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Abstract

In this article, I formalise a proof from THE BOOK [1, Chapter 23];
namely a formula that was called ‘one of the most beautiful formulas
involving elementary functions’:

π cot(πz) =
1
z

+
∞∑

n=1

(
1

z + n
+

1
z − n

)
The proof uses Herglotz’s trick to show the real case and analytic
continuation for the complex case.
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1 The Partial-Fraction Formula for the Cotangent
Function

theory Cotangent-PFD-Formula
imports HOL−Complex-Analysis.Complex-Analysis HOL−Real-Asymp.Real-Asymp

begin

1.1 Auxiliary lemmas

The following variant of the comparison test for showing summability al-
lows us to use a ‘Big-O’ estimate, which works well together with Isabelle’s
automation for real asymptotics.
lemma summable-comparison-test-bigo:

fixes f :: nat ⇒ real
assumes summable (λn. norm (g n)) f ∈ O(g)
shows summable f

proof −
from ‹f ∈ O(g)› obtain C where C : eventually (λx. norm (f x) ≤ C ∗ norm

(g x)) at-top
by (auto elim: landau-o.bigE)

thus ?thesis
by (rule summable-comparison-test-ev) (insert assms, auto intro: summable-mult)

qed

lemma uniformly-on-image:
uniformly-on (f ‘ A) g = filtercomap (λh. h ◦ f ) (uniformly-on A (g ◦ f ))
unfolding uniformly-on-def by (simp add: filtercomap-INF)

lemma uniform-limit-image:
uniform-limit (f ‘ A) g h F ←→ uniform-limit A (λx y. g x (f y)) (λx. h (f x)) F
by (simp add: uniformly-on-image filterlim-filtercomap-iff o-def )

lemma Ints-add-iff1 [simp]: x ∈ � =⇒ x + y ∈ � ←→ y ∈ �
by (metis Ints-add Ints-diff add.commute add-diff-cancel-right ′)

lemma Ints-add-iff2 [simp]: y ∈ � =⇒ x + y ∈ � ←→ x ∈ �
by (metis Ints-add Ints-diff add-diff-cancel-right ′)

If a set is discrete (i.e. the difference between any two points is bounded
from below), it has no limit points:
lemma discrete-imp-not-islimpt:

assumes e: 0 < e
and d: ∀ x ∈ S . ∀ y ∈ S . dist y x < e −→ y = x

shows ¬x islimpt S
proof

assume x islimpt S
hence x islimpt S − {x}
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by (meson islimpt-punctured)
moreover from assms have closed (S − {x})

by (intro discrete-imp-closed) auto
ultimately show False

unfolding closed-limpt by blast
qed

In particular, the integers have no limit point:
lemma Ints-not-limpt: ¬((x :: ′a :: real-normed-algebra-1 ) islimpt �)

by (rule discrete-imp-not-islimpt[of 1 ]) (auto elim!: Ints-cases simp: dist-of-int)

The following lemma allows evaluating telescoping sums of the form
∞∑

n=0

(f(n)− f(n + k))

where f(n) −→ 0, i.e. where all terms except for the first k are cancelled by
later summands.
lemma sums-long-telescope:
fixes f :: nat ⇒ ′a :: {topological-group-add, topological-comm-monoid-add, ab-group-add}
assumes lim: f −−−−→ 0
shows (λn. f n − f (n + c)) sums (

∑
k<c. f k) (is - sums ?S)

proof −
thm tendsto-diff
have (λN . ?S − (

∑
n<c. f (N + n))) −−−−→ ?S − 0

by (intro tendsto-intros tendsto-null-sum filterlim-compose[OF assms]; real-asymp)
hence (λN . ?S − (

∑
n<c. f (N + n))) −−−−→ ?S

by simp
moreover have eventually (λN . ?S − (

∑
n<c. f (N + n)) = (

∑
n<N . f n −

f (n + c))) sequentially
using eventually-ge-at-top[of c]

proof eventually-elim
case (elim N )
have (

∑
n<N . f n − f (n + c)) = (

∑
n<N . f n) − (

∑
n<N . f (n + c))

by (simp only: sum-subtractf )
also have (

∑
n<N . f n) = (

∑
n∈{..<c} ∪ {c..<N}. f n)

using elim by (intro sum.cong) auto
also have . . . = (

∑
n<c. f n) + (

∑
n∈{c..<N}. f n)

by (subst sum.union-disjoint) auto
also have (

∑
n<N . f (n + c)) = (

∑
n∈{c..<N+c}. f n)

using elim by (intro sum.reindex-bij-witness[of - λn. n − c λn. n + c]) auto
also have . . . = (

