
TTT2 with Termination Templates for Teaching∗

Jonas Schöpf and Christian Sternagel

University of Innsbruck
Innsbruck, Austria
{jonas.schoepf|christian.sternagel}@uibk.ac.at

Abstract
On the one hand, checking specific termination proofs by hand, say using a particular collection of
matrix interpretations, can be an arduous and error-prone task. On the other hand, automation
of such checks would save time and help to establish correctness of exam solutions, examples in
lecture notes etc. To this end, we introduce a template mechanism for the termination tool TTT2
that allows us to restrict parameters of certain termination methods. In the extreme, when all
parameters are fixed, such restrictions result in checks for specific proofs.

Keywords and phrases teaching, termination tools, templates, proof checker

1 Introduction

Many of us are familiar with the following two (or at least similar) situations:
Enthusiastically we call on our favorite termination tool in order to create an example for a
lecture or an exercise for an exam. But is it really necessary that the weights of this KBO are
higher than four? And wouldn’t it be nicer if the successor symbol was actually interpreted as
the successor function in that polynomial termination proof.

Hard pressed for time, you have to correct 20 term rewriting exams and each of the students
seems to have chosen different matrix interpretations in Example 2. How will you manage before
the deadline? Maybe you should just give each student full points.

As a more concrete example, consider the following well-known term rewrite system
(TRS) implementing addition on natural numbers:

0 + y → y s(x) + y → s(x + y)

If you ask TTT2 [3] whether this TRS is terminating by KBO (ttt2 -s 'kbo'), you will get
a YES with w0 = 1, weights w(s) = w(0) = 1 and w(+) = 0, and precedence + > s ∼ 0.1 In
a lecture, you might want to restrict to the basic version of KBO with total precedences and
moreover it might be nicer for a presentation if all function symbols had the same weight,
say 1. Using our templates, this is now possible via

ttt2 -s 'kbo -prec "+ > s > 0" -w0 1 -weights "+ = s = 0 = 1"' �

An instance of the other kind of example we mention above would be the question
whether the following matrix interpretations prove termination of the addition TRS (we can
verify by ttt2 -s 'matrix -direct -dim 2' that there is a similar proof, but not using
exactly the same interpretations):

[0] =
(

0
0

)
[s](x0) = x0 +

(
1
1

)
[+](x0, x1) =

(
1 1
0 1

)
x0 +

(
1 0
0 1

)
x1 +

(
1
0

)
With our template mechanism you can check the given proof by

∗ This work is supported by the Austrian Science Fund (FWF) project P27502.
1 Where ∼ is “don’t care” for strict and equivalence of function symbols for quasi-precedences.

© Jonas Schöpf and Christian Sternagel;
Proceedings of the 16th International Workshop on Termination;
Editor: Salvador Lucas

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y)%0A(RULES%0A%20%20%20%20%2B(0%2C%20y)%20-%3E%20y%0A%20%2B(s(x)%2C%20y)%20-%3E%20s(%2B(x%2C%20y))%0A)&strategy=kbo&template=%2B%20%3E%20s%20%3E%200&template1=%2B%20%3D%20s%20%3D%200%20%3D%201&template2=1

ttt2 -s 'matrix -inters "0 = 0, s = x0 + 1, + = [1,1;0,1]x0 + x1 + [1;0]"' �

The goal of our work is to successfully handle situations like the above. More specifically,
our contributions are as follows:

Based on a simple idea (Section 2), we devised a template mechanism (Section 3) for
four of the most prominent encoding-based termination methods that allows us to employ
TTT2 as a “proof checker.”

Moreover, we extended TTT2’s web interface (Section 4, where also � is explained): on the
one hand, to support our template mechanism and on the other hand, by the possibility
to generate URLs that fix input TRSs and custom settings. The latter is especially useful
for lectures, where it provides a fast and easy way to demonstrate examples.

2 Main Idea

Many of the termination methods that TTT2 supports are based on SAT/SMT encodings,
notably the lexicographic path order (LPO), the Knuth-Bendix order (KBO), polynomial
interpretations (PIs), and matrix interpretations (MIs).2

These methods have the following implementation detail in common: constraints on their
parameters (like a precedence for LPO or KBO and the maximal value of matrix entries for
MIs) are encoded into a SAT/SMT formula φ and then a SAT/SMT-solver is used to obtain
a concrete instance. As a consequence such concrete instances of methods seem entirely
random to the casual user, which is not always desirable.

For example, we might only be interested in KBO proofs where a certain symbol has least
precedence, or we might want to interpret a unary function symbol s as successor function
without restricting the interpretations of other symbols. In the extreme, we already have a
specific proof at hand (say using specific matrix interpretations) and want to use a tool like
TTT2 to verify its correctness.

In all of the above cases, an obvious solution is to modify the encoding φ in such a
way that the desired constraints are fulfilled by every satisfying assignment. This is easily
achieved by appending a formula χ that represents these constraints, resulting in φ′ = φ∧χ.

Of course, it would be really cumbersome if we had to write χ by hand. Not to mention
that we would have to know implementation details concerning the encoding φ, for example,
which arithmetic variable represents the precedence position of a given function symbol?

