.monadic_commute|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_GTRS.html#Ground_Reduction_on_GTRS.GTRS_commute|thm

First-Order Theory of Rewriting… Page 43 of 76 14

Suppose (F,R)
 GCR and consider s →∗R t and s →∗R u with s ∈ T (F,V). Writing
s = C[[s1, . . . , sn]], we obtain t = C[[t1, . . . , tn]] and u = C[[u1, . . . , un]] with si →∗R ti
and si →∗R ui for all 1 � i � n. GCR yields ti ↓ ui for all 1 � i � n. Hence t ↓ u as
desired. The proofs for the other properties in P are equally easy. For UNC we note that↔∗R
coincides with→∗R∪R− for the ground TRS R ∪R−.

Next suppose that F is monadic. Let (F,R)
 GP and let σ be the substitution that maps
all variables to some arbitrary but fixed ground term. In this case the following property
holds:

(b) if t ∈ T (F,V) and t → u then u ∈ T (F) and tσ → u.

We consider P = NFP and P = UNC and leave the proof for the other properties to the
reader. Let s →R t and s →!R u. We obtain sσ →R t and sσ →!R u from property 2.
(Note that s �= u.) Hence t →∗R u follows from GNFP. Let t ↔∗R u with normal forms
t and u. If t and u are ground terms then we obtain t = u from GUNC (after applying the
substitution σ to all intermediate terms in the conversion between t and u). Otherwise, the
conversion between t and u must be empty due to property (b) and the fact that t and u are
normal forms. Hence also in this case t = u. ��

In contrast to COM, the properties NE and CE require additional constants for TRSs over
monadic signatures.

Example 26 The linear variable-separated TRSs

R : f(x)→ a S : f(a)→ a f(f(a))→ a

are neither normalization equivalent nor conversion equivalent as canbe seen from f(x)→!R a
and f(x) �↔∗S a. Since every ground term rewrites in R and in S to the unique ground
normal form a, the TRSs are ground normalization equivalent as well as ground conversion
equivalent.

Nevertheless, we can reduce the number of constants to one if the signature is monadic.
A key observation is that in non-empty rewrite sequences in a linear variable-separated TRS
over a monadic signature fresh constants can be replaced by arbitrary terms.

Lemma 40 Let R be a linear variable-separated TRS over a monadic signature F that
contains a constant c which does not appear in R. If s →+R t and p ∈ Pos(s) such that
s|p = c then s[u]p →+R t using the same rewrite rules at the same positions, for all terms
u. �

The proof follows the same structure as Lemma 31 and the details are left for the reader.
As linear variable-separated TRSs are closed under inverse we can immediately deduce that
rewrite sequences of the shape sσc →+R tσc imply s →+R t for monadic systems. With this
we are ready to prove our claim.

Lemma 41 Linear variable-separated TRSs R and S over a common monadic signature F
are normalization equivalent if and only if R and S are ground normalization equivalent
over F � {c}. �

Proof We again mention the differences with the proof of Lemma 37. For the equivalence of
NFR(t) and NFS(t) for arbitrary terms t ∈ T (F,V), a single constant suffices. Consider a
rewrite sequence s →∗ε∗R t with NFR(t). Ground normalization equivalence and substitution

123

https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Rewriting_LLRG_LV_Mondaic.html#Rewriting_LLRG_LV_Mondaic.remove_const_lv_mondaic_steps|thm
https://www.isa-afp.org/browser_info/current/AFP/Rewrite_Properties_Reduction/Ground_Reduction_on_LV.html#Ground_Reduction_on_LV.lv_NE|thm

 14 Page 44 of 76 A. Middeldorp et al.

Table 3 Additional constants required to reduce a property to the corresponding ground property

Property Ground TRSs Left-linear right-ground TRSs Linear variable-separated TRSs

CR 0 1 (0) 2 (2)

SCR 0 1 (0) 2 (2)

WCR 0 1 (0) 2 (2)

COM 0 1 (0) 2 (2)

UNR 0 1 (0) 2 (2)

UNC 0 2 (0) 2 (2)

NFP 0 1 (0) 2 (2)

CE 0 1 (1) 1 (1)

NE 0 1 (1) 2 (1)

closure yields sσc →∗S tσc. Furthermore, since the sequence s →∗ε∗R t is non-empty by def-
inition we know that ¬NFR(sσc), which in turn yields ¬NFS(sσc). Together with NFS(tσc)
this means sσc �= tσc, and we obtain sσc →+S tσc. Applying Lemma 40 twice allows us to
replace c in sσc and tσc by the corresponding variables, leading to s →∗S t . ��

The following example shows that we cannot reduce the number of constants (in Lem-
mata 32 and 34) for linear variable-separated TRSs over a monadic signature and properties
P ∈ P1 ∪ {COM}.
Example 27 The monadic linear variable-separated TRS R consisting of the rules

g(a)→ g(x) g(g(x))→ g(y)

does not satisfyWCR and UNR, and hence also not CR, SCR, NFP and UNC, because g(x)←
g(a) → g(y) with different normal forms g(x) and g(y). Adding a single fresh constant c
is insufficient to violate GSCR and thus also GCR, GWCR, GNFP, GUNC and GUNR, because
every term in T ({g, a, c}) can reach precisely one of the three ground normal forms a, c
or g(c) and they can all do so in at most one step. Adding an additional constant d does
suffice: g(c)← g(a)→ g(d) with different ground normal forms g(c) and g(d). The same
behaviour is observed for COM by noting that a TRS is (ground) confluent if and only if it
(ground) commutes with itself.

The results in this section are summarized inTable 3,which shows the number of additional
constants needed to reduce a property to the corresponding property on ground terms. In
parentheses are the numbers for monadic TRSs.

For termination (SN) and normalization (WN) there is no need to add fresh constants, since
these properties hold if and only if they hold for all ground terms. For other properties that
can be expressed in the first-order theory of rewriting, one or two fresh constants may be
insufficient. Consider for instance the formula ϕ:

¬∃ s ∃ t ∃ u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

which is satisfied on arbitrary terms (with respect to any left-linear right-groundTRS (F,R)).
For the TRS consisting of the rule f(x)→ a and two additional constants c and d, ϕ does not
hold for ground terms because every ground term is convertible to a, c or d. It is tempting
to believe that adding a fresh unary symbol g in addition to a fresh constant c, in order to
create infinitely many ground normal forms which can replace variables that appear in open

123

First-Order Theory of Rewriting… Page 45 of 76 14

terms, is sufficient for any property P . The formula ∀ s ∀ t (s → t �⇒ s →ε t) and the
TRS consisting of the rule a→ b show that this is incorrect.

7 Automation and Certification

7.1 DecisionMode

FORT-h is a new decision tool for the first order theory of rewriting. It is a reimplemen-
tation of the decision mode of the previous FORT tool [48], referred to as FORT-j in the
remainder of the paper. The decision procedure implemented in FORT-j is based on the orig-
inal procedure described in [10, 11], in which the basic relations are one-step and parallel
rewriting. Anchored GTTs, which form the backbone of the formalized decision procedure
described in this paper and implemented in FORT-h, were developed later. The new tool is
implemented in Haskell whereas FORT-j is written in Java. FORT-h supports all features of
FORT-j while extending the domain of supported TRSs from left-linear right-ground TRSs
to linear variable-separated ones. While FORT-j could technically take such TRSs as input,
it is unsound when checking non-ground properties on them.

Example 28 To check confluence of the linear variable-separated TRS

g(g(x))→ g(y) a→ g(a)

FORT-h can be called with the formula CR. It correctly states that NO the system is not
confluent. However, FORT-j incorrectly identifies this as confluent due to the lack of support
for variables appearing in right-hand sides of rules.

FORT-h took part in the 2020, 2021 and 2022 editions of the Confluence Competition
(CoCo),4 competing in five categories: COM, GCR, NFP, UNC and UNR. In 2021 and 2022 it
also competed together with FORTify in the categories COM, TRS, GCR, UNC, UNR and NFP
(only in 2022) producing certified answers. Even though it does not support many problems
tested in the competition, due to the restriction to linear variable-separated TRSs, it was able
to win the category for most YES results in UNR in all three years. The tool expects as input
a formula and one or more TRSs, as seen in Fig. 7. It then outputs the answer YES or NO
depending on whether the formula is satisfied or not by the given TRSs. The command-line
interface of FORT-h is described in Appendix B.

The implemented procedure closely follows the procedure described in Sect. 5.5. When
called it first parses the formula (format described below) and converts it into an internal
represention using de Bruijn indices as described in Sect. 7.2. Additionally, universal quan-
tifiers and implications are eliminated, and negations are pushed as far as possible to the
atomic subformulas. The tool then traverses the formula in a bottom-up fashion, constructing
the corresponding anchored GTTs and RRn automata. During this traversal we also keep
track of the steps taken, to construct the certificate if necessary. To improve performance
the automata are cached and reused for equal subformulas. The tree automaton representing
the whole formula is then checked for emptiness. If the accepted language is empty, FORT-h
reports NO, otherwise it outputs YES.

To avoid having to write formulas using de Bruijn indices when using FORT-h, we use
a more convenient syntax for interacting with the tool. The input format (later called FORT
syntax) is described in Appendix A.

4 http://project-coco.uibk.ac.at/

123

http://project-coco.uibk.ac.at/

 14 Page 46 of 76 A. Middeldorp et al.

Fig. 7 FORT-h and FORTify

7.1.1 Witness Generation

The usual output of FORT-h consists of a YES or NO answer, and possibly a certificate
containing size information of the automata. To help the user in understandingwhy a property
holds or does not hold we support witness generation. This is possible in two cases. Firstly for
satisfiable existentially quantified formulas, where FORT-h can produce an n-tuple of ground
terms as evidence of existence. Secondly for unsatisfiable universally quantified formulas,
where the tuple presents a counterexample. For instance, if a given or synthesized TRS is
not ground-confluent ¬∀ s ∀ t ∀ u (s →∗ t ∧ s →∗ u �⇒ ∃ v (t →∗ v ∧ u →∗ v)), it is
interesting to provide witnessing terms for the variables s, t , and u. Given the TRS consisting
of the rules

a→ f(a,b) f(a,b)→ f(b, a)

FORT-h produces the following terms as witnesses: s = f(a,b), t = f(b, a), and u =
f(f(a,b),b). To find these ground terms FORT-h first eliminates universal quantifiers using
∀ = ¬∃¬, pushes negations inwards and removes double negations in the formula resulting
in ∃ s ∃ t ∃ u (s →∗ t ∧ s →∗ u ∧ ¬∃ v (t →∗ v ∧ u →∗ v)). In the next step FORT-h
strips outermost negations, none in this case, followed by outermost existential quantifiers
resulting in the so-called formula body: (s →∗ t ∧ s →∗ u ∧ ¬∃ v (t →∗ v ∧ u →∗ v)).
Since the original formula is satisfiable, the RRn automaton corresponding to the formula
body must accept at least one n-tuple of ground terms.

The algorithm depicted in Fig. 8generates (encoded) witnesses that are accepted by the
given RRn automaton. To find minimal witnesses we use a version of Dijkstra’s shortest path
algorithm. We keep track of visited states in Qv , a mapping W from states to terms where
W(q) is a minimal witness which reaches the state q , and a priority queue P . The search is
started at the states reachable in a single step from some constant. We also map from these

123

First-Order Theory of Rewriting… Page 47 of 76 14

Fig. 8 Witness generation

states to the respective constants as witnesses in W . In each iteration we select the state q
with the smallest witness w from P . The size of a witness is determined by the function
size(〈w1, . . . , wn〉) = size(w1) + · · · + size(wn), where size(wi) is the total number of
function symbols inF occurring inwi , so⊥ is not counted. If q is a final state we have found
an accepted term and return the witness w. Otherwise we check that we have not visited q
previously, set W(q) = w, and enumerate all transition rules containing q on the left-hand
side where all states on the left-hand side have been visited, and hence have a witness. If the
transition rule is an epsilon transition q → p, then the state p has the same witness as q so
we add (p, w, size(w)) to P . For a transition rule f1 · · · fk(q1, . . . , qm)→ p we construct
a witness w′ = f1 · · · fk(W(q1), . . . ,W(qm)) and add (p, w, size(w)) to the queue. The
search continues until a final state is reached or all reachable states have been visited. In the
latter case the algorithm fails, since the automaton does not accept any terms.

7.1.2 Collapsing�-transitions

Keeping the size of automata small is crucial for the performance of FORT-h. One way to
reduce the number of states and transitions is based on the observation that when two states
q an p are strongly connected by ε-transitions, which means q →∗ε p and p →∗ε q , then
they are equivalent. In other words, for all ground terms s and t we have s →∗ q if and only
if t →∗ p, and for all ground contexts C and states r we have C[q] →∗ r if and only if
C[p] →∗ r . We can therefore replace all occurrences of a state in the transition rules by an
equivalent one without changing the accepted language. This reduces the number of states,
and may remove duplicate transition rules.

