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—— Abstract

We present a formalized framework for semi-Thue and conditional semi-Thue systems for studying
monoids and their word problem using the Isabelle/HOL proof assistant. We provide a formalized
decision procedure for the word problem of monoids if they are finitely presented by complete
semi-Thue systems. In particular, we present a new formalized method for checking confluence using
(conditional) critical pairs for certain conditional semi-Thue systems. We propose and formalize
an inference system for generating conditional equational theories and Thue congruences using
conditional semi-Thue systems. Then we provide a new formalized decision procedure for the word
problem of monoids which have finite complete (reductive) conditional presentations.
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1 Introduction

It is generally accepted that semi-Thue systems, also known as string rewriting systems, were
first introduced by Axel Thue in 1910’s in order to solve the word problem of semigroups
and monoids [39]. They can also be viewed as presentations of monoids, where monoids
are fundamental algebraic structures widely used in mathematics and computer science. In
particular, they serve as a well-known framework for solving the word problem for monoids
and groups. The word problem of monoids (or groups) is undecidable in general but it is
decidable if they are presented by finite complete (i.e., terminating and confluent) semi-Thue
systems over finite alphabets. If a finite semi-Thue system is terminating, then the critical
pair lemma provides a decision procedure for confluence. If a monoid is presented by a finite
terminating semi-Thue system S but it is not confluent, then one may attempt to construct
a finite complete semi-Thue system S’ equivalent to S using a completion procedure.
Semi-Thue systems can also be considered as a special case of term rewriting systems
(TRSs), where term rewriting systems play an important role in programming languages
(e.g., functional programming) [26], software engineering (e.g., equationally specified abstract
data types) [37], computer algebra [29], and automated theorem proving [20]. For example,
a semi-Thue system S on ¥* can be associated with a term rewriting system (TRS) Rg in
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such a way that Rg := {{(z) — r(z)| £ — r € S} [7], where each letter from an alphabet
Y is interpreted as a unary function symbol. Here, variables in Rg are renamed whenever
necessary.

The formalization! of TRSs has been done extensively via Isabelle/HOL (e.g., IsaFoR [44])
and Coq (e.g., [8,9]), and word problems of algebraic structures using TRSs were also
discussed in early systems, such as the RRL [25] and the REVE system [31]. However, they
are not directly suited for monoid and group presentations.

Our Isabelle/HOL formalization of semi-Thue systems and their related results is based
on the simple string matching methods instead of using the more complex term structures.
It also uses the simple shortlex order (i.e. length-lexicographic order) [7] on strings, which is
simpler than the usual term orderings, such as the lexicographic path order (LPO) [22], the
Knuth-Bendix order (KBO) [29] and the weighted path order (WPO) [45]. Some results of
semi-Thue systems were also formalized, for example, in Lean [15] and Coq [17].

Meanwhile, conditional semi-Thue systems are extensions of semi-Thue systems, where
each of their rules has the form £ — r < s; =~ t1,..., 8, = t, for strings £,r,s1,t1,...,8n,ln-
(Here, £ — r can also be denoted as an ordered pair (¢,7).) A finitely generated monoid
with decidable word problem may not admit a finite complete (unconditional) presentation,
but it may admit a finite complete conditional presentation [11]. For example, the monoid
presented by R = {aba — ba} on ¥ = {a, b} does not admit a finite complete (unconditional)
presentation by a semi-Thue system but admits a finite complete conditional presentation by
a conditional semi-Thue system.

The equality symbol ~ in conditional string rewriting rules of conditional semi-Thue
systems can be interpreted in different ways, yielding different types of conditional semi-Thue
systems. Note that some conditional semi-Thue systems, such as right conditional semi-Thue
systems, can be associated with conditional term rewriting systems (CTRSs) [23], but this is
not the case for all types of conditional semi-Thue systems, for example, left-right conditional
semi-Thue systems. We classify and formalize different types of conditional semi-Thue
systems, which extend the classification of conditional semi-Thue systems discussed in [11].

We also formalize conditional equational theories and Thue congruences using conditional
semi-Thue systems for the associated monoids and their word problem. In particular, we
provide a formalized method for checking confluence using (conditional) critical pairs for
certain types of conditional semi-Thue systems, which provides a decision procedure for
confluence if they are reductive w.r.t. the shortlex order.

Our Isabelle/HOL formalization of semi-Thue and conditional semi-Thue systems along
with their related results is built on IsaFoR (Isabelle/HOL Formalization of Rewriting) [44],
where Isabelle/HOL [36] is a generic proof assistant and a theorem prover allowing the users
to express concepts in mathematics and computer science and to prove properties about
them. It also relies on the “A Case Study in Basic Algebra” AFP (archive of formal proofs)
entry [4] for a formalization of monoids and groups, and the “Abstract Rewriting” AFP
entry [42] for a formalization of the abstract rewriting systems (ARSs) [1] and their related
properties, such as the Church-Rosser (CR) and the strong normalization (SN) property.

To the best of our knowledge, conditional semi-Thue systems and their related results
have not been formalized in any proof assistant. Our formalization may provide a formalized
framework for string rewriting and conditional string rewriting along with their wide variety
of applications. The relevant Isabelle/HOL theory files? inside IsaFoR under the directory
thys/Conditional_Semi_Thue_Systems are as follows:

I In this paper, by “formalization”, we mean a computer-assisted formalization using a proof assistant.
2 http://cl-informatik.uibk.ac.at/experiments/ITP2025/material.zip.
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Semi_Thue_Systems.thy Conditional_Semi_Thue_Systems.thy
String_Rewriting Conditional_String_Rewriting.thy
ShortlLex.thy STS_Completion.thy
Conditional_Equational_Theories.thy  STS_Critical_Pairs.thy
CSTS_P_Ciritical_Pairs.thy CSTS_R_Critical_Pairs.thy.thy

In the remainder of this paper, we use hyperlinks marked by M for providing an HTML
rendering for our formalized proofs in Isabelle/HOL.

2 Preliminaries

The definitions and results in this section can be found, for example, in [7,13,14,19,40].

Let ¥ be a finite alphabet, > be a strict order on ¥ (i.e. a precedence on ¥), and ¥* be
the set of all finite (possibly empty) strings from X.

The shortlex order (or length-lexicographic order) »=g on 3* induced by > is defined as
follows: s =51 ---5; =5 t1---t; =t if i > j, or they have the same length (i.e., ¢ = j) and
s1--+8; comes before t - - - t; lexicographically using a precedence > on Y. Here, s1---s;
comes before t; - - - t; lexicographically using a precedence > on X if there is a k such that
81+ 8kp_1 =1t1---tx_1 and s, > tp. If £ >4 r, then wlv >4 urv for all u,v € ¥*.