Instead we provide a method-specific template mechanism whose main work is to parse
and translate constraints that a user provides in form of a human-readable string.

3 Templates for SAT/SMT-Based Methods

In the following we give an overview of the various templates that we provide for the four
encoding-based methods from the introduction.

2 There are others, like arctic interpretations, the (generalized) subterm criterion, etc. But for the
moment templates are only supported by the four methods mentioned above.

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y)%0A(RULES%0A%20%20%20%20%2B(0%2C%20y)%20-%3E%20y%0A%20%2B(s(x)%2C%20y)%20-%3E%20s(%2B(x%2C%20y))%0A)&strategy=matrix2&template=0%20%3D%200%2C%20s%20%3D%20x0%20%2B%201%2C%20%2B%20%3D%20%5B1%2C1%3B0%2C1%5Dx0%20%2B%20x1%20%2B%20%5B1%3B0%5D

Lexicographic Path Orders The only pa-
rameter of an LPO (ttt2 -s 'lpo') is its
precedence. It can be specified using the
flag -prec that takes a prec template as ar-
gument. A prec template represents a (par-
tial) precedence by listing its constituent
function symbols in decreasing order (sep-
arated by >, =, or >=), according to the syn-
tax diagram on the right-hand side (as soon
as = or >= is used, we implicitly switch from
strict to quasi-precedences).

prec

fun >
���
�

� =
���
�>=
�� �

�

fun�

�

�

Knuth-Bendix Orders In addition to a precedence, KBO (ttt2 -s 'kbo') is also param-
eterized by weights, which can be specified using the flags -w0 (for the weight of variables)
and -weights that take a single weight and a weights template, respectively, as arguments.
Weights are natural numbers and can be specified for multiple function symbols at once, as
depicted in the following syntax diagram:
weights

�
� fun =

���
�
�

�

�

fun =
���
�

�<=
�� �
�>=
�� �

�

weight

If the last relation symbol of a weights template is <= or >=, then the specified weight is an
upper and lower bound, respectively, of all preceding function symbols of the same template.

Linear Interpretations Linear interpretations can be specified using the flag -inters (sup-
ported by PIs and MIs) that takes an inters template as argument. Such interpretations are
sums of linear monomials that may either be an optional coefficient followed by a variable, a
constant part, or an underscore, according to the syntax diagram:
inters

fun =
���
�

�
�

�
�const

�

var�
�const

� _
���

�

�

� +
���

�

Here, underscores denote arbitrary (unrestricted) parts of an interpretation and variables
are associated to function arguments via their index (starting from 0). For example, given a
binary function symbol f, the template 2x0 + x1 fixes its interpretation to [f](x, y) = 2x+y.

Polynomial Interpretations Polynomial interpretations (ttt2 -s 'poly') are parameter-
ized by linear polynomials as interpretations for function symbols. We obtain them by taking
natural numbers for “const” in the inters template.

Matrix Interpretations For matrix
interpretations (ttt2 -s 'matrix'),
we instantiate “const” in the inters
template by matrices of natural num-
bers as specified by the diagram on the
right-hand side.3Moreover, we provide
the shorthands 0 and 1 for the zero-
vector and one-vector, respectively.

matrix

[
���
 nat�

� _
���

�

�
� ,

���

�

�

� ;
���

�

]
���

Boolean Combinations of Constraints For all of the above templates (as atoms), we ac-
tually support arbitrary boolean combinations of atomic constraints as specified below:

combination

atom�
�NOT

�� �
(
���
combination)

���
�AND
�� �
(

���
 combination�
� ,

���

�

)
���

�OR
�� �
(

���
 combination�
� ,

���

�

)
���

�

As a common special case a comma-separated list of atoms is allowed at the toplevel, which
is then interpreted as logical conjunction of atomic templates.

Examples We conclude this section by giving some example templates:

Let us first consider an LPO such that f is not at the same time bigger than g and bigger
than h in the precedence: -prec "NOT(AND(f > g, f > h))" �

Can we find (linear) polynomial interpretations such that the constant part of [+] is 2
and whenever 0 is interpreted as 0, then s should also obtain its natural interpretation?
-inters "AND(+ = _ + 2, OR(NOT(0 = 0), s = x0 + 1))" �

How about matrix interpretations with upper triangular matrices of dimension three that
have only ones on their diagonals, for unary f and binary g and h?
-inters "f=g=h=[1,_,_;0,1,_;0,0,1]x0+_, g=h=[1,_,_;0,1,_;0,0,1]x1+_" �

4 Teaching with the Web-Interface

It is the experience of the second author that for teaching, while live demonstrations of tools
are often appreciated by students, properly setting up such examples often takes way too
much time. To remedy this situation at least for TTT2, we integrated a mechanism into

3 When the flag -inters is present, the matrix dimension is read from the template, which usually means
that -dim is not required anymore.