In FORT-h we can further take advantage of the fact that some of the most common
constructions already produce sets of ε-transitions which are transitively closed. Instead of
constructing the strongly connected components, checking if two states q and p are strongly
connected then boils down to checking if q →ε p and p →ε q . For example, this is case
after computing the transitive closure of anchored GTT relations as in the Theorems 6 and 8.
We therefore immediately collapse and eliminate the ε-transitions in the underlying tree
automata after these constructions.

123

 14 Page 48 of 76 A. Middeldorp et al.

Fig. 9 Collapsing ε-transitions in
�+(A,B)

Example 29 The anchored GTT G = (A,B) with

�A : a→ 0 b→ 1

0→ 3 1→ 2 1→ 4

�B : a→ 2 b→ 3 c→ 4

accepts the rewrite relation of the ARS {a → b,b → a,b → c}. When constructing
G+ = (A ∪�+(B,A),B ∪�+(A,B)), we need to compute the ε-transitions in �+(A,B).
The result is shown in Fig. 9(a). We can see that the graph contains one non-trivial strongly
connected component, consisting of the states {2, 3}. Instead of adding all 10 ε-transitions
we can therefore simplify G and �+ beforehand by replacing all occurrences of state 3 by
state 2. This reduces the number of transitions in�+(A,B) to 4, as shown in Fig. 9(b), which,
when added to G, results in the GTT G+ = (A′,B′) with

�A′ : a→ 0 b→ 1

0→ 2 1→ 2 1→ 4 2→ 0 2→ 4 2→ 1

�B′ : a→ 2 b→ 2 c→ 4

0→ 2 4→ 2 1→ 2

Note that we also dropped the redundant transition 2→ 2 from �+(A,B).

7.2 Certification

Whereas witness generation can only provide some evidence to assist the user in understand-
ing why certain formulas hold or not, in certification we are interested in machine-readable
proofs that are verified by an independent and trustworthy certifier. The first step in the cer-
tification process is to translate formulas in the first-order theory of rewriting into a format
suitable for further processing. We adopt de Bruijn indices [13] to avoid alpha renaming.

Example 30 Consider the formula

∀ s ∀ t ∀ u (s →∗0 t ∧ s →∗1 u �⇒ ∃ v (t →∗1 v ∧ u →∗0 v))

It expresses the commutation of two TRSs, indicated by the indices 0 and 1. Using de Bruijn
indices for the term variables s, t , u, v produces

∀∀∀ (2→∗0 1 ∧ 2→∗1 0) �⇒ ∃ (2→∗1 0 ∧ 1→∗0 0)

We refer to Example 32 for further explanation.

The formal syntax of formulas in certificates is given below. Here 〈rr2〉 denotes the
supported binary regular relations, which are formally defined after Example 31. Likewise,

123

First-Order Theory of Rewriting… Page 49 of 76 14

〈rr1〉 stands for regular sets (which are identified with unary regular relations).

〈formula〉 ::= (rr1 〈rr1〉 〈term〉) | (rr2 〈rr2〉 〈term〉 〈term〉)
| (and 〈formula〉 ∗) | (or 〈formula〉 ∗) | (not 〈formula〉)
| (forall 〈formula〉) | (exists 〈formula〉) | (true) | (false)
| (restrict 〈formula〉(〈trs〉 +))

〈term〉 ::= 〈nat〉 〈trs〉 ::= 〈nat〉 | 〈nat〉- 〈nat〉 ::= 0 | 1 | 2 | · · ·
De Bruijn indices are used for 〈term〉 variables and 〈nat〉- denotes a TRS with index 〈nat〉
in which the left- and right-hand sides of the rules have been swapped. The class of linear
variable-separated TRSs is closed under this operation. We use it to represent the conversion
relation↔∗ of a TRS R as the reachability relation→∗ induced by the TRS R ∪R−.

Example 31 The commutation property in Example 30 is rendered as follows:

(forall (forall (forall (or (not (and (rr2 (step* (0)) 2 1)
(rr2 (step* (1)) 2 0))) (exists (and (rr2 (step* (1)) 2 0)

(rr2 (step* (0)) 1 0)))))))

Here(step* (0)) denotes theRR2 relation→∗ induced by the first TRS (which is indexed
by 0) and (rr2 (step* (1)) 2 0) represents the subformula [1] t ->* v of the
FORT formula in Example 30.

We continue with the certificate syntax of RR1 and RR2 relations:

〈rr1〉 ::= (terms) | (nf(〈trs〉 +)) | (inf 〈rr2〉) | (proj (1 |2) 〈rr2〉)
| (union 〈rr1〉 〈rr1〉) | (inter 〈rr1〉 〈rr1〉) | (diff 〈rr1〉 〈rr1〉)

〈rr2〉 ::= (gtt 〈gtt〉 〈pos〉 〈num〉) | (product 〈rr1〉 〈rr1〉) | (id 〈rr1〉)
| (union 〈rr2〉 〈rr2〉) | (inter 〈rr2〉 〈rr2〉) | (diff 〈rr2〉 〈rr2〉)
| (comp 〈rr2〉 〈rr2〉) | (inverse 〈rr2〉)

〈pos〉 ::= >= | e | > 〈num〉 ::= >= | 1 | >
〈gtt〉 ::= (root-step(〈trs〉 +)) | (gsteps(〈trs〉 +)) | (inverse 〈gtt〉)

| (union 〈gtt〉 〈gtt〉) | (acomp 〈gtt〉 〈gtt〉) | (gcomp 〈gtt〉 〈gtt〉)
| (inter 〈gtt〉 〈gtt〉) | (acomplement 〈gtt〉) | (atc 〈gtt〉) | (gtc 〈gtt〉)

Here (terms) refers to T (F), (nf(〈trs〉 +)) to the normal forms (NF) induced by
the union of the underlying TRSs, and (inf 〈rr2〉) to the infinity predicate (INFR) which
is satisfied by all terms having infinitely many successors with respect to the relation R.
Furthermore, (proj (1 |2) 〈rr2〉) denotes projection (π) to the first (second) argument,
(gtt 〈gtt〉 〈pos〉 〈num〉) the transformation of a GTT relation into an RR2 relation with
corresponding context closure (Theorems 10 and 11), (id 〈rr1〉) the identity relation on
the underlying set, and (gtc 〈gtt〉) ((atc 〈gtt〉)) the (anchored) transitive closure of the
underlying (anchored) GTT relation. The (gsteps(〈trs〉 +)) construct serves as an
abbreviation for (gtc ((root-step(〈trs〉 +)))).

The constructs defined above closely correspond to the formalized closure operations for
the predicates in the first-order theory of rewriting, summarized in the grammar in Fig. 1.

123

 14 Page 50 of 76 A. Middeldorp et al.

For convenience of tool authors, we add a few other constructs to 〈rr2〉. The certifier
expands these to a sequence of basic constructs given above.

〈rr2〉 ::= · · · | (step(〈trs〉 +)) | (step=(〈trs〉 +)) | (step+(〈trs〉 +))

| (step*(〈trs〉 +)) | (step!(〈trs〉 +)) | (equality)
| (parallel-step(〈trs〉 +)) | (root-step(〈trs〉 +))

| (root-step=(〈trs〉 +)) | (root-step+(〈trs〉 +))

| (root-step*(〈trs〉 +)) | (non-root-step(〈trs〉 +))

| (non-root-step=(〈trs〉 +)) | (non-root-step+(〈trs〉 +))

| (non-root-step*(〈trs〉 +)) | (meet(〈trs〉 +))

| (join(〈trs〉 +)) | (reflcl(〈rr2〉))
A certificate for a first-order formula ϕ explains how the corresponding RRn automaton is
constructed.We adopt a line-oriented natural deduction style. The automata are implicit. This
is a deliberate design decision to keep certificates small. More importantly, it avoids having
to check equivalence of finite tree automata, which is EXPTIME-complete [8, Sect. 1.7].

〈certificate〉 ::= (〈item〉 〈inference〉 〈formula〉 〈info〉 ∗) 〈certificate〉
| (empty 〈item〉) | (nonempty 〈item〉)

〈item〉 ::= 〈nat〉 〈info〉 ::= (size 〈nat〉 〈nat〉 〈nat〉)
〈inference〉 ::= (rr1 〈rr1〉 〈term〉) | (rr2 〈rr2〉 〈term〉 〈term〉) | (and 〈item〉 ∗)

| (or 〈item〉 ∗) | (not 〈item〉) | (exists 〈item〉) | (nnf 〈item〉)
Currently the 〈info〉 field only serves as an interface between the tool (which provides the
certificate) and the certifier to compare the sizes of the constructed automata. In the future
we plan to extend this field with concrete automata. This allows to test language equivalence
of a tree automaton computed by a tool that supports our certificate language and the one
reconstructed by FORTify, thereby providing tool authors with a mechanism to trace buggy
constructions in case a certificate is rejected.

We revisit Example 3 to illustrate the construction of certificates.

Example 32 The formula ϕ = ∀ s ∃ t (s →∗ t ∧ NF(t)) expressing normalization is rendered
as ϕ′ = ∀∃(1→∗0 0 ∧ 0 ∈ NF[0]) in de Bruijn notation. Here 1 refers to the variable s, the
second and third occurrences of 0 refer to t , and the last occurrence of 0 refer to the first (and
only) TRS, which has index 0. We construct the certificate bottom-up, to mimic the decision
procedure. The first line is for NF[0]:

(0 (rr1 (nf (0)) 0) (rr1 (nf (0)) 0))

The components can be read as follows:

• 〈item〉 = 0 denotes the first step in our proof,
• 〈inference〉 = rr1 (nf (0)) 0 constructs the automaton that accepts the normal

forms and keeps track of the variable 0,
• 〈formula〉 = rr1 (nf (0)) 0 denotes the subformula 0 ∈ NF[0]; it is satisfiable if

and only if the automaton constructed using the description in 〈inference〉 is not empty.

The apparent redundancy will disappear when we continue. We proceed by expressing the
relation →∗0 and subsequently make sure that the second component of →∗0 is in normal
form:

123

First-Order Theory of Rewriting… Page 51 of 76 14

(1 (rr2 (step* (0)) 1 0) (rr2 (step* (0)) 1 0))
(2 (and (1 0)) (and ((rr2 (step* (0)) 1 0) (rr1 (nf (0)) 0))))

Line 1 is similar to line 0. The inference step(and 1 0) in line 2 constructs an RR2 automa-
ton that accepts the intersection of the relations modeled in lines 1 and 0. This automaton
corresponds to A5 in Example 3. The cylindrification step from A1 to A4 in Example 3 is
left implicit. We continue with the projection of variable 0 and afterwards complement the
resulting automaton. This is done by an exists followed by a not inference step:

(3 (exists 2) (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (nf (0)) 0)))))

(4 (not 3) (not (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (nf (0)) 0))))))

The inference steps until this point describe the construction ofA7 in Example 3.We complete
the certificate by introducing the remaining operators:

(5 (exists 4) (exists (not (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (nf (0)) 0)))))))

(6 (not 5) (not (exists (not (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (nf (0)) 0))))))))

(7 (nnf 6) (forall (exists (and ((rr2 (step* (0)) 1 0)
(rr1 (nf (0)) 0))))))

(nonempty 7)

The nnf inference step does not modify the tree automaton computed in step 6 (which
corresponds toA9 in Example 3) but checks the equivalence of the formula in line 6 with the
one of line 7, which corresponds to the input formula ϕ′. The equivalence check incorporates
∀ elimination, negation normal form, and associativity, commutativity and idempotency of∧
and∨. In the future we might add support for additional equivalences in first-order logic. The
final step (nonempty 7) checks that L(A9) �= ∅. So this certificate claims that the input
TRS is normalizing. For TRSs that do not satisfy ϕ, the final line in the certificate would be
(empty 7).

In the previous example we intentionally skipped over some details to convey the under-
lying intuition. First of all, the 〈rr2〉 construct (step* (0)) is derived and internally
unfolded via (anchored) GTTs into

(gtt (gtc (root-step 0)) >= >)

Starting from an anchored GTT that accepts the root step relation induced by the first (and
only) TRS in the list, an application of the GTT transitive closure operation followed by a
multi-hole context closure operation with at least one hole that may appear in any position,
an RR2 automaton that accepts the relation→∗0 is constructed. We also mentioned that cylin-
drification is implicit. The same holds for the projection operation that is used in the exists
inference steps. A projection takes place in the first component if the variable 0 is present
in the list of variables, otherwise the inference step preserves the automaton. This approach
is sound as variables indicate the relevant components of the RRn automaton. Thanks to the
de Bruijn representation, the innermost quantifier refers to variable 0, the first component
in the given RRn automaton. However we must keep track of all variables occurring in the
surrounding formula and update that list accordingly.

