The Incompatibility of Strategy-Proofness and Representation in Party-Approval Multi-Winner Elections

Théo Delemazure
Tom Demeulemeester
Manuel Eberl
Jonas Israel
Patrick Lederer

November 18, 2022

In party-approval multi-winner elections, the goal is to allocate the seats of a fixed-size committee to parties based on approval ballots of the voters over the parties. In particular, each voter can approve multiple parties and each party can be assigned multiple seats.

Three central requirements in this settings are:
Anonymity: The result is invariant under renaming the voters.
Representation: Every sufficiently large group of voters with similar preferences is represented by some committee members.
Strategy-proofness: No voter can benefit by misreporting her true preferences.
We show that these three basic axioms are incompatible for party-approval multi-winner voting rules, thus proving a far-reaching impossibility theorem.

The proof of this result is obtained by formulating the problem in propositional logic and then letting a SAT solver show that the formula is unsatisfiable. The DRUP proof output by the SAT solver is then converted into Lammich's GRAT format and imported into Isabelle/HOL with some custom-written ML code.

This transformation is proof-producing, so the final Isabelle/HOL theorem does not rely on any oracles or other trusted external trusted components.

Contents

1 Auxiliary Facts About Multisets 3
2 Anonymous Party Approval Rules 4
2.1 Definition of the General Setting 4
2.2 P-APP rules and Desirable Properties 6
2.3 Efficiency 7
2.4 Strategyproofness 8
2.5 Representation 9
2.6 Proportional Representation 11
3 The Base Case of the Impossibility 12
3.1 Auxiliary Material 13
3.2 Setup for the Base Case 14
3.3 Symmetry Breaking 18
3.4 The Set of Possible Committees 24
3.5 Generating Clauses and Replaying the SAT Proof 25
4 Lowering P-APP Rules to Smaller Settings 26
4.1 Preliminary Lemmas 26
4.2 Dividing the number of voters 32
4.3 Decreasing the number of parties 35
4.4 Decreasing the committee size 41
5 Lifting the Impossibility Result to Larger Settings 52

1 Auxiliary Facts About Multisets

theory PAPP-Multiset-Extras
imports $H O L-$ Library.Multiset
begin

This section contains a number of not particularly interesting small facts about multisets.

```
lemma mset-set-subset-iff: finite \(A \Longrightarrow\) mset-set \(A \subseteq \# B \longleftrightarrow A \subseteq\) set-mset \(B\)
    by (metis finite-set-mset finite-set-mset-mset-set mset-set-set-mset-msubset
        msubset-mset-set-iff set-mset-mono subset-mset.trans)
lemma mset-subset-size-ge-imp-eq:
    assumes \(A \subseteq \# B\) size \(A \geq\) size \(B\)
    shows \(A=B\)
    using assms
proof (induction A arbitrary: B)
    case empty
    thus? case by auto
next
    case (add x A B)
    have [simp]: \(x \in \# B\)
        using add.prems by (simp add: insert-subset-eq-iff)
    define \(B^{\prime}\) where \(B^{\prime}=B-\{\# x \#\}\)
    have \(B\)-eq: \(B=a d d-m s e t x B^{\prime}\)
        using add.prems unfolding \(B^{\prime}\)-def by (auto simp: add-mset-remove-trivial-If)
    have \(A=B^{\prime}\)
        using add.prems by (intro add.IH) (auto simp: B-eq)
    thus ?case
        by (auto simp: B-eq)
qed
lemma mset-psubset-iff:
    \(X \subset \# Y \longleftrightarrow X \subseteq \# Y \wedge(\exists x\). count \(X x<\) count \(Y x)\)
    by (meson less-le-not-le subset-mset.less-le-not-le subseteq-mset-def)
lemma count-le-size: count \(A x \leq\) size \(A\)
    by (induction A) auto
lemma size-filter-eq-conv-count \([\) simp \(]\) : size \((\) filter-mset \((\lambda y . y=x) A)=\) count \(A x\)
    by (induction A) auto
lemma multiset-filter-mono':
    assumes \(\bigwedge x . x \in \# A \Longrightarrow P x \Longrightarrow Q x\)
    shows filter-mset \(P A \subseteq \#\) filter-mset \(Q A\)
    using assms by (induction A) (auto simp: subset-mset.absorb-iff1 add-mset-union)
lemma multiset-filter-mono":
    assumes \(A \subseteq \# B \bigwedge x . x \in \# A \Longrightarrow P x \Longrightarrow Q x\)
    shows filter-mset \(P A \subseteq \#\) filter-mset \(Q B\)
```

```
    using assms multiset-filter-mono multiset-filter-mono'
    by (metis subset-mset.order-trans)
lemma filter-mset-disjunction:
    assumes }\x.x\in#X\LongrightarrowPx\LongrightarrowQx\Longrightarrow\mathrm{ False
    shows filter-mset ( }\lambdax.Px\veeQx)X=\mathrm{ filter-mset P X + filter-mset Q X
    using assms by (induction X) auto
lemma size-mset-sum-mset: size (sum-mset X) = (\sumx\in#X. size ( }x:: 'a multiset)
    by (induction X) auto
lemma count-sum-mset: count (sum-mset X) x = (\sumY\in#X. count Y x)
    by (induction X) auto
lemma replicate-mset-rec: n>0\Longrightarrow replicate-mset n x =add-mset x(replicate-mset (n-1)
x)
    by (cases n) auto
lemma add-mset-neq: x &#B\Longrightarrowadd-mset x A = B
    by force
lemma filter-replicate-mset:
    filter-mset P (replicate-mset n x) =(if P x then replicate-mset n x else {#})
    by (induction n) auto
lemma filter-diff-mset': filter-mset P (X - Y) = filter-mset P X - Y
    by (rule multiset-eqI) auto
lemma in-diff-multiset-absorb2: }x\not\in#B\Longrightarrowx\in#A-B\longleftrightarrowx\in#
    by (metis count-greater-zero-iff count-inI in-diff-count)
end
```


