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Abstract. Much of the current research and development in the field of 
automated reasoning builds on the infrastructure provided by the TPTP 
World. The TPTP language for logical formulae is central to the far-
reaching adoption of the TPTP World. This paper introduces the Depen-
dently Typed higher-order Form (DHF) of the TPTP language. It takes 
advantage of already established binders in the syntax, and is thus a 
minimally intrusive extension to the Typed Higher-order Form (THF). 
A starting set of over 100 problems is provided to exhibit the usefulness 
and incite interest in DHF. Some tools that are already able to reason 
about problems in the DHF language are discussed. 

Keywords: Automated Theorem Proving · Dependent Types · 
Higher-Order Logic 

1 Introduction 

The TPTP World [ 31] is a well-established infrastructure that supports research, 
development, and deployment of Automated Theorem Proving (ATP) systems. 
The TPTP language [ 27] is one of the keys to the success of the TPTP World. 
It has variants that support uniform expression of logical formulae across a wide 
range of logics. The TPTP language is used for writing both problems and 
solutions, which enables convenient communication between ATP systems and 
tools. The majority of modern ATP systems accept input in TPTP syntax. The 
TPTP language variants that form the basis for this work are the monomorphic 
and polymorphic typed higher-order forms (TH0 and TH1) [ 8, 32] (see Sect. 2.1 
for the background and further variants). 

All the existing typed TPTP language variants are simply typed. However, 
there is a steady increase of interest in dependently typed systems, such as 
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Agda [ 3], Rocq [ 1, 37], and Lean [ 9]. This interest extends to the SMT commu-
nity, where the proposed version 3.0 of SMT-LIB is to include dependent types 1. 
Dependent types allow for the elegant formulation of complex data structures, 
possibly even a direct encoding of correctness properties. This paper introduces 
the Dependently Typed higher-order Form (DHF) of the TPTP language. 

While dependent types are frequently used in interactive theorem proving, 
Automated Theorem Proving (ATP) has yet to embrace dependent types. Roth-
gang et al. made first steps towards bringing ATP and dependent types together, 
by introducing dependently typed higher-order logic (DHOL) [ 17, 18]. With only 
two minor extensions to the familiar syntax of Church-style HOL [ 6], DHOL 
makes dependent types easily accessible: HOL base types are extended into 
dependent base types that can take term arguments, and the function type 
.A → B is changed into a dependent function type .Πx : A.B. Originally DHOL 
did not allow quantifying over types or stating the equality of types, but a poly-
morphic version is in development. 

As in FOL and HOL, DHOL allows arbitrary axioms that may constrain 
equality of terms in undecidable ways, and consequently DHOL’s type checking is 
undecidable (see Sect. 3.2). To manage this complication Rothgang et al. provide 
an algorithm that reduces the well-formedness of a statement to a set of proof 
obligations. Thus theorem proving is needed to check the well-formedness of 
a problem’s formulae, not just to prove the conjecture. Happily, typically that 
does not make it harder to prove the conjecture. To increase ATP support for 
DHOL, Rothgang et al. define a translation from well-typed DHOL to HOL 
that preserves provability in both directions, thereby making DHOL available for 
regular HOL ATP systems, albeit without leveraging DHOL’s dependent types 
for more efficient proving. Furthermore, the translation introduces additional 
axioms capturing the constraints of the dependent types, thereby potentially 
complicating proof search. Several interactive theorem provers had previously 
employed the same idea, sacrificing decidable typing to gain the expressivity of 
dependent types, while keeping the general feel of the language simple. Most 
importantly, PVS [ 12] essentially contains DHOL as a fragment, but extends 
it beyond the capabilities of current automated provers. Mizar [ 38], using soft 
typing on top of first-order set theory, can also capture DHOL-like features. 

A detail missing from the original formulation of DHOL was the choice opera-
tor. Ranalter et al. investigated the effects of losing the non-emptiness constraint 
in DHOL on Hilbert’s choice in [ 16]. To this end, they extended the – to the 
authors knowledge – first native implementation of DHOL into the ATP system 
Lash, by Niederhauser et al. [ 11]. Their experiments strongly suggest that native 
reasoning in DHOL significantly outperforms reasoning on translated problems. 