123

 14 Page 52 of 76 A. Middeldorp et al.

7.3 FORTify

The example in the preceding subsection makes clear that certificate can be viewed as a
recipe for the certifier to perform certain operations on automata and formulas to confirm
the final (non-)emptiness claim. In particular, checking a certificate is expensive because
the decision procedure for the first-order theory is replayed using code-generated operations
from a verified version of the decision procedure. In this subsection we describe the steps
we performed to turn the Isabelle formalization of the decision procedure into our certifier
FORTify.

The formalization is split into two parts. The second part is about the certification process,
but we start our description with the first part [35] which serves as a general tree automata
library. This part includes bottom-up tree automata with ε-transitions, (anchored) ground
tree transducers, encoding of regular relations, and their respective closure properties. Addi-
tionally it contains a framework to simplify code generation of inductively defined sets as
in Fig. 3. Such inductive sets, if they are finite, can be computed by a saturation procedure.
We provide an abstraction for that, which essentially does Horn inference without negative
atoms. The point of the abstraction is that it separates a common iterative or recursive part of
saturation procedures (which gives rise to non-trivial correctness proofs) from the enumera-
tion of inferences without premises (H0, see below), and inferences induced by a single new
conclusion (H1, also below), which usually are set comprehensions that can be computed in
a very straightforward way.

Definition 19 A positive Horn inference system is given by a set of atoms A (with elements
α, β, …) and set H of inference rules of the shape α1 ∧ · · · ∧ αn → β. We write ! → β if
the list of premises is empty. Each positive Horn inference system defines a predicate H on
atoms inductively by the rule

α1 ∧ · · · ∧ αn → β ∈ H H(αi) for 1 � i � n

H(β)

Example 33 Consider the inference rules from Fig. 3. To obtain a positive Horn inference
system for given automata A and B, let A = Q × Q where Q is the set of states occurring
in A or B. The set H consists of the following inference rules:

• (p, r)→ (q, r) if p→A q and r ∈ Q,
• (p, q)→ (p, r) if q →B r and p ∈ Q, and
• (p1, q1) ∧ . . . ∧ (pn, qn)→ (p, q) if f (p1, . . . , pn)→A p and f (q1, . . . , qn)→B q .

These Horn clauses correspond directly to Fig. 3 with p � q replaced by (p, q). It is easy
to see that the resulting H satisfies (p, q) ∈ H if and only if p � q .

We have formalized an abstract marking algorithm for positive Horn inference systems. In
order to use this algorithm, the user has to provide implementations for two building blocks,
H0 and H1, which are given by

H0 = {β | ! → β ∈ H}
H1(α, B) = {β | α1 ∧ · · · ∧ αn → β ∈ H and α ∈ {α1, . . . , αn } ⊆ B ∪ {α }}

In essence, H0 computes inferences without premises, whereas H1(α, B) provides all pos-
sible conclusions involving a particular premise α together with other premises fulfilled by
B. These two ingredients are sufficient to implement a simple marking algorithm:

123

First-Order Theory of Rewriting… Page 53 of 76 14

saturate_rec(α, I):

if α ∈ I then return I
else

J := {α } ∪ I ;
for all β ∈ H1(α, I) do

J := saturate_rec(β, J);
return J

saturate:

I := ∅;
for all α ∈ H0 do

I := saturate_rec(α, I)
return I

Most of the work is performed by saturate_rec, whose purpose is to add a newly
inferred atom α to an accumulator I of previously inferred atoms, taking into account all
further inferences that can be made using α and elements of I . It relies onH1 for computing
the set of atoms that can be inferred using β at least once and elements of I for other
premises. The main method saturate iterates over the elements of H0 and adds them to
the accumulator I using the saturate_rec helper, starting with I = ∅. We formalized
soundness of saturate, and of refinements to lists and finite sets.

Example 34 Continuing from Example 33, we note that the computation of H0 and H1 can
often be done efficiently without ever computing the full setH. For the inference rules from
Fig. 3, we obtain the following descriptions:

H0 = {(p, q) | f →A p and f →B q }
H1((p, q), B) = {(r , q) | p→A r } ∪ {(p, r) | q →B r } ∪H′1

where H′1 consists of all pairs (p′, q ′) such that

f (p1, . . . , pn)→A p′ f (q1, . . . , qn)→B q ′

with (pi , qi) ∈ B∪{(p, q)} for all 1 � i � n, and (p, q) = (pi , qi) for some 1 � i � n. This
last component is slightly complicated (but not much more complicated than the definition of
H itself). On the other hand, the first two components ofH1 make no reference to Q, which
is a welcome simplification.

Isabelle/HOL has a predicate compiler [5] that produces executable code for certain
inductive sets, but it is quite restricted; basically, it works by searching all possible derivation
trees to arrive at a conclusion. This easily leads to non-termination when there are infinitely
many such trees, which often happens. For example, using the rules in Fig. 3, if we want to
check whether 1 � 2 and there is an ε-transition 1 →A 1, then the first inference rule is
a possible candidate for the last inference step, leading us to check 1 � 2 recursively, ad
infinitum.

In our formalization, GTT compositions and GTT transitive closure are implemented
on top of positive Horn inference. The other building blocks are derived directly from the
definitions, using automatic and somemanual refinement to obtain concrete implementations.

This concludes the first part. In the remainder of this section details of the second part are
discussed [33]. We use the FOL-Fitting library [4], which is part of the Archive of Formal
Proofs, to connect the first-order theory of rewriting and first-order logic. The translation
is more or less straightforward. We interpret RR1 constructions as predicates and RR2 con-
structions as relations in first-order logic and prove both interpretations to be semantically
equivalent:

lemma eval_formula F Rs α f =
eval α undefined (for_eval_rel F Rs) (form_of_formula f)

123

 14 Page 54 of 76 A. Middeldorp et al.

With this equivalence we are able to define the semantics of formulas:

definition formula_satisfiable where
formula_satisfiable F Rs f ←→ (∃α. range α ⊆ T G F ∧
eval_formula F Rs α f)

definition formula_unsatisfiable where
formula_unsatisfiable F Rs fm←→ (formula_satisfiable F Rs fm = False)

definition correct_certificate where
correct_certificate F Rs claim infs n ≡
(claim = Empty←→ (formula_unsatisfiable (fset F) (map fset Rs)

(fst (snd (snd (infs ! n))))) ∧
claim = Nonempty←→ formula_satisfiable (fset F) (map fset Rs)
(fst (snd (snd (infs ! n)))))

Last but not least we define the important function check_certificate which takes
as input a signature, a list of TRSs, a Boolean, a formula, and a certificate. This function
first verifies that the given formula and the claim corresponds to the ones referenced in the
certificate and afterwards checks the integrity of the certificate. The following lemmata,
which are formally proved in Isabelle, state the correctness of the check_certificate
function:

lemma check_certificate F Rs A fm (Certificate infs claim n) = Some B
�⇒ fm = fst (snd (snd (infs ! n))) ∧ A = (claim = Nonempty)

lemma check_certificate F Rs A fm (Certificate infs claim n) = Some B
�⇒ (B = True −→ correct_certificate F Rs claim infs n) ∧

(B = False −→ correct_certificate F Rs (case claim of
Empty⇒ Nonempty | Nonempty⇒ Empty) infs n)

The first lemma ensures that our check function verifies that the provided parameters fm
(formula) and A (answer satisfiable/unsatisfiable) match the formula and the claim stated in
the certificate. The second lemma is the key result. It states that the check function returns
Some True if and only if the certificate is correct. The only-if case is hidden in the last
two lines. More precisely, if the claim of the certificate is wrong then negating the claim
(the first-order theory of rewriting is complete) leads to a correct certificate. Therefore, if our
check function returns Some None then the certificate is correct after negating the claim.

Our check function returns None if the global assumptions (the input TRS is not linear
variable-separated, the signature is not empty, etc.) are not fulfilled. We plan to extend the
check_certificate function in the near future such that it reports these kinds of errors.

A central part of the formalization is to obtain a trustworthy decision procedure to verify
certificates. Hence we use the code generation facility of Isabelle/HOL to produce an exe-
cutable version of our check_certificate function. Isabelle’s code generation facility
is able to derive executable code for our constructions with the exception of inductively
defined sets. We use the abstract Horn inference system framework of Definition 19 to obtain
executable code for the following constructions defined as inductive sets:

• reachable and productive states of a tree automaton,

123

First-Order Theory of Rewriting… Page 55 of 76 14

Table 4 Formalization statistics Topics Lines Facts Defs

Utility files 1892 187 19

Terms, context, and rewriting 3969 454 97

Horn inference system 462 39 17

Tree automata 2891 319 66

Regular relations 4016 285 65

Primitives and context closure 4043 318 43

FORT decision procedure 2023 107 60

Signature extension 2874 182 15

Implementation files 3058 190 81

Total 25, 228 2081 463

• states of tree automata obtained by the subset construction,
• ε-transitions for the composition and transitive closure constructions of (anchored)GTTs,
• an inductive set needed for the tree automaton for the infinity predicate.

At this point we can use Isabelle’s code generation to obtain an executable check function.
The resulting code-generated certifier is called FORTify.

The overall design of FORTify is shown in the bottom half of Fig. 7. It can be viewed as two
separate modules A and B. Module B is the verified Haskell code base that is generated by
Isabelle’s code generation facility, containing the check_certificate function and the
data type declarations for formulas and certificates. To use this functionality,wewrote a parser
which translates strings representing formulas (signatures, TRSs, certificates) to semantically
equivalent formulas (signatures, TRSs, certificates) represented in the data types obtained
from the generated code. This was done in Haskell and refers to module A in Fig. 7. Module
A accepts formulas in FORT syntax. Hence it also applies the conversion to the de Bruijn
representation. After the translation in module A, the check_certificate function in
module B is executed and its output is reported.

Importantly, the code in module A is not verified in Isabelle. Correctness of FORTifymust
therefore assume correctness of module A as well as the correctness of the Glasgow Haskell
Compiler, which we use to generate a standalone executable from the generated code.

Table 4 lists some statistics of the underlying formalization.

7.4 Synthesis Mode

FORT can be used to synthesize TRSs that satisfy properties given by the user (which is
different from finding witnessing terms in formulas as described in Sect. 7.1). This is useful
for finding counterexamples and non-trivial TRSs for exam exercises as well as competitions.
The synthesis procedure for a given signature F boils down to generating candidate TRSs
and then checking the given property as shown in Fig. 10. The latter is done using a call to the
decision procedure decide(F, ϕ, C), which checks if the formula ϕ holds for the system
C over the domain T (F). To limit and control the search space we introduce the parameters
r , R, D and v:

• r and R specify the lower and upper bound on the number of rewrite rules,
• D specifies the upper bound on the height of the left- and right-hand sides of the rules,
• v specifies the number of different variables that may appear in the rewrite rules.

123

 14 Page 56 of 76 A. Middeldorp et al.

Fig. 10 Simplified synthesis procedure (for a fixed signature)

By default the procedure searches for left-linear right-ground TRSs, but can also synthesize
linear variable-separated systems. This affects the generation of candidate TRSs S in Fig. 10.

To extend the functionality and improve performance, the implementation in the synthesis
tool (FORT-s) differs from the procedure in Fig. 10. Since the greatest cost when running the
procedure comes from executing the decision procedure, care is taken to not generate and
check equivalent system more than once. To this end, we keep track of fresh terms from
previous iterations and only generate rules containing at least one new term, and the fresh
terms in T ′must contain at least one new term in an argument position. Similar improvements
are used when generating the rewrite systems. The second major performance improvement
is the possibility of checking systems in parallel.

It is of interest to synthesize TRSs that depend on one or more other TRSs. This can
be done by passing additional TRSs to FORT-s in addition to a formula which references
multiple systems. The additional systems are then also passed to the decision procedure. For
example, if we want to transform our leading TRS R (see Example 1) into an equivalent
complete TRS (on ground terms), we pass both R and the formula

(GWCR0 ∧ SN0) ∧ ∀ s ∀ t (s ↔∗0 t ⇐⇒ s ↔∗1 t)

to FORT-s. Here the index 1 refers toR and the index 0 to the system to be synthesized. This
returns the TRS consisting of the rules

a→ b f(b)→ g(a, a) g(b,b)→ a

Using formulas referencing multiple TRSs FORT-s can also be used to synthesize multiple
systems.

For convenience FORT-s supports multiple ways to specify the signature used during
synthesis. The full user interface of FORT-s is given in Appendix C.

7.5 Undecidability of Synthesis

Since the first-order theory is decidable for linear variable-separated TRSs a natural question
arises. Is synthesis also decidable for these systems? In other words, can we determine if
there exists a linear variable-separated TRS satisfying a given property? Unfortunately this
is not the case.