2 Anonymous Party Approval Rules

theory Anonymous-PAPP
imports Complex-Main Randomised-Social-Choice.Order-Predicates PAPP-Multiset-Extras begin

In this section we will define (anonymous) P-APP rules and some basic desirable properties of P-APP rules.

2.1 Definition of the General Setting

The following locale encapsulates an anonymous party approval election; that is:

- a number of voters
- a set of parties
- the size of the desired committee

The number of parties and voters is assumed to be finite and non-zero. As a modelling choice, we do not distinguish the voters at all; there is no explicit set of voters. We only care about their number.

```
locale anon-papp-election =
    fixes n-voters :: nat and parties :: 'a set and committee-size :: nat
    assumes finite-parties [simp, intro]: finite parties
    assumes n-voters-pos: n-voters > 0
    assumes nonempty-parties [simp]: parties }\not={
begin
```

The result of a P-APP election is a committee, i.e. a multiset of parties with the desired size.

```
definition is-committee :: 'a multiset => bool where
    is-committee W\longleftrightarrow set-mset W\subseteq parties ^ size W = committee-size
end
```

A preference profile for a P-APP collection consists of one approval list (i.e. a set of approved parties) for each voter. Since we are in an anonymous setting, this means that we have a multiset consisting of n sets of parties (where n is the number of voters).
Moreover, we make the usual assumption that the approval lists must be non-empty.

```
locale anon-papp-profile \(=\) anon-papp-election +
    fixes \(A\) :: 'a set multiset
    assumes \(A\)-subset: \(\bigwedge X . X \in \# A \Longrightarrow X \subseteq\) parties
    assumes \(A\)-nonempty: \(\} \notin \# A\)
    assumes size- \(A\) : size \(A=n\)-voters
begin
lemma \(A\)-nonempty': \(A \neq\{\#\}\)
    using size- \(A\) n-voters-pos by auto
end
```

context anon-papp-election
begin

abbreviation

 is-pref-profile where is-pref-profile \(\equiv\) anon-papp-profile \(n\)-voters parties
 lemma is-pref-profile-iff:
is-pref-profile $A \longleftrightarrow$ set-mset $A \subseteq$ Pow parties $-\{\{ \}\} \wedge$ size $A=n$-voters
unfolding anon-papp-profile-def anon-papp-profile-axioms-def
using anon-papp-election-axioms by auto

```
lemma not-is-pref-profile-empty [simp]: \(\neg\) is-pref-profile \(\{\#\}\)
    using anon-papp-profile.A-nonempty'[of n-voters]
    by auto
```