∑
n∈{c..<N}∪{N ..<N+c}. f n)

using elim by (intro sum.cong) auto
also have . . . = (

∑
n∈{c..<N}. f n) + (

∑
n∈{N ..<N+c}. f n)

by (subst sum.union-disjoint) auto
also have (

∑
n∈{N ..<N+c}. f n) = (

∑
n<c. f (N + n))

by (intro sum.reindex-bij-witness[of - λn. n + N λn. n − N ]) auto
finally show ?case
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by simp
qed
ultimately show ?thesis

unfolding sums-def by (rule Lim-transform-eventually)
qed

1.2 Definition of auxiliary function

The following function is the infinite sum appearing on the right-hand side
of the cotangent formula. It can be written either as

∞∑
n=1

(
1

x + n
+

1
x− n

)
or as

2x
∞∑

n=1

1
x2 − n2

.

definition cot-pfd :: ′a :: {real-normed-field, banach} ⇒ ′a where
cot-pfd x = (

∑
n. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 ))

The sum in the definition of cot-pfd converges uniformly on compact sets.
This implies, in particular, that cot-pfd is holomorphic (and thus also con-
tinuous).
lemma uniform-limit-cot-pfd-complex:

assumes R ≥ 0
shows uniform-limit (cball 0 R :: complex set)

(λN x .
∑

n<N . 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )) cot-pfd sequentially
unfolding cot-pfd-def

proof (rule Weierstrass-m-test-ev)
have eventually (λN . of-nat (N + 1 ) > R) at-top

by real-asymp
thus ∀ F N in sequentially. ∀ (x::complex)∈cball 0 R. norm (2 ∗ x / (x ^ 2 −

of-nat (Suc N ) ^ 2 )) ≤
2 ∗ R / (real (N + 1 ) ^ 2 − R ^ 2 )

proof eventually-elim
case (elim N )
show ?case
proof safe

fix x :: complex assume x: x ∈ cball 0 R
have (1 + real N )2 − R2 ≤ norm ((1 + of-nat N :: complex) ^ 2 ) − norm

(x ^ 2 )
using x by (auto intro: power-mono simp: norm-power simp flip: of-nat-Suc)
also have . . . ≤ norm (x2 − (1 + of-nat N :: complex)2)

by (metis norm-minus-commute norm-triangle-ineq2 )
finally show norm (2 ∗ x / (x2 − (of-nat (Suc N ))2)) ≤ 2 ∗ R / (real (N

+ 1 ) ^ 2 − R ^ 2 )
unfolding norm-mult norm-divide using ‹R ≥ 0 › x elim
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by (intro mult-mono frac-le) (auto intro: power-strict-mono)
qed

qed
next

show summable (λN . 2 ∗ R / (real (N + 1 ) ^ 2 − R ^ 2 ))
proof (rule summable-comparison-test-bigo)

show (λN . 2 ∗ R / (real (N + 1 ) ^ 2 − R ^ 2 )) ∈ O(λN . 1 / real N ^ 2 )
by real-asymp

next
show summable (λn. norm (1 / real n ^ 2 ))

using inverse-power-summable[of 2 ] by (simp add: field-simps)
qed

qed

lemma sums-cot-pfd-complex:
fixes x :: complex
shows (λn. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )) sums cot-pfd x
using tendsto-uniform-limitI [OF uniform-limit-cot-pfd-complex[of norm x], of x]
by (simp add: sums-def )

lemma sums-cot-pfd-complex ′:
fixes x :: complex
assumes x /∈ �
shows (λn. 1 / (x + of-nat (Suc n)) + 1 / (x − of-nat (Suc n))) sums cot-pfd

x
proof −

have (λn. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )) sums cot-pfd x
by (rule sums-cot-pfd-complex)

also have (λn. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )) =
(λn. 1 / (x + of-nat (Suc n)) + 1 / (x − of-nat (Suc n))) (is ?lhs =

?rhs)
proof

fix n :: nat
have neq1 : x + of-nat (Suc n) 6= 0

using assms by (metis Ints-0 Ints-add-iff2 Ints-of-nat)
have neq2 : x − of-nat (Suc n) 6= 0

using assms by force
have neq3 : x ^ 2 − of-nat (Suc n) ^ 2 6= 0
using assms by (metis Ints-of-nat eq-iff-diff-eq-0 minus-in-Ints-iff power2-eq-iff )
show ?lhs n = ?rhs n using neq1 neq2 neq3

by (simp add: divide-simps del: of-nat-Suc) (auto simp: power2-eq-square
algebra-simps)

qed
finally show ?thesis .

qed

lemma summable-cot-pfd-complex:
fixes x :: complex
shows summable (λn. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 ))
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using sums-cot-pfd-complex[of x] by (simp add: sums-iff )

lemma summable-cot-pfd-real:
fixes x :: real
shows summable (λn. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 ))

proof −
have summable (λn. complex-of-real (2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )))

using summable-cot-pfd-complex[of of-real x] by simp
also have ?this ←→ ?thesis

by (rule summable-of-real-iff )
finally show ?thesis .