123

First-Order Theory of Rewriting… Page 57 of 76 14

Theorem 17 The following problem is undecidable:
instance: a closed formula ϕ in the first-order theory of rewriting
question: does some linear variable-separated TRS R satisfy ϕ

Proof We show the undecidability by a reduction from Post correspondence problem. Let P
be a finite set of pairs of non-empty strings over the alphabet {0, 1}. We define a formula ϕP

in the first-order theory of rewriting that is satisfiable if and only if P has a solution. To this
end, consider the following predicates:

node(x) := x → x

next(x, y) := node(x) ∧ node(y) ∧ x → y ∧ x �= y

step := ∀x (

node(x) ∧ x �= e �⇒ ∃ y next(x, y))

unique := ∀x ∀y ∀z(next(x, y) ∧ next(x, z) �⇒ y = z
)

linear := step ∧ unique

value(x, 0) := x → a ∧ ¬(x → b)

value(x, 1) := x → b ∧ ¬(x → a)

finite := ¬∃ x INF �=(x)

Positions in a solution string are represented by nodes, which are linearly ordered. Nodes are
characterized by self-loops. The special nodes s and e mark the starting and final positions
in a solution of P . The predicate finite ensures that solution strings are finite. We have two
additional elements, a and b that correspond to the symbols 0 and 1.

border(x, y) := node(x) ∧ node(y) ∧ ∃ z (¬node(z) ∧ x → z ∧ z→ y)

The border predicate marks the two positions in a solution string corresponding to the
decomposition into first and second components. The latter is checked by the solution
predicate:

match(x0, x1 · · · xk, v1 · · · vk) :=
k

∧

i=1

(

next(xi−1, xi) ∧ value(xi , vi)
)

pair(x, y, v, w) := ∃ x1 . . . ∃ x|v|∃ y1 . . . ∃ y|w|
(

border(x|v|, y|w|) ∧
match(x, x1 · · · x|v|, v) ∧match(y, y1 · · · y|w|, w)

)

solution := ∀x ∀y (

border(x, y) �⇒
(x = y ∧ x = e) ∨

∨

(v,w)∈P
pair(x, y, v, w)

)

The formula ϕP is now defined as

∃ s ∃ e ∃ a ∃ b (

s �= e ∧ border(s, s) ∧ linear ∧ finite ∧ solution
)

��
Note that the witnessing TRSs constructed in the above proof are actually abstract rewrite

systems (ARSs) that consist of rewrite rules between constants. The construction is illus-
trated in Fig. 11 , for the PCP instance P = {(1, 011), (10, 11), (001, 00)} with solution
001|10|001|1 = 00|11|00|011. The separation bars correspond to the elements b1, b2 and
b3. Node n9 witnesses e. Elements 0 and 1 witness a and b.

123

 14 Page 58 of 76 A. Middeldorp et al.

Fig. 11 The construction for PCP instance P

The synthesis problem is obviously decidable for ARSs over a fixed signature, but remains
undecidable for TRSs over a fixed signature, sincewe can still generate an arbitrary number of
ground terms using non-constant function symbols. Take for example the signature {E, s, 0},
where E and s are unary function symbols and 0 is a constant. We can then represent an
arbitrary number n of objects (nodes, borders and values in the encoding) using ground
terms of the shape E(sn(0)). The rules of the ARS correspond to rules between such ground
terms of the generated TRS. (The inclusion of the function symbol E removes any possibility
of unwanted overlap between rules of the TRS.)

8 Experiments

In this section we describe the experiments we performed with FORT-h, FORT-s, and FOR-
Tify. We include version 1.0 of FORT-h, which was first published as part of an artifact5 in
conjunction with [42]. The current version of FORT-h is 2.0. Full details of the experiments
are available from the website6 accompanying this paper. Precompiled binaries of FORT-h
2.0, FORT-s, and FORTify are available from the same site. All experiments were run on a
computer equipped with an Intel Core i7-5930K processor with 6 cores, and with 32 GB of
memory. To remove any ambiguity in the calls made to the tools we use FORT-syntax (see
Appendix A) to specify formulas in this section. This also aids in replicating the experiments.

8.1 FORT-h and FORTify

For the experiments reported in this section we used a timeout of 60 s for the decision tools
and 600s for FORTify.

8.1.1 Comparing Different Representations of Properties

The problems for these experiments are taken from the Confluence Problems database
(COPS),7 and consists of 122 left-linear right-ground TRSs. The formulas were taken from
the experiments reported in [46].

Experiment 1 The first three

"forall s, t, u (s ->* t & s ->* u => t join u)" (15)

5 https://fortissimo.uibk.ac.at/tacas2021/
6 https://fortissimo.uibk.ac.at/jar
7 https://cops.uibk.ac.at/

123

https://fortissimo.uibk.ac.at/tacas2021/
https://fortissimo.uibk.ac.at/jar
https://cops.uibk.ac.at/

First-Order Theory of Rewriting… Page 59 of 76 14

Table 5 FORT-h (with FORTify) and FORT-j run on GCR formulas

YES ∅-time ✔ NO ∅-time ✔ ∞ total (✔) time

(15) FORT-h 2.0 37 0.89 s 37 84 0.69 s 81 1 151.12 s (0.8h)

FORT-h 1.0 36 0.26 s 10 84 0.56 s 16 2 176.23 s (17.6h)

FORT-j 37 0.31 s – 82 0.52 s – 3 234.08 s

(16) FORT-h 2.0 38 1.50 s 37 84 0.06 s 81 0 62.13 s (0.9h)

FORT-h 1.0 37 1.48 s 10 84 0.09 s 16 1 122.55 s (17.8h)

FORT-j 37 0.32 s – 82 0.50 s – 3 233.20 s

(17) FORT-h 2.0 37 0.91 s 37 83 0.04 s 81 2 156.64 s (1.0h)

FORT-h 1.0 36 0.45 s 6 83 0.08 s 9 3 202.64 s (18.2h)

FORT-j 37 0.32 s – 82 0.55 s – 3 236.69 s

"forall s, t, u (s ->* t & s -> u => t join u)" (16)

"forall t, u (t <->* u => t join u)" (17)

denote different but equivalent formulations of ground-confluence (GCR). The results are
shown in Table 5, where the YES (NO) column shows the number of systems determined to
be (non-)ground-confluent together with average time (∅-time) the tool took. The∞ column
is the number of timeouts. To compare overall performance the total time column contains
the sum of all run times, including timeouts but excluding the time taken by FORTify. The ✔

columns show the numbers of certifiable results as well as the overall time taken by FORTify.
These results show that, even though they have the same meaning, the choice of formula
has an impact on performance. Most notably this can be seen when comparing the number
of solved problems by FORT-h 2.0. The formula (16) (semi-confluence) was fastest with no
timeouts, followed by (15) with one timeout and (17) with two. It is apparent that formulas
containing conversion (↔∗) are especially slow, which we will also see in later experiments.
Further note that FORT-h 2.0 can solve an additional problem compared to the 1.0 version,
for each formula.

Interestingly FORT-h (2.0) is generally faster and can solve more problems than FORT-j
even though the latter implements parallelism. This performance advantage is more promi-
nent in systems which are non-confluent where FORT-h can solve more problems, while for
problems with the answer YES, FORT-j can solve close to the same number of problems,
while taking less time per problem in general. The table also shows that FORTify can certify
most of the results, which is a large improvement over the previous version. Here the differ-
ence between the three formulas is not as visible, but it is also faster on (16) and (15), and
slowest on (17). The times for FORTify must also be seen in the context that it ran on more
problems on the first two formulas, since FORT-h could produce more certificates. No wrong
results by the decision tools where identified.

Experiment 2 The second set of formulas represents the normal form property, restricted to
ground terms (GNFP):

"forall t, u (t <->* u & NF(u) => t ->* u)" (18)

"forall s, t, u (s -> t & s ->! u => t ->* u)" (19)

"forall t (WN(t) => CR(t))" (20)

The results for these are shown in Table 6. The same pattern is observed, where even though

123

 14 Page 60 of 76 A. Middeldorp et al.

Table 6 FORT-h (with FORTify) and FORT-j run on GNFP formulas

YES ∅-time ✔ NO ∅-time ✔ ∞ Total (✔) time

(18) FORT-h 2.0 59 0.30 s 57 63 0.04 s 63 0 20.37 s (0.5h)

FORT-h 1.0 59 0.70 s 31 63 0.07 s 20 0 45.62 s (14.6h)

FORT-j 59 0.23 s – 63 0.39 s – 0 38.16 s

(19) FORT-h 2.0 59 0.02 s 59 63 0.01 s 63 0 1.76 s (0.1h)

FORT-h 1.0 59 0.03 s 46 63 0.01 s 50 0 2.55 s (6.3h)

FORT-j 59 0.22 s – 63 0.30 s – 0 31.83 s

(20) FORT-h 2.0 59 0.03 s 56 62 0.11 s 62 1 68.83 s (0.8h)

FORT-h 1.0 59 0.05 s 42 62 0.12 s 45 1 70.51 s (8.6h)

FORT-j 59 0.31 s – 62 0.64 s – 1 117.86 s

Table 7 FORT-h 2.0 run on
"∼forall s,t
(s <->* t)"
with differing encodings of
conversion

YES ∅-time NO ∅-time ∞ total time

(21) 91 0.10 s 31 0.42 s 0 22.00 s

(22) 91 0.10 s 31 0.48 s 0 24.22 s

(23) 91 0.07 s 31 0.41 s 0 19.31 s

all three can (dis)prove satisfaction for the same formulas, FORT-h 2.0 is faster than FORT-j
overall, and has improved over FORT-h 1.0.

Since the representations containing conversion (↔∗) in the previous experiments are
outperformed by the other representations, it is often a good idea to avoid it. Obviously this is
not always possible. Take the properties UNC, CE or consistency for example. It is therefore
important to choose the correct representation in the primitive automata constructions, to
ensure good performance when conversion cannot be avoided.

Experiment 3 We tested the following three representations of conversion for a TRS R:

((→ε
R)− ∪ →ε

R)
̂+)

�
� (21)

((→ε
R)− ◦̂ →ε)

̂+
R)

�
� (22)

((→ε
R∪R−)

̂+)
�
� (23)

The representation (21) is the one listed in Table 2. Using composition (̂◦) instead of union
as in (22) works because

(→ε
R)− ◦̂ →ε

R = ((→ε
R)− ◦ −→‖ R) ∪ ((−→‖ R)− ◦ →ε

R)

The third representation (23) uses the identity →ε
R∪R− = ↔ε

R and is the default used
by FORT-h. The results of running FORT-h 2.0 on the COPS dataset, using the formula
"∼forall s, t (s <->* t)" for consistencywith the three different representations
of conversion can be seen in Table 7 . We can see that (23) is the fastest with and overall
runtime of 19.31 s. It is about 12% faster than (21) and about 20% faster than (22). Also
important is that (23) produces smaller automata, which leads to better performance when
conversion is embedded within larger formulas. Consider for example COPS #741:

if(true, a, x)→ a if(true,g(a), x)→ g(a) g(a)→ g(g(a))

123

https://cops.uibk.ac.at/?q=741

First-Order Theory of Rewriting… Page 61 of 76 14

Table 8 FORT-h 2.0 (with FORTify) run on normalization with different encodings of NF

YES ∅-time ✔ NO ∅-time ✔ ∞ total (✔) time

"NF(t)" 41 0.02 s 41 81 0.00 s 81 0 0.85 s (20.50 s)

"∼exists u (t -> u)" 41 0.02 s 41 81 0.00 s 81 0 1.05 s (23.71 s)

if(true,b, x)→ b if(true,g(b), x)→ g(b) g(b)→ a

if(false, x, a)→ a if(false, x,g(a))→ g(a) f(a,b)→ b

if(false, x,b)→ b if(false, x,g(b))→ g(b) f(g(g(a)), x)→ b

The RR2 automata representing (21) and (22) both contain 233 states, 7927 transitions and
9 ε-transitions before trimming, and 132 states and 4937 transitions after. In comparison
the automaton for (23) contains 152 states, 3975 transitions and 9 ε-transitions before, and
75 states with 2313 transitions after trimming. Overall (23) therefore has less than half the
number of transitions in this example, which can have a significant effect in any later closure
operations.

The final experiment in this subsection involves the normal form predicate NF(t), which
is implemented in FORT-h according to the description in Sect. 5.4, instead of using the
equivalent formula ¬∃ u (t → u).

Experiment 4 Consider the formula "forall s (exists t (NF(t) & s ->*
t))" for normalization and COPS #503:

f(a, a,b,b)→ f(c, c, c, c) a→ b a→ c b→ a b→ c

When using the formula¬∃ u (t → u) for NF(t), FORT-hfirst constructs theRR2 automaton
A1 for t → u, with 4 states and 15 transitions. It then projects to construct the automaton
A2 for ∃ u (t → u) with 4 states and 13 transitions, and finally it has to determinize A2 and
construct the complement for the negated formula ¬∃ u (t → u), resulting in the automaton
A3 with 4 states and 259 transitions before and 1 state with two 2 transitions after trimming.
If instead the direct normal form predicate is used, FORT-h immediately produces the latter
automaton, without having to construct the intermediate automata or having to trim. The
impact on runtime can be seen in Table 8 . It is rather small for FORT-h, but for FORTify
the direct construction is about 13% faster. When looking at the sizes of the automata, the
average untrimmed automatonA3, for our dataset of left-linear right-groundCOPS problems,
contains 75.8 transitions while the average automaton for the normal form predicate contains
13.3 transitions.