This work describes how DHOL is being integrated into the TPTP World, in 
a new TPTP language variant “Dependently Typed higher-order Form” (DHF), 
with monomorphic and polymorphic subvariants (DT0 and DT1). DHF requires 
only very minor changes to the familiar TPTP language syntax, mostly using 
existing notions for binders and application operators, thereby providing the

1 smt-lib.org/version3. 

https://smt-lib.org/version3.shtml
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ATP community with the necessary foundations on which research into depen-
dently typed automated reasoning can thrive. A set of over 100 problems in DHF, 
taken from several different sources, has been curated as an initial contribution 
to the TPTP problem library. The problems provide a spread of interesting for-
mulations focusing on a variety of difficulty levels in proving the conjecture as 
well as in type checking. 

Section 2 reviews the TPTP World and establishes the necessary back-
ground for DHOL, slightly generalizing the original DHOL definition to make it 
more suitable for TPTP. Section 3 introduces the new DHF form. Section 4 gives 
a short overview of the starting set of problems, and Sect. 5 introduces tools that 
already support the new form. Finally, Sect. 6 concludes and gives an outlook 
over future work. 

2 Preliminaries 

2.1 The TPTP World and Infrastructure 

The TPTP World infrastructure includes the TPTP language [ 28], the TPTP 
problem library [ 25], the TSTP solution library [ 26], the SZS ontologies [ 24], 
the Specialist Problem Classes (SPCs) and problem difficulty ratings [ 29], Sys-
temOnTPTP [ 23] and StarExec [ 22], and the CADE ATP System Competition 
(CASC) [ 30]. The problem library is a large collection of Thousands of Problems 
for Theorem Proving – hence the name. The problem library release v9.1.0 con-
tains over 26000 problems from over 50 different domains, written in the TPTP 
language. The problems are categorized into Specialist Problem Classes accord-
ing to their syntactic and logical status. The TSTP solution library is the result 
of running numerous ATP systems on the problems in that library and collecting 
their output. The TPTP and TSTP libraries provide the basis for assigning a 
difficulty rating to each problem, according to which ATP systems are able to 
solve the problem. 

The most salient feature of the TPTP World for this work is the TPTP lan-
guage. Originally the TPTP language supported only first-order clause normal 
form (CNF) [ 35]. Over time, more complex logics were added, starting with first-
order form (FOF) in TPTP release v2.0.0 [ 25]. Releases v3.0.0 and v4.0.0 added 
monomorphic typed higher-order (TH0) [ 32] and monomorphic typed first-order 
(TF0) [ 34] forms to the mix respectively. These got extended to their polymor-
phic variants TF1 and TH1 in releases v5.0.0 [ 2] and v6.0.0 [ 8]. Release v7.0.0 
of the TPTP started to include extended typed first-order form (TXF) [ 33] 
which extends the typed first-order form with conditionals, let expressions, and 
boolean terms. All the listed extensions to the TPTP are classical in nature. 
This changed with the addition of non-classical typed first-order form (NTF) in 
release v9.0.0 [ 21]. A general principle of the TPTP language is: “We provide the 
syntax, you provide the semantics”. As such, there is no a priori commitment to 
any semantics for each of the language forms, although in almost all cases the 
intended logic and semantics are well known. 

Problems and solutions are built from annotated formulae of the form
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language(name, role, formula, source, useful_info) 

The languages supported are cnf (clause normal form), fof (first-order form), 
tff (typed first-order form), and thf (typed higher-order form). The role, e.g., 
axiom, lemma, conjecture, defines the use of the formula. In a formula, terms  
and atoms follow Prolog conventions – functions and predicates start with a 
lowercase letter or are ’single quoted’, and variables start with an uppercase 
letter. The language also supports interpreted symbols that either start with a 
$, e.g., the truth constants $true and $false, or are composed of non-alphabetic 
characters, e.g., integer/rational/real numbers such as 27, 43/92, -99.66. The 
logical connectives in the TPTP language are !>, ?*, @+, @-, !, ?, , |, &, =>, 
<=, <=>, and  < >, for the mathematical connectives . Π, . Σ, choice (indefinite 
description), definite description, . ∀, . ∃, . ¬, . ∨, . ∧, . ⇒, . ⇐, . ⇔, and  .⊕ respectively. 
Equality and inequality are expressed as the infix operators = and !=. The  source 
and useful_info are optional. 