A monoid is a set equipped with an associative binary operation and a (two-sided) identity
element. Note that a monoid cannot be empty because of an identity element. For example,
¥* is a (free) monoid generated by ¥ under the operation of concatenation as an associative
binary operation with the empty string € as an identity element. A homomorphism between
two monoids (M, -) and (M’,-") is a function ¢ : M — M’ such that ¢(x - y) = ¢(z) ' ¢(y)

for all z,y € M and ¢(1) = 1/, where 1 and 1’ are the identities of M and M’, respectively.

A bijective monoid homomorphism is called a monoid isomorphism. Two monoids are said
to be isomorphic if there is a monoid isomorphism between them. An element a of a monoid
(M,-) is invertible if there is an element b € M such that a-b =b-a = 1, where 1 is an
identity element of M. A group is a monoid in which every element is invertible.

The reflexive and transitive closure of a binary relation — is denoted by —», and the
reflexive, symmetric and transitive closure of — is denoted by < called conversion.

A derivation for a binary relation — is a sequence of form ¢ty — t; — to---. A binary
relation — is terminating (or strongly normalizing) if there are no infinite derivations
to = t1 — ta---. An element s is reducible (w.r.t. a given binary relation —) if there is an
element u such that s — u; otherwise, s is irreducible. We say that u is an —-normal form
of s if s = u and u is irreducible via —. A binary relation — is confluent if there is an
element w such that v = w and v = w whenever s = u and s = v. A binary relation —
is locally confluent if there is an element w such that u = w and v = w whenever s — u
and s — v. A binary relation — is Church-Rosser if there is an element w such that u = w
and v = w whenever u < v. Here, — is Church-Rosser iff it is confluent. Two elements
u and v are joinable w.r.t. a binary relation —, denoted by u | v, if there is an element w
such that u = w < v (i.e., v = w and v = w). A binary relation — is complete if it is both
terminating and confluent. If — is terminating, then it is confluent iff it is locally confluent
(see Newman’s lemma [1, 35]).
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3 Semi-Thue Systems

A semi-Thue system (STS) R [7] over a finite alphabet ¥ is a subset of ¥* x ¥*. If R is an
STS over a finite alphabet X, then the single-step string rewriting relation on X* induced
by R is defined as follows: for any u,v € ¥*, u =g v iff there exists (¢,r) € R such that
for some z,y € ¥*, u = zfy and v = zry. Also, =% denotes the reflexive, transitive closure
of —x. By extension, the terms “terminating”, “confluent”, etc., used in Section 2 are also
applied to an STS R whose single-step string rewriting relation — has those properties. In
the remainder of this paper, unless otherwise stated, we denote by ¥ a finite alphabet and
assume that a total precedence > on X is always given so that the shortlext order >4 is a
well-founded total order on ¥*.

An STS R with the property that (¢,7) € R implies (r,£) € R is called a Thue system.
The Thue congruence induced by R is the relation <>z. Two strings u,v € X* are congruent
(modulo R) if u <> v. The congruence class [w]g of a word w € X* is defined as
[w]r = {v € *|w &g v} The set {[w]gr |w € £*} of congruence classes (modulo R) is
denoted by Mx. In this section, we refer to [7,18,21] for the definitions and results related
to STSs, monoids, and completion.

» Lemma 1. The set Mg is a monoid under the operation [u|lg - [v]gr = [uwv]g with
identity [¢]R.

In fact, Mz is the factor monoid of the free monoid ¥* modulo the congruence <,
ie, Mg =%*/ (i>7g

» Definition 2.
(i) Let R be an STS over ¥. If a monoid M is isomorphic to the factor monoid Mz
(M =2 Mp), then the ordered pair (3;R) is a presentation of M, and simply write
M = (3;R). If -r is complete, then (3;R) is a complete presentation of M.
(ii) The monoid M = (X;R) is finitely presented if both 3 and R are finite.
(iii) The word problem of the monoid M = (X;R) is the following decision problem: Given
two words u,v € ¥*, decide if u = v in M.

Our formalization of STSs and their associated monoids is based on the following Isabelle’s
locale, where a locale [3] is a named context for fixed parameters with assumptions.

locale semi_Thue =

fixes R:: sts and T :: sts and S: "char set"”
assumes "T = (ststep R)< "

and "finite S

and "S £}

and "finite R"

and "(ststep R)* C S* x S*"
begin

Above, R denotes a finite STS over a finite non-empty alphabet S, while T" denotes the
Thue congruence induced by R. The sts type for R and T is declared as follows:

type__synonym sts = "srule set'

where the type srule is declared simply as stringxstring. (Alternatively, instead of using the
Isabelle’s dedicated string type (i.e., char list type), one can use the 'a list type, which is
suitable for more general STSs.) Also, (ststep R)* C S* x S* represents the assumption
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—% C X x ¥*, which also implies —-r C ¥* x ¥*. Our formalization of Lemma 1 also uses
the locale monoid in the AFP entry [4]. It is instantiated as a sublocale using the following
parameters, where S* /T represents the factor monoid Mg with identity [¢].

sublocale monoid "S*/T" "([-]) " "eq.Class "

We also use the locale group in the same AFP entry, which extends the locale monoid by
adding the assumption that every element of a monoid is invertible. This can be further
refined as in the following lemma.

» Lemma 3. The monoid Mg is a group if for all u € ¥, there is some v € ¥* such that
w Sr e andvu Si e .

If an STS R is complete, then each congruence class contains a unique irreducible word
only, which can be chosen as a normal form for this congruence class. Therefore, if R is
finite and complete, then the word problem of the monoid M = (X;R) can be solved using
string rewriting, that is, given two strings u,v € ¥*, reduce u and v by R to their respective
R-normal forms @ and ¢ and simply compare them. Now, if one can show that (X;R) is a

finite complete presentation, then one can decide the word problem of the monoid (2;R).

First, in order to show that R is terminating, there is an easy sufficient condition for it.

» Lemma 4. If ¢ >, r for each ({,7) € R, then —x is terminating.

» Lemma 5. If —5 is terminating, then —x is confluent iff —x is locally confluent.
In Lemma 4, the shortlex order > is formalized as follows:

fun shortlex:: "string = string = bool" where
"shortlex strl str2 = (if lenorder strl str2 then True else if lenorder str2 strl then False
else lexorder strl str2)

where the lenorder function is used for comparing the lengths of two strings and the lexorder
function is used for comparing two strings of the same length via the lexicographic order
(see below).

fun lenorder:: "string = string = bool" where
"lenorder st = (length s > length t)"

fun Iexorder:: "string = string = bool" where
"lexorder st = (ul u2 u3 chl ch2.s =ul@Q[chl] Qu2 At = ul @ [ch2] @Qu3 A chl >, ch2) "

Above, “@” denotes the list append function in Isabelle/HOL. Here, the list append
function “@” serves as the string concatenation function. Accordingly, both chl and ch2
are characters, where chl =, ch2 denotes that chl has a higher precedence than ch2. It is
also the case that s is greater than t w.r.t. the lexicographic order if ¢ is a strict prefix of s
(see [14]). We omit this case because this case is not necessary for the shortlex order. The
shortlex order using the shortlex function is abbreviated as >g;.

abbreviation shortlex s (infix "> " 50) where "s =4 t = shortlex st"
abbreviation shortlex ns (infix "> " 50) where "s >4 t = shortler stV s=1t"

» Definition 6.