8.1.2 Properties Involving Multiple TRSs

We also ran experiments to test performance on properties involving two TRSs. As a dataset
we constructed problems of all ordered pairs of COPS problems, resulting in 7503 pairs.

Experiment 5 The first property tested was ground-commutation (GCOM). The results, pre-
sented in Table 9, show that FORT-h is ahead of FORT-j here as well. It can (dis)prove more
problems, timing-out on only two as compared to 49 problems. Additionally it does so in
significantly less time. With FORTify we can see a large improvement over the old version.
It is able to certify close to 98% of the results found by FORT-h 2.0.

123

https://cops.uibk.ac.at/?q=503

 14 Page 62 of 76 A. Middeldorp et al.

Table 9 FORT-h (with FORTify) and FORT-j run on GCOM

YES ∅-time ✔ NO ∅-time ✔ ∞ total (✔) time

FORT-h 2.0 1381 0.10 s 1368 6120 0.02 s 5965 2 374.63 s (51.5h)

FORT-h 1.0 1381 0.16 s 878 6120 0.03 s 3666 2 517.32 s (681.5h)

FORT-j 1354 1.46 s – 6100 0.94 s – 49 10670.89 s

In the 2019 edition of the Confluence Competition [41] three tools contested the commu-
tation (COM) category:8 ACP [2], CoLL [49], and FORT-j. On input problem COPS #1118 the
tools gave conflicting answers.

Example 35 COPS #1118 is about the commutation of the TRSs COPS #669

a→ c f(a)→ b b→ b b→ h(b,h(c, a))

and COPS #695

h(a, a)→ c b→ h(b, a) b→ a f(c)→ c c→ a

To determine the correct answer we use FORT-h 2.0 to produce a certificate for ground-
commutation by calling

> fort-h -c cert -i "GCom([0],[1])" 1118.trs YES

This produces the following certificate:

(0 (rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)
(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)
(size 13 53 0))

(1 (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)
(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)
(size 11 47 0))

(2 (not 1) (not (rr2 (comp (step* (0)) (inverse (step*
(1)))) 0 1)))

(3 (and (0 2))
(and ((rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1))))
0 1)))))

(4 (exists 3)
(exists (and ((rr2 (comp (inverse (step* (1))) (step*
(0))) 0 1) (not (rr2 (comp (step* (0)) (inverse (step*
(1)))) 0 1))))))

(5 (exists 4)
(exists (exists (and ((rr2 (comp (inverse (step* (1)))

(step* (0))) 0 1) (not (rr2 (comp (step* (0))
(inverse (step* (1)))) 0 1)))))))

(6 (not 5)
(not (exists (exists (and (

(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

8 https://cops.uibk.ac.at/results/?y=2019&c=COM

123

https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=669
https://cops.uibk.ac.at/?q=695
https://cops.uibk.ac.at/results/?y=2019&c=COM

First-Order Theory of Rewriting… Page 63 of 76 14

Table 10 FORT-h 2.0 (with FORTify) run on (G)CE and G(NE)

YES ∅-time ✔ NO ∅-time ✔ ∞ total (✔) time

GCE 157 0.70 s 150 7162 0.94 s 6736 184 5.0 h (125.6h)

CE 151 0.74 s 144 7168 0.93 s 6739 184 5.0 h (127.1h)

GNE 181 0.02 s 181 7320 0.04 s 7308 2 448.75 s (5.4h)

NE 177 0.02 s 177 7324 0.04 s 7312 2 446.54 s (5.6h)

(not (rr2 (comp (step* (0)) (inverse (step* (1))))
0 1))))))))

(7 (nnf 6)
(forall (forall (or (

(not (rr2 (comp (inverse (step* (1))) (step* (0)
)) 0 1)) (rr2 (comp (step* (0)) (inverse (step* (1))
s))0 1))))))

(nonempty 7)

When passing this certificate to FORTify, after 0.2 s the output Certified is produced, so
we can be assured that the TRSs do commute. Note that the inference steps 0 and 1 contain
the optional size information. Here (size k m n) means the underlying RRn automaton
constructed by FORT-h 2.0 contains k states, m transitions, and n ε-transitions.

Experiment 6 For the second experiment using multiple TRSs we tested FORT-h 2.0 and
FORTify on conversion equivalence and normalization equivalence, once for all terms and
once for only ground-terms. FORT-h 1.0 and FORT-j have not implemented the necessary
signature extension results to cover these properties, and are therefore not run. The results
can be seen in Table 10. Comparing the properties to the corresponding ground-properties, we
can see that FORT-h 2.0 succeeds to find results on the same number of problems. However,
six results moved from YES to NO in the case of (G)CE and four in the case of (G)NE. These
correspond to TRSs where the additional constants are needed to disprove the property.
While the run times of FORT-h 2.0 stayed almost the same when comparing the ground and
non-ground properties, we can see that FORTify does take longer to certify results on the
non-ground properties. This is to be expected, since the additional constants lead to larger
automata. Simply by having a larger signature, some of the atomic constructions produce
more transition rules. While this is usually only a small difference it can have a significant
effect when embedded within a bigger formula.

8.1.3 Optimizations

To show this effect, and the improvement caused by Lemma 39 consider the following
example.

Example 36 Consider COPS #214

a→ b a→ f(a) b→ f(f(b)) f64(b)→ b

where f64 represents 64 nested applications of f. To check UNC, FORT-h 2.0 extends the
signature as needed and uses the formula for GUNC internally represented as

¬∃(∃((NF(0)× NF(1)) ∧ 0 �= 1 ∧ 0↔∗ 1))

123

https://cops.uibk.ac.at/?q=214

 14 Page 64 of 76 A. Middeldorp et al.

Table 11 FORT-h 2.0 run on UNC with and without Lemma 39

YES ∅-time NO ∅-time ∞ total time

"UNC" (with Lemma 39) 72 0.29 s 49 0.20 s 1 90.92 s

"{+2} GUNC" (two constants) 72 0.54 s 49 0.20 s 1 108.52 s

Fig. 12 Graph presentation of COPS #116

In this case no constants have to be added, since the TRS is ground. The intermediate automa-
tonA1 for the subformulaNF(0)×NF(1) contains no transitions, since the TRS has no normal
forms for the given signature. For the automatonA2 of 0 �= 1 we have 13 transitions andA3

for 0↔∗ 1 has 150,569 transitions. Like we have seen in earlier experiments, the automaton
for conversion is clearly the largest, and would also take the largest amount of time to con-
struct. However, since A1 is empty, the intersection with A2 and then further with A3 will
also be empty. And due to the lazy evaluation strategy of Haskell the third automaton will
never be constructed. Therefore FORT-h 2.0 can almost instantly (0.01 s) determine that the
automaton for the formula within the negation is empty, and conclude that UNC holds. How-
ever, if we were to ignore the optimization introduced by Lemma 39 and add two constants
the automatonA1 is no longer empty, since we added two normal forms to the domain. This
changes the numbers as follows: The automatonA1 would contain 15 transitions and 3 states,
A2 has 31 transitions and 3 states, and A3 has 150,571 transitions and 4356 states. Since
none of the automata are empty we must construct the intersection A1 ∩ A2 containing 34
transitions and 6 states. After trimming this drops to 20 transitions and 4 states. The intersec-
tion (A1 ∩A2) ∩A3 then results in an automaton with 132,652 transitions and 8584 states.
Only after trimming we see that this automaton is empty to conclude that UNC holds. Overall
this takes FORT-h 2.0 7.15 s, which is orders of magnitude slower than with the optimization.
While such large speedups are not the norm, the overall runtime on the COPS dataset for
UNC drops by about 16%, as seen in Table 11.

Example 37 To see that the optimization of collapsing strongly connected states, introduced
in Sect. 7.1, can have a significant effect consider COPS #116. It is an ARS consisting of
26 rules presented as a graph in Fig. 12. To check if it is consistent we can use the formula
"∼forall s, t (s <->* t)" which is internally represented as ∃(∃(¬ (0↔∗ 1))).
For this FORT-h constructs the automatonA for 0↔∗ 1, consisting of 8 states 418 transitions
and 3 ε-transitions. After eliminating the ε-transitions and trimming, we are left with 1 state
and 361 transitions. The complement automaton Ac which represents ¬(0 ↔∗ 1) has the
same size, which drops to zero after trimming, showing that the system is not consistent.
Overall FORT-h takes 0.34 s.

If we however remove the optimization and do not collapse strongly connected compo-
nents, we get significantly larger automata. The automaton A grows to 8427 states, 2827

123

https://cops.uibk.ac.at/?q=116
https://cops.uibk.ac.at/?q=116

First-Order Theory of Rewriting… Page 65 of 76 14

Table 12 FORT-h 2.0 run on "∼forall s, t (s <->* t)" with/out collapsing SCCs

YES ∅-time NO ∅-time ∞ Total time

Collapsing SCCs 91 0.07 s 31 0.41 s 0 19.31 s

Unoptimized 91 0.14 s 28 1.21 s 3 223.82 s

Table 13 FORT-h 2.0 compared to other tools

YES ∅-time NO ∅-time ∞/MAYBE Total time

GCR FORT-h 2.0 37 0.06 s 84 0.04 s 1 65.82 s

AGCP 24 0.02 s 79 0.07 s 19 276.42 s

NFP FORT-h 2.0 55 0.02 s 67 0.01 s 0 1.76 s

CSI 55 0.79 s 61 1.02 s 6 186.94 s

UNC FORT-h 2.0 72 0.31 s 49 0.21 s 1 92.75 s

ACP 70 0.08 s 47 0.86 s 5 345.91 s

CSI 71 0.83 s 46 1.12 s 5 187.37 s

UNR FORT-h 2.0 96 0.02 s 26 0.01 s 0 2.21 s

CSI 86 0.81 s 26 0.76 s 10 209.12 s

COM FORT-h 2.0 1365 0.10 s 6135 0.04 s 3 578.3 s

CoLL 1349 0.21 s 4015 0.13 s 2139 19.5h

ACP 1238 0.01 s 3519 0.04 s 2746 5.0h

transitions and 851,916 ε-transitions. At this point the procedure usually eliminates the ε-
transitions and trims the automaton, but FORT-h does not manage to do so within the 60s
timeout. The overall improvement on testing consistency can be seen in Table 12.

8.1.4 Comparison with Other Tools

As a last experiment we compare FORT-h to a number of state of the art tools. For the
properties GCR, NFP, UNC, UNR and COMwe chose the following tools that competed in the
corresponding categories in the confluence competition in 2021: ACP [2] in UNC and COM,
AGCP [1] in GCR, CSI [44] in NFP, UNC and UNR, and CoLL [49] in COM. All these tools
implement various sufficient conditions for the corresponding property and are not limited to
linear variable-separated or left-linear right-ground TRSs. For the sake of comparing them
to FORT-h we run them only on the left-linear right-ground TRSs in COPS, and on the pairs
of these problems for COM. The results can be seen in Table 13.

We can see that FORT-h 2.0 significantly outperforms all the other tools on this class of
systems. For all properties it can find results for more problems and can often do so with
less time per problem. This difference is especially pronounced in the COM category, where
FORT-h 2.0 can (dis)prove all but three of the 7503 problems, while ACP and CoLL timeout
or return Maybe on more than 2000 of these. Given this performance discrepancy it is of
interest to other tools to use FORT-h 2.0 on problems of this class. Here it could be used
as a black box on problems (or subproblems) as long as they are linear variable-separated

123

 14 Page 66 of 76 A. Middeldorp et al.

TRSs, and can be expressed in the first-order theory of rewriting. An example of such a tool
is CONFident [27] which uses FORT, among other tools, as part of its procedure.9

Another interesting point can be seen when comparing the first line in Table 13, where 37
YES results are reported, with the fourth line in Table 5, where 38 YES results are reported.
Both formulas check ground-confluence, but the built-inGCR property is represented slightly
different. Instead of the joinability predicate (t ↓ u), which is constructed via operations on
anchored GTTs, it uses the equivalent formula ∃ v (t →∗ v ∧ u →∗ v). In this case the
explicit formula is slower on COPS #215 leading to the additional timeout, but is faster on
other problems causing the total time to be similar. Like previous experiments this shows that
the representation of a property can have a large and non-obvious effect on performance.

8.2 FORT-s

In this subsection we report on the synthesis experiments that we performed. All experiments
were executed with the options -j 4 and +RTS -A64M, unless stated otherwise. First we
consider Fig. 6.