2.2 Dependently Typed Higher-Order Logic 

Dependently typed higher-order logic (DHOL) is an extension of Church’s 
higher-order logic (HOL) [ 6] introduced by Rothgang et al. [ 17]. It takes the 
widely supported HOL and equips it with dependent types, i.e., types that take 
term arguments. As such, it is a classical and extensional type theory, as opposed 
to the theory used in Rocq [ 1, 37], Lean [ 9], or others [ 3, 13] that rely on an inten-
sional type theory. Notable exceptions to this trend are PVS [ 19], NuPRL [ 7], 
and F* [ 36]. 

The extensionality of DHOL comes at the cost of making type checking unde-
cidable because it must consider term equality, which may be subject to arbitrary 
axioms. Essentially, typing becomes undecidable if a type depends on a type for 
which equality is undecidable. This is because type checking . t against type . a n
must be done by inferring the type of . t, say  .a m, and then checking .a m = a n, 
and thus .m = n. If all dependent type symbols depend only on types for which 
equality is decidable (e.g., the examples below where we only use natural num-
bers with Presburger arithmetic), type checking is decidable. Otherwise, e.g., 
when using types depending on natural numbers with Peano arithmetic, type 
checking is undecidable. 

The gain of having judgmental and provable equality coincide is significant: It 
positions DHOL much closer to how mathematics is usually done in the context 
of ATP. The availability of dependent types allows the elegant definition of data 
structures such as lists of fixed-length, intervals of numbers, or vector spaces over 
some field. It also allows encoding constraints in the types, which can remove the 
need for lengthy and error-prone guards in programming and track invariants 
useful for theorem proving. The cost – which might seem steep at first glance 
– is mitigated by the ever-increasing performance of ATP systems, and the fact 
that in many cases the proof obligations resulting from type checking are much 
simpler than the original proving problem. 

The changes to the TPTP syntax to accommodate DHF are small: the defini-
tion of the simple base type is changed to a type that can accept term arguments,
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and the simple function type .A → B is changed to .Πx : A.B. This makes  it  
possible to let the result type of the function depend on the specific term of the 
argument. 

Figure 1 gives the grammar of DHOL. A dependent base type . a with arity 
. n is written .a : Πx1 : A1, · · · , xn : An.type, and it is a simple base type if 
.n = 0. Declarations of this form are part of the theory against which the type 
checking procedure is performed. In addition to base type declarations, theories 
may declare constant symbols . c and axioms . . A context specifies typed vari-
ables and assumptions. Contexts are superficially similar to theories, but denote 
local declarations, and as such, do not contain type declarations. . ◦ and . • denote 
the empty theory and context respectively. The order in a theory or context 
matters because the well-typedness of declarations might depend on preceding 
axioms. Types, as they appear in statements and typing judgements, are either 
fully applied base types, (dependent) function types, or classical booleans . o. 
Terms are built from variables/constants, lambda abstraction, application, and 
the usual connectives and quantifiers. Regular HOL can be recovered by omit-
ting the highlighted elements – this is exactly the case when the arity of all 
base  types is 0.  

Fig. 1. The grammar of DHOL 

The following example encodes the familiar notion of fixed-length lists. As 
prerequisites, we give the usual notion of natural numbers in a simple type . nat
and a simple type .char of characters for the elements of the lists: 

. nat : type 0 : nat suc : nat → nat + : nat → nat → nat

∀n : nat.+ 0 n =nat ∀n,m : nat.+ (suc n) m =nat suc (+ n m)
char : type a : char b : char ...