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(COMMENT%20TRS_Standard%2FSK90%2F2.60.xml)%0A(RULES%20%0A%20%20f(g(f(a)%2Ch(a%2Cf(a))))%20-%3E%20f(h(g(f(a)%2Ca)%2Cg(f(a)%2Cf(a))))%20%20%20%20%20%20%0A)&strategy=lpo&template=NOT(AND(f%20%3E%20g%2C%20f%20%3E%20h))
http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(COMMENT%20TRS_Standard%2FSK90%2F4.11.xml)%0A(VAR%20x%20y)%0A(RULES%20%0A%20%20%2B(x%2C0)%20-%3E%20x%0A%20%20%2B(x%2Cs(y))%20-%3E%20s(%2B(x%2Cy))%0A%20%20%2B(0%2Cs(y))%20-%3E%20s(y)%0A%20%20s(%2B(0%2Cy))%20-%3E%20s(y)%20%20%20%20%20%20%0A)&strategy=poly&template=AND(%2B%20%3D%20_%20%2B%202%2C%20OR(NOT(0%20%3D%200)%2C%20s%20%3D%20x0%20%2B%201))
http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(COMMENT%20TRS_Standard%2FDer95%2F27.xml)%0A(VAR%20x%20y)%0A(RULES%20%0A%20%20h(f(x)%2Cy)%20-%3E%20f(g(x%2Cy))%0A%20%20g(x%2Cy)%20-%3E%20h(x%2Cy)%20%20%20%20%20%20%0A)&strategy=matrix3&template=f%20%3D%20g%20%3D%20h%20%3D%20%5B1%2C_%2C_%3B0%2C1%2C_%3B0%2C0%2C1%5Dx0%20%2B%20_%2C%20g%20%3D%20h%20%3D%20%5B1%2C_%2C_%3B0%2C1%2C_%3B0%2C0%2C1%5Dx1%20%2B%20_

its web interface4 that allows a user to store the current configuration (including the input
TRS) into the query part of the web interface URL.

Now, we can easily copy such a URL and turn it, for example, into a PDF hyperlink on
slides or in a paper. Incidentally, this is exactly the purpose of the � symbols in this paper.
The first one, for example, is generated by the following (incomplete) LATEX code:

\href{http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR\%20x\%20y)...

Moreover, our termination templates are accessible through dedicated input fields of the
web interface. Thus, a user does not have to type (and know) the corresponding flags.

5 Conclusion and Future Work

We presented the extension of TTT2 by a template mechanism for four of the most common
termination techniques that are taught in classes. These templates allow us to narrow down
the search space such that in the extreme, we are left with a specific instance of a termination
technique. In this way, TTT2 can be used as a “proof checker” for termination proofs (if you
want to have near absolute certainty that some termination proof is correct, you should of
course validate TTT2’s output by a formally verified certifier like CeTA). Furthermore, we
demonstrated a simple but useful addition to TTT2’s web interface to generate URLs that
make the input TRS and current configuration persistent.

We leave templates for methods like arctic interpretations [2], the (generalized) subterm
criterion [4], and finding loops [5] as future work. An orthogonal issue that requires further
investigation is: which extensions to the current templates would be most useful for teaching?

Some similar options to our termination templates were available through a GUI in an old
version of AProVE [1, Section 2]. Unfortunately, this GUI was abandoned in later versions.

References
1 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated

Termination Proofs with AProVE. In Proceedings of the 15th International Conference on
Rewriting Techniques and Applications (RTA), volume 3091 of Lecture Notes in Computer
Science, pages 210–220. Springer, 2004. 10.1007/978-3-540-25979-4_15.

2 Adam Koprowski and Johannes Waldmann. Arctic Termination . . . Below Zero. In Pro-
ceedings of the 19th International Conference on Rewriting Techniques and Applications
(RTA), volume 5117 of Lecture Notes in Computer Science, pages 202–216. Springer, 2008.
10.1007/978-3-540-70590-1_14.

3 Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean Termina-
tion Tool 2. In Proceedings of the 20th International Conference on Rewriting Techniques
and Applications (RTA), volume 5595 of Lecture Notes in Computer Science, pages 295–
304. Springer, 2009. 10.1007/978-3-642-02348-4_21.

4 Christian Sternagel. The generalized subterm criterion in TTT2. In Proceedings of the 15th
Workshop on Termination (WST), 2016. arXiv:1609.03432.

5 Harald Zankl, Christian Sternagel, Dieter Hofbauer, and Aart Middeldorp. Finding and
certifying loops. In Proceedings of the 36th International Conference on Theory and Practice
of Computer Science (SOFSEM), volume 5901 of Lecture Notes in Computer Science, pages
755–766. Springer, 2010. 10.1007/978-3-642-11266-9_63.

4 http://colo6-c703.uibk.ac.at/ttt2/web/

http://dx.doi.org/10.1007/978-3-540-25979-4_15
http://dx.doi.org/10.1007/978-3-540-70590-1_14
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://arxiv.org/abs/1609.03432
http://dx.doi.org/10.1007/978-3-642-11266-9_63
http://colo6-c703.uibk.ac.at/ttt2/web/

	Introduction
	Main Idea
	Templates for SAT/SMT-Based Methods
	Teaching with the Web-Interface
	Conclusion and Future Work