Experiment 7 The following TRSs were produced by FORT-s on the given formulas when
restricting the signature (using the command-line option -S "a 0 b 0 f 2") to a binary
function symbol f and two constants a and b:

"GWCR & ∼WCR & ∼GCR" a→ b f(a, x)→ a a→ f(a, a) 9 s

"GCR & ∼CR & ∼GSCR" a→ b f(a, x)→ f(a, a) f(b,b)→ a 10 s

"GNFP & ∼NFP & ∼GCR" a→ b f(a, x)→ f(a, a) f(b,b)→ f(a, a) 4 s

"GUNC & ∼UNC & ∼GNFP" a→ a f(a, x)→ a f(x,b)→ b 11 s

We do not know whether there exist TRSs over the restricted signature that satisfy
"GUNR & ∼UNR & ∼GUNC". Human expertise was used to produce a witness over a larger
signature, which was subsequently simplified using the decision mode of FORT:

b→ a c→ c d→ c f(x, a)→ A f(x,A)→ A

b→ c d→ e f(x, e)→ A f(c, x)→ A

FORT-h produces the following terms as witnesses for the fact that UNR is not satisfied:
t = A and u = f(e, $). Indeed both A and f(e, $) are normal forms reachable from f(d, $).
Moreover, we obtain witnesses t = a and u = e showing that GUNC does not hold. (The rule
c→ c is needed to satisfy GUNR.)

In the next experiment we use the infinity predicate to distinguish well-known subclasses
of linear-variable separated TRSs.

Experiment 8 The formula

∃ t INF ε←−(t) "exists t (INF(e<-,t))"

distinguishes ground TRSs from left-linear right-ground (but not ground) ones. Without any
options FORT-s produces the TRS {g(x)→ g(a)} in a fraction of a second. The formula

∃ t INF �=(t) "exists t (INF(∼ =,t))"

9 http://zenon.dsic.upv.es/confident

123

https://cops.uibk.ac.at/?q=215
http://zenon.dsic.upv.es/confident

First-Order Theory of Rewriting… Page 67 of 76 14

is true for TRSs that are not ARSs. FORT-s produces the empty TRS over the signature
consisting of the constant a and an additional constant and unary function symbol. The
second constant is not necessary, but is added by the signature step. Finally, to distinguish
linear variable-separated TRSs from left-linear right-ground TRSs, assuming the signature
contains at least one non-constant function symbol, the formula

∃ t INF ε−→(t) "exists t (INF(->e,t))"

can be used in connection with the -l option. This generates the TRS {a → x } over the
signature consisting of the constant a and an additional constant and unary function symbol.
Without the latter, the generated linear variable-separated TRS induces only a finite rewrite
relation. Adding "& CR & WN" to the last formula produces the TRS {a→ b, f(b)→ x }.
Experiment 9 Finding a locally confluent but not confluent TRSR is easy. FORT-s produces
the ground TRS

a→ b f(a)→ a a→ f(a)

when given the formula "WCR & ∼CR" is less than 1s. The well-known abstract
counterexample by Kleene

a b c d

is found by restricting the search to ARSs. The easiest way to do this is with the option -A
0, which sets the maximal arity of function symbols to 0. Moreover, the maximum number
of rewrite rules has to be set to at least four (-R 4). If we impose the additional condition
that R− is terminating (cf. [56]), the TRS

a→ b a→ g(a) b→ g(g(b))

is generated with

"WCR & ∼CR & ∼exists t (INF(*<-,t) | t +<- t)"

without any additional command-line options in less than 7s.

The next experiment shows how FORT-s can be used to complete TRSs into complete
(canonical) ones.

Experiment 10 FORT-s produces the TRS {a→ c, f(x)→ a} when presented the formula

"[0](WCR & SN) & forall s, t ([0] s <->* t <=> [1] s <->* t)"

with input.trs as additional parameter. Here input.trs consists of the three rules

c→ a f(b)→ c f(c)→ a

The result is complete (as demanded by "[0](WCR & SN)"), but not equivalent! The
reason is that "forall s, t ([0] s <->* t <=> [1] s <->* t)" ensures
ground conversion equivalence, and we have seen in Sect. 6 that an extra constant is needed
to reduce conversion equivalence to ground conversion equivalence. The same behaviour can
also be seen for our leading example, where the same formula is used. When presented the
formula

"[0](WCR & SN) & CE([0],[1])"

123

 14 Page 68 of 76 A. Middeldorp et al.

the equivalent complete TRS consisting of the rules

a→ c f(b)→ f(a) f(c)→ a

is synthesized. Note that the latter TRS is not canonical since not all right-hand sides are in
normal form. It is well-known that every system of ground equations admits a presentation
as canonical TRS. Snyder [50] proved that a ground TRS is canonical if only if it is reduced.
The latter property is easily expressible:

"[0](forall s, t (s ->e t => NF(t) & ∼exists u (s ->be u) &

forall u (s ->e u => t = u)))"

Together with "CE([0],[1])", any ground TRS is transformed into an equivalent canon-
ical one, without explicitly requiring confluence and termination. For our example TRS, we
obtain

a→ c f(b)→ c f(c)→ c

The final experiment is based on [57, Example 5.1] and shows how FORT-s can be used
to synthesize multiple TRSs.

Experiment 11 If we want to generate two terminating ARSs such that their union is non-
terminating, the formula "[0]SN & [1]SN & ∼SN" can be used in connection with the
options -A 0 and -n 2. The latter tells FORT-s to synthesize two TRSs. The additional
requirement that the composition of both relations is a subset of the transitive closure of one
of them is expressed as

"forall s, t, u ([0] s -> t & [1] t -> u => [0]

s ->+ u | [1] s ->+ u)"

In a fraction of a second FORT-s synthesizes the following two ARSs satisfying the
conjunction of these requirements:

A0 : a→ b b→ c A1 : b→ c c→ a

Using completely different techniques, similar ARSs are generated by Carpa, the tool
described in Zantema [57].

9 Conclusion

In this paper we presented a formalized decision procedure of the first-order theory of rewrit-
ing for the class of linear variable-separated TRSs. The decision procedure ultimately goes
back to Dauchet and Tison [10] and is the basis of the tool FORT-h. Different from [8, 10],
we extensively use anchored GTT relations. These have better closure properties than GTT
relations and allow to efficiently express numerous binary relations on ground terms, eas-
ing formalization efforts. We presented signature extension results that allow us to reduce
certain properties on arbitrary terms to the corresponding properties on ground terms. These
allow FORT-h to participate in categories other than GCR in the Confluence Competition. We
presented a certificate language in which certificates for the yes/no output of the decision
procedure can be expressed. These certificates are validated by FORTify, the verified Haskell
program obtained from the executable Isabelle formalization. FORT-h supports properties
like commutation that involve multiple TRSs. Witness generation is useful to gain insight in

123

First-Order Theory of Rewriting… Page 69 of 76 14

why a particular property holds. The synthesis mode is used to find small TRSs that satisfy
a given property. FORT-s supports several options to control the (infinite) search space. We
showed that the synthesis problem is undecidable, already for ARSs, by a reduction from
PCP.

Comprehensive experimental results were presented, including a comparison with the
tools ACP [2], AGCP [1], CoLL [49], CSI [44] that compete with FORT-h in CoCo. Full details
are available from the web site https://fortissimo.uibk.ac.at/ which additionally provides a
convenient interface to FORT-h, FORT-s and FORTify, as well as precompiled binaries for the
three tools.

Linear variable-separated TRSs are a proper extension of left-linear right-ground TRSs.
Dropping either restriction, one quickly faces an undecidable first-order theory, even when
one-step rewriting (→) is the only predicate. This was first shown by Treinen [54]. Related
undecidability results are presented in [39, 55]. In particular, Marcinkowski [39] showed that
the first-order theory of one-step rewriting is undecidable for right-ground TRSs.

Many concrete properties expressible in the first-order theory of rewriting are known to
be decidable for much larger classes of rewrite systems. For instance, termination is known
to be decidable for right-linear right-shallow TRSs, a result by Godoy et al. [25], extending
the earlier decision result for right-ground systems of Dershowitz [14]. Termination is also
decidable for almost-orthogonal growing TRSs [43]. Confluence is decidable for right-linear
shallow TRSs [24] and for right-ground TRSs [30].

For ground TRSs, which are in the scope of FORT-h, termination is known to be decidable
in polynomial time [45]. The same holds for confluence [7]. Felgenhauer [19] showed that
confluence can be decided in cubic time. Similar complexity results for the related properties
NFP, UNC and UNR are given in [20]. The worst-case complexity of the formalized decision
procedure implemented in FORT-h is at least double exponential (cf. [26]).

Concerning synthesis, we are not aware of any other tree-automata based tool for synthe-
sizing TRSs nor of any tool that allows properties to be specified by an arbitrary first-order
formula in the theory of rewriting. Jiresch [29] developed a synthesis tool to attack the well-
known open problems [15, 16] concerning the sufficiency of certain restricted joinability
conditions on critical pairs of left-linear TRSs. Zantema [56] developed the tool Carpa+ for
synthesizing TRSs that satisfy properties which can be encoded as SMT problems. The TRSs
that can be synthesized form a small extension of the class of ARSs: A single unary function
symbol f is permitted and rules must have the shape a → b, a → f (b), or f (a) → b,
where a and b are constants. The properties are restricted to those that can be encoded into
the conjunctive fragment of SMT-LRA (linear real arithmetic). The predecessor tool Carpa
[57] synthesized combinations of ARSs with help of a SAT solver. It was used to show the
necessity of certain conditions in abstract confluence results [52, Sect. 5] and inspired us to
support multiple TRSs in FORT.

Concerning future work, improving the efficiency of FORT-h by supporting parallelism
might result in a speed-up, especially for larger formulas. The minimization of tree automata
(also non-deterministic ones) is an obvious target for further investigation. Preprocessing
techniques that go beyond the mere transformation to negation normal form will be helpful
to obtain equivalent formulas that reduce the size of the ensuing tree automata in the decision
procedure. In [28] similar ideas are applied to WSkS, in connection with MONA [31]. An
interesting question is whether FORT-h can be extended to deal with properties involving
innermost and other restrictions of rewriting. Formalization efforts that aim to transfer code
in module A to the verified code in module B in Fig. 7, are also of interest. The conversion
of FORT syntax to de Bruijn notation is a natural candidate here.

123

https://fortissimo.uibk.ac.at/

 14 Page 70 of 76 A. Middeldorp et al.

Acknowledgements This research was supported by FWF (Austrian Science Fund) project P30301. Several
persons helped to make this project successful.We are grateful to Bertram Felgenhauer for numerous contribu-
tions. Franziska Rapp implemented the first versions of FORT in OCaml and Java. She and T. V. H. Prathamesh
contributed to the early stage of the formalization of the decision procedure. Jamie Hochrainer reimplemented
the synthesis mode, resulting in FORT-s. Johannes Koch designed the web interface. We thank René Thie-
mann for advice concerning turning the formalization into executable code. The first author acknowledges the
support of the Future Value Creation Research Center of Nagoya University, where part of the research was
performed. The detailed comments of the anonymous reviewers improved the presentation.

Author Contributions All authors contributed to the research reported in themanuscript. Alexander Lochmann
performed the formalizations in Isabelle/HOL that led to FORTify. FabianMitterwallnerwas themain developer
of the artifacts (FORT-h, FORT-s and FORTify). The first draft of themanuscript waswritten byAartMiddeldorp
and all authors commented on previous versions of the manuscript. All authors read and approved the final
manuscript.

Funding Open access funding provided by Austrian Science Fund (FWF). This work was supported by FWF
(Austrian Science Fund) project P30301. The first author acknowledges the support of the Future Value
Creation Research Center of Nagoya University.

Data Availability The experiments summarized in the manuscript are available from https://fortissimo.uibk.
ac.at/jar. The same holds for binaries and sources of the artifacts.

Declarations

Conflict of interest The author declares that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Input Format

The input format of FORT-h can be roughly split into two parts: The logical structure of the
property and the involved atomic predicates and relations. The logical structure is defined by
the following grammar, where angle brackets 〈 〉 are used for non-terminal symbols:

〈formula〉 ::= 〈formula〉 〈operator〉 〈formula〉 | ∼ 〈formula〉
| 〈quantifier〉 〈vars〉(〈formula〉) | 〈var〉 〈relation〉 〈var〉
| 〈property〉 | {+〈nat〉} 〈formula〉 | [〈trss〉] 〈formula〉
| (〈formula〉)

〈operator〉 ::= <=> | => | | | &
〈quantifier〉 ::= forall | exists

〈trss〉 ::= 〈nat〉 | 〈nat〉,〈trss〉
〈vars〉 ::= 〈var〉 | 〈var〉,〈vars〉

Here 〈nat〉 is a natural number, 〈var〉 is an alphanumerical string representing a variable
name and 〈trss〉 is a comma separated list of indices referencing TRSs. The logical operators

123

https://fortissimo.uibk.ac.at/jar
https://fortissimo.uibk.ac.at/jar
http://creativecommons.org/licenses/by/4.0/

First-Order Theory of Rewriting… Page 71 of 76 14

are all right-associative. Regarding precedence the unary operations bind strongest with the
binary operators respecting the order & > | > => > <=>. Most represented operations
have the meaning expected from a first-order formula, the exception being the operations
{+〈nat〉} 〈formula〉, which allows the user to specify the number of constants to be added
to the signature when evaluating the subformula, and [〈trss〉] 〈formula〉, which restricts
and permutes the indices of TRSs for the underlying subformula.