The following relation is a key definition: it takes an approval list A and turns it into a preference relation on committees. A committee is to be at least as good as another if the number of approved parties in it is at least as big.
This relation is a reflexive, transitive, and total.

```
definition committee-preference :: 'a set \(\Rightarrow\) ' \(a\) multiset relation (Comm) where
    \(W 1 \preceq[\operatorname{Comm}(A)] W 2 \longleftrightarrow\) size \(\{\# x \in \# W 1 . x \in A \#\} \leq \operatorname{size}\{\# x \in \# W 2 . x \in A \#\}\)
```

lemma not-strict-Comm $[\operatorname{simp}]: \neg(W 1 \prec[\operatorname{Comm}(A)] W 2) \longleftrightarrow W 1 \succeq[\operatorname{Comm}(A)]$ W2
by (auto simp: committee-preference-def strongly-preferred-def)
lemma not-weak-Comm $[\operatorname{simp}]: \neg(W 1 \preceq[\operatorname{Comm}(A)] W 2) \longleftrightarrow W 1 \succ[\operatorname{Comm}(A)]$ W2
by (auto simp: committee-preference-def strongly-preferred-def)
sublocale Comm : preorder $\operatorname{Comm}(A) \lambda x y . x \prec[\operatorname{Comm}(A)] y$
by standard (auto simp: committee-preference-def strongly-preferred-def)
lemma strong-committee-preference-iff:
$W 1 \prec[\operatorname{Comm}(A)] W 2 \longleftrightarrow$ size $\{\# x \in \# W 1 . x \in A \#\}<\operatorname{size}\{\# x \in \# W 2 . x \in A \#\}$
by (auto simp: committee-preference-def strongly-preferred-def)

We also define the Pareto ordering on parties induced by a given preference profile: One party is at least as good (in the Pareto relation) as another if all voters agree that it is at least as good. That is, $y \succeq x$ in the Pareto ordering if all voters who approve x also approve y.
This relation is also reflexive and transitive.

```
definition Pareto :: ' \(a\) set multiset \(\Rightarrow\) ' \(a\) relation where
    \(x \preceq[\) Pareto \((A)] y \longleftrightarrow x \in\) parties \(\wedge y \in\) parties \(\wedge(\forall X \in \# A . x \in X \longrightarrow y \in X)\)
```

sublocale Pareto: preorder-on parties Pareto A by standard (auto simp: Pareto-def)

Pareto losers are parties that are (strictly) Pareto-dominated, i.e. there exists some other party that all voters consider to be at least as good and at least one voter considers it to be strictly better.
definition pareto-losers :: 'a set multiset \Rightarrow 'a set where pareto-losers $A=\{x . \exists y . y \succ[\operatorname{Pareto}(A)] x\}$
end

2.2 P-APP rules and Desirable Properties

The following locale describes a P-APP rule. This is simply a function that maps every preference profile to a committee of the desired size.

Note that in our setting, a P-APP rule has a fixed number of voters, a fixed set of parties, and a fixed desired committee size.

```
locale anon-papp = anon-papp-election +
    fixes r :: 'a set multiset }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}a\mathrm{ multiset
    assumes rule-wf:is-pref-profile }A\Longrightarrow\mathrm{ is-committee (r A)
```


2.3 Efficiency

Efficiency is a common notion in Social Choice Theory. The idea is that if a party is "obviously bad", then it should not be chosen. What "obviously bad" means depends on the precise notion of Efficiency that is used. We will talk about two notions: Weak Efficiency and Pareto Efficiency.