(i) For each pair of not necessarily distinct string rewriting rules from R, say (uo, vo)
and (up,v)), the set of critical pairs, denoted by CP(R), corresponding to this
pair is {(voy,zv}) |there are z,y € X* such that upy = auj and |z] < |ug|} U
{(vo, zv{y) | there are x,y € ¥* such that up = zujy}.

(ii) A critical pair (21, 22) is joinable if z1 {r 22 .
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Ky

> Lemma 7. Ift < s =g u, thent g u ort <cpr) u.

©

» Lemma 8. — 5 is locally confluent iff all its critical pairs are joinable.

By using Definition 6(i), the set of critical pairs for an STS R is formalized as follows:

definition sts_critical_pairs where
"sts_critical_pairs R={(vQy,zQv") |zyuvu v .(u,v) € RAW ,v') E RAuQy=xQu" A
length x < length u} U {(v,z@Qv' Qy) |zyuvu v . (u,v) € RA (W, v') € RAu=2Q@u Qy}"

lemma sts_critical_pair_lemma:
"WCR (ststep R) «— (V(s,t) € sts_critical_pairs R . (s,t) € (ststep R)¥)"

Our formalization of Lemma 8 is as above. Here, WCR [42] is the existing formalized
definition of the Weak Church-Rosser property, where WCR (ststep R) denotes that —x is
locally confluent.

» Theorem 9. If —x is terminating, then —x is confluent iff all its critical pairs are
joinable.

The following theorem and its proof provide a decision procedure for the word problem
of a monoid if it is presented by a finite complete STS.

» Theorem 10. Let R be a finite STS on X*. If =5 is complete, then we can decide whether
s and t in X* are the same element in the monoid Mp.

Proof. Observe that if s <% t, then s and ¢ are the same element in Mz = >/ S,
otherwise, they are the different elements in M%. Since —5 is finite and complete, we can
decide whether s <> ¢ by comparing the normal forms of s and ¢ w.r.t. —%, that is, if the
normal forms of s and ¢ w.r.t. = are the same, then they are the same element in Mz
(i.e., [s]r = [t]r); otherwise, they are the different elements in Mz (i.e., [s]r # [t]r). <«

» Remark 11. Thus far, this section has been concerned with the word problem of monoids
and its decision procedure if they are presented by finite complete STSs. Our formalization
can also be used for the word problem for finitely presented groups. Group presentations
can be converted into monoid presentations (see [19,40]). (Recall that groups are also
monoids.) Let S be a set of generators of a group G, R be a set of relations of G, and
So = {s%|s € S,a € {1,—-1}}. Then the group defined by the presentation < S| R > is
equivalent to the monoid defined by the presentation (X;R), where ¥ = S, and R is an
STS orienting the equations in {ss™! ~ 1|s € S,} U R using the total shortlex order on S&.
(Here, if u =v~! € S,, then u~! is defined to be equal to v.) Therefore, Theorem 10 can
also be used for the word problem of a group if its group presentation yields the monoid
presentation (3;R) such that R is a finite complete STS on ¥*.

Completion [1,18,29] attempts to transform a set of equations (or string rewriting rules
in equational form) on X* into an equivalent complete string rewriting system. It basically
converts non-joinable critical pairs into string rewriting rules so that they are joinable. It
uses a reduction order [19] (e.g. the shortlex order) to orient equations on ¥*, and also uses
string rewriting for simplification. (Here, an equation is an unordered pair (s,t) of strings
on X*, written as s & t.) The inference rules, which are given in Figure 1, operate on pairs
(E,R), where & is a set of equations and R is a set of string rewriting rules on X*. Intuitively
speaking, £ is a set of input equations or critical pairs that have not yet been transformed
(i.e., oriented) into string rewriting rules, while R is a terminating set of string rewriting
rules.
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E,R .
Deduce: ©U {Sig ~ lﬂf},R) if (u1uz,s) € R, (u2us,t) € R, and uz # e.

(€ U{uiugus ~ s}, R)

if (us,t) € R.
€U {min ~ s ) Tl

Simplify:

. (EU{s~thR)
Orient: ERUIGOD if s >4 t.

(&, R U {(u1uzus, s)})

Coll : if ,t) €R.
oTapse (E U{uitus ~ s}, R) if (u2,1)
E,RU
Compose: (¢, {(s, wuzus))) if (ug,t) € R.
(E,RU{(s,u1tus)})
EU{s~s}hR
Delete: ( { L R)

(€R)

Above, £ is a set of equations on ¥* and R is a set of string rewriting rules on X*
such that for each (¢,7) € R, £ >4 7.

Figure 1 Inference rules for completion of a semi-Thue system R on X*.

» Definition 12. We write (§,R) Fgr (§/,R’) if (€', R’) can be obtained from (£, R) by
applying one of the inference rules in Figure 1.

» Definition 13.
(i) A (finite) run for an initial set of equations £ is a finite sequence (£y, Ro) Fsr
(&1, R1) Fsr - Fsr (En, Ry), where & = € and Ro = 0.
(i) A run (9, Ro) Fsr (E1,R1) Fsr -+ Fsr (En, Ry) fails if &, # 0.
(iii)) A run (€, Ro) Fsr (€1,R1) Fsr -+ Fsr (En, Ry) is fair if CP(R,) C Ui, <re,-

» Lemma 14. For every non-failing run (£, Ro) Fsr (£1,R1) Fsr -+ Fsr (En, Rn),
égo = énn,

» Definition 15 (cf. [18]). Let R be an STS on ¥* and M be a finite multiset of strings on
¥*. We write (the labeled string rewriting) s % t if s »x t and there are some s',t' € M

such that s’ =, s and t’ =4 t. Here, =4 denotes the reflexive closure of =;.
> Lemma 16. Let (€,R) Fsr (', R). Ift % wand R C =y, then t % u.
U TUR/
The following definition is due to [18,43].

» Definition 17.

(i) An abstract rewrite system (ARS) A is a set A equipped with a binary relation —. We
also write an ARS A as (A, {—4}aecr) where we denote by —, the part of the binary
relation — with label o indexed by I so that — = {—| @ € T}.

10:7
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(i) An ARS A = (A, {—4}acr) is peak decreasing if there exists a well-founded order > on
I such that for all «, 8 € I the inclusion

at =g C ——
Vap

holds. Here, Va3 denotes the set {y € I | @ >y or >~} and if J C I then <§>

denotes a conversion consisting of —; = J {—,| v € J} steps.
See [18] for the proof of the following lemma and its Isabelle/HOL formalization.
» Lemma 18. FEvery peak decreasing ARS is confluent.