The atomic binary relations supported by FORT-h are defined as:

〈relation〉 ::= ->e | ->e* | ->e= | ->e+ | e<- | *e<- | =e<- | +e<-
| ->be | ->be* | ->be= | ->be+ | be<- | *be<- | =be<- | +be<-
| -> | ->* | ->= | ->+ | <- | *<- | =<- | +<-
| ->! | -||-> | !<- | <-||- | <-> | <->*
| = | join | meet

Here the ->e stands for a root step, ->be for a step below the root, -> a normal rewrite step,
->! is a reduction to normal form,-||-> is a parallel step,join stands for joinability↓ and
meet for meetability ↑. The suffix * stands for the transitive-reflexive, + for the transitive,
and = for the reflexive closures.

Example 38 Consider calling FORT-h with three input TRSs on the formula:

"{+2} forall s, t ([2,0] ([0] s ->! t <=> [1] s ->! t))"

The {+2} instructs FORT-h to add two constants to the signature when constructing the
automata. Normally "[0] s ->! t" means that term s normalizes to term t in the first
input TRS (the one with index 0), however here the context has changed due to the restrict
modifier [2,0], which permutes and restricts the three TRSs in the subformula ([0] s
->! t <=> [1] s ->! t) such that [0] refers to the TRS with index 2 and [1]
refers to the TRS with index 0. So FORT-h checks normalization equivalence of the third and
first input TRS, while ignoring the second one. The two constants are added according to
Table 3, since one of the involved TRSs may be linear variable-separated.

It is also possible to use somepredefinedproperties byname.Herewedifferentiate between
properties of terms and properties of whole TRSs.

〈property〉 ::= 〈prop_of_term〉 | 〈prop_of_system〉
The properties on whole TRSs have the same names as defined in Sect. 6.

〈prop_of_system〉 := CR | WCR | SCR | NFP | UNC | UNR | WN | SN
| GCR | GWCR | GSCR | GNFP | GUNC | GUNR
| 〈binary_prop〉([〈trss〉],[〈trss〉])

〈binary_prop〉 ::= COM | GCOM | CE | GCE | NE | GNE
The term properties take a variable as an additional argument.

〈prop_of_term〉 ::= 〈prop〉(〈var〉) | 〈finiteness〉(〈binrel〉, 〈var〉)
〈prop〉 ::= CR | WCR | WN | NFP | SN | NF | SCR | UNR

〈finiteness〉 ::= INF | FIN
〈binrel〉 ::= 〈binrel〉 〈operator〉 〈binrel〉 | ∼ 〈binrel〉 | 〈relation〉

123

 14 Page 72 of 76 A. Middeldorp et al.

Note that the INF and FIN properties also take a binary relation as an argument. This is
usually one of the predefined rewrite relations, but may also be a more complex relation
constructed by combining the rewrite relations using logical operators.

The property names (with exception of NF and INF) are all just a shorthand for larger
formulas. In general these correspond to the definitions of the property in Sect. 6. However
there are some exceptions. Take for example ground-confluence (GCR). This unfolds to the
formula

forall s, t, u (s -> u & s ->* t =>
exists v (u ->* v & t ->* v))

The s -> u on the left of the implication differs from the original definition of GCR.
However this property (known as semi-confluence [3]) can be shown to be equivalent to
GCR by a simple induction proof, and generally leads to smaller automata in the decision
procedure. The runtime comparison between different representations of ground-confluence
and other properties is shown in Sect. 8.

Appendix B: User Interface of FORT-h

The command-line interface of FORT-h is

fort-h [OPTIONS] FORMULA TRS.trs ..

where TRS.trs .. is one ore more files containing TRSs in the COPS format used in
CoCo. It also supports many-sorted TRSs in the MSTRS format in the GCR category. The
additional options are

-c FILE write certificate to FILE
-i enable the additional 〈info〉 in the inference steps of the certificate
-v enables verbose output (e.g., the internal representation)
-w enables witness generation

Witness generation enables the tool to produce witnesses/counterexamples and will be
described in detail later in this section. For now, consider Example 28 and the call

> fort-h -w "CR" input.trs
NO
formula body / witness:

(0 (<- o ->*) 1 & ˜ 0 (->* o *<-) 1)
0 = g(_00())
1 = g(_01())

So in addition to the answer NO, it also outputs a counterexample for the given formula
consisting of the two terms g(_00()) and g(_01()). Here _00 and _01 are additional
constants required to reduce confluence to ground-confluence, and represent variables. The
terms should therefore be read as g(x) and g(y).

Appendix C: User Interface of FORT-s

The command-line interface of FORT-s is given below:

123

First-Order Theory of Rewriting… Page 73 of 76 14

fort-s [OPTIONS] FORMULA [TRS.trs ..]

where [TRS.trs..] are zero or more files containing TRSs, and the options are
-j NUM jobs to run in parallel (default: 1)
-l search for linear variable-separated TRSs
-n NUM number of systems to be synthesized (default: 1)
-S STRING specifies signature (default: uses signature step)
-a STRING specifies arities (default: uses signature step)
-s NUM signature step (default: 2)
-A NUM maximal generated arity (default: 3)
-D NUM upper bound on height (default: 3)
-r NUM lower bound on number of rules per system (default: 0)
-R NUM upper bound on number of rules per system (default: 3)
-v NUM upper bound on number of variables (default: 1)

The signature used during synthesis can be specified in multiple ways, the two simplest
being with the command line flags -S and -a. With the option -S the signature is specified
by a string listing the symbols in F together with their arities, like in the call

fort-s -S "a 0 f 2 g 1" "GCR & ∼CR"

Since we often do not care about the presentation of function symbols it is also permitted to
just list arities with the option -a:

fort-s -a "0 1" "WN & ∼SN"

FORT-s then generates unique symbol names for the user. If no signature is given, FORT-s
generates successive signatures in a systematic manner with the help of a signature step and
a bound on the maximal arity. If the signature step number is set to 1 and the arity is bounded
by 3, signatures with the following arities are created:

{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {0, 0, 1, 2, 3}, {0, 0, 1, 1, 2, 3}, . . .
If the signature step is set to 2 (its default value), we obtain

{0}, {0, 0}, {0, 0, 1}, {0, 0, 1, 1}, {0, 0, 1, 1, 2}, . . . ,
{0, 0, 1, 1, 2, 2, 3, 3}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, . . .

The signature step is passed to FORT-s with the option -s and the bound on the arities by
-A. Note that when additional systems are passed to FORT-s, it will use the union of the
signatures of those systems.

When synthesizing n TRSs, in the given formula the indices 0 through n − 1 refer to
the systems to be generated, and the indices greater than n − 1 refer to systems passed as
additional inputs to FORT-s.

References

1. Aoto, T., Toyama, Y.: Ground confluence prover based on rewriting induction. In: Kesner, D., Pientka, B.
(eds.) Proc. 1st International Conference on Formal Structures for Computation and Deduction. Leibniz
International Proceedings in Informatics, vol. 52, pp. 33:1–33:12 (2016). https://doi.org/10.4230/LIPIcs.
FSCD.2016.33

2. Aoto, T., Yoshida, J., Toyama,Y.: Proving confluence of term rewriting systems automatically. In: Treinen,
R. (ed.) Proc. 20th International Conference on Rewriting Techniques and Applications. Lecture Notes
in Computer Science, vol. 5595, pp. 93–102 (2009). https://doi.org/10.1007/978-3-642-02348-4_7

123

https://doi.org/10.4230/LIPIcs.FSCD.2016.33
https://doi.org/10.4230/LIPIcs.FSCD.2016.33
https://doi.org/10.1007/978-3-642-02348-4_7

 14 Page 74 of 76 A. Middeldorp et al.

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998).
https://doi.org/10.1017/CBO9781139172752

4. Berghofer, S.: First-order logic according to Fitting. Archive of Formal Proofs (2007). https://isa-afp.org/
entries/FOL-Fitting.html

5. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning inductive into equational specifications. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International Conference on Theorem Proving
in Higher Order Logics. Lecture Notes in Computer Science, vol. 5674, pp. 131–146 (2009). https://doi.
org/10.1007/978-3-642-03359-9_11

6. Comon, H.: Sequentiality, monadic second-order logic and tree automata. Inf. Comput. 157(1–2), 25–51
(2000). https://doi.org/10.1006/inco.1999.2838

7. Comon, H., Godoy, G., Nieuwenhuis, R.: The confluence of ground term rewrite systems is decidable
in polynomial time. In: Proc. 42th IEEE Symposium on Foundations of Computer Science, pp. 298–307
(2001). https://doi.org/10.1109/SFCS.2001.959904

8. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications (2008). http://tata.gforge.inria.fr/

9. Dauchet, M., Tison, S.: Decidability of confluence for ground term rewriting systems. In: Budach, L. (ed.)
Proc. 5th International Conference on Fundamentals of Computation Theory. Lecture Notes in Computer
Science, vol. 199, pp. 80–84 (1985). https://doi.org/10.1007/BFb0028794

10. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In: Proc. 5th IEEE Symposium
on Logic in Computer Science, pp. 242–248 (1990a). https://doi.org/10.1109/LICS.1990.113750

11. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable (extended version). Technical
Report I.T. 197, LIFL (1990b)

12. Dauchet, M., Heuillard, T., Lescanne, P., Tison, S.: Decidability of the confluence of finite ground term
rewriting systems and of other related term rewriting systems. Inf. Comput. 88(2), 187–201 (1990). https://
doi.org/10.1016/0890-5401(90)90015-A

13. de Bruijn, N.G.: Lambda calculus notationwith nameless dummies: A tool for automatic formulamanipu-
lation,with application to theChurch-Rosser theorem. IndagationesMathematicae 34(5), 381–392 (1972).
https://doi.org/10.1016/1385-7258(72)90034-0

14. Dershowitz, N.: Termination of linear rewriting systems (preliminary version). In: Even, S., Kariv, O.
(eds.) Proc. 8th International Colloquium on Automata, Languages and Programming, vol. 115, pp.
448–458 (1981). https://doi.org/10.1007/3-540-10843-2_36

15. Dershowitz, N.: Open. Closed. Open. In: Giesl, J. (ed.) Proc. 16th International Conference on Rewriting
Techniques and Applications. Lecture Notes in Computer Science, vol. 3467, pp. 276–393 (2005). https://
doi.org/10.1007/978-3-540-32033-3_28

16. Dershowitz, N., Jouannaud, J.-P., Klop, J.W.: Open problems in rewriting. In: Book, R.V. (ed.) Proc. 4th
International Conference on Rewriting Techniques andApplications. Lecture Notes in Computer Science,
vol. 488, pp. 445–456 (1991). https://doi.org/10.1007/3-540-53904-2_120

17. Deruyver, A., Gilleron, R.: The reachability problem for ground TRS and some extensions. In: Proc. 14th
Colloquium on Trees in Algebra and Programming. Lecture Notes in Computer Science, vol. 351, pp.
227–243 (1989). https://doi.org/10.1007/3-540-50939-9_135

18. Durand, I., Middeldorp, A.: Decidable call-by-need computations in term rewriting. Inf. Comput. 196(2),
95–126 (2005). https://doi.org/10.1016/j.ic.2004.10.003

19. Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time. In: Tiwari, A. (ed.)
Proc. 23nd International Conference on Rewriting Techniques and Applications. Leibniz International
Proceedings in Informatics, vol. 15, pp. 165–175 (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.165

20. Felgenhauer, B.: Deciding confluence and normal form properties of ground term rewrite systems
efficiently. Log. Methods Comput. Sci. (2018). https://doi.org/10.23638/LMCS-14(4:7)2018

21. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis with state-compatible
automata. Inf. Comput. 253(3), 467–483 (2017). https://doi.org/10.1016/j.ic.2016.06.011

22. Felgenhauer, B., Middeldorp, A., Prathamesh, T.V.H., Rapp, F.: A verified ground confluence tool for
linear variable-separated rewrite systems in Isabelle/HOL. In: Mahboubi, A., Myreen, M.O. (eds.) Proc.
8th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 132–143 (2019).
https://doi.org/10.1145/3293880.3294098

23. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and complexity compe-
tition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Proc. 25th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science,
vol. 11429, pp. 156–166 (2019). https://doi.org/10.1007/978-3-030-17502-3_10

24. Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Ong, L. (ed.) Proc. 14th
International Conference on Computer Science Logic. Lecture Notes in Computer Science, vol. 3634,
pp. 541–556 (2005). https://doi.org/10.1007/11538363_37