A P-APP rule is weakly efficient if a party that is approved by no one is never part of the output committee.
Note that approval lists must be non-empty, so there is always at least one party that is approved by at least one voter.

```
locale weakly-efficient-anon-papp \(=\) anon-papp +
    assumes weakly-efficient: is-pref-profile \(A \Longrightarrow \forall X \in \# A . x \notin X \Longrightarrow x \notin \# r A\)
```

A P-APP rule is Pareto-efficient if a Pareto-dominated party is never part of the output committee.

```
locale pareto-optimal-anon-papp \(=\) anon-papp +
    assumes pareto-optimal: is-pref-profile \(A \Longrightarrow x \in\) pareto-losers \(A \Longrightarrow x \notin \# r A\)
begin
```

Pareto-efficiency implies weak efficiency:
sublocale weakly-efficient-anon-papp
proof
fix $A x$
assume A : is-pref-profile A and $x: \forall X \in \# A . x \notin X$
interpret anon-papp-profile n-voters parties committee-size A by fact
have $A \neq\{\#\}$ using A-nonempty'.
then obtain X where $X: X \in \# A$ by auto
with A-nonempty have $X \neq\{ \}$ by auto
then obtain y where $y: y \in X$ by auto
show $x \notin \# r A$
proof (cases $x \in$ parties)
case False thus ?thesis using rule-wf $[O F A]$ by (auto simp: is-committee-def)
next

```
    case True
    have }y\succ[\operatorname{Pareto(A)] x
        unfolding Pareto-def using X x y True A-subset[of X]
        by (auto simp: strongly-preferred-def)
    hence }x\in\mathrm{ pareto-losers A
    by (auto simp: pareto-losers-def)
    thus ?thesis
    using pareto-optimal[OF A] by auto
    qed
qed
end
```


2.4 Strategyproofness

Strategyproofness is another common notion in Social Choice Theory that generally encapsulates the notion that an voter should not be able to manipulate the outcome of an election in their favour by (unilaterally) submitting fake preferences; i.e. reporting one's preferences truthfully should always be the optimal choice.
A P-APP rule is called cardinality-strategyproof if an voter cannot obtain a better committee (i.e. one that contains strictly more of their approved parties) by submitting an approval list that is different from their real approval list.

To make the definition simpler, we first define the notion of manipulability: in the context of a particular P-APP rule r, a preference profile A is said to be manipulable by the voter i with the fake preference list Y if $r(A(i:=Y))$ contains strictly more parties approved by i than $r(A)$.
Since we have anonymous profiles and do not talk about particular voters, we replace i with their approval list X. Since A is a multiset, the definition of manipulability becomes $r(A-\{X\}+\{Y\}) \succ_{X} r(A)$.
definition (in anon-papp) card-manipulable where
card-manipulable $A X Y \longleftrightarrow$
is-pref-profile $A \wedge X \in \# A \wedge Y \neq\{ \} \wedge Y \subseteq \operatorname{parties} \wedge r(A-\{\# X \#\}+\{\# Y \#\})$
$\succ[\operatorname{Comm}(X)] r A$
A technical (and fairly obvious) lemma: replacing an voter's approval list with a different approval list again yields a valid preference profile.

```
lemma (in anon-papp) is-pref-profile-replace:
    assumes is-pref-profile \(A\) and \(X \in \# A\) and \(Y \neq\{ \}\) and \(Y \subseteq\) parties
    shows is-pref-profile \((A-\{\# X \#\}+\{\# Y \#\})\)
proof -
    interpret anon-papp-profile n-voters parties committee-size \(A\)
        by fact
    show ?thesis
        using assms A-subset A-nonempty unfolding is-pref-profile-iff
        by (auto dest: in-diffD simp: size-Suc-Diff1)
    qed
```

```
locale card-stratproof-anon-papp = anon-papp +
    assumes not-manipulable: \negcard-manipulable A X Y
begin
```