qed

lemma sums-cot-pfd-real:
fixes x :: real
shows (λn. 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )) sums cot-pfd x
using summable-cot-pfd-real[of x] by (simp add: cot-pfd-def sums-iff )

lemma cot-pfd-complex-of-real [simp]: cot-pfd (complex-of-real x) = of-real (cot-pfd
x)

using sums-of-real[OF sums-cot-pfd-real[of x], where ? ′a = complex]
sums-cot-pfd-complex[of of-real x] sums-unique2 by auto

lemma uniform-limit-cot-pfd-real:
assumes R ≥ 0
shows uniform-limit (cball 0 R :: real set)

(λN x .
∑

n<N . 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )) cot-pfd sequentially
proof −

have uniform-limit (cball 0 R)
(λN x. Re (

∑
n<N . 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 ))) (λx. Re

(cot-pfd x)) sequentially
by (intro uniform-limit-intros uniform-limit-cot-pfd-complex assms)

hence uniform-limit (of-real ‘ cball 0 R)
(λN x. Re (

∑
n<N . 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 ))) (λx. Re

(cot-pfd x)) sequentially
by (rule uniform-limit-on-subset) auto

thus ?thesis
by (simp add: uniform-limit-image)

qed

1.3 Holomorphicity and continuity
lemma holomorphic-on-cot-pfd [holomorphic-intros]:

assumes A ⊆ −(�−{0})
shows cot-pfd holomorphic-on A

proof −
have ∗: open (−(�−{0}) :: complex set)

by (intro open-Compl closed-subset-Ints) auto
define f :: nat ⇒ complex ⇒ complex
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where f = (λN x .
∑

n<N . 2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 ))
have cot-pfd holomorphic-on −(�−{0})
proof (rule holomorphic-uniform-sequence[OF ∗])

fix n :: nat
have ∗∗: x2 − (of-nat (Suc n))2 6= 0 if x ∈ −(�−{0}) for x :: complex and

n :: nat
proof

assume x2 − (of-nat (Suc n))2 = 0
hence (of-nat (Suc n))2 = x2

by algebra
hence x = of-nat (Suc n) ∨ x = −of-nat (Suc n)

by (subst (asm) eq-commute, subst (asm) power2-eq-iff ) auto
moreover have (of-nat (Suc n) :: complex) ∈ � (−of-nat (Suc n) :: complex)

∈ �
by (intro Ints-minus Ints-of-nat)+

ultimately show False using that
by (auto simp del: of-nat-Suc)

qed
show f n holomorphic-on −(� − {0})

unfolding f-def by (intro holomorphic-intros ∗∗)
next

fix z :: complex assume z: z ∈ −(� − {0})
from ∗ z obtain r where r : r > 0 cball z r ⊆ −(�−{0})

using open-contains-cball by blast
have uniform-limit (cball z r) f cot-pfd sequentially

using uniform-limit-cot-pfd-complex[of norm z + r ] unfolding f-def
proof (rule uniform-limit-on-subset)

show cball z r ⊆ cball 0 (norm z + r)
unfolding cball-subset-cball-iff by (auto simp: dist-norm)

qed (use ‹r > 0 › in auto)
with r show ∃ d>0 . cball z d ⊆ − (� − {0}) ∧ uniform-limit (cball z d) f

cot-pfd sequentially
by blast

qed
thus ?thesis

by (rule holomorphic-on-subset) fact
qed

lemma continuous-on-cot-pfd-complex [continuous-intros]:
assumes A ⊆ −(�−{0})
shows continuous-on A (cot-pfd :: complex ⇒ complex)
by (rule holomorphic-on-imp-continuous-on holomorphic-intros assms)+

lemma continuous-on-cot-pfd-real [continuous-intros]:
assumes A ⊆ −(�−{0})
shows continuous-on A (cot-pfd :: real ⇒ real)

proof −
have continuous-on A (Re ◦ cot-pfd ◦ of-real)

by (intro continuous-intros) (use assms in auto)
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also have Re ◦ cot-pfd ◦ of-real = cot-pfd
by auto

finally show ?thesis .
qed

1.4 Functional equations

In this section, we will show three few functional equations for the function
cot-pfd. The first one is trivial; the other two are a bit tedious and not very
insightful, so I will not comment on them.

cot-pfd is an odd function:
lemma cot-pfd-complex-minus [simp]: cot-pfd (−x :: complex) = −cot-pfd x
proof −

have (λn. 2 ∗ (−x) / ((−x) ^ 2 − of-nat (Suc n) ^ 2 )) =
(λn. − (2 ∗ x / (x ^ 2 − of-nat (Suc n) ^ 2 )))

by simp
also have . . . sums −cot-pfd x

by (intro sums-minus sums-cot-pfd-complex)
finally show ?thesis

using sums-cot-pfd-complex[of −x] sums-unique2 by blast
qed

lemma cot-pfd-real-minus [simp]: cot-pfd (−x :: real) = −cot-pfd x
using cot-pfd-complex-minus[of of-real x]
unfolding of-real-minus [symmetric] cot-pfd-complex-of-real of-real-eq-iff .