123

https://doi.org/10.1017/CBO9781139172752
https://isa-afp.org/entries/FOL-Fitting.html
https://isa-afp.org/entries/FOL-Fitting.html
https://doi.org/10.1007/978-3-642-03359-9_11
https://doi.org/10.1007/978-3-642-03359-9_11
https://doi.org/10.1006/inco.1999.2838
https://doi.org/10.1109/SFCS.2001.959904
http://tata.gforge.inria.fr/
https://doi.org/10.1007/BFb0028794
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1016/0890-5401(90)90015-A
https://doi.org/10.1016/0890-5401(90)90015-A
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/3-540-10843-2_36
https://doi.org/10.1007/978-3-540-32033-3_28
https://doi.org/10.1007/978-3-540-32033-3_28
https://doi.org/10.1007/3-540-53904-2_120
https://doi.org/10.1007/3-540-50939-9_135
https://doi.org/10.1016/j.ic.2004.10.003
https://doi.org/10.4230/LIPIcs.RTA.2012.165
https://doi.org/10.23638/LMCS-14(4:7)2018
https://doi.org/10.1016/j.ic.2016.06.011
https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/11538363_37

First-Order Theory of Rewriting… Page 75 of 76 14

25. Godoy, G., Huntingford, E., Tiwari, A.: Termination of rewriting with right-flat rules. In: Baader, F.
(ed.) Proc. 18th International Conference on Rewriting Techniques and Applications. Lecture Notes in
Computer Science, vol. 4533, pp. 200–213 (2007). https://doi.org/10.1007/978-3-540-73449-9_16

26. Göller, S., Lohrey, M.: The first-order theory of ground tree rewrite graphs. Log. Methods Comput. Sci.
(2014). https://doi.org/10.2168/LMCS-10(1:7)2014

27. Gutiérrez, R., Lucas, S., Vítores, M.: Confluence of conditional rewriting in logic form. In: Bojanczyk,
M., Chekuri, C. (eds.) Proc. 41st IARCSAnnual Conference on Foundations of Software Technology and
Theoretical Computer Science. Leibniz International Proceedings in Informatics, vol. 213, pp. 44:1–44:18
(2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.44

28. Havlena, V., Holík, L., Lengal, O., Vales, O., Vojnar, T.: Antiprenexing for WSkS: A little goes a long
way. In: Albert, E., Kovacs, L. (eds.) Proc. 23rd International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning. EPiC Series in Computing, vol. 73, pp. 298–316 (2020). https://
doi.org/10.29007/6bfc

29. Jiresch, E.: A term rewriting laboratorywith systematic and randomgeneration and heuristic test facilities.
Master’s thesis, Vienna University of Technology (2008)

30. Kaiser, L.: Confluence of right ground term rewriting systems is decidable. In: Sassone, V. (ed.) Proc.
8th International Conference on Foundations of Software Science and Computation Structures. Lecture
Notes in Computer Science, vol. 3441, pp. 470–489 (2005). https://doi.org/10.1007/978-3-540-31982-
5_30

31. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found. Comput.
Sci. 13(4), 571–586 (2002). https://doi.org/10.1142/S012905410200128X

32. Lochmann, A.: Reducing Rewrite Properties to Properties on Ground Terms. Archive of Formal Proofs
(2022). https://isa-afp.org/entries/Rewrite_Properties_Reduction.html

33. Lochmann, A., Felgenhauer, B.: First-order theory of rewriting. Archive of Formal Proofs (2022). https://
isa-afp.org/entries/FO_Theory_Rewriting.html

34. Lochmann, A., Middeldorp, A.: Formalized proofs of the infinity and normal form predicates in the first-
order theory of rewriting. In: Biere, A., Parker, D. (eds.) Proc. 26th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science, vol.
12079, pp. 178–194 (2020). https://doi.org/10.1007/978-3-030-45237-7_11

35. Lochmann, A., Felgenhauer, B., Sternagel, C., Thiemann, R., Sternagel, T.: Regular tree relations. Archive
of Formal Proofs (2021a). https://www.isa-afp.org/entries/Regular_Tree_Relations.html

36. Lochmann, A., Middeldorp, A., Mitterwallner, F., Felgenhauer, B.: A verified decision procedure for
the first-order theory of rewriting for linear variable-separated rewrite systems variable-separated rewrite
systems in Isabelle/HOL. In: Hriţcu, C., Popescu, A. (eds.) Proc. 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pp. 250–263 (2021b). https://doi.org/10.1145/3437992.
3439918

37. Lochmann, A., Mitterwallner, F., Middeldorp, A.: Formalized signature extension results for conflu-
ence, commutation and unique normal forms. In: Mimram, S., Rocha, C. (eds.) Proc. 10th International
Workshop on Confluence, pp. 25–30 (2021)

38. Lochmann, A., Mitterwallner, F., Middeldorp, A.: Formalized signature extension results for equivalence.
In: Winkler, S., Rocha, C. (eds.) Proc. 11th International Workshop on Confluence, pp. 42–47 (2022)

39. Marcinkowski, J.: Undecidability of the first order theory of one-step right ground rewriting. In: Comon,
H. (ed.) Proc. 8th International Conference on Rewriting Techniques and Applications. Lecture Notes in
Computer Science, vol. 1232, pp. 241–253 (1997). https://doi.org/10.1007/3-540-62950-5_75

40. Middeldorp, A.: Approximating dependency graphs using tree automata techniques. In: Goré, R., Leitsch,
A., Nipkow, T. (eds.) Proc. 1st International Joint Conference on Automated Reasoning. LNAI, vol. 2083,
pp. 593–610 (2001). https://doi.org/10.1007/3-540-45744-5_49

41. Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) Proc. 25th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Lecture Notes in Computer Science, vol. 11429, pp. 25–40 (2019).
https://doi.org/10.1007/978-3-030-17502-3_2

42. Mitterwallner, F., Lochmann, A., Middeldorp, A., Felgenhauer, B.: Certifying proofs in the first-order
theory of rewriting. In: Groote, J.F., Larsen, K.G. (eds.) Proc. 27th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science, vol.
12652, pp. 127–144 (2021). https://doi.org/10.1007/978-3-030-72013-1_7

43. Nagaya, T., Toyama, Y.: Decidability for left-linear growing term rewriting systems. Inf. Comput. 178(2),
499–514 (2002). https://doi.org/10.1006/inco.2002.3157

44. Nagele, J., Felgenhauer, B.,Middeldorp, A.: CSI: New evidence—a progress report. In: deMoura, L. (ed.)
Proc. 26th International Conference on Automated Deduction. LNAI, vol. 10395, pp. 385–397 (2017).
https://doi.org/10.1007/978-3-319-63046-5_24

123

https://doi.org/10.1007/978-3-540-73449-9_16
https://doi.org/10.2168/LMCS-10(1:7)2014
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.44
https://doi.org/10.29007/6bfc
https://doi.org/10.29007/6bfc
https://doi.org/10.1007/978-3-540-31982-5_30
https://doi.org/10.1007/978-3-540-31982-5_30
https://doi.org/10.1142/S012905410200128X
https://isa-afp.org/entries/Rewrite_Properties_Reduction.html
https://isa-afp.org/entries/FO_Theory_Rewriting.html
https://isa-afp.org/entries/FO_Theory_Rewriting.html
https://doi.org/10.1007/978-3-030-45237-7_11
https://www.isa-afp.org/entries/Regular_Tree_Relations.html
https://doi.org/10.1145/3437992.3439918
https://doi.org/10.1145/3437992.3439918
https://doi.org/10.1007/3-540-62950-5_75
https://doi.org/10.1007/3-540-45744-5_49
https://doi.org/10.1007/978-3-030-17502-3_2
https://doi.org/10.1007/978-3-030-72013-1_7
https://doi.org/10.1006/inco.2002.3157
https://doi.org/10.1007/978-3-319-63046-5_24

 14 Page 76 of 76 A. Middeldorp et al.

45. Plaisted, D.A.: Polynomial time termination and constraint satisfaction tests. In: Kirchner, C. (ed.) Proc.
5th International Conference on Rewriting Techniques and Applications. Lecture Notes in Computer
Science, vol. 690, pp. 405–420 (1993). https://doi.org/10.1007/978-3-662-21551-7_30

46. Rapp, F., Middeldorp, A.: Automating the first-order theory of left-linear right-ground term rewrite sys-
tems. In: Kesner, D., Pientka, B. (eds.) Proc. 1st International Conference on Formal Structures for
Computation and Deduction. Leibniz International Proceedings in Informatics, vol. 52, pp 36:1–36:12
(2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.36

47. Rapp, F., Middeldorp, A.: Confluence properties on open terms in the first-order theory of rewriting. In:
Accattoli, B., Tiwari, A. (eds.) Proc. 5th International Workshop on Confluence, pp. 26–30 (2016)

48. Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Proc. 9th Interna-
tional Joint Conference on Automated Reasoning. LNAI, vol. 10900, pp. 81–88 (2018). https://doi.org/
10.1007/978-3-319-94205-6_6

49. Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite systems. In: Felty, A.P.,
Middeldorp, A. (eds.) Proc. 25th International Conference on Automated Deduction. Lecture Notes in
Computer Science, vol. 9195, pp. 127–136 (2015). https://doi.org/10.1007/978-3-319-21401-6_8

50. Snyder, W.: A fast algorithm for generating reduced ground rewriting systems from a set of ground
equations. J. Symbol. Comput. 15(4), 415–450 (1993). https://doi.org/10.1006/jsco.1993.1029

51. Sternagel, C., Sternagel, T.: Certifying confluence of almost orthogonal CTRSs via exact tree automata
completion. In: Kesner, D., Pientka, B. (eds.) Proc. 1st International Conference on Formal Structures for
Computation and Deduction. Leibniz International Proceedings in Informatics, vol. 52, pp. 29:1–29:16
(2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.29

52. Stump, A., Zantema, H., Kimmell, G., Omar, R.E.H.: A rewriting view of simple typing. Log. Methods
Comput. Sci. (2012). https://doi.org/10.2168/LMCS-9(1:4)2013

53. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International Conference on Theorem Proving in Higher
Order Logics. Lecture Notes in Computer Science, vol. 5674, pp. 452–468 (2009). https://doi.org/10.
1007/978-3-642-03359-9_31

54. Treinen, R.: The first-order theory of linear one-step rewriting is undecidable. Theor. Comput. Sci. 208(1–
2), 179–190 (1998). https://doi.org/10.1016/S0304-3975(98)00083-8

55. Vorobyov, S.: The undecidability of the first-order theories of one step rewriting in linear canonical
systems. Inf. Comput. 175(2), 182–213 (2002). https://doi.org/10.1006/inco.2002.3151

56. Zantema,H.:Automatically finding non-confluent examples in term rewriting. In:Hirokawa,N., vanOost-
rom, V. (eds.) Proc. 2nd International Workshop on Confluence, pp. 11–15 (2013). http://cl-informatik.
uibk.ac.at/iwc/iwc2013.pdf

57. Zantema, H.: Finding small counterexamples for abstract rewriting properties. Math. Struct. Comput. Sci.
28, 1485–1505 (2018). https://doi.org/10.1017/S0960129518000221

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-662-21551-7_30
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-21401-6_8
https://doi.org/10.1006/jsco.1993.1029
https://doi.org/10.4230/LIPIcs.FSCD.2016.29
https://doi.org/10.2168/LMCS-9(1:4)2013
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1016/S0304-3975(98)00083-8
https://doi.org/10.1006/inco.2002.3151
http://cl-informatik.uibk.ac.at/iwc/iwc2013.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2013.pdf
https://doi.org/10.1017/S0960129518000221

	First-Order Theory of Rewriting for Linear Variable-Separated Rewrite Systems: Automation, Formalization, Certification
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Term Rewriting
	2.2 Tree Automata

	3 First-Order Theory of Rewriting
	4 Context Operations
	5 Formalized Tree Automata Constructions
	5.1 Infinity Predicate
	5.2 Anchored GTT Relations
	5.3 Regular Relations
	5.4 Normal Form Predicate
	5.5 Decision Procedure

	6 Properties on Non-ground Terms
	7 Automation and Certification
	7.1 Decision Mode
	7.1.1 Witness Generation
	7.1.2 Collapsing ε-transitions

	7.2 Certification
	7.3 FORTify
	7.4 Synthesis Mode
	7.5 Undecidability of Synthesis

	8 Experiments
	8.1 FORT-h and FORTify
	8.1.1 Comparing Different Representations of Properties
	8.1.2 Properties Involving Multiple TRSs
	8.1.3 Optimizations
	8.1.4 Comparison with Other Tools

	8.2 FORT-s

	9 Conclusion
	Acknowledgements
	Appendix A: Input Format
	Appendix B: User Interface of FORT-h
	Appendix C: User Interface of FORT-s
	References