The two following alternative versions of non-manipulability are somewhat nicer to use in practice.

```
lemma not-manipulable \({ }^{\prime}\) :
    assumes is-pref-profile \(A\) is-pref-profile \(A^{\prime} A+\{\# Y \#\}=A^{\prime}+\{\# X \#\}\)
    shows \(\quad \neg\left(r A^{\prime} \succ[\operatorname{Comm}(X)] r A\right)\)
proof (cases \(X=Y\) )
    case True
    thus ?thesis
        using assms by (simp add: strongly-preferred-def)
next
    case False
    interpret A: anon-papp-profile n-voters parties committee-size \(A\)
        by fact
    interpret \(A^{\prime}\) : anon-papp-profile n-voters parties committee-size \(A^{\prime}\)
        by fact
    from \(\operatorname{assms}(3)\) False have \(*: Y \in \# A^{\prime} X \in \# A\)
        by (metis add-mset-add-single insert-noteq-member)+
    have \(\neg\) card-manipulable A X Y
        by (intro not-manipulable)
    hence \(\neg r(A-\{\# X \#\}+\{\# Y \#\}) \succ[\operatorname{Comm}(X)] r A\)
        using assms \(* A . A\)-subset \(A^{\prime} . A\)-subset \(A\). \(A\)-nonempty \(A^{\prime} . A\)-nonempty
        by (auto simp: card-manipulable-def)
    also have \(A-\{\# X \#\}+\{\# Y \#\}=A^{\prime}\)
        using assms(3) False by (metis add-eq-conv-diff add-mset-add-single)
    finally show ?thesis.
qed
lemma not-manipulable":
    assumes is-pref-profile \(A\) is-pref-profile \(A^{\prime} A+\{\# Y \#\}=A^{\prime}+\{\# X \#\}\)
    shows \(\quad r A^{\prime} \preceq[\operatorname{Comm}(X)] r A\)
    using not-manipulable \({ }^{\prime}[\) OF assms \(]\) by simp
end
```


2.5 Representation

Representation properties are in a sense the opposite of Efficiency properties: if a sufficiently high voters agree that certain parties are good, then these should, to some extent, be present in the result. For instance, if we have 20 voters and 5 of them approve parties A and B, then if the output committee has size 4 , we would expect either A or B to be in the committee to ensure that these voters' preferences are represented fairly.
Weak representation is a particularly weak variant of this that states that if at least one
k-th of the voters (where k is the size of the output committee) approve only a single party x, then x should be in the committee at least once:

```
locale weak-rep-anon-papp \(=\)
    anon-papp n-voters parties committee-size \(r\)
    for \(n\)-voters and parties :: 'alt set and committee-size :: nat and \(r+\)
    assumes weak-representation:
    is-pref-profile \(A \Longrightarrow\) committee-size \(*\) count \(A\{x\} \geq n\)-voters \(\Longrightarrow x \in \# r A\)
```

The following alternative definition of Weak Representation is a bit closer to the definition given in the paper.

```
lemma weak-rep-anon-papp-altdef:
    weak-rep-anon-papp n-voters parties committee-size \(r \longleftrightarrow\)
    anon-papp n-voters parties committee-size \(r \wedge\) (committee-size \(=0 \vee\)
    ( \(\forall\) A x. anon-papp-profile n-voters parties \(A \longrightarrow\)
            count \(A\{x\} \geq\)-voters \(/\) committee-size \(\longrightarrow x \in \# r A)\) )
by (cases committee-size \(=0\) )
    (auto simp: field-simps weak-rep-anon-papp-def
                    weak-rep-anon-papp-axioms-def
                    anon-papp-def anon-papp-axioms-def anon-papp-election-def
            simp flip: of-nat-mult)
```

Justified Representation is a stronger notion which demands that if there is a subgroup of voters that comprises at least one k-th of all voters and for which the intersection of their approval lists is some nonempty set X, then at least one of the parties approved by at least one voter in that subgroup must be in the result committee.

```
locale justified-rep-anon-papp \(=\)
    anon-papp n-voters parties committee-size \(r\)
    for n-voters and parties :: 'alt set and committee-size :: nat and \(r+\)
    assumes justified-representation:
        is-pref-profile \(A \Longrightarrow G \subseteq \# A \Longrightarrow\) committee-size \(*\) size \(G \geq\) n-voters \(\Longrightarrow\)
        \((\cap X \in\) set-mset \(G . X) \neq\{ \} \Longrightarrow \exists X x . X \in \# G \wedge x \in X \wedge x \in \# r A\)
begin
```