» Theorem 19 (cf. [18]). For every fair non-failing run (€, Ro) Fsr (€1, R1) Fsr -+ Fsr
(EnyRn), —r, is a complete STS for an initial finite set of equations € = & on X*.

Sketch of the proof. We first show that —x, is terminating. If (€,R) Fsgr (&', R’) and
R C =4, then R’ C =4 by the case analysis of each inference rule in Figure 1. We leave the
straightforward induction proof to our formalization for showing R,, C >, which in turn

shows that R, is terminating. Now, we let ¢ <— s —> u be a labeled local peak in R,

and show that R, is peak decreasing. By Lemma 7, we * have t IR, vwort<copmr,)u, and
thus ¢ [, uor (t,u) € |J;_, >, by fairness and Definition 13(iii). Here, we only consider
the case where (t,u) € |JI_, ¢, and leave the proof of the other case to our formalization.
Since (t,u) € ;- o ¢, there is some k such that (t,u) € <>¢,. Now, let M := {t,u}. Then,

we have (t,u) € ? and thus (t,u) € ﬁ By repeated applications of Lemma 16, we

have (t,u) € 2L, This means that there is a conversion between ¢ and u, where each step
in the conversion is labeled by M. Let >m“l denote the multiset extension of >g. Then,
>;’“‘l is well-founded because = is well-founded. Since M; >Z}“l M and M, >Z}“l M, =g,
is peak decreasing, and thus confluent by Lemma 18. |

Our formalization of the inference rules in Figure 1 for a completion step uses the
“inductively defined predicates” in Isabelle/HOL.

inductive sts_compl_step:: "sts X sts = sts X sts = bool" (infix "lgr" 55) where
deduce: "(E,R) Fsrp (EU{(sQu3,ul@t)}, R)"
if "(ul@u2,s) € R" and "(u2@u3,t) € R" and "u2 # [|"
| simplifyl: "(EU{(ul@Qu2Qu3,s)},R) Fsr (EU{(ul@tQu3,s)}, R)"
if "(u2,t) € R"
| simplifyr: "(EU{(s,ul Qu2Q@Qu3)},R) Fsr (EU{(s,ul@t@Qu3)},R)"
if "(u2,t) € R"
| orientl: "(EU{(s,0)},R) Fsr (E,{RU{(s,)})" 4if "s>gt"
| orientr: "(EU{(s,t)},R) Fsr (E,{RU{(t,s)})" if "t >y s"
| collapse: "(E,RU{(ul@Qu2Qu3,$)}) Fsp (EU{(ul@QtQu3,s)},R)" if "(u2,t) € R"
| compose: "(E,RU{(s,ul @Qu2Q@u3)}) Fsr (E,RU{(s,ul@t@Qu3)})" if "(u2,t) € R"
| delete: "(EU{(s,8)},R) Fsr (E,R)"

Note that in Figure 1, £ consists of unordered pairs (i.e., equations). In our formalization
above, it consists of ordered pairs for technical convenience, so we use simplifyl and
simpli fyr for the simplify rule and orientl and orieintr for the orient rule in Figure 1.

Now, Theorem 19 is formalized as follows, where the assumptions describe a fair non-failing
run (50,R0) I_SR (51,R1) }_SR }_SR (gn,Rn) in Theorem 19.
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theorem sts_finite_fair_run_complete: assumes RO = {} and En={}
and "Vi<n.(Ei,Ri) bFsr (E (Suci),R (Suci))"
and "sts_critical_pairs (Rn) C (Ui <mn.(ststep (Ei))T)"
shows "complete (ststep (Rn))"

» Remark 20. Using an inference system for a completion procedure is known to be simple
and efficient, and it is easy to apply simplification rules [1]. An inference system-based
completion procedure for TRSs was already discussed in the literature [1,2,18]. Our inference
system in Figure 1 is adapted from the existing Knuth-Bendix completion procedures for
STSs [7,24] that do not use an inference system. (There are also inference systems for
equational reasoning over strings, such as [27,28], but they are not directly applicable to a
completion procedure for STSs.) Regarding a completion procedure for finitely presented
monoids and groups, one may attempt to use an inference system discussed in abstract
completion [2,18] by converting STSs into TRSs as discussed in Section 1. This is not tailored
toward a completion procedure for finitely presented monoids and groups. In particular, we
use the simple string matching method and the simple shortlex order on strings in Figure 1
rather than using more complex term structures for unification/matching and ordering. Note
that given a fixed signature with its precedence, it takes only linear time to compare two
finite strings w.r.t. the shortlex order. It takes also linear time to match two finite strings
using, for example, the Knuth-Morris—Pratt (KMP) algorithm [30].

4 Conditional Semi-Thue Systems

Conditional semi-Thue systems (CSTSs) [11] are extensions of STSs in the sense that their
rules may admit non-empty conditions. A CSTS on X* [11] is defined to be a set of conditional
string rewriting rules, where each rule has the form (¢,7) < ¢ (also denoted as £ — r < ¢)
consisting of strings ¢,r € ¥* and a sequence ¢ of unordered pairs of strings on ¥*. Here, ¢
can be thought of as a conjunction of conditions for the rule (¢,r) < ¢. In the following, let
R be a CSTS on X*.

» Definition 21. We write R b, s &= t if the equation s & t is derivable from the inference
rules in Figure 2, and say that s ~ t belongs to the left-right conditional equational theory
induced by R.

We may also consider other types of conditional equational theories depending on how
contexts are used for the conditions in each conditional string rewriting rule (cf. [11]).

V(s~t)€¢d:surtu
lu = ru

Replacement (R): for all (¢,r) < ¢ € R.

Above, each condition is considered with a right context u € 3* and this context is also
used for the conclusion.

» Definition 22. We write R I, s & t if the equation s & ¢ is derivable from the inference
rules in Figure 2 substituting the above “Replacement (R)” rule for the “Replacement (LR)”
rule. If R F, s =~ ¢, then we say that s ~ t belongs to the right conditional equational theory
induced by R.

Vismt)ep:s~t
L

Replacement (P): for all (¢,7) < ¢ € R.

Above, no additional context is used for each condition and the conclusion.
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Reflexivity: —

S~ S
Symmetry: 5~

t~s
Transitivity: s~ — tru
s~
Congruence: SR
usv ~ utv

V(s t) € ¢:usv = utv

wlv ~ urv

Replacement (LR): for all (¢,7) < ¢ € R.

Above, s,t,u,v € ¥* and R is a CSTS on X% .

Figure 2 Inference rules for yielding a left-right conditional equational theory induced by a
conditional semi-Thue system R on X*.