cot-pfd is periodic with period 1:
lemma cot-pfd-plus-1-complex:

assumes x /∈ �
shows cot-pfd (x + 1 :: complex) = cot-pfd x − 1 / (x + 1 ) + 1 / x

proof −
have ∗: x ^ 2 6= of-nat n ^ 2 if x /∈ � for x :: complex and n

using that by (metis Ints-of-nat minus-in-Ints-iff power2-eq-iff )
have ∗∗: x + of-nat n 6= 0 if x /∈ � for x :: complex and n

using that by (metis Ints-0 Ints-add-iff2 Ints-of-nat)
have [simp]: x 6= 0

using assms by auto
have [simp]: x + 1 6= 0

using assms by (metis ∗∗ of-nat-1 )
have [simp]: x + 2 6= 0

using ∗∗[of x 2 ] assms by simp

have lim: (λn. 1 / (x + of-nat (Suc n))) −−−−→ 0
by (intro tendsto-divide-0 [OF tendsto-const] tendsto-add-filterlim-at-infinity[OF

tendsto-const]
filterlim-compose[OF tendsto-of-nat] filterlim-Suc)

have sum1 : (λn. 1 / (x + of-nat (Suc n)) − 1 / (x + of-nat (Suc n + 2 )))
sums
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(
∑

n<2 . 1 / (x + of-nat (Suc n)))
using sums-long-telescope[OF lim, of 2 ] by (simp add: algebra-simps)

have (λn. 2 ∗ x / (x2 − (of-nat (Suc n))2) − 2 ∗ (x + 1 ) / ((x + 1 )^2 −
(of-nat (Suc (Suc n)))2))

sums (cot-pfd x − (cot-pfd (x + 1 ) − 2 ∗ (x + 1 ) / ((x + 1 )^2 − (of-nat
(Suc 0 ) ^ 2 ))))

using sums-cot-pfd-complex[of x + 1 ]
by (intro sums-diff sums-cot-pfd-complex, subst sums-Suc-iff ) auto

also have 2 ∗ (x + 1 ) / ((x + 1 )^2 − (of-nat (Suc 0 ) ^ 2 )) = 2 ∗ (x + 1 ) /
(x ∗ (x + 2 ))

by (simp add: algebra-simps power2-eq-square)
also have (λn. 2 ∗ x / (x2 − (of-nat (Suc n))2) −

2 ∗ (x + 1 ) / ((x + 1 )2 − (of-nat (Suc (Suc n)))2)) =
(λn. 1 / (x + of-nat (Suc n)) − 1 / (x + of-nat (Suc n + 2 )))

using ∗[of x] ∗[of x + 1 ] ∗∗[of x] ∗∗[of x + 1 ] assms
apply (intro ext)
apply (simp add: divide-simps del: of-nat-add of-nat-Suc)
apply (simp add: algebra-simps power2-eq-square)
done

finally have sum2 : (λn. 1 / (x + of-nat (Suc n)) − 1 / (x + of-nat (Suc n +
2 ))) sums

(cot-pfd x − cot-pfd (x + 1 ) + 2 ∗ (x + 1 ) / (x ∗ (x + 2 )))
by (simp add: algebra-simps)

have cot-pfd x − cot-pfd (x + 1 ) + 2 ∗ (x + 1 ) / (x ∗ (x + 2 )) =
(
∑

n<2 . 1 / (x + of-nat (Suc n)))
using sum1 sum2 sums-unique2 by blast

hence cot-pfd x − cot-pfd (x + 1 ) = −2 ∗ (x + 1 ) / (x ∗ (x + 2 )) + 1 / (x +
1 ) + 1 / (x + 2 )

by (simp add: eval-nat-numeral divide-simps) algebra?
also have . . . = 1 / (x + 1 ) − 1 / x

by (simp add: divide-simps) algebra?
finally show ?thesis

by algebra
qed

lemma cot-pfd-plus-1-real:
assumes x /∈ �
shows cot-pfd (x + 1 :: real) = cot-pfd x − 1 / (x + 1 ) + 1 / x

proof −
have cot-pfd (complex-of-real (x + 1 )) = cot-pfd (of-real x) − 1 / (of-real x +

1 ) + 1 / of-real x
using cot-pfd-plus-1-complex[of x] assms by simp

also have . . . = complex-of-real (cot-pfd x − 1 / (x + 1 ) + 1 / x)
by simp

finally show ?thesis
unfolding cot-pfd-complex-of-real of-real-eq-iff .

qed

9



cot-pfd satisfies the following functional equation:

