A Proof from THE BOOK: The Partial Fraction Expansion of the Cotangent

Manuel Eberl

March 16, 2022

Abstract

In this article, I formalise a proof from THE BOOK [1, Chapter 23]; namely a formula that was called 'one of the most beautiful formulas involving elementary functions': $$
\pi \cot (\pi z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{z+n}+\frac{1}{z-n}\right)
$$

The proof uses Herglotz's trick to show the real case and analytic continuation for the complex case.

\section*{Contents} 1 The Partial-Fraction Formula for the Cotangent Function 2 1.1 Auxiliary lemmas 2 1.2 Definition of auxiliary function 4 1.3 Holomorphicity and continuity 6 1.4 Functional equations 8 1.5 The limit at 0 12 1.6 Final result 12

1 The Partial-Fraction Formula for the Cotangent Function

theory Cotangent-PFD-Formula
imports HOL-Complex-Analysis.Complex-Analysis HOL-Real-Asymp.Real-Asymp

begin

1.1 Auxiliary lemmas

The following variant of the comparison test for showing summability allows us to use a 'Big-O' estimate, which works well together with Isabelle's automation for real asymptotics.

```
lemma summable-comparison-test-bigo:
    fixes f :: nat => real
    assumes summable ( }\lambdan\mathrm{ . norm (g n)) f}\inO(g
    shows summable f
proof -
    from <f \in O(g)\rangle obtain C where C: eventually ( }\lambdax\mathrm{ . norm (fx) sC * norm
(g x)) at-top
    by (auto elim: landau-o.bigE)
    thus ?thesis
    by (rule summable-comparison-test-ev) (insert assms, auto intro: summable-mult)
qed
lemma uniformly-on-image:
    uniformly-on (f`A) g= filtercomap ( }\lambdah.h\circf)(uniformly-on A (g\circf)
    unfolding uniformly-on-def by (simp add: filtercomap-INF)
lemma uniform-limit-image:
    uniform-limit (f'A)gh F}\longleftrightarrowuniform-limit A (\lambdaxy.gx (fy)) (\lambdax.h(fx))
    by (simp add: uniformly-on-image filterlim-filtercomap-iff o-def)
lemma Ints-add-iff1 [simp]: }x\in\mathbb{Z}\Longrightarrowx+y\in\mathbb{Z}\longleftrightarrowy\in\mathbb{Z
    by (metis Ints-add Ints-diff add.commute add-diff-cancel-right')
lemma Ints-add-iff2 [simp]: }y\in\mathbb{Z}\Longrightarrowx+y\in\mathbb{Z}\longleftrightarrowx\in\mathbb{Z
    by (metis Ints-add Ints-diff add-diff-cancel-right')
```

If a set is discrete (i.e. the difference between any two points is bounded from below), it has no limit points:

```
lemma discrete-imp-not-islimpt:
    assumes e:0<e
        and d:\forallx\inS.\forally\inS. dist y }x<e\longrightarrowy=
    shows }\negx\mathrm{ islimpt }
proof
    assume x islimpt S
    hence }x\mathrm{ islimpt S-{x}
```

```
    by (meson islimpt-punctured)
    moreover from assms have closed (S-{x})
    by (intro discrete-imp-closed) auto
    ultimately show False
    unfolding closed-limpt by blast
qed
```

In particular, the integers have no limit point:
lemma Ints-not-limpt: $\neg((x::$ ' a :: real-normed-algebra-1) islimpt $\mathbb{Z})$
by (rule discrete-imp-not-islimpt[of 1]) (auto elim!: Ints-cases simp: dist-of-int)
The following lemma allows evaluating telescoping sums of the form

$$
\sum_{n=0}^{\infty}(f(n)-f(n+k))
$$

where $f(n) \longrightarrow 0$, i.e. where all terms except for the first k are cancelled by later summands.

```
lemma sums-long-telescope:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\) \{topological-group-add, topological-comm-monoid-add, ab-group-add \(\}\)
    assumes lim: \(f \longrightarrow 0\)
    shows \((\lambda n . f n-f(n+c))\) sums \(\left(\sum k<c . f k\right)\) (is - sums? \(\left.S\right)\)
proof -
    thm tendsto-diff
    have \(\left(\lambda N . ? S-\left(\sum n<c . f(N+n)\right)\right) \longrightarrow ? S-0\)
    by (intro tendsto-intros tendsto-null-sum filterlim-compose[OF assms]; real-asymp)
    hence \(\left(\lambda N\right.\). ? \(\left.S-\left(\sum n<c . f(N+n)\right)\right) \longrightarrow\) ? \(S\)
    by simp
    moreover have eventually \(\left(\lambda N . ? S-\left(\sum n<c . f(N+n)\right)=\left(\sum n<N . f n-\right.\right.\)
\(f(n+c))\) ) sequentially
    using eventually-ge-at-top \([o f c]\)
    proof eventually-elim
    case \((\operatorname{elim} N)\)
    have \(\left(\sum n<N . f n-f(n+c)\right)=\left(\sum n<N . f n\right)-\left(\sum n<N . f(n+c)\right)\)
        by (simp only: sum-subtractf)
    also have \(\left(\sum n<N . f n\right)=\left(\sum n \in\{. .<c\} \cup\{c . .<N\} . f n\right)\)
        using elim by (intro sum.cong) auto
    also have \(\ldots=\left(\sum n<c . f n\right)+\left(\sum n \in\{c . .<N\} . f n\right)\)
        by (subst sum.union-disjoint) auto
    also have \(\left(\sum n<N . f(n+c)\right)=\left(\sum n \in\{c . .<N+c\} . f n\right)\)
        using elim by (intro sum.reindex-bij-witness \([o f-\lambda n . n-c \lambda n . n+c]\) ) auto
    also have \(\ldots=\left(\sum n \in\{c . .<N\} \cup\{N . .<N+c\}\right.\). f \(\left.n\right)\)
        using elim by (intro sum.cong) auto
    also have \(\ldots=\left(\sum n \in\{c . .<N\} . f n\right)+\left(\sum n \in\{N . .<N+c\} . f n\right)\)
        by (subst sum.union-disjoint) auto
    also have \(\left(\sum n \in\{N . .<N+c\} . f n\right)=\left(\sum n<c . f(N+n)\right)\)
        by (intro sum.reindex-bij-witness \([\) of \(-\lambda n . n+N \lambda n . n-N]\) ) auto
    finally show ?case
```

```
        by simp
    qed
    ultimately show ?thesis
    unfolding sums-def by (rule Lim-transform-eventually)
qed
```