Then .vecn encodes the type of fixed-length lists of characters of length . n: 

. vec : Πn : nat.type nil : vec 0 cons : Πx : nat.char → vec n → vec (suc n)

++ : Πn, m : nat.vec n → vec m → vec (+ n m)

Dependent Connectives. In DHOL it is desirable to make the binary connectives 
conjunction, implication, and disjunction dependent in the sense that the well-
formedness of the second argument may assume the truth (for conjunction and
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implication) or the falsity (for disjunction) of the first argument. Consider the 
statement .a =A b ⇒ f a =B(a) f b. The well-formedness of the right-hand 
side requires the left-hand side as a premise. More precisely, .Γ F : o resp. 
.Γ F expresses that .F is a well-formed resp. provable formula in context . Γ . 
The definition of well-formed formulae is: 

Γ F ⇒ G if Γ F and Γ, G 
Γ F ∧ G if Γ F and Γ, G 
Γ F ∨ G if Γ F and Γ, ¬F G 

where the marked parts make the connectives dependent. The usual natural 
deduction proof rules of implication and conjunction are the same as for the 
non-dependent versions. The proof rules for disjunction are adjusted as follows: 

. 
Γ F Γ, ¬F G : o

Γ F ∨ G

Γ, ¬F G

Γ F ∨ G

C Γ, ¬F C

∨ G C

As usual, it is possible to choose some connectives as primitives, from which 
the others are defined. Rothgang et al. choose equality and implication. Contrary 
to HOL, they included implication because they could not define the dependent 
binary connectives solely from equality. For the TPTP World, it is better not 
to choose primitive connectives – that choice should be left to the ATP sys-
tem developers. Therefore DHF extends the work by Rothgang et al. to make 
all connectives primitive. ATP systems can choose which connectives to treat as 
abbreviations, but in doing so must take the dependent nature of the connectives 
into account. Note that dependent connectives break the commutativity of con-
junction and disjunction. While seemingly disruptive, sacrificing commutativity 
in this way is common practice, e.g., for short-circuit evaluation of Boolean terms 
in programming languages. To clarify the impact on theorem proving, Table 1 
summarizes typical proof rules for FOL and their status in DHOL. Roughly 
speaking, all rules that do not affect the order of subformulae remain sound, 
while the rest of the rules require the additional check to ensure the result 
remains well-formed. In particular, all rules needed to perform CNF or clause 
normal form transformations remain available. 

Developing advanced calculi for DHOL is beyond the scope of this paper. 
However, for example, one way to generalize resolution is to store clauses as lists 
.[L1, . . . , Ln] where the well-formedness of each .Li may depend on .¬Lj for .j < i. 
Resolving .[A,L] and .[¬A,M ] to .[L,M ] is sound if the resolvent is well-formed, 
i.e., if the well-formedness of the .Li resp. .Mi does not depend on .¬A resp. . A. 

Polymorphic DHOL. DHOL as presented in the previous section and [ 17] is  
monomorphic. ATP for polymorphic DHOL, as well as proofs of properties for 
such an extension of the calculus, is ongoing parallel work. Polymorphic logics 
are already available in the TPTP language, so it is natural to offer polymor-
phic DHF. All the polymorphic example problems considered so far use only
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Table 1. Typical proof rules for FOL and their status in DHOL 

Rule Holds in DHOL 
For disjunction and conjunction 

associativity . 

commutativity Only if both sides are well-formed 
idempotence, e.g., .A ∧ X ∧ A ⇔ A ∧ X . (Drop the second occurrence) 
de Morgan laws . 

distributivity of one over the other . 

absorption, e.g., .A ∧ (A ∨ B) ⇔ A . 

For implication 
.A ⇒ B ⇔ ¬A ∨ B . 

.¬(A ⇒ B) ⇔ A ∧ ¬B . 

.¬(A ⇒ B) ⇔ ¬B ⇒ ¬A Only if both sides are well-formed 
For quantifiers and equality 

all rules . 

Common calculus rules 
classical reasoning . 

weakening . 

contraction . (Drop the second occurrence) 
exchange Only if still well-formed 
cut . 

resolution Only if the clauses remain well-formed 

shallow/rank-1 polymorphism in line with the existing polymorphic first- and 
higher-order forms for TPTP. 

Choice. Hilbert’s choice operator has been part of HOL since its inception by 
Church [ 6]. As such, it is natural to include it in DHOL. This introduces some 
complications: Due to the usual non-emptiness constraint on types, the semantics 
of choice are clear in HOL. However, DHOL no longer abides by this constraint, 
requiring a design decision that affects well-typedness and provability. Exper-
iments done in [ 16] suggest that the variant of choice dubbed “strong choice” 
results in more efficient automated reasoning. The eponymous characteristic of 
strong choice is the requirement that .∃x : A.t needs to be true for . (εx : A.t) : A
to be well-typed. Such a requirement for typing fits well with DHOL in general, 
and as ATP is the main concern this is the variant of choice, as it were. The 
problem set described in Sect. 4 includes some examples supporting this variant. 