2f(x) = f
(x

2

)
+ f

(
x + 1

2

)
+

2
x + 1

lemma cot-pfd-funeq-complex:
fixes x :: complex
assumes x /∈ �
shows 2 ∗ cot-pfd x = cot-pfd (x / 2 ) + cot-pfd ((x + 1 ) / 2 ) + 2 / (x + 1 )

proof −
define f :: complex ⇒ nat ⇒ complex where f = (λx n. 1 / (x + of-nat (Suc

n)))
define g :: complex ⇒ nat ⇒ complex where g = (λx n. 1 / (x − of-nat (Suc

n)))
define h :: complex ⇒ nat ⇒ complex where h = (λx n. 2 ∗ (f x (n + 1 ) + g

x n))

have sums: (λn. f x n + g x n) sums cot-pfd x if x /∈ � for x
unfolding f-def g-def by (intro sums-cot-pfd-complex ′ that)

have x / 2 /∈ �
proof

assume x / 2 ∈ �
hence 2 ∗ (x / 2 ) ∈ �

by (intro Ints-mult) auto
thus False using assms by simp

qed
moreover have (x + 1 ) / 2 /∈ �
proof

assume (x + 1 ) / 2 ∈ �
hence 2 ∗ ((x + 1 ) / 2 ) − 1 ∈ �

by (intro Ints-mult Ints-diff ) auto
thus False using assms by (simp add: field-simps)

qed
ultimately have (λn. (f (x / 2 ) n + g (x / 2 ) n) + (f ((x+1 ) / 2 ) n + g

((x+1 ) / 2 ) n)) sums
(cot-pfd (x / 2 ) + cot-pfd ((x + 1 ) / 2 ))

by (intro sums-add sums)

also have (λn. (f (x / 2 ) n + g (x / 2 ) n) + (f ((x+1 ) / 2 ) n + g ((x+1 ) /
2 ) n)) =

(λn. h x (2 ∗ n) + h x (2 ∗ n + 1 ))
proof

fix n :: nat
have (f (x / 2 ) n + g (x / 2 ) n) + (f ((x+1 ) / 2 ) n + g ((x+1 ) / 2 ) n) =

(f (x / 2 ) n + f ((x+1 ) / 2 ) n) + (g (x / 2 ) n + g ((x+1 ) / 2 ) n)
by algebra

also have f (x / 2 ) n + f ((x+1 ) / 2 ) n = 2 ∗ (f x (2 ∗ n + 1 ) + f x (2 ∗
n + 2 ))
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by (simp add: f-def field-simps)
also have g (x / 2 ) n + g ((x+1 ) / 2 ) n = 2 ∗ (g x (2 ∗ n) + g x (2 ∗ n +

1 ))
by (simp add: g-def field-simps)

also have 2 ∗ (f x (2 ∗ n + 1 ) + f x (2 ∗ n + 2 )) + . . . =
h x (2 ∗ n) + h x (2 ∗ n + 1 )

unfolding h-def by (simp add: algebra-simps)
finally show (f (x / 2 ) n + g (x / 2 ) n) + (f ((x+1 ) / 2 ) n + g ((x+1 ) /

2 ) n) =
h x (2 ∗ n) + h x (2 ∗ n + 1 ) .

qed
finally have sum1 :

(λn. h x (2 ∗ n) + h x (2 ∗ n + 1 )) sums (cot-pfd (x / 2 ) + cot-pfd ((x + 1 )
/ 2 )) .

have f x −−−−→ 0 unfolding f-def
by (intro tendsto-divide-0 [OF tendsto-const]

tendsto-add-filterlim-at-infinity[OF tendsto-const]
filterlim-compose[OF tendsto-of-nat] filterlim-Suc)

hence (λn. 2 ∗ (f x n + g x n) + 2 ∗ (f x (Suc n) − f x n)) sums (2 ∗ cot-pfd
x + 2 ∗ (0 − f x 0 ))

by (intro sums-add sums sums-mult telescope-sums assms)
also have (λn. 2 ∗ (f x n + g x n) + 2 ∗ (f x (Suc n) − f x n)) = h x

by (simp add: h-def algebra-simps fun-eq-iff )
finally have ∗: h x sums (2 ∗ cot-pfd x − 2 ∗ f x 0 )

by simp

have (λn. sum (h x) {n ∗ 2 ..<n ∗ 2 + 2}) sums (2 ∗ cot-pfd x − 2 ∗ f x 0 )
using sums-group[OF ∗, of 2 ] by simp

also have (λn. sum (h x) {n∗2 ..<n∗2+2}) = (λn. h x (2 ∗ n) + h x (2 ∗ n +
1 ))

by (simp add: mult-ac)
finally have sum2 : (λn. h x (2 ∗ n) + h x (2 ∗ n + 1 )) sums (2 ∗ cot-pfd x −

2 ∗ f x 0 ) .