1．2 Definition of auxiliary function

The following function is the infinite sum appearing on the right－hand side of the cotangent formula．It can be written either as

$$
\sum_{n=1}^{\infty}\left(\frac{1}{x+n}+\frac{1}{x-n}\right)
$$

or as

$$
2 x \sum_{n=1}^{\infty} \frac{1}{x^{2}-n^{2}} .
$$

definition cot－pfd ：：＇$a::\{$ real－normed－field，banach $\} \Rightarrow$＇a where cot－pfd $x=\left(\sum n .2 * x /\left(x^{\wedge}\right.\right.$ 2 - of－nat $($ Suc n）へ2）$)$

The sum in the definition of cot－pfd converges uniformly on compact sets． This implies，in particular，that cot－pfd is holomorphic（and thus also con－ tinuous）．

```
lemma uniform-limit-cot-pfd-complex:
    assumes \(R \geq 0\)
    shows uniform-limit (cball 0 R :: complex set)
            \(\left(\lambda N x . \sum n<N .2 * x /\left(x^{\wedge}\right.\right.\) 2 - of-nat \((\text { Suc } n)^{\wedge}\) 2 \(\left.)\right)\) cot-pfd sequentially
    unfolding cot-pfd-def
proof (rule Weierstrass-m-test-ev)
    have eventually \((\lambda N\). of-nat \((N+1)>R)\) at-top
        by real-asymp
    thus \(\forall_{F} N\) in sequentially. \(\forall(x::\) complex \() \in\) cball \(0 R\). norm \(\left(2 * x /\left(x^{\wedge} 2-\right.\right.\)
of-nat (Suc N) へ 2)) \(\leq\)
    \(2 * R /(\operatorname{real}(N+1) へ 2-R\) へ2)
    proof eventually-elim
        case (elim \(N\) )
        show ?case
        proof safe
            fix \(x\) :: complex assume \(x: x \in\) cball \(0 R\)
            have \((1+\operatorname{real} N)^{2}-R^{2} \leq \operatorname{norm}\left((1+\text { of-nat } N:: \text { complex })^{\text {- 2 }}\right)-\) norm
( \(x^{\text {- 2) }}\)
            using \(x\) by (auto intro: power-mono simp: norm-power simp flip: of-nat-Suc)
            also have \(\ldots \leq \operatorname{norm}\left(x^{2}-(1+\text { of-nat } N:: \text { complex })^{2}\right)\)
                by (metis norm-minus-commute norm-triangle-ineq2)
            finally show norm \(\left(2 * x /\left(x^{2}-(\text { of-nat }(\text { Suc } N))^{2}\right)\right) \leq 2 * R /(\) real \((N\)
+1 ) \(2-R^{\wedge}\) 2)
            unfolding norm-mult norm-divide using \(\langle R \geq 0\rangle x\) elim
```

```
        by (intro mult-mono frac-le) (auto intro: power-strict-mono)
    qed
    qed
next
    show summable (\lambdaN.2*R/(real (N + 1)^2 - R ^2))
    proof (rule summable-comparison-test-bigo)
```



```
        by real-asymp
    next
        show summable (\lambdan. norm (1 / real n` 2))
        using inverse-power-summable[of 2] by (simp add: field-simps)
    qed
qed
lemma sums-cot-pfd-complex:
    fixes x :: complex
    shows (\lambdan. 2 * x / (x^2 - of-nat (Suc n) ^ 2)) sums cot-pfd x
    using tendsto-uniform-limitI[OF uniform-limit-cot-pfd-complex[of norm x], of x]
    by (simp add: sums-def)
lemma sums-cot-pfd-complex':
    fixes x :: complex
    assumes }x\not\in\mathbb{Z
    shows (\lambdan.1/(x+of-nat (Suc n)) +1/(x-of-nat (Suc n))) sums cot-pfd
x
proof -
    have (\lambdan. 2 * x / (x^2 - of-nat (Suc n)^ 2)) sums cot-pfd x
        by (rule sums-cot-pfd-complex)
    also have }(\lambdan.2 * x / (x^2 - of-nat (Suc n)^2))
                            (\lambdan.1 / (x + of-nat (Suc n)) +1/(x-of-nat (Suc n))) (is ?lhs=
?rhs)
    proof
        fix n :: nat
        have neq1: }x+of-nat (Suc n) \not=
            using assms by (metis Ints-0 Ints-add-iff2 Ints-of-nat)
    have neq2: }x\mathrm{ - of-nat (Suc n) }=
                using assms by force
    have neq3: x^2 - of-nat (Suc n) ^2 2 =0
    using assms by (metis Ints-of-nat eq-iff-diff-eq-0 minus-in-Ints-iff power2-eq-iff)
    show ?lhs n = ?rhs n using neq1 neq2 neq3
            by (simp add: divide-simps del: of-nat-Suc) (auto simp: powerD-eq-square
algebra-simps)
    qed
    finally show ?thesis .
qed
lemma summable-cot-pfd-complex:
    fixes x :: complex
    shows summable (\lambdan. 2 * x / (x^2 - of-nat (Suc n) ^2))
```

```
    using sums-cot-pfd-complex[of x] by (simp add: sums-iff)
lemma summable-cot-pfd-real:
    fixes }x\mathrm{ :: real
    shows summable (\lambdan. 2 * x / (x^2 - of-nat (Suc n) ^2))
proof -
    have summable (\lambdan. complex-of-real (2*x/(x^2 - of-nat (Suc n) ^2)))
        using summable-cot-pfd-complex[of of-real x] by simp
    also have ?this \longleftrightarrow ?thesis
        by (rule summable-of-real-iff)
    finally show ?thesis.
qed
lemma sums-cot-pfd-real:
    fixes }x\mathrm{ :: real
    shows (\lambdan. 2 * x / (x^2 - of-nat (Suc n) ^ 2)) sums cot-pfd x
    using summable-cot-pfd-real[of x] by (simp add: cot-pfd-def sums-iff)
lemma cot-pfd-complex-of-real [simp]: cot-pfd (complex-of-real x) =of-real (cot-pfd
x)
    using sums-of-real[OF sums-cot-pfd-real[of x], where ?'a = complex]
            sums-cot-pfd-complex[of of-real x] sums-unique2 by auto
lemma uniform-limit-cot-pfd-real:
    assumes R\geq0
    shows uniform-limit (cball 0 R :: real set)
                            (\lambdaNx.\sumn<N.2 * x / (x^2 - of-nat (Suc n)^2)) cot-pfd sequentially
proof -
    have uniform-limit (cball O R)
                            (\lambdaNx.Re (\sumn<N.2 * x / (x^2 - of-nat (Suc n)^ 2))) (\lambdax.Re
(cot-pfd x)) sequentially
        by (intro uniform-limit-intros uniform-limit-cot-pfd-complex assms)
    hence uniform-limit (of-real' cball 0 R)
                            (\lambdaN x.Re (\sumn<N.2 * x / (x^2 - of-nat (Suc n) ^2))) (\lambdax. Re
(cot-pfd x)) sequentially
    by (rule uniform-limit-on-subset) auto
    thus ?thesis
        by (simp add: uniform-limit-image)
qed
```