Any rule that satisfies Justified Representation also satisfies Weak Representation

```
sublocale weak-rep-anon-papp
proof
    fix A x
    assume *: is-pref-profile A n-voters \leqcommittee-size * count A {x}
    define G where G= replicate-mset (count A{x}){x}
    have [simp]: size G= count A{x}
        by (auto simp: G-def)
    have **: set-mset G\subseteq{{x}}
        by (auto simp: G-def)
    have ***:G\subseteq#A
        unfolding G-def by (meson count-le-replicate-mset-subset-eq order-refl)
    have }\existsXx.X\in#G\wedgex\inX\wedgex\in#r
        by (rule justified-representation) (use ****** in auto)
    thus x }\in##\mathrm{ r A
```

```
    using ** by auto
qed
end
locale card-stratproof-weak-rep-anon-papp =
    card-stratproof-anon-papp + weak-rep-anon-papp
```


2.6 Proportional Representation

The notions of Representation we have seen so far are fairly week in that they only demand that certain parties be in the committee at least once if enough voters approve them. Notions of Proportional Representation strengthen this by demanding that if a sufficiently large subgroup of voters approve some parties, then these voters must be represented in the result committe not just once, but to a degree proportional to the size of that subgroup of voters.
For Weak Representation, the proportional generalization is fairly simple: if a fraction of at least $\frac{l n}{k}$ of the voters uniquely approve a party x, then x must be in the committee at least l times.

```
locale weak-prop-rep-anon-papp \(=\)
    anon-papp n-voters parties committee-size \(r\)
    for n-voters and parties :: 'alt set and committee-size :: nat and \(r+\)
    assumes weak-proportional-representation:
        is-pref-profile \(A \Longrightarrow\) committee-size \(*\) count \(A\{x\} \geq l * n\)-voters \(\Longrightarrow \operatorname{count}(r A) x \geq l\)
begin
sublocale weak-rep-anon-papp
proof
    fix \(A x\)
    assume is-pref-profile \(A\) n-voters \(\leq\) committee-size \(*\) count \(A\{x\}\)
    thus \(x \in \# r A\)
        using weak-proportional-representation[of A 1] by auto
qed
end
```

Similarly, Justified Proportional Representation demands that if the approval lists of a subgroup of at least $\frac{l n}{k}$ voters have a non-empty intersection, then at least l parties in the result committee are each approved by at least one of the voters in the subgroup.

```
locale justified-prop-rep-anon-papp \(=\)
    anon-papp \(n\)-voters parties committee-size \(r\)
    for n-voters and parties :: 'alt set and committee-size :: nat and \(r+\)
    assumes justified-proportional-representation:
        is-pref-profile \(A \Longrightarrow G \subseteq \# A \Longrightarrow\) committee-size \(*\) size \(G \geq l *\) n-voters \(\Longrightarrow\)
            \((\bigcap X \in\) set-mset \(G . X) \neq\{ \} \Longrightarrow\) size \(\{\# x \in \# r\) A. \(x \in(\bigcup X \in\) set-mset \(G . X) \#\} \geq l\)
begin
```

```
sublocale justified-rep-anon-papp
proof
    fix AG
    assume is-pref-profile A G\subseteq# A n-voters \leqcommittee-size * size G
        (\capX\in set-mset G. X)}\not={
    hence size {#x\in#r A. \existsX\in#G.x\inX#} \geq1
        using justified-proportional-representation[of A G 1] by auto
    hence {#x\in#r A. \existsX\in#G. x\inX#} = {#}
        by auto
    thus \exists }\x.X\in#G\wedgex\inX\wedgex\in#r
    by fastforce
qed
sublocale weak-prop-rep-anon-papp
proof
    fix Alx
    assume *: is-pref-profile A l* n-voters \leq committee-size * count A {x}
    define G where G= replicate-mset (count A {x}) {x}
    from * have size {#x \in# r A. x \in (\bigcupX\inset-mset G. X)#} \geql
        by (intro justified-proportional-representation)
            (auto simp:G-def simp flip: count-le-replicate-mset-subset-eq)
    also have size {#x\in# r A. x }\in(\bigcupX\in\mathrm{ set-mset G. X)#} }\leq\operatorname{count}(r A)
        by (auto simp: G-def)
    finally show count (rA) x \geql.
qed
end
```

locale card-stratproof-weak-prop-rep-anon-papp $=$
card-stratproof-anon-papp + weak-prop-rep-anon-papp
end