» Definition 23. We write R I, s &~ t if the equation s ~ ¢ is derivable from the inference
rules in Figure 2 substituting the above “Replacement (P)” rule for the “Replacement (LR)”
rule. If R I, s = ¢, then we say that s ~ ¢ belongs to the pure conditional equational theory
induced by R.

Our formalization of the inference rules in Figure 2 for the left-right conditional equational
theory induced by R also uses the “inductively defined predicates” in Isabelle/HOL.

inductive cond_eq_lr_theory:: "csts = string X string = bool" (infix "Fier" 55) where
refl: "R Feer (s,8)"
| symmetry: "R Feeyr (s,8)" if "R Feey (E,8)"
| transitive: "R Feerr (s,u)" if "R Feer (5,8 AR Foerr (Gud "
| congruence: "R Feetr (u@QsQu,u@t@Qu)" if "R Feer (s,8)"
| replacement: "R teepr (W@QlQuw,u@r@Quw)"
if "(U,7r),cs) € RN (V(s;,t;) € setcs. R Feerr (u@s; Quw,u@t; Qw))"

Above, R Fiepr (8,t) denotes that s & ¢ belongs to the left-right conditional equational
theory induced by R. The right (resp. pure) conditional equational theory induced by R
can be formalized in a similar way, where F¢., (resp. ¢ep) is used for inductively defined
predicate for the right (resp. pure) conditional equational theory induced by R. They are
only different from the replacement part (see below):

replacement: "R Feer ({Quw,r Quw) "
if "(U,7r),cs) € RN (V(si,t;) € set cs. R Feerr (8 Quw,t; Quw)) "

replacement: "R Feep (L) "
if "((,7r),cs) € RA (V(si,t;) € set cs. R Feerr (Si,t)) "

Meanwhile, the types of CSTSs depend on the string rewriting relations induced by
CSTSs. More specifically, the types of CSTSs depend on how conditions are evaluated in the
conditional parts of their conditional string rewriting rules (cf. [5,46]). The induced string
rewriting relations from CSTSs are structured into levels (cf. [41,46]).
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» Definition 24. The string rewriting relation — ;s for a left-right-semi-equational CSTS
R on ¥* is defined as follows: t; =g s t2 iff 1 =%, to for some n > 0. Here, the
unconditional STS R,, are inductively defined as follows:

Ro = @
{Rn+1 = {(wlv,urv) | (6,7) <= ¢ € R, and usv <g, utv foralls =t € ¢ and u,v € $*}

The string rewriting relation — . ; for a left-right-join CSTS R on X* is defined as:
t1 =R rj t2 iff t1 =g, ta for some n > 0, where R! are inductively defined as follows:

r_
0=
{R’nH = {(uwlv,urv) | ({,r) < ¢ € R, and usv {g, utv for all s~t € ¢ and u,v € X*}

» Definition 25. The string rewriting relation —x , s for a right-semi-equational CSTS R on
¥* is defined as follows: t; =g s t2 iff t1 =g, t2 for some n > 0. Here, the unconditional
STS R,, are inductively defined as follows:

Ro = @
{Rn+1 = {(tv,rv) | (l,r) <= ¢ € R, and sv <3, tv forall s~ t € ¢ and v € £*}

The string rewriting relation —x ;. ; for a right-join CSTS R on X* is defined as: t; =g ,; t2
iff ¢4 — R T2 for some n > 0, where R/, are inductively defined as follows:

6=10
0
{R;H = {(lv,rv)|({,r) = ¢ € R, and sv |, tv forall s~te ¢andvec X*}

» Definition 26. The string rewriting relation —x , s for a pure-semi-equational CSTS R on
" is defined as follows: t; —R p s t2 iff 1 =%, t2 for some n > 0. Here, the unconditional
STS R,, are inductively defined as follows:

RO ::@
Ros1 :={(l,r)|(6,r) = p €R, and s &g, tforall s~ t € ¢}

The string rewriting relation —x , ; for a pure-join CSTS R on ¥* is defined as: t; =g p ; t2
iff ¢4 =R t2 for some n > 0, where R/, are inductively defined as follows:

! :w
0
{R;LH ={l,r)[(f,r) = ¢ R, and s [, t forall s =t € ¢}

The following lemma says that our inference system for yielding the left-right, right, and
pure conditional equational theories is sound w.r.t. the Thue congruences induced by the
string rewriting relations associated with the left-right-semi-equational, right-semi-equational,
and pure-semi-equational CSTSs, respectively.

» Lemma 27. Let R be a CSTS on X* and t1,t, € X*.

(i) t1 Srors to iff R b t1 & to.
(ii) t1 éR,r,s to ZﬁR I—T t1 ~ ts.
(iii) t1 SRrops t2 R Ep t = to.

The bidirectional use of the string rewriting relations for evaluating the conditions in
semi-equational CSTSs is both inefficient and unnatural (cf. [46]). We can use the join CSTSs
instead of the semi-equational CSTSs if they have the confluence property.
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» Lemma 28. Let R be a CSTS on X*.

(1) If = r,r; is confluent, then =R irs = —R.ir;-
(i) If >R, r; is confluent, then =R rs = =R r;-
(iii) If =rp; is confluent, then —g ps = —Rpj-

» Remark 29. Recall that an STS S on ¥* can be associated with a TRS Rg, where each
letter from ¥ is interpreted as a unary function symbol. Similarly, a right-join CSTS S’ on
¥* can be associated with a join CTRS Rg in such a way that Rg = {{(z) — r(z) <
si(x) = ti(x),...,sn(x) =ty (2) |l =1 <51~ t,...,8, ®t, €5} [11]. (Here, variables
in Rgs are renamed whenever necessary.) However, this is not the case for left-right-join

CSTSs.

» Example 30. Consider R = {al — bl,fam — lbm,c — d < a =~ b}, where ¥ =
{a,b,e,d,¢,m} with a > b > c >d > ¢ > m. If R is a pure-join CSTS, then neither
cf =R p,; Al nor fem — R p 5 €dm holds. If R is a right-join CSTS, then ¢l —% ;. ; d¢ holds,
but lem —x . ; ¢dm does not hold. If R is a left-right-join CSTS, then both ¢l =%, ; d¢
and fem — g r1,; £dm hold.