have cot-pfd (x / 2 ) + cot-pfd ((x + 1 ) / 2 ) = 2 ∗ cot-pfd x − 2 ∗ f x 0
using sum1 sum2 sums-unique2 by blast

also have 2 ∗ f x 0 = 2 / (x + 1 )
by (simp add: f-def )

finally show ?thesis by algebra
qed

lemma cot-pfd-funeq-real:
fixes x :: real
assumes x /∈ �
shows 2 ∗ cot-pfd x = cot-pfd (x / 2 ) + cot-pfd ((x + 1 ) / 2 ) + 2 / (x + 1 )

proof −
have complex-of-real (2 ∗ cot-pfd x) = 2 ∗ cot-pfd (complex-of-real x)

by simp
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also have . . . = complex-of-real (cot-pfd (x / 2 ) + cot-pfd ((x + 1 ) / 2 ) + 2 /
(x + 1 ))

using assms by (subst cot-pfd-funeq-complex) (auto simp flip: cot-pfd-complex-of-real)
finally show ?thesis

by (simp only: of-real-eq-iff )
qed

1.5 The limit at 0
lemma cot-pfd-real-tendsto-0 : cot-pfd −0→ (0 :: real)
proof −

have filterlim cot-pfd (nhds 0 ) (at (0 :: real) within ball 0 1 )
proof (rule swap-uniform-limit)

show uniform-limit (ball 0 1 )
(λN x .

∑
n<N . 2 ∗ x / (x2 − (real (Suc n))2)) cot-pfd sequentially

using uniform-limit-cot-pfd-real[OF zero-le-one] by (rule uniform-limit-on-subset)
auto

have ((λx. 2 ∗ x / (x2 − (real (Suc n))2)) −−−→ 0 ) (at 0 within ball 0 1 ) for
n

proof (rule filterlim-mono)
show ((λx. 2 ∗ x / (x2 − (real (Suc n))2)) −−−→ 0 ) (at 0 )

by real-asymp
qed (auto simp: at-within-le-at)
thus ∀ F N in sequentially.

((λx.
∑

n<N . 2 ∗ x / (x2 − (real (Suc n))2)) −−−→ 0 ) (at 0 within ball
0 1 )

by (intro always-eventually allI tendsto-null-sum)
qed auto
thus ?thesis

by (simp add: at-within-open-NO-MATCH )
qed

1.6 Final result

To show the final result, we first prove the real case using Herglotz’s trick,
following the presentation in ‘Proofs from THE BOOK’. [1, Chapter 23].
lemma cot-pfd-formula-real:

assumes x /∈ �
shows pi ∗ cot (pi ∗ x) = 1 / x + cot-pfd x

proof −
have ev-not-int: eventually (λx. r x /∈ �) (at x)

if filterlim r (at (r x)) (at x) for r :: real ⇒ real and x :: real
proof (rule eventually-compose-filterlim[OF - that])

show eventually (λx. x /∈ �) (at (r x))
using Ints-not-limpt[of r x] islimpt-iff-eventually by blast

qed

We define the function h(z) as the difference of the left-hand side and right-
hand side. The left-hand side and right-hand side have singularities at the
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integers, but we will later see that these can be removed as h tends to 0
there.

define f :: real ⇒ real where f = (λx. pi ∗ cot (pi ∗ x))
define g :: real ⇒ real where g = (λx. 1 / x + cot-pfd x)
define h where h = (λx. if x ∈ � then 0 else f x − g x)

have [simp]: h x = 0 if x ∈ � for x
using that by (simp add: h-def )

It is easy to see that the left-hand side and the right-hand side, and as a
consequence also our function h, are odd and periodic with period 1.

have odd-h: h (−x) = −h x for x
by (simp add: h-def minus-in-Ints-iff f-def g-def )

have per-f : f (x + 1 ) = f x for x
by (simp add: f-def algebra-simps cot-def )

have per-g: g (x + 1 ) = g x if x /∈ � for x
using that by (simp add: g-def cot-pfd-plus-1-real)

interpret h: periodic-fun-simple ′ h
by standard (auto simp: h-def per-f per-g)

h tends to 0 at 0 (and thus at all the integers).
have h-lim: h −0→ 0
proof (rule Lim-transform-eventually)

have eventually (λx. x /∈ �) (at (0 :: real))
by (rule ev-not-int) real-asymp

thus eventually (λx::real. pi ∗ cot (pi ∗ x) − 1 / x − cot-pfd x = h x) (at 0 )
by eventually-elim (simp add: h-def f-def g-def )

next
have (λx::real. pi ∗ cot (pi ∗ x) − 1 / x) −0→ 0

unfolding cot-def by real-asymp
hence (λx::real. pi ∗ cot (pi ∗ x) − 1 / x − cot-pfd x) −0→ 0 − 0

by (intro tendsto-intros cot-pfd-real-tendsto-0 )
thus (λx. pi ∗ cot (pi ∗ x) − 1 / x − cot-pfd x) −0→ 0

by simp
qed

This means that our h is in fact continuous everywhere:
have cont-h: continuous-on A h for A
proof −

have isCont h x for x
proof (cases x ∈ �)

case True
then obtain n where [simp]: x = of-int n

by (auto elim: Ints-cases)
show ?thesis unfolding isCont-def
by (subst at-to-0 ) (use h-lim in ‹simp add: filterlim-filtermap h.plus-of-int›)