Translation. In order to take advantage of the ATP systems available for regu-
lar HOL, Rothgang et al. define a dependency-erasure [ 17], and thereby a trans-
lation from DHOL into regular HOL. They also prove that this translation is
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sound and complete for well-typed DHOL problems. Due to this result, and the 
implementation of the translation into the preprocessor of the Leo-III theorem 
prover [ 20], there existed reasoning support for DHOL even before native DHOL 
reasoning was implemented in the Lash ATP system by Niederhauser et al. [ 11]. 
Information lost due to the erasure of term dependencies is captured in Par-
tial Equivalence Relations (PERs) – symmetric and transitive relations on pairs 
of terms – with the idea that the relation is reflexive exactly for those terms 
that were previously of the same dependent type. The translation is shown in 
Fig. 2. The translation . t of a term . t is defined inductively on the structure of the 
terms. The erasure of one type declaration results in three erased declarations: 
the erased type, the PER constant and an axioms stating it’s properties. The 
definition of the erasure on .∀- and  .∃-quantified terms is notable as it uses a PER 
as guard on the argument. To see why, note that, e.g., .∀x : A.t can be defined in 
terms of equality as .λx : A.t =A→o λx : A. . The erasure creates a PER from 

Fig. 2. The translation from DHOL to HOL.
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this typed equality with the guarded input in the premise, and the erased term 
in the consequence of the implication as seen in the erasure of . ∀. 

As an example of erasure, consider the list of chars [a, b], represented by a 
term .cons 1 a (cons 0 b nil) of type .vec 2, where  .0, suc 0, suc (suc 0), ... is 
abbreviated as .0, 1, 2, .... Applying the erasure gives .cons a (cons b nil) of type 
.vec. A predicate would be generated, establishing that this particular list is in 
the PER of vectors of length 2: .vec∗ 2 t t where t stands for .cons a (cons b nil). 
While one might think that unary predicates would be sufficient as a type guard, 
PERs becomes necessary to express the typing and equality of higher-order func-
tions: functions are well-typed if they map well-typed inputs to well-typed out-
puts, and they are equal if they agree on well-typed inputs. 

3 DHF 

After establishing the theoretic background, this section presents the realization 
of DHOL in the TPTP language. Syntax and semantics are given, as well as an 
exposition to the problem of type checking. 

3.1 Syntax 

The syntax of DHF requires almost no change to the existing TPTP syntax. 
The TPTP language already defines the .!> binder for types. In the typed TPTP 
language variants it is currently used for only polymorphism, e.g., 

cons : !>[A: $tType]: ( A > (  list @ A ) > (  list @ A ) )  

is a type declaration for a polymorphic cons. The TPTP syntax does not forbid 
listing terms in the types of such variable lists. This fact is used to unobtru-
sively extend TPTP by dependent types. A dependent type symbol declaration 
is written with .m terms of . n types as 

a : !>[x1 : A1, ..., xm : An]:$tType 

or alternatively 

a :  A1 > ... > An > $tType. 

Such types use the application operator @, to instantiate the terms to the depen-
dent type: 

a @  t1 @ ... @ tm. 

In polymorphic problems, the variable list is prepended with the type variables, 
which may appear in the same binder. An example of a problem in DHF is shown 
in Fig. 3.
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Fig. 3. The base case of associativity of append on fixed-length lists. 

3.2 Type Checking 

Due to equality reflection, type checking for DHOL is, in general, undecidable. 
Nevertheless, problems need to be well-typed, otherwise the translation outlined 
in Sect. 2.2 might not be sound. Type checking in DHF thus takes on a larger 
role than in other logics in the TPTP World. 