1.3 Holomorphicity and continuity

lemma holomorphic-on-cot-pfd [holomorphic-intros]:
assumes $A \subseteq-(\mathbb{Z}-\{0\})$
shows cot-pfd holomorphic-on A
proof -
have $*$: open $(-(\mathbb{Z}-\{0\})$:: complex set $)$
by (intro open-Compl closed-subset-Ints) auto
define $f::$ nat \Rightarrow complex \Rightarrow complex

```
    where \(f=\left(\lambda N x . \sum n<N .2 * x /(x\right.\) へ 2-of-nat (Suc n) へ2) \()\)
    have cot-pfd holomorphic-on \(-(\mathbb{Z}-\{0\})\)
    proof (rule holomorphic-uniform-sequence[OF *])
    fix \(n\) :: nat
    have \(* *\) : \(x^{2}-(\text { of-nat }(\text { Suc } n))^{2} \neq 0\) if \(x \in-(\mathbb{Z}-\{0\})\) for \(x::\) complex and
\(n\) :: nat
    proof
        assume \(x^{2}-(o f-n a t(S u c n))^{2}=0\)
        hence (of-nat (Suc n) ) \({ }^{2}=x^{2}\)
        by algebra
    hence \(x=o f\)-nat (Suc \(n\) ) \(\vee x=-o f\)-nat (Suc n)
            by (subst (asm) eq-commute, subst (asm) power2-eq-iff) auto
    moreover have (of-nat (Suc n) :: complex) \(\in \mathbb{Z}\) (-of-nat (Suc n) :: complex)
\(\in \mathbb{Z}\)
            by (intro Ints-minus Ints-of-nat)+
            ultimately show False using that
            by (auto simp del: of-nat-Suc)
    qed
    show \(f n\) holomorphic-on \(-(\mathbb{Z}-\{0\})\)
        unfolding \(f\)-def by (intro holomorphic-intros \(* *\) )
    next
    fix \(z::\) complex assume \(z: z \in-(\mathbb{Z}-\{0\})\)
    from \(* z\) obtain \(r\) where \(r: r>0\) cball \(z r \subseteq-(\mathbb{Z}-\{0\})\)
        using open-contains-cball by blast
    have uniform-limit (cball \(z r\) ) \(f\) cot-pfd sequentially
        using uniform-limit-cot-pfd-complex[of norm \(z+r]\) unfolding \(f\)-def
    proof (rule uniform-limit-on-subset)
        show cball z \(r \subseteq\) cball 0 (norm \(z+r\) )
            unfolding cball-subset-cball-iff by (auto simp: dist-norm)
    qed (use \(\langle r>0\rangle\) in auto)
        with \(r\) show \(\exists d>0\). cball \(z d \subseteq-(\mathbb{Z}-\{0\}) \wedge\) uniform-limit \((\) cball \(z d) f\)
cot-pfd sequentially
            by blast
    qed
    thus ?thesis
    by (rule holomorphic-on-subset) fact
qed
lemma continuous-on-cot-pfd-complex [continuous-intros]:
    assumes \(A \subseteq-(\mathbb{Z}-\{0\})\)
    shows continuous-on \(A\) (cot-pfd :: complex \(\Rightarrow\) complex)
    by (rule holomorphic-on-imp-continuous-on holomorphic-intros assms)+
lemma continuous-on-cot-pfd-real [continuous-intros]:
    assumes \(A \subseteq-(\mathbb{Z}-\{0\})\)
    shows continuous-on \(A(\) cot-pfd \(::\) real \(\Rightarrow\) real \()\)
proof -
    have continuous-on \(A\) (Re \(\circ\) cot-pfd \(\circ\) of-real)
    by (intro continuous-intros) (use assms in auto)
```

```
    also have Re \(\circ\) cot-pfd \(\circ\) of-real \(=c o t-p f d\)
    by auto
    finally show ?thesis .
qed
```