next
case False
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have continuous-on (−�) (λx. f x − g x)
by (auto simp: f-def g-def sin-times-pi-eq-0 mult.commute[of pi] intro!:

continuous-intros)
hence isCont (λx. f x − g x) x

by (rule continuous-on-interior)
(use False in ‹auto simp: interior-open open-Compl[OF closed-Ints]›)

also have eventually (λy. y ∈ −�) (nhds x)
using False by (intro eventually-nhds-in-open) auto

hence eventually (λx. f x − g x = h x) (nhds x)
by eventually-elim (auto simp: h-def )

hence isCont (λx. f x − g x) x ←→ isCont h x
by (rule isCont-cong)

finally show ?thesis .
qed
thus ?thesis

by (simp add: continuous-at-imp-continuous-on)
qed
note [continuous-intros] = continuous-on-compose2 [OF cont-h]

Through the functional equations of the sine and cosine function, we can
derive the following functional equation for f that holds for all non-integer
reals:

have eq-f : f x = (f (x / 2 ) + f ((x + 1 ) / 2 )) / 2 if x /∈ � for x
proof −

have x / 2 /∈ �
using that by (metis Ints-add field-sum-of-halves)

hence nz1 : sin (x/2 ∗ pi) 6= 0
by (subst sin-times-pi-eq-0 ) auto

have (x + 1 ) / 2 /∈ �
proof

assume (x + 1 ) / 2 ∈ �
hence 2 ∗ ((x + 1 ) / 2 ) − 1 ∈ �

by (intro Ints-mult Ints-diff ) auto
thus False using that by (simp add: field-simps)

qed
hence nz2 : sin ((x+1 )/2 ∗ pi) 6= 0

by (subst sin-times-pi-eq-0 ) auto

have nz3 : sin (x ∗ pi) 6= 0
using that by (subst sin-times-pi-eq-0 ) auto

have eq: sin (pi ∗ x) = 2 ∗ sin (pi ∗ x / 2 ) ∗ cos (pi ∗ x / 2 )
cos (pi ∗ x) = (cos (pi ∗ x / 2 ))2 − (sin (pi ∗ x / 2 ))2

using sin-double[of pi ∗ x / 2 ] cos-double[of pi ∗ x / 2 ] by simp-all
show ?thesis using nz1 nz2 nz3

apply (simp add: f-def cot-def field-simps )
apply (simp add: add-divide-distrib sin-add cos-add power2-eq-square eq alge-

bra-simps)
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done
qed

The corresponding functional equation for cot-pfd that we have already
shown leads to the same functional equation for g as we just showed for
f :

have eq-g: g x = (g (x / 2 ) + g ((x + 1 ) / 2 )) / 2 if x /∈ � for x
using cot-pfd-funeq-real[OF that] by (simp add: g-def )

This then leads to the same functional equation for h, and because h is
continuous everywhere, we can extend the validity of the equation to the
full domain.

have eq-h: h x = (h (x / 2 ) + h ((x + 1 ) / 2 )) / 2 for x
proof −

have eventually (λx. x /∈ �) (at x) eventually (λx. x / 2 /∈ �) (at x)
eventually (λx. (x + 1 ) / 2 /∈ �) (at x)

by (rule ev-not-int; real-asymp)+
hence eventually (λx. h x − (h (x / 2 ) + h ((x + 1 ) / 2 )) / 2 = 0 ) (at x)
proof eventually-elim

case (elim x)
thus ?case using eq-f [of x] eq-g[of x]

by (simp add: h-def field-simps)
qed
hence (λx. h x − (h (x / 2 ) + h ((x + 1 ) / 2 )) / 2 ) −x→ 0

by (simp add: tendsto-eventually)
moreover have continuous-on UNIV (λx. h x − (h (x / 2 ) + h ((x + 1 ) /

2 )) / 2 )
by (auto intro!: continuous-intros)

ultimately have h x − (h (x / 2 ) + h ((x + 1 ) / 2 )) / 2 = 0
by (meson LIM-unique UNIV-I continuous-on-def )

thus ?thesis
by simp

qed

Since h is periodic with period 1 and continuous, it must attain a global
maximum h somewhere in the interval [0, 1]. Let’s call this maximum m
and let x0 be some point in the interval [0, 1] such that h(x0) = m.

define m where m = Sup (h ‘ {0 ..1})
have m ∈ h ‘ {0 ..1}

unfolding m-def
proof (rule closed-contains-Sup)

have compact (h ‘ {0 ..1})
by (intro compact-continuous-image cont-h) auto

thus bdd-above (h ‘ {0 ..1}) closed (h ‘ {0 ..1})
by (auto intro: compact-imp-closed compact-imp-bounded bounded-imp-bdd-above)

qed auto
then obtain x0 where x0 : x0 ∈ {0 ..1} h x0 = m

by blast
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have h-le-m: h x ≤ m for x
proof −

have h x = h (frac x)
unfolding frac-def by (rule h.minus-of-int [symmetric])

also have . . . ≤ m unfolding m-def
proof (rule cSup-upper)

have frac x ∈ {0 ..1}
using frac-lt-1 [of x] by auto

thus h (frac x) ∈ h ‘ {0 ..1}
by blast

next
have compact (h ‘ {0 ..1})

by (intro compact-continuous-image cont-h) auto
thus bdd-above (h ‘ {0 ..1})

by (auto intro: compact-imp-bounded bounded-imp-bdd-above)
qed
finally show ?thesis .