While performing the usual type checking procedure in DHOL, obligations 
of the form .a t1 · · · tn ≡ a u1 · · · un, are generated. These establish equality of 
the dependent base types applied to arguments .t1 · · · tn, u1 · · · un of appropriate 
types. The type equality holds if all pairs .ti, ui are equal, which depends on the 
available axioms. This can create interesting situations where a problem must 
include axioms that are not necessary for proving the conjecture itself, but are 
necessary for type checking it. The common example of fixed-length lists is one 
such example: the statement of the associativity of append is well-typed only if 
addition on .nat is associative, and thus requires including the defining equations
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of addition. To prove the problem only the defining equations of appending lists 
are needed. 

The undecidability of type checking can lead to compromises. One such com-
promise is “shallow type checking”. When a problem file is shallowly checked, only 
the simply typed skeleton of the problem is considered, i.e., term arguments to 
types as well as dependent functions are ignored. This collapses to type checking 
as is done on non-dependently typed problems, and is decidable. This form of 
type checking is sufficient to catch many careless mistakes in the formulation 
of problems, and provides a basic check of issues often found in human-written 
DHOL problems. Examples are: mismatches in the number of arguments of a 
base type or function, and egregious type mismatches. Shallow type checking 
provides a valuable sanity check for users, especially considering the complexity 
that problems in DHOL forms can reach. 

3.3 Semantics 

As for HOL, there are two kinds of semantics for DHOL: standard models are 
intuitive and are the ones that are usually used; non-standard (Henkin) models 
are a generalization that is needed for completeness. A full account is given in 
the forthcoming [ 15], which is summarized below. The rules of DHOL, as given 
by Rothgang et al., already define which formulae are theorems. 

Standard Models. Given a theory . T , a standard model .M ∈ T is a tuple 
providing an interpretation for every declaration in . T . Similarly, given a context 
. Γ , an assignment .α ∈ Γ M for .Γ is a tuple providing an interpretation for 
every declaration in . Γ . These induce the interpretation function . − M

α (with . α
omitted if the context is empty), which is defined inductively for all the syntax. 
In particular, the possible components of a model are defined by induction on 
declarations: 

– For a type symbol with arguments .Γ = x1 : A1, . . . , xn : An, a function 
. Γ M → SET

– For a term symbol .c : A, a value from . A M

– For an axiom . , a unique choice . if . M F = 1, and no choice otherwise 

For the components of an assignment: 

– For a term variable .x : A, a value from . A M
α

– For an assumption . , a unique choice . if . M F
α = 1, and no choice 

otherwise 

For types and terms, the model is defined by induction in the usual way, in 
particular 

– . o M
α = {0, 1}

– . Πx : A.B M
α is the set of functions . f mapping every .u ∈ A M

α to some 
.f(u) ∈ B M

αu where .αu extends . α with the value . u for .x
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General Models. The definition of general models generalizes the Henkin models 
from HOL by applying methods from categorical models of type theory. First, 
akin to assignments for . Γ , substitutions .γ : Γ → Δ as lists of terms or . by 
induction on . Γ are defined: 

– For a term variable .x : A, a term of type . Δ A[γ]
– For an assumption . , the unique choice . if .Δ F [γ], and no choice 

otherwise 

Equality of contexts and substitutions is defined by applying the exist-
ing equality judgments for types and terms component-wise. For every theory 
. T , this yields the syntactic category . T of .T -contexts and substitutions. A 
general model is then defined as any pushout-preserving contravariant functor 
.Φ : T → SET . From such a  . Φ, an interpretation function is extracted using 
.Φ(x : A) as the interpretation of the type .A and .Φ(t) as the interpretation 
of the term .t : A (seen as a substitution .x : A → •). These general models 
must further satisfy .Φ(o) = {0, 1}, and  .Φ |= F is defined as .Φ(F ) = 1. Here  
the pushout-preservation essentially corresponds to the preservation of substitu-
tion, i.e., interpretation and substitution commute. The lack of any preservation 
of exponentials allows for a non-compositional interpretation of function types. 
This approach can be seen as a generalization of Henkin models, which also 
preserve substitution but do not need to interpret function types composition-
ally. Contrary to Henkin models, the interpretation of . λ and application terms 
can also be non-compositional in these general models as long as substitution is 
preserved. 