1．4 Functional equations

In this section，we will show three few functional equations for the function cot－pfd．The first one is trivial；the other two are a bit tedious and not very insightful，so I will not comment on them．
cot－pfd is an odd function：

```
lemma cot-pfd-complex-minus \([\) simp \(]\) : cot-pfd \((-x::\) complex \()=-\) cot-pfd \(x\)
proof -
    have \((\lambda n\). 2 * \((-x) /((-x)\) へ2 - of-nat \((S u c ~ n) へ\) 2 \())=\)
                \((\lambda n .-(2 * x /(x\) へ 2 - of-nat \((\) Suc n) へ2) \())\)
    by \(\operatorname{simp}\)
    also have ... sums - cot-pfd \(x\)
    by (intro sums-minus sums-cot-pfd-complex)
    finally show ?thesis
    using sums-cot-pfd-complex \([\) of \(-x]\) sums-unique2 by blast
qed
lemma cot-pfd-real-minus \([\) simp \(]\) : cot-pfd \((-x::\) real \()=-\) cot-pfd \(x\)
    using cot-pfd-complex-minus[of of-real \(x\) ]
    unfolding of-real-minus [symmetric] cot-pfd-complex-of-real of-real-eq-iff .
```

cot-pfd is periodic with period 1:
lemma cot-pfd-plus-1-complex:
assumes $x \notin \mathbb{Z}$
shows $\operatorname{cot-pfd}(x+1::$ complex $)=\operatorname{cot-pfd} x-1 /(x+1)+1 / x$
proof -
have $*: x$ へ $2 \neq$ of-nat n へ 2 if $x \notin \mathbb{Z}$ for x :: complex and n
using that by (metis Ints-of-nat minus-in-Ints-iff power2-eq-iff)
have $* *: x+$ of-nat $n \neq 0$ if $x \notin \mathbb{Z}$ for $x::$ complex and n
using that by (metis Ints-0 Ints-add-iff2 Ints-of-nat)
have $[\operatorname{simp}]: x \neq 0$
using assms by auto
have $[$ simp $]: x+1 \neq 0$
using assms by (metis ** of-nat-1)
have [simp]: $x+2 \neq 0$
using $* *[$ of x 2] assms by simp
have lim: $(\lambda n .1 /(x+$ of-nat $(S u c n))) \longrightarrow 0$
by (intro tendsto-divide- $0[O F$ tendsto-const $]$ tendsto-add-filterlim-at-infinity $[O F$
tendsto-const]
filterlim-compose [OF tendsto-of-nat] filterlim-Suc)
have sum1: $(\lambda n .1 /(x+$ of-nat $($ Suc $n))-1 /(x+$ of-nat $($ Suc $n+2)))$
sums

$$
\left(\sum n<2.1 /(x+\text { of-nat }(\text { Suc } n))\right)
$$

using sums-long-telescope[OF lim, of 2] by (simp add: algebra-simps)
have $\left(\lambda\right.$ n. 2 $* x /\left(x^{2}-\left(\right.\right.$ of-nat $\left.(\text { Suc n) })^{2}\right)-2 *(x+1) /\left((x+1)^{\wedge 2}-\right.$ (of-nat (Suc (Suc n))) ${ }^{2}$))
sums (cot-pfd $x-\left(\operatorname{cot-pfd}(x+1)-2 *(x+1) /((x+1))^{2}-(o f-n a t\right.$ (Suc 0) ~2)))
using sums-cot-pfd-complex[of $x+1]$
by (intro sums-diff sums-cot-pfd-complex, subst sums-Suc-iff) auto
also have $2 *(x+1) /\left((x+1)^{\wedge} 2-\left(\right.\right.$ of-nat $\left.\left.(S u c 0){ }^{\text {へ 2 }}\right)\right)=2 *(x+1) /$ $(x *(x+2))$
by (simp add: algebra-simps power2-eq-square)
also have $\left(\lambda\right.$. 2 $* x /\left(x^{2}-(\text { of-nat }(\text { Suc } n))^{2}\right)-$

$$
\left.2 *(x+1) /\left((x+1)^{2}-(\text { of-nat }(\text { Suc }(\text { Suc } n)))^{2}\right)\right)=
$$

(入n. $1 /(x+$ of-nat $($ Suc $n))-1 /(x+$ of-nat $($ Suc $n+2)))$
using $*[$ of $x] *[o f x+1] * *[$ of $x] * *[$ of $x+1]$ assms
apply (intro ext)
apply (simp add: divide-simps del: of-nat-add of-nat-Suc)
apply (simp add: algebra-simps power2-eq-square)
done
finally have sum2: $(\lambda n .1 /(x+$ of-nat $($ Suc $n))-1 /(x+$ of-nat $($ Suc $n+$ 2))) sums

$$
(\operatorname{cot-pfd} x-\operatorname{cot-pfd}(x+1)+2 *(x+1) /(x *(x+2)))
$$

by (simp add: algebra-simps)
have cot-pfd $x-\cot -p f d(x+1)+2 *(x+1) /(x *(x+2))=$ ($\sum n<2.1 /(x+$ of-nat $($ Suc n $\left.))\right)$
using sum1 sum2 sums-unique2 by blast
hence cot-pfd $x-\cot -p f d(x+1)=-2 *(x+1) /(x *(x+2))+1 /(x+$ 1) $+1 /(x+2)$
by (simp add: eval-nat-numeral divide-simps) algebra?
also have $\ldots=1 /(x+1)-1 / x$
by (simp add: divide-simps) algebra?
finally show ?thesis
by algebra
qed
lemma cot-pfd-plus-1-real:
assumes $x \notin \mathbb{Z}$
shows \quad cot-pfd $(x+1::$ real $)=\operatorname{cot-pfd} x-1 /(x+1)+1 / x$
proof -
have cot-pfd $($ complex-of-real $(x+1))=\operatorname{cot-pfd}($ of-real $x)-1 /($ of-real $x+$
$1)+1 /$ of-real x
using cot-pfd-plus-1-complex[of x] assms by simp
also have $\ldots=$ complex-of-real $($ cot-pfd $x-1 /(x+1)+1 / x)$
by simp
finally show ?thesis
unfolding cot-pfd-complex-of-real of-real-eq-iff .
qed
cot-pfd satisfies the following functional equation:

