T_TT₂ @ TermComp'2016*

Christian Sternagel

University of Innsbruck, Austria christian.sternagel@uibk.ac.at

The $2^{\rm nd}$ incarnation of the $Tyrolean\ Termination\ Tool\ [1]$ is an automated tool for proving (and disproving) termination of term rewrite systems (TRSs) that has been developed in the $Computational\ Logic$ group at the University of Innsbruck in Austria.

http://cl-informatik.uibk.ac.at/software/ttt2

Besides various minor changes and improvements, the most notable additions to version v1.16 of T_TT_2 for this years termination competition are as follows.

Generalized Subterm Criterion. The previous SAT-based implementation of the subterm criterion is replaced by an SMT-based implementation [2] of the *generalized subterm criterion* due to Yamada et al. [3, Theorem 33].

▶ Theorem. Let π be a multiprojection such that $\mathcal{P} \subseteq \trianglerighteq_{\mathsf{mul}}^{\pi}$ and $f(\ldots) \trianglerighteq_{\mathsf{mul}}^{\pi} r$ for all $f(\ldots) \to r \in \mathcal{R}$ with $\pi(f) \neq \varnothing$. Then $(\mathcal{P}, \mathcal{R})$ is finite iff $(\mathcal{P} \setminus \trianglerighteq_{\mathsf{mul}}^{\pi}, \mathcal{R})$ is.

Generalized TCAP. Computing the *estimated dependency graph* now employs a generalization of tcap. First, given a TRS \mathcal{R} over signature \mathcal{F} , let \succ be the transitive closure of the relation $\{(f,g)\mid f(\ldots)\to g(\ldots)\in\mathcal{R}\}\cup\bigcup_{f(\ldots)\to x\in\mathcal{R}}\{(f,g)\mid g\in\mathcal{F}\}$ and note that $f\succeq g$ whenever $f(\ldots)\to_{\mathcal{R}}^*g(\ldots)$. Since the root symbols of non-variable terms are not changed by substitution $f\not\succeq g$ implies that there is no edge in the dependency graph from terms of the form $f(\ldots)$ to terms of the form $g(\ldots)$.\(^1\) The generalized version of tcap in T_{T} incorporates the information represented by \succ and further makes use of non-linearity whenever possible. Consider Toyama's example $f(x,\mathsf{a},\mathsf{b})\to f(x,x,x)$ whose dependency graph depends on whether $\mathsf{F}(x,x,x)\sigma\to^*\mathsf{F}(x,\mathsf{a},\mathsf{b})\tau$ for arbitrary substitutions σ and τ . However, this is only possible if $x\sigma\to^*\mathsf{a}$ and $x\sigma\to^*\mathsf{b}$, and thus requires that there is some $h\in\{\mathsf{f},\mathsf{a},\mathsf{b}\}$ such that $h\succeq \mathsf{a}$ and $h\succeq \mathsf{b}$. Since this is not the case, we obtain the empty dependency graph and thus may immediately conclude termination.

References

- Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean Termination Tool 2. In *Proceedings of the 20th International Conference on Rewriting Techniques and Applications (RTA)*, volume 5595 of *Lecture Notes in Computer Science*, pages 295–304. Springer, 2009. doi:10.1007/978-3-642-02348-4_21.
- Christian Sternagel. The generalized subterm criterion in T_TT₂. In Proceedings of the 15th Workshop on Termination (WST), 2016.
- Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari. AC dependency pairs revisited. In *Proceedings of the 25th EACSL Annual Conference on Computer Science Logic (CSL)*, Leibniz International Proceedings in Informatics, pages 84:1–84:16, 2016. to appear.

^{*} The research described in this paper is supported by FWF (Austrian Science Fund) project P27502.

¹ This criterion for edge estimation came first up during private discussion with Akihisa Yamada and was first implemented in his tool NaTT.