Models for Polymorphic DHOL. As mentioned above, a rank-1 polymorphic 
variant of DHOL is being developed in parallel work. It is straightforward to 
extend standard models to polymorphic DHOL. The syntax of binding a type 
variable corresponds to abstracting over an arbitrary set on the semantic side. 
In particular, the interpretation of a polymorphic term/type symbol with . n type 
variables takes . n sets as arguments. Polymorphic axioms correspond to universal 
quantification over sets. The definition of syntactic category and general models 
is expected to carry over to polymorphic DHOL as well. This has not been 
investigated in detail. 

4 Problem Dataset 

Over 100 problems in DHF format have been collected for addition to the 
TPTP problem library. Their classification is presented in Table 2 and discussed 
here (with 36 problems just for testing DHOL prover features omitted). The 
number of problems in each class is given in the last column. The problems con-
cern several domains that can benefit from dependent types. While [ 17] shows  
DHOL to be sound and complete, the strength of the existing automation for 
this foundation (discussed in Sect. 5) still needs to be improved. For this reason, 
some of the harder problems were broken down into simpler subproblems that
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can be proven independently. Some list properties that require both induction 
and reasoning with dependent types are an instance of this. For example, the fact 
that list append is associative, ListAppAssoc, is split into three subproblems, 
showing the particular induction scheme, the proof of the base case, and the step 
case. These three subproblems are easier to prove than their combined version, 
which is also included. Some problems benefit from intermediate lemmas, e.g. 
the instantiation of the inductive step case. These are found in the “Lemmas” 
categories of Table 2. 

One of the simplest classes of examples are lists that depend on their length 
(also called vectors, for example in the Rocq library). As the list libraries of most 
interactive theorem provers are substantial, it is relatively easy to experiment 
with many properties of dependently typed lists. Such properties include the 
aforementioned associativity of append, corollaries of this statement, or invo-
lution statements about the reverse function. Some of these list examples are 
extended to their polymorphic generalizations, which are in the “Polymorphic” 
categories. 

The idea of expressing well-known but sometimes challenging properties 
extends to several other algebraic data types, such as matrices that have fixed 
dimensions, and lists of lists. Red-black trees are a well-known data structure 
for balanced trees where the invariant can be expressed using dependent types, 
and again several problems concerning this type are included. The Fin type 
present in several proof libraries has been manually recreated, and some prob-
lems about these are in the ROCQ category of Table 2. The collection includes 
the five examples from category theory that were originally presented in [ 17], 
slightly reformatted to match the TPTP syntax. To make use of the choice 
operator [ 16], several problems about dependent higher-order Skolemization are 
included. Choice is also used in a function definition with no fixed point, and con-
jectures establishing this are presented in the “no FP” category. Finally, several 
simple tests to evaluate the ability of provers to perform native DHOL inferences 
are provided. 

Some of the dependent HOL problems are more interesting from a proof 
perspective – the deep type checking is there only to make sure the problem is 
well-formed. For example, for all the dependent list problems, the type checking 
obligations are there mostly to make sure no incorrect calls are being made, but 
they are relatively straightforward to discharge. It is the proof that requires more 
logical reasoning. Other problems, while relatively straightforward in terms of 
proving, are harder to type check. This is because it is possible to use dependent 
types to encode important properties and invariants in the type system. 

5 Tools 

This section discusses the tools capable of processing problems in DHF format.
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Table 2. The categories of the DHF problems. 

Problem Type Problem Category Problem Count 
Monomorphic Complete Category theory 5 

Choice basic 11 
Choice list 3 
Choice no fixed point 10 
List app assoc 3 
List app assoc corollary 1 
List app nil 4 
List of lists 1 
List reversal involution 1 
List reversal inv lemma 3 
Matrices 5 
ROCQ 3 

Monomorphic Lemmas Choice no fixed point 10 
List app assoc 5 
List app assoc corollary 5 
List reversal involution 5 
List reversal inv lemma 11 

Polymorphic Complete List app assoc poly 3 
List app nil poly 4 
List reversal involution poly 1 
Red-black tree 3 

Polymorphic Lemmas List app assoc poly 14 
List reversal involution poly 13 
Red-black tree 9 