Now, we discuss our formalization of right-join and pure-join CSTSs. (Our formalization
of left-right-join CSTSs is similar and is omitted.) First, the string rewriting relation —x , ;
associated with a right-join CSTS is formalized as follows:

definition "csr_r_join_step R = (|Jn. csr_r_join_step_n R n)"

fun csr_r_join_step_n:: "csts = nat = string rel" where
"esr_r_join_step_n R 0= {}"]
"esr_r_join_step_n R (Sucn) =
{(Ct@w), C{r@uwh) | C Lrcsw. (L,1), cs) € R A
(V(si, t;) € setes. (s; Qw, t; Qw) € (esr_r_join_step_n R n)i)}”

In the csr_r_join_step_n function, C' is a (string) context and C{({Qu)) (resp. C{rQw))
denotes the application of the context C' to the string fw (resp. rw). We formalize a context
for strings based on the existing formalization of contexts for terms in IsaFoR.

datatype sctxt = Hole "((O)"| More "string" "sctxt" "string"

fun sctxt_apply_string :: "sctxt = string = string" ("_{_)" [900, 0] 900) where
"Ofs) =s"|
"(More ss1 C ss2)((s) = (ss1Q (C{s)) @ss2)"

Using the above function, C'({(s)) denotes usv for some (possibly empty) strings v and v.
In the csr_r_join_step_n function, we consider all possible contexts C' because —x . ; is a
string rewriting relation, i.e., ¢ =g, ; 7 implies wlv —g ,; urv for all (possibly empty)
strings u and v. Next, the string rewriting relation —x , ; associated with a pure-join CSTS
is formalized as follows. Here, no additional string is appended for evaluating each condition.

definition "csr_p_join_step R = (|Jn. csr_p_join_step_n R n) "

fun csr_p_join_step_n:: "csts = nat = string rel" where
"esr_p_join_step_n R 0= {}"|
"esr_p_join_step_n R (Sucn) =
{€Cey, C{r)) | Clres. (Uyr), cs) € R A (V(sy, i) €
set cs. (sq, t;) € (csr_p_join_step_n R n)i)}’7
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Our formalization of CSTSs and their associated monoids relies on the following locale.

locale conditional_semi_Thue =

fixes R:: csts and S : "char set"
assumes "finite S"

and HS 7é {}u

and "finite R"

For example, the locale for right-join CSTSs extends the above locale and is described as:

locale conditional_r_join_semi_Thue = reductive_r_join + conditional_semi_Thue R S
for R ::csts and S :: "char set" +
fixes Thue_R_Congruence :: sts
assumes "Thue_R_Congruence = (csr_r_join_step R) ©tn
and "Thue_R_Congruence C S* x S*"
begin

Since the locale conditional_r_join_semi_Thue extends the locale conditional_semi_Thue,
the alphabet denoted by S is assumed to be finite and non-empty. The assumptions in the
locale conditional_r_join_semi_Thue also represent the assumption éij C ¥* x ¥*, which
also implies the assumption —g ,; C X* x X*.

» Definition 31.
(i) We call a CSTS R reductive if for all ({,7) <= p € R, £ =g 1, { =g s;, and £ =g t; for
all (si,t;) € ¢ (cf. decreasingness [12] in CTRSs).
(i) Two STSs R; and Rs on X* are equivalent if <i>7g1 = <i>732, that is, they present the
same monoid.
(iii) An STS R; and a reductive right-join (resp. a pure-join) CSTS R2 on ¥* are equivalent
if éRl = <i)7327r7j (resp. éRl = (i)R%p,j).

» Example 32 (see [11]). The monoid M = (3;R), where ¥ = {a, b} and R = {aba — ba},
is finitely presented and have decidable word problem, but does not admit an equivalent
monoid presentation with (X;R’), where R’ is a finite complete STS. More specifically, a
completion procedure for R may only yield an infinite complete semi-Thue system {ab"a —
b"a|n > 1}. However, R admits an equivalent finite complete (reductive) right-join CSTS
R" = {aba — ba,abb — bb < ab ~ b}. (Here, (3;R”) is a finite complete (reductive)
conditional presentation of M, which will be discussed later in this section.)

Unlike the string rewriting relations induced by semi-Thue systems, —x . ; is not neces-
sarily decidable even if it is terminating (cf. [37]).

» Lemma 33.
(i) If R is a finite reductive right-join CSTS, then —g ., ; is terminating and the set

AR s =1t1s =R, t} is finite for all s € X7,
(ii) If R is a finite reductive pure-join CSTS, then — g p; is terminating and the set
AR pis ={tls =%, t} is finite for all s € X*.

In the above lemma, if R is finite and reductive and —x . ; (resp. =g p,;) is terminating,
then we may simulate the decidability of —% ,; (resp. =g p, ;) using the finiteness of the set
of descendants Ay . o (resp. Ay . ) for all s € X%, Here, the set A% . o (vesp. Ag . )
can be shown to be computable for all s € ¥* using the well-founded induction on >4 if R

is finite and reductive (cf. Theorem 7.2.9 in [37]).
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» Definition 34.
(i) Let R be a right-join CSTS. For each pair of not necessarily distinct conditional string
rewriting rules from R, say (uo,vo) < V" u; = v; and (ug, vy) < Vi u; =~ v}, the set
of critical pairs w.r.t. =g , ; corresponding to this pair is {(voy, 2v)) < Vit uy = v;y A
™ u; & v} |there are x,y € ¥* such that upy = zuf and |z| < |ug|} U {(vo, zv{y) <
VI u; & v AV uly & vly | there are x,y € ¥* such that up = zuyy}.
(ii) A critical pair (so,tg) < VIi_,s; = t; is joinable w.r.t. —»g,; if for any y € ¥,
8;Y dr,r; tiy for all 1 < ¢ < n implies soy Ir.r; toy-
(iii) Let R be a pure-join CSTS. For each pair of not necessarily distinct conditional string
rewriting rules from R, say (ug,vo) < V7 u; = v; and (u(, v)) < Vi u, &~ v}, the set
of critical pairs w.r.t. =g p ; corresponding to this pair is {(voy, zv)) < Vit u; = v; A
VI ul &~ v} |there are x,y € ¥* such that upy = zuj and |z| < |ug|} U {(vo, 2v{y) <
VI u; & v AV Ul & v) | there are x,y € ¥* such that ug = zujy}.
(iv) A critical pair (s, to) <= Vi_;s; = t; is joinable w.r.t. =g p; if s; lrp; t; for all
1 <7 < n implies sg IR p,; to-

Now, we discuss our formalization of Definition 34. First, the set of critical pairs for a
right-join CSTS R is formalized as follows:

definition csts_r_critical_pairs where
"ests_r_critical_pairs R = {((vQy,x@v"),cs’ @map(A(lhs,rhs) . (lhsQy,rhsQy)) cs) |
rzyuvu' v eses’ . ((u,v),es) € RAC(W ,v"),cs’) € RAu@Qy =z Qu' Alength x < length u} U
{((v,z@v" Qy),cs @map(\(hs,Ths) . (lhsQy,ThsQy)) cs') |zyuvu v escs’ . ((u,v),cs)
€ RA ((W,v),cs") E RANu=zQu Qy}"