$$
2 f(x)=f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)+\frac{2}{x+1}
$$

```
lemma cot-pfd-funeq-complex:
    fixes \(x\) :: complex
    assumes \(x \notin \mathbb{Z}\)
    shows \(2 * \operatorname{cot-pfd} x=\operatorname{cot-pfd}(x / 2)+\operatorname{cot-pfd}((x+1) / 2)+2 /(x+1)\)
proof -
    define \(f::\) complex \(\Rightarrow\) nat \(\Rightarrow\) complex where \(f=\left(\begin{array}{ll}\lambda n & n .1 /(x+\text { of-nat (Suc }\end{array}\right.\)
n)))
    define \(g::\) complex \(\Rightarrow\) nat \(\Rightarrow\) complex where \(g=(\lambda x n .1 /(x-o f-n a t\) (Suc
\(n)\) )
    define \(h::\) complex \(\Rightarrow\) nat \(\Rightarrow\) complex where \(h=(\lambda x n .2 *(f x(n+1)+g\)
\(x n\) ))
```

have sums: $(\lambda n . f x n+g x n)$ sums cot-pfd x if $x \notin \mathbb{Z}$ for x
unfolding f-def g-def by (intro sums-cot-pfd-complex' that)

```
have \(x / 2 \notin \mathbb{Z}\)
proof
    assume \(x / 2 \in \mathbb{Z}\)
    hence \(2 *(x / 2) \in \mathbb{Z}\)
            by (intro Ints-mult) auto
            thus False using assms by simp
qed
moreover have \((x+1) / 2 \notin \mathbb{Z}\)
proof
    assume \((x+1) / 2 \in \mathbb{Z}\)
    hence \(2 *((x+1) / 2)-1 \in \mathbb{Z}\)
            by (intro Ints-mult Ints-diff) auto
    thus False using assms by (simp add: field-simps)
qed
    ultimately have \((\lambda n .(f(x / 2) n+g(x / 2) n)+(f((x+1) / 2) n+g\)
\(((x+1) / 2)\) n)) sums
                    \((\operatorname{cot-pfd}(x / 2)+\operatorname{cot-pfd}((x+1) / 2))\)
```

 by (intro sums-add sums)
 also have $(\lambda n .(f(x / 2) n+g(x / 2) n)+(f((x+1) / 2) n+g((x+1) /$ 2) n)) $=$

$$
(\lambda n . h x(2 * n)+h x(2 * n+1))
$$

proof
fix $n::$ nat
have $(f(x / 2) n+g(x / 2) n)+(f((x+1) / 2) n+g((x+1) / 2) n)=$ $(f(x / 2) n+f((x+1) / 2) n)+(g(x / 2) n+g((x+1) / 2) n)$
by algebra
also have $f(x / 2) n+f((x+1) / 2) n=2 *(f x(2 * n+1)+f x(2 *$ $n+2)$)
by (simp add: f-def field-simps)
also have $g(x / 2) n+g((x+1) / 2) n=2 *(g x(2 * n)+g x(2 * n+$ 1))
by (simp add: g-def field-simps)
also have $2 *(f x(2 * n+1)+f x(2 * n+2))+\ldots=$

$$
h x(2 * n)+h x(2 * n+1)
$$

unfolding h-def by (simp add: algebra-simps)
finally show $(f(x / 2) n+g(x / 2) n)+(f((x+1) / 2) n+g((x+1) /$
2) $n)=$

$$
h x(2 * n)+h x(2 * n+1) .
$$

qed
finally have sum1:
$(\lambda n . h x(2 * n)+h x(2 * n+1))$ sums $(\cot -p f d(x / 2)+\cot -p f d((x+1)$ / 2)) .
have $f x \longrightarrow 0$ unfolding f-def
by (intro tendsto-divide- 0 [OF tendsto-const]
tendsto-add-filterlim-at-infinity[OF tendsto-const] filterlim-compose $[O F$ tendsto-of-nat] filterlim-Suc)
hence $(\lambda n$. 2 $*(f x n+g x n)+2 *(f x($ Suc $n)-f x n))$ sums $(2 *$ cot-pfd $x+2 *(0-f x 0))$
by (intro sums-add sums sums-mult telescope-sums assms)
also have $(\lambda n$. $2 *(f x n+g x n)+2 *(f x($ Suc $n)-f x n))=h x$
by (simp add: h-def algebra-simps fun-eq-iff)
finally have $*: h x$ sums $(2 * \cot -p f d x-2 * f x 0)$
by simp
have $(\lambda n . \operatorname{sum}(h x)\{n * 2 . .<n * 2+2\})$ sums $(2 * \cot -p f d x-2 * f x 0)$
using sums-group [OF *, of 2] by simp
also have $(\lambda n . \operatorname{sum}(h x)\{n * 2 . .<n * 2+2\})=(\lambda n . h x(2 * n)+h x(2 * n+$ 1))
by (simp add: mult-ac)
finally have sum2: $(\lambda n . h x(2 * n)+h x(2 * n+1)) \operatorname{sums}(2 * \cot -p f d x-$ $2 * f x 0)$.
have $\cot -p f d(x / 2)+\cot -p f d((x+1) / 2)=2 * \cot -p f d x-2 * f x 0$ using sum1 sum2 sums-unique2 by blast
also have $2 * f x 0=2 /(x+1)$
by (simp add: f-def)
finally show? ?thesis by algebra
qed
lemma cot-pfd-funeq-real:
fixes x :: real
assumes $x \notin \mathbb{Z}$
shows $2 * \operatorname{cot-pfd} x=\operatorname{cot-pfd}(x / 2)+\operatorname{cot-pfd}((x+1) / 2)+2 /(x+1)$
proof -
have complex-of-real $(2 * \cot -p f d x)=2 * \cot -p f d(\operatorname{complex}$-of-real $x)$
by simp

```
    also have ... = complex-of-real (cot-pfd (x/2) + cot-pfd ((x+1)/2) +2 /
(x+1))
    using assms by (subst cot-pfd-funeq-complex) (auto simp flip: cot-pfd-complex-of-real)
    finally show ?thesis
    by (simp only: of-real-eq-iff)
qed
```