5.1 The Logic Embedding Tool 

The Leo-III [ 20] prover includes the Logic Embedding Tool, which has been 
extended to support polymorphic DHF. The tool implements the erasure pre-
sented in Sect. 2.2, and incorporates the polymorphic extension. The tool can 
generate both the type checking obligations and the translated problem sep-
arately. This makes it possible to translate DHF problems into THF problems 
(that do not have dependent types). The embedding tool is available as NTFLET 
in SystemB4TPTP 2. The embedding tool enables the use of existing higher-order 
ATP systems for solving DHF problems, by pipelining the output from NTFLET 
to a THF ATP system of the user’s choosing. This has been implemented as the 
DT2H2X ATP systems, available in SystemOnTPTP 3.
2 tptp.org/cgi-bin/SystemB4TPTP. 
3 tptp.org/cgi-bin/SystemOnTPTP. 

https://tptp.org/cgi-bin/SystemB4TPTP
https://tptp.org/cgi-bin/SystemOnTPTP
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5.2 DLash 

The Lash prover [  5] is a partial reimplementation of the tableaux calculus of 
Satallax [ 4], using a central term representation with perfect sharing. This 
design facilitated the implementation of the DLash extension of Lash, which 
handles DHF [ 11]. In addition to the erasure implementation, DLash can pro-
cess monomorphic dependently typed higher-order logic with choice. As with the 
Logic Embedding Tool, type checking and proving can be requested separately. 
DLash, like Satallax, includes a strategy language used to build so-called modes. 
The current version includes 36 dedicated modes for dependent types, tailored 
to specific problem types. DLash is available in SystemOnTPTP 4. 

5.3 MMT 

MMT [ 14] is a logical framework designed to formalize and manage large collec-
tions of interconnected formal systems and their libraries, using modular theory 
graphs. A particular application of MMT is rapid prototyping [ 10], and it was 
the tool originally used to develop and prototype DHOL. The MMT/DHOL 
implementation offers reconstruction of omitted types and implicit arguments 
as well as parsing against user-defined notations. It can be used to interactively 
author and type check DHOL problems and export them in TPTP format. It 
uses the PER translation, and calls the Leo-III prover to discharge the resulting 
proof obligations. MMT is mostly useful for developing formalizations, rather 
than proving TPTP conjectures. Therefore, it does not provide a TPTP import 
at this point, but provides additional evidence of the well-typedness DHF prob-
lems. 

5.4 TPTP Systems 

As discussed in Sect. 2.1, TPTP includes several generic tools capable of pro-
cessing problems and solutions. For DHF problems: 

– TPTP4X pretty-prints DHF problems and solutions, and offers various trans-
formations/augmentations of problems. 

– BNFParser produces the abstract syntax tree from parsing a DHF problem. 
– Leo-III-STC validates the syntax and types of DHF problems. 
– ProblemStats outputs various syntactic measures for problems. 

All these tools are available in SystemB4TPTP 5. For DHF proofs: 

– ProofStats outputs various syntactic measures for DAG-structured proofs. 
– IDV provides interactive viewing of proofs from DHF problems. 

All these tools are available in SystemOnTSTP 6.
4 tptp.org/cgi-bin/SystemOnTPTP. 
5 tptp.org/cgi-bin/SystemB4TPTP. 
6 tptp.org/cgi-bin/SystemOnTSTP. 

https://tptp.org/cgi-bin/SystemOnTPTP
https://tptp.org/cgi-bin/SystemB4TPTP
https://tptp.org/cgi-bin/SystemOnTSTP
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6 Conclusion 

This paper has described DHF, the dependently typed higher-order form of 
the TPTP language. It responds to the growing interest in dependently typed 
automated reasoning as exemplified by the number of TPTP problems and tools 
that have cropped up in the short time since DHOL was first described. It can be 
seen as pushing the boundary of automated theorem proving towards language 
features that have previously been found only in interactive provers. 

DHOL problems sometimes used differing standards, which defeated the uni-
formity advantage that the TPTP language provides. This work unifies them, 
and provides over a 100 problems from different domains, benefiting from the 
use of dependent types. We hope that the availability of dependent types in 
the TPTP will stimulate research into dependently typed automated theorem 
proving, by making it easier to exchange and compare results. Extending exist-
ing systems with support for DHF, and improving the performance of the sys-
tems that already exist, will be important next steps. In particular, the extension 
of superposition-based theorem proving to dependent types is a tantalizing goal. 
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