Above, if c¢s is of the form V7, u; &~ v;, then map(A(lhs,rhs) . (lhs Qy,rhsQy)) cs is
VI uy & vy. Also, ((€,7),cs) denotes the conditional string rewriting rule (¢,r) < cs,
where cs is the list type for technical convenience. Based on Definition 34(ii), the statement
that all critical pairs of R are joinable w.r.t. =5 ,.; is formalized as follows:

definition all_ccps_r_joinable where
"all_ccps_r_joinable R = (Vs tcs. ((s,t),cs) € csts_r_critical_pairs R —
(Vy .csts_conds_r_sat Rcsy — (sQy,tQy) € (csr_r_join_step R

where the definition of csts_conds r sat is formalized as follows:

definition csts_conds_r_sat where
nests_conds_r_sat R cs y «— (V(s;,t;) € set cs . (s; Qy,t; Qy) € (csr_r_join_step R)¥) "

Meanwhile, the set of critical pairs for a pure-join CSTS R is formalized as follows:

definition csts_p_critical_pairs where
"ests_p_critical_pairs R = {((v@Qy,z@Qv'),cs’ @es) |[zyuvu' v cses’ . ((u,v),c5) € RA
((W',v"),es'’) ER AN u@Qy=z2Qu A lengthz <lengthu} U {((v,zQv Qy),cs@Qcs’|
zyuvu v eses’ . ((u,v),cs) € RA ((W',v'),cs') € RAu=z@Qu' Qy}"

Note that conditions are evaluated without using any context in the above formalization.
The statement that all critical pairs of R are joinable w.r.t. —x , ; is formalized as follows:

definition all_ccps_p_joinable where
"all_ccps_p_joinable R = (Vs tcs. ((s,1),cs) € csts_p_critical_pairs R —
ests_conds_p_sat R cs — (s,t) € esr_p_join_step R)Y) "

where the definition of csts_conds_p_sat is simply formalized as follows:



D. Kim

definition csts_conds_p_sat where
nests_conds_p_sat R cs < (V(si, t;) € set s . (si,t;) € (csr_p_join_step R)¥) "

» Lemma 35 (see [11]). Let R be a finite reductive right-join CSTS. Then, —g . ; is
confluent if and only if all critical pairs of R are joinable w.r.t. =g, ;.

» Lemma 36. Let R be a finite reductive pure-join CSTS. Then, =g p; is confluent if and
only if all critical pairs of R are joinable w.r.t. =g p ;.

Proof. Since the “only if” direction is straightforward, we only show the “if” direction.
Suppose that all critical pairs of R are joinable w.r.t. =% , ;. Since R is finite and reductive,
—R.p,; is terminating and decidable by Lemma 33(ii), so by Newman’s Lemma, it suffices
to show that —x p ; is locally confluent. Let s =g p,; t and s =g, u, and let ({,r) <
Vit s; &t and (¢, 1) <= VI, s; ~ t; be two rules to reduce s to ¢t and u, respectively. We
show that t |z, ; u by considering the following three cases according to the positions of ¢
and £ in s.

1. £ and ¢’ do not overlap, i.e., s = zlyl'z and t = xryl'z p , < alyl'z =g p; lyr'z = u
using the rules (¢,r) < V%, s; ~ t; and (¢,7') < Vs, ~ t,, where x,y,z € ¥*. Since
Vi 18i AR p,j ti and Vi 8} IR pj ti, we have t = aryl'z =g 5 aryr'z 4 alyr'z = u.
Therefore, ¢ and u are joinable w.r.t. =g , ;.

2. (' is a substring of ¢, i.e., s = 2ly = zwl'vy and t = a1y 5, 2ly = TUl'VYy SR} ;
zur'vy = u using the rules (¢,r) < V,s; ~ t; and (¢',r") < VP, s, ~ t,, where
x,y,u,v € L*. Since £ = ul'v, we have a critical pair (r, ur'v) < Vi s, = t; AV s; =
t;. This critical pair is joinable w.r.t. =% , ; by hypothesis with V*,s; |z, ; t; and
Vi_18; Irp,j ti, so there is some w such that r —% - w and wr'v —% ,; w. Since
zry =g, rwy and zur'vy —R.p.j LWy, we have xry [r p ; zur’vy, and thus ¢t and u
are joinable w.r.t. = p ;.

3. £ and ¢ have an overlap in such a way that s = xfuy = xvl'y and t = zruy R vluy =
xvl'y =R p; zur'y = u using the rules (¢,r) < V2,s; =~ t; and (¢',r") < Vs =~ t],
where |v] < |¢| and x,y,u,v € X*. Since fu = v¢' with |v| < |¢|, we have a critical pair
(ru,or’) < Vi s; ~ t; AV, s; ~ t,. This critical pair is also joinable w.r.t. =z,
by hypothesis with VI ;s; lrp; t: and Vi_1s; Irp; th,
ru =%, wand vr’ =% w. Since zruy =% o zwy and zor'y =% o zwy, we have
xruy g p; zvr'y, and thus ¢t and v are joinable w.r.t. =g p ;.

This shows that ¢ |r p ; u, and thus —% , ; is locally confluent. <

so there is some w such that

Lemmas 35 and 36 are simply formalized respectively as follows:

lemma csts_r_critical_pair_lemma: assumes "reductive R"
"CR (csr_r_join_step R) <— all_ccps_r_joinable R"

lemma csts_p_critical_pair_lemma: assumes "reductive R"
"CR (csr_p_join_step R) <— all_ccps_p_joinable R"

For reductive right-join (or pure-join) CSTSs, joinability of critical pairs suffices to show
confluence by Lemma 35 (resp. Lemma 36). However, this is not the case for reductive left-
right-join CSTSs. In particular, unlike reductive right-join or pure-join CSTSs, non-overlap
may not be joinable for reductive left-right-join CSTSs as shown in the following example.

» Example 37. Consider the left-right-join CSTS R = {b > u < i = jc 5> v <l ~
m,aic — aje,bld — bmd} over ¥ = {a,b,c,d,i,7,l,m,u,v}. Using the shortlex ordering
g induced by the precedence a > b > c >d > ¢ > j >1 > m > u > v, we see

10:15

ITP 2025


http://cl-informatik.uibk.ac.at/experiments/ITP2025/browser_info/IsaFoR/CSTS/CSTS_R_Critical_Pairs.html#lem:lemma32
http://cl-informatik.uibk.ac.at/experiments/ITP2025/browser_info/IsaFoR/CSTS/CSTS_P_Critical_Pairs.html#lem:lemma33

10:16

Formalization of Semi-Thue and Conditional Semi-Thue Systems

that R is reductive. Now, consider a non-overlap aucd Rorl,j < abed —x 1,5 abvd. Here,
the step abcd —x r1,; aucd uses the rules b — u < i = j and aic — ajc, and the step
abed —x 1,5 abvd uses the rules ¢ — v <= [ =~ m and bld — bmd. However, it is not the case
that aucd IR 1,5 abvd.