1.5 The limit at 0

```
lemma cot-pfd-real-tendsto-0: cot-pfd -0-> (0 :: real)
proof -
    have filterlim cot-pfd (nhds 0) (at (0 :: real) within ball 0 1)
    proof (rule swap-uniform-limit)
        show uniform-limit (ball 0 1)
                            (\lambdaNx.\sumn<N.2*x / (x 2 - (real (Suc n))}\mp@subsup{)}{}{2}))\mathrm{ cot-pfd sequentially
        using uniform-limit-cot-pfd-real[OF zero-le-one] by (rule uniform-limit-on-subset)
auto
    have}((\lambdax.2*x/(\mp@subsup{x}{}{2}-(\mathrm{ real (Suc n))}\mp@subsup{)}{}{2}))\longrightarrow0)(\mathrm{ at 0 within ball 0 1) for
n
    proof (rule filterlim-mono)
            show }((\lambdax.2*x/(\mp@subsup{x}{}{2}-(\operatorname{real}(\mathrm{ Suc n) )
                by real-asymp
    qed (auto simp: at-within-le-at)
    thus }\mp@subsup{\forall}{F}{}N\mathrm{ in sequentially.
                        ((\lambdax.\sumn<N.2*x/( (x - (real (Suc n))}\mp@subsup{)}{}{2}))\longrightarrow0)(\mathrm{ at 0 within ball
0 1)
            by (intro always-eventually allI tendsto-null-sum)
    qed auto
    thus ?thesis
    by (simp add: at-within-open-NO-MATCH)
qed
```


1.6 Final result

To show the final result, we first prove the real case using Herglotz's trick, following the presentation in 'Proofs from THE BOOK'. [1, Chapter 23].

```
lemma cot-pfd-formula-real:
    assumes \(x \notin \mathbb{Z}\)
    shows \(p i * \cot (p i * x)=1 / x+\cot -p f d x\)
proof -
    have ev-not-int: eventually ( \(\lambda x\). \(r x \notin \mathbb{Z}\) ) (at \(x\) )
        if filterlim \(r(\) at \((r x))(\) at \(x)\) for \(r::\) real \(\Rightarrow\) real and \(x::\) real
    proof (rule eventually-compose-filterlim [OF - that \(]\) )
        show eventually \((\lambda x . x \notin \mathbb{Z})(\) at \((r x))\)
            using Ints-not-limpt[of \(r x]\) islimpt-iff-eventually by blast
    qed
```

We define the function $h(z)$ as the difference of the left-hand side and righthand side. The left-hand side and right-hand side have singularities at the
integers, but we will later see that these can be removed as h tends to 0 there.


```
define g :: real => real where g=( \lambdax.1/x+ cot-pfd x)
define }h\mathrm{ where }h=(\lambdax\mathrm{ . if }x\in\mathbb{Z}\mathrm{ then 0 else f }x-gx
have [simp]: }hx=0\mathrm{ if }x\in\mathbb{Z}\mathrm{ for }
    using that by (simp add: h-def)
```

It is easy to see that the left-hand side and the right-hand side, and as a consequence also our function h, are odd and periodic with period 1.

```
have odd-h: }h(-x)=-hx\mathrm{ for }
    by (simp add: h-def minus-in-Ints-iff f-def g-def)
have per-f: f(x+1)=fx for }
    by (simp add: f-def algebra-simps cot-def)
have per-g: g(x+1)=gx if }x\not\in\mathbb{Z}\mathrm{ for }
    using that by (simp add: g-def cot-pfd-plus-1-real)
interpret h: periodic-fun-simple' }
    by standard (auto simp: h-def per-f per-g)
```

h tends to 0 at 0 (and thus at all the integers).

```
have \(h\)-lim: \(h-0 \rightarrow 0\)
proof (rule Lim-transform-eventually)
    have eventually \((\lambda x . x \notin \mathbb{Z})(\) at \((0::\) real \())\)
        by (rule ev-not-int) real-asymp
    thus eventually \((\lambda x:\) :real. pi* \(\cot (p i * x)-1 / x-\operatorname{cot-pfd} x=h x)(\) at 0\()\)
        by eventually-elim (simp add: \(h\)-def \(f\)-def \(g\)-def)
next
    have \((\lambda x::\) real. \(p i * \cot (p i * x)-1 / x)-0 \rightarrow 0\)
        unfolding cot-def by real-asymp
    hence ( \(\lambda x::\) real. pi* cot \((p i * x)-1 / x-\cot -p f d x)-0 \rightarrow 0-0\)
        by (intro tendsto-intros cot-pfd-real-tendsto-0)
    thus \((\lambda x . p i * \cot (p i * x)-1 / x-\cot -p f d x)-0 \rightarrow 0\)
        by \(\operatorname{simp}\)
qed
```