qed

Through the functional equation for h, we can show that if h attains its
maximum at some point x, it also attains it at 1

2x. By iterating this, it
attains the maximum at all points of the form 2−nx0.

have h-eq-m-iter-aux: h (x / 2 ) = m if h x = m for x
using eq-h[of x] that h-le-m[of x / 2 ] h-le-m[of (x + 1 ) / 2 ] by simp

have h-eq-m-iter : h (x0 / 2 ^ n) = m for n
proof (induction n)

case (Suc n)
have h (x0 / 2 ^ Suc n) = h (x0 / 2 ^ n / 2 )

by (simp add: field-simps)
also have . . . = m

by (rule h-eq-m-iter-aux) (use Suc.IH in auto)
finally show ?case .

qed (use x0 in auto)

Since the sequence n 7→ 2−nx0 tends to 0 and h is continuous, we derive m
= 0.

have (λn. h (x0 / 2 ^ n)) −−−−→ h 0
by (rule continuous-on-tendsto-compose[OF cont-h[of UNIV ]]) (force | real-asymp)+

moreover from h-eq-m-iter have (λn. h (x0 / 2 ^ n)) −−−−→ m
by simp

ultimately have m = h 0
using tendsto-unique by force

hence m = 0
by simp

Since h is odd, this means that h is identically zero everywhere, and our
result follows.

have h x = 0
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using h-le-m[of x] h-le-m[of −x] ‹m = 0 › odd-h[of x] by linarith
thus ?thesis

using assms by (simp add: h-def f-def g-def )
qed

We now lift the result from the domain �\� to �\�. We do this by noting
that �\� is connected and the point 1

2 is both in �\� and a limit point of
�\�.
lemma one-half-limit-point-Reals-minus-Ints: (1 / 2 :: complex) islimpt � − �
proof (rule islimptI )

fix T :: complex set
assume 1 / 2 ∈ T open T
then obtain r where r : r > 0 ball (1 / 2 ) r ⊆ T

using open-contains-ball by blast
define y where y = 1 / 2 + min r (1 / 2 ) / 2
have y ∈ {0<..<1}

using r by (auto simp: y-def )
hence complex-of-real y ∈ � − �

by (auto elim!: Ints-cases)
moreover have complex-of-real y 6= 1 / 2
proof

assume complex-of-real y = 1 / 2
also have 1 / 2 = complex-of-real (1 / 2 )

by simp
finally have y = 1 / 2

unfolding of-real-eq-iff .
with r show False

by (auto simp: y-def )
qed
moreover have complex-of-real y ∈ ball (1 / 2 ) r

using ‹r > 0 › by (auto simp: y-def dist-norm)
with r have complex-of-real y ∈ T

by blast
ultimately show ∃ y∈� − �. y ∈ T ∧ y 6= 1 / 2

by blast
qed

theorem cot-pfd-formula-complex:
fixes z :: complex
assumes z /∈ �
shows pi ∗ cot (pi ∗ z) = 1 / z + cot-pfd z

proof −
let ?f = λz::complex. pi ∗ cot (pi ∗ z) − 1 / z − cot-pfd z
have pi ∗ cot (pi ∗ z) − 1 / z − cot-pfd z = 0
proof (rule analytic-continuation[where f = ?f ])

show ?f holomorphic-on −�
unfolding cot-def by (intro holomorphic-intros) (auto simp: sin-eq-0 )

next
show open (−� :: complex set) connected (−� :: complex set)
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by (auto intro!: path-connected-imp-connected path-connected-complement-countable
countable-int)

next
show � − � ⊆ (−� :: complex set)

by auto
next

show (1 / 2 :: complex) islimpt � − �
by (rule one-half-limit-point-Reals-minus-Ints)

next
show 1 / (2 :: complex) ∈ −�

using fraction-not-in-ints[of 2 1 , where ? ′a = complex] by auto
next

show z ∈ −�
using assms by simp

next
show ?f z = 0 if z ∈ � − � for z
proof −

have complex-of-real pi ∗ cot (complex-of-real pi ∗ z) − 1 / z − cot-pfd z =
complex-of-real (pi ∗ cot (pi ∗ Re z) − 1 / Re z − cot-pfd (Re z))

using that by (auto elim!: Reals-cases simp: cot-of-real)
also have . . . = 0

by (subst cot-pfd-formula-real) (use that in ‹auto elim!: Reals-cases›)
finally show ?thesis .

qed
qed
thus ?thesis

by algebra
qed

end
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