Now, we discuss the monoids defined by certain congruence relations induced by the
string rewriting relations —x ,; and —g p ;.

» Definition 38. Let R be a reductive right-join (resp. a pure-join) CSTS on X*. The
Thue congruence induced by =g ; (resp. —r ;) is the relation <i>7g,m- (resp. <i>7g,p,j). Two
strings u,v € X* are congruent w.r.t. —g . ; (resp. = ;) if U Sri v (resp. u S V).
The congruence class [w]gr,; (resp. [w]grp,;) of a word w € ¥* is defined as [w]g ,; =
{v e X |w Sr,y v} (resp. (W, = {v € X*|w Srypyv}). The set {[wlr,;|w e 2}
(resp. {[w]r,p,j |w € £*}) of congruence classes w.r.t. =g ,; (resp. =g p,;) is denoted by
Mij (resp. MR,p,j).

» Remark 39. In Definition 38, one can alternatively define Mg ;. ; (resp. Mg, ;) only if
—R.rj (r6Sp. =R p.;) is confluent so that <3% .. ; ($+rp.;) is the same as the right (resp. pure)
conditional equational theory induced by R (see Lemmas 27 and 28). In this case, Mz, ;
(resp. M p ;) can be directly associated with the right (resp. pure) conditional equational the-
ory induced by R. We use the simpler definition of Mg . ; (resp. Mg ; ;) as in Definition 38
instead of adding the restriction that —x ,; (resp. = p ;) is confluent (cf. Theorem 42).

» Lemma 40.

(i) The set Mg . ; is a monoid under the operation [u|g. ;- [VIrr; = [WV]Rr - ; with the
identity element [e]r r ;.
(ii) The set Mg p ; is a monoid under the operation [ulg p ;- (VIR p,j = [WV]R p; with the
identity element [e]r p. ;.

» Definition 41. Let R be a reductive right-join (resp. a pure-join) CSTS over ¥. The ordered
pair (X;R) is a (reductive) conditional presentation of the monoid Mg . ; (resp. Mg p ;).
The monoid Mg ;. ; (resp. Mg ;) is finitely presented if both ¥ and R are finite in (X;R).
The ordered pair (X;R) is a complete (reductive) conditional presentation of the monoid
Mz (resp. Mg p i) if =r.r; (resp. =g p ;) is complete.

The following theorem and its proof provide a decision procedure for the word problem
of monoids with finite complete (reductive) conditional presentations.

» Theorem 42,
(i) Let R be a finite reductive right-join CSTS on X*. If =g ,; is confluent, then we
can decide whether s and t on ¥* are the same element in the monoid Mg ,; =
DLy IS
(ii) Let R be a finite reductive pure-join CSTS on £*. If —r ,; is confluent, then we
can decide whether s and t on X* are the same element in the monoid Mg p ; =
Y SRop-

&

Proof. For the proof of (i), if s <3z, t, then s and ¢ are the same element in Mz ;.
Otherwise, s and ¢ are the different elements in M ;. ;. Since R is finite and reductive,
—R,r,; is terminating and decidable. Furthermore, —% ;. ; is confluent by hypothesis, so we
can decide whether s éR,r,j t by comparing the normal forms of s and ¢t w.r.t. =% , ;. In
other words, if the normal forms of s and ¢ w.r.t. = ,; are the same, then they are the
same element in My ,. ;, and they are the different elements in M ,. ;, otherwise. We omit
the proof of (ii) because it is similar to the proof of (i). <
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Our formalization of Theorem 42 is an extension of the formalization of Theorem 10
discussed in Section 3 in conditional setting, where the locale monoid is instantiated using
the different parameters for Mz . ; and Mg, ;, respectively:

monoid "S* /Thue_R_Congruence" "([-]-) " "equiv_r.Class €"
monoid "S* /Thue_P_Congruence" "([],) " "equiv_p.Class "

Above, Thue_R_Congruence and Thue_P_Congruence are (csr_r_join_step R)H* and
(csr_p_join_step R)H*, respectively. They correspond to the Thue congruence relations
induced by —x,; and —x p ;, respectively. Also, [-], (resp. [-],) represents an associative
binary operator for the monoid Mg ;. ; (resp. Mg , ;) in such a way that [u]g ,; []r [V]r.rj =
[wolr,r; (resp. [ulr p,j [p [VIRpi = [WV]Rr,p,;) for all u,v € £*, where ¥ is represented by
S in the above. Finally, equiv_r.Class € (resp. equiv_p.Class €) represents the congruence
class [e]r,r; (resp. [€]r,p ;) corresponding to the identity element in Mg . ; (resp. Mz ;).

5 Conclusion

Semi-Thue and certain types of conditional semi-Thue systems can be viewed as presentations
of monoids because they define a quotient of the free monoid modulo the Thue congruence
that they induce. We have presented an Isabelle/HOL formalization of semi-Thue and
conditional semi-Thue systems along with a decision procedure for the word problem of
monoids with finite complete unconditional or reductive conditional presentations. Also, our
formalized framework for semi-Thue and Thue systems can provide formalized building blocks
for different kinds applications because there is a wide variety of applications of semi-Thue
and Thue systems, such as formal language theory [7,38], group theory [10,19,33,40], and
algebraic protocols [6,7].

The main contributions of this paper are as follows: (i) We have presented the first
(computer-aided) formalization of conditional semi-Thue systems (using a proof assistant).
In particular, we have provided a new formalized method for checking confluence using
(conditional) critical pairs for finite reductive right-join and pure-join conditional semi-Thue
systems. (ii) The existing classification of conditional semi-Thue systems basically consists
only of left-right-join and right-join conditional semi-Thue systems (see [11]). We have
extended this classification depending on how conditions are evaluated in the conditional
parts of their rules, and provided a formalized framework for the different types of conditional
semi-Thue systems. (For the classification of conditional term rewriting systems, see [46].)
Furthermore, we have proposed and formalized a new inference system for generating different
conditional equational theories and Thue congruences for the associated monoids along with
their word problem. (iii) We have presented and formalized an inference system for a
completion procedure of semi-Thue systems, which is adapted from the existing Knuth-
completion procedure [7,24] of semi-Thue systems and an abstract completion procedure [2,18]
of term rewriting systems. When attempting to construct a finite complete presentation of a
monoid or a group, our inference-system based completion procedure is straightforward and
easy to use (in comparison to algorithm-based completion procedures [7,24]) by means of
simple string matching. We have also provided the formalized proof of its correctness.

Yet, much work still remains ahead. Unlike semi-Thue systems, conditional semi-Thue
systems have not been well researched. For example, effective/operation termination [32,37],
confluence, and the reachability analysis [16] of the different types of conditional semi-Thue
systems along with their formalization are possible future research directions. Another
possible future research direction is to classify and formalize the different types of conditional
string rewriting in terms of the expressive power [34] of string rewriting.
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