This means that our h is in fact continuous everywhere:

```
have cont-h: continuous-on \(A h\) for \(A\)
proof -
    have isCont \(h x\) for \(x\)
    proof (cases \(x \in \mathbb{Z}\) )
    case True
    then obtain \(n\) where \([\operatorname{simp}]: x=o f-i n t n\)
                by (auto elim: Ints-cases)
    show ?thesis unfolding isCont-def
        by (subst at-to-0) (use h-lim in 〈simp add: filterlim-filtermap h.plus-of-int〉)
    next
        case False
```

```
    have continuous-on (-\mathbb{Z})(\lambdax.fx-gx)
            by (auto simp: f-def g-def sin-times-pi-eq-0 mult.commute[of pi] intro!:
continuous-intros)
    hence isCont ( }\lambdax.fx-gx)
        by (rule continuous-on-interior)
            (use False in «auto simp: interior-open open-Compl[OF closed-Ints]〉)
    also have eventually ( }\lambday.y\in-\mathbb{Z})(nhds x
        using False by (intro eventually-nhds-in-open) auto
    hence eventually ( }\lambdax.fx-gx=hx)(nhds x
        by eventually-elim (auto simp: h-def)
    hence isCont ( }\lambdax.fx-gx)x\longleftrightarrow\mathrm{ isCont h }
        by (rule isCont-cong)
    finally show ?thesis.
    qed
    thus ?thesis
        by (simp add: continuous-at-imp-continuous-on)
qed
note [continuous-intros]= continuous-on-compose2[OF cont-h]
```

Through the functional equations of the sine and cosine function, we can derive the following functional equation for f that holds for all non-integer reals:

```
have eq-f: \(f x=(f(x / 2)+f((x+1) / 2)) / 2\) if \(x \notin \mathbb{Z}\) for \(x\)
proof -
    have \(x / 2 \notin \mathbb{Z}\)
        using that by (metis Ints-add field-sum-of-halves)
    hence \(n z 1: \sin (x / 2 * p i) \neq 0\)
        by (subst sin-times-pi-eq-0) auto
    have \((x+1) / 2 \notin \mathbb{Z}\)
    proof
        assume \((x+1) / 2 \in \mathbb{Z}\)
        hence \(2 *((x+1) / 2)-1 \in \mathbb{Z}\)
            by (intro Ints-mult Ints-diff) auto
        thus False using that by (simp add: field-simps)
    qed
    hence \(n z 2: \sin ((x+1) / 2 * p i) \neq 0\)
        by (subst sin-times-pi-eq-0) auto
    have \(n z 3: \sin (x * p i) \neq 0\)
        using that by (subst sin-times-pi-eq-0) auto
    have \(e q: \sin (p i * x)=2 * \sin (p i * x / 2) * \cos (p i * x / 2)\)
        \(\cos (p i * x)=(\cos (p i * x / 2))^{2}-(\sin (p i * x / 2))^{2}\)
        using sin-double[of pi*x / 2] cos-double[of pi*x / 2] by simp-all
    show ?thesis using nz1 nz2 nz3
        apply (simp add: f-def cot-def field-simps )
        apply (simp add: add-divide-distrib sin-add cos-add power2-eq-square eq alge-
bra-simps)
```

```
    done
qed
```

The corresponding functional equation for cot-pfd that we have already shown leads to the same functional equation for g as we just showed for f :

```
have eq-g: \(g x=(g(x / 2)+g((x+1) / 2)) / 2\) if \(x \notin \mathbb{Z}\) for \(x\)
    using cot-pfd-funeq-real[ \(O F\) that \(]\) by (simp add: \(g\)-def)
```

This then leads to the same functional equation for h, and because h is continuous everywhere, we can extend the validity of the equation to the full domain.

```
have eq-h: \(h x=(h(x / 2)+h((x+1) / 2)) / 2\) for \(x\)
proof -
    have eventually \((\lambda x . x \notin \mathbb{Z})(\) at \(x)\) eventually \((\lambda x\). \(x / 2 \notin \mathbb{Z})(\) at \(x)\)
        eventually \((\lambda x .(x+1) / 2 \notin \mathbb{Z})(\) at \(x)\)
    by (rule ev-not-int; real-asymp)+
    hence eventually \((\lambda x . h x-(h(x / 2)+h((x+1) / 2)) / 2=0)(\) at \(x)\)
    proof eventually-elim
    case (elim \(x\) )
    thus ?case using eq-f[of \(x] e q-g[o f x]\)
        by (simp add: h-def field-simps)
    qed
    hence \((\lambda x . h x-(h(x / 2)+h((x+1) / 2)) / 2)-x \rightarrow 0\)
    by (simp add: tendsto-eventually)
    moreover have continuous-on UNIV \((\lambda x . h x-(h(x / 2)+h((x+1)) /\)
2)) / 2)
        by (auto intro!: continuous-intros)
    ultimately have \(h x-(h(x / 2)+h((x+1) / 2)) / 2=0\)
        by (meson LIM-unique UNIV-I continuous-on-def)
    thus ?thesis
    by \(\operatorname{simp}\)
qed
```

Since h is periodic with period 1 and continuous, it must attain a global maximum h somewhere in the interval $[0,1]$. Let's call this maximum m and let x_{0} be some point in the interval $[0,1]$ such that $h\left(x_{0}\right)=m$.

```
define \(m\) where \(m=\operatorname{Sup}\left(h^{\prime}\{0 . .1\}\right)\)
have \(m \in h '\{0 . .1\}\)
    unfolding \(m\)-def
proof (rule closed-contains-Sup)
    have compact ( \(h\) ' \(\{0 . .1\}\) )
        by (intro compact-continuous-image cont-h) auto
    thus bdd-above ( \(h^{\prime}\{0 . .1\}\) ) closed ( \(h\) ' \(\{0 . .1\}\) )
    by (auto intro: compact-imp-closed compact-imp-bounded bounded-imp-bdd-above)
qed auto
then obtain \(x 0\) where \(x 0: x 0 \in\{0 . .1\} h x 0=m\)
    by blast
```

```
have \(h\)-le-m: \(h x \leq m\) for \(x\)
proof -
    have \(h x=h(\) frac \(x)\)
        unfolding frac-def by (rule h.minus-of-int [symmetric])
    also have \(\ldots \leq m\) unfolding \(m\)-def
    proof (rule cSup-upper)
        have frac \(x \in\{0 . .1\}\)
            using frac-lt-1[of \(x]\) by auto
        thus \(h(\) frac \(x) \in h '\{0 . .1\}\)
            by blast
    next
        have compact ( \(h\) ' \(\{0 . .1\}\) )
            by (intro compact-continuous-image cont-h) auto
        thus bdd-above ( \(h\) ' \(\{0 . .1\}\) )
            by (auto intro: compact-imp-bounded bounded-imp-bdd-above)
    qed
    finally show ?thesis .
qed
```

Through the functional equation for h, we can show that if h attains its maximum at some point x, it also attains it at $\frac{1}{2} x$. By iterating this, it attains the maximum at all points of the form $2^{-n} x_{0}$.

```
have \(h\)-eq-m-iter-aux: \(h(x / 2)=m\) if \(h x=m\) for \(x\)
    using eq-h[of x] that h-le-m[of x/2] h-le-m[of \((x+1) / 2]\) by simp
have \(h\)-eq-m-iter: \(h\left(x 0 / 2^{\wedge} n\right)=m\) for \(n\)
proof (induction n)
    case (Suc n)
    have \(h\left(x 0 / 2^{\wedge} S u c n\right)=h(x 0 / 2\) へ \(n / 2)\)
        by (simp add: field-simps)
    also have \(\ldots=m\)
        by (rule h-eq-m-iter-aux) (use Suc.IH in auto)
    finally show ?case .
qed (use \(x 0\) in auto)
```

Since the sequence $n \mapsto 2^{-n} x_{0}$ tends to 0 and h is continuous, we derive m $=0$.

```
have \(\left(\lambda n . h\left(x 0 / \mathbf{2}^{\wedge} n\right)\right) \longrightarrow h 0\)
    by (rule continuous-on-tendsto-compose[OF cont-h[of UNIV]]) (force | real-asymp)+
moreover from \(h\)-eq-m-iter have \(\left(\lambda n . h\left(x 0 / 2^{\wedge} n\right)\right) \longrightarrow m\)
    by \(\operatorname{simp}\)
ultimately have \(m=h 0\)
    using tendsto-unique by force
hence \(m=0\)
    by \(\operatorname{simp}\)
```

Since h is odd, this means that h is identically zero everywhere, and our result follows.
have $h x=0$

```
    using h-le-m[of x] h-le-m[of -x]<m=0\rangle odd-h[of x] by linarith
    thus ?thesis
    using assms by (simp add: h-def f-def g-def)
qed
```

We now lift the result from the domain $\mathbb{R} \backslash \mathbb{Z}$ to $\mathbb{C} \backslash \mathbb{Z}$. We do this by noting that $\mathbb{C} \backslash \mathbb{Z}$ is connected and the point $\frac{1}{2}$ is both in $\mathbb{C} \backslash \mathbb{Z}$ and a limit point of $\mathbb{R} \backslash \mathbb{Z}$.
lemma one-half-limit-point-Reals-minus-Ints: (1/2 :: complex) islimpt $\mathbb{R}-\mathbb{Z}$ proof (rule islimptI)
fix T :: complex set
assume $1 / 2 \in T$ open T
then obtain r where $r: r>0$ ball $(1 / 2) r \subseteq T$
using open-contains-ball by blast
define y where $y=1 / 2+\min r(1 / 2) / 2$
have $y \in\{0<. .<1\}$
using r by (auto simp: y-def)
hence complex-of-real $y \in \mathbb{R}-\mathbb{Z}$
by (auto elim!: Ints-cases)
moreover have complex-of-real $y \neq 1 / 2$
proof
assume complex-of-real $y=1 / 2$
also have $1 / 2=$ complex-of-real (1/2)
by simp
finally have $y=1 / 2$
unfolding of-real-eq-iff .
with r show False by (auto simp: y-def)
qed
moreover have complex-of-real $y \in$ ball (1/2) r
using $\langle r\rangle 0\rangle$ by (auto simp: y-def dist-norm)
with r have complex-of-real $y \in T$
by blast
ultimately show $\exists y \in \mathbb{R}-\mathbb{Z} . y \in T \wedge y \neq 1 / 2$
by blast
qed
theorem cot-pfd-formula-complex:
fixes $z::$ complex
assumes $z \notin \mathbb{Z}$
shows $p i * \cot (p i * z)=1 / z+\cot -p f d z$
proof -
let ?f $=\lambda z:$:complex. $p i * \cot (p i * z)-1 / z-\operatorname{cot-pfd} z$
have $p i * \cot (p i * z)-1 / z-\cot -p f d z=0$
proof (rule analytic-continuation $[$ where $f=$?f])
show ?f holomorphic-on $-\mathbb{Z}$
unfolding cot-def by (intro holomorphic-intros) (auto simp: sin-eq-0)
next
show open ($-\mathbb{Z}::$ complex set) connected ($-\mathbb{Z}::$ complex set)
by (auto intro!: path-connected-imp-connected path-connected-complement-countable countable-int)
next
show $\mathbb{R}-\mathbb{Z} \subseteq(-\mathbb{Z}::$ complex set $)$
by auto
next
show (1 / 2 :: complex) islimpt $\mathbb{R}-\mathbb{Z}$
by (rule one-half-limit-point-Reals-minus-Ints)
next
show 1 / (2 :: complex) $\in-\mathbb{Z}$
using fraction-not-in-ints[of 2 1, where ?'a = complex] by auto
next
show $z \in-\mathbb{Z}$
using assms by simp
next
show ?f $z=0$ if $z \in \mathbb{R}-\mathbb{Z}$ for z
proof -
have complex-of-real pi* cot (complex-of-real pi*z)-1/z-cot-pfd $z=$ complex-of-real $(p i * \cot (p i * \operatorname{Re} z)-1 / \operatorname{Re} z-\cot -p f d(\operatorname{Re} z))$
using that by (auto elim!: Reals-cases simp: cot-of-real)
also have ... = 0
by (subst cot-pfd-formula-real) (use that in «auto elim!: Reals-cases〉)
finally show ?thesis .
qed
qed
thus ?thesis
by algebra
qed
end

References

[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 4th edition, 2009.