3 The Base Case of the Impossibility

theory PAPP-Impossibility-Base-Case
imports Anonymous-PAPP SAT-Replay
begin

In this section, we will prove the base case of our P-APP impossibility result, namely that there exists no anonymous P-APP rule f for 6 voters, 4 parties, and committee size 3 that satisfies Weak Representation and Cardinality Strategyproofness.
The proof works by looking at some (comparatively small) set of preference profiles and the set of all 20 possible output committees. Each proposition $f(A)=C$ (where A is a profile from our set and C is one of the 20 possible output committees) is considered as a Boolean variable.

All the conditions arising on these variables based on the fact that f is a function and the additional properties (Representation, Strategyproofness) are encoded as SAT clauses. This SAT problem is then proven unsatisfiable by an external SAT solver and the resulting proof re-imported into Isabelle/HOL.

3.1 Auxiliary Material

We define the set of committees of the given size k for a given set of parties P.
definition committees $::$ nat \Rightarrow 'a set \Rightarrow ' a multiset set where
committees $k P=\{W$. set-mset $W \subseteq P \wedge$ size $W=k\}$
We now prove a recurrence for this set so that we can more easily compute the set of all possible committees:
lemma committees-0 [simp]: committees 0 P $=\{\{\#\}\}$
by (auto simp: committees-def)
lemma committees-Suc:
committees (Suc n) $P=(\bigcup x \in P . \bigcup W \in$ committees $n P .\{\{\# x \#\}+W\})$
proof safe
fix C assume $C: C \in$ committees (Suc n) P
hence size $C=$ Suc n
by (auto simp: committees-def)
hence $C \neq\{\#\}$
by auto
then obtain x where $x: x \in \# C$
by auto
define C^{\prime} where $C^{\prime}=C-\{\# x \#\}$
have $C=\{\# x \#\}+C^{\prime} x \in P C^{\prime} \in$ committees $n P$
using $C x$ by (auto simp: committees-def C^{\prime}-def size-Diff-singleton dest: in-diffD)
thus $C \in(\bigcup x \in P . \bigcup W \in$ committees $n P .\{\{\# x \#\}+W\})$
by blast
qed (auto simp: committees-def)
The following function takes a list $\left[a_{1}, \ldots, a_{n}\right]$ and computes the list of all pairs of the form $\left(a_{i}, a_{j}\right)$ with $i<j$:
fun pairs :: 'a list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list where
pairs [] = []
\mid pairs $(x \# x s)=\operatorname{map}(\lambda y .(x, y)) x s @$ pairs xs
lemma distinct-conv-pairs: distinct $x s \longleftrightarrow$ list-all $(\lambda(x, y) . x \neq y)$ (pairs xs)
by (induction $x s$) (auto simp: list-all-iff)
lemma list-ex-unfold: list-ex $P(x \# y \# x s) \longleftrightarrow P x \vee$ list-ex $P(y \# x s)$ list-ex $P[x] \longleftrightarrow P$ x
by simp-all
lemma list-all-unfold: list-all $P(x \# y \# x s) \longleftrightarrow P x \wedge$ list-all $P(y \# x s)$ list-all $P[x] \longleftrightarrow$ P x

```
by simp-all
```


3.2 Setup for the Base Case

We define a locale for an anonymous P-APP rule for 6 voters, 4 parties, and committee size 3 that satisfies weak representation and cardinality strategyproofness. Our goal is to prove the theorem False inside this locale.
locale papp-impossibility-base-case $=$ card-stratproof-weak-rep-anon-papp 6 parties $3 r$ for parties :: 'a set and $r+$ assumes card-parties: card parties $=4$
begin
A slightly more convenient version of Weak Representation:

```
lemma weak-representation':
    assumes is-pref-profile \(A A^{\prime} \equiv A \forall z \in Z\). count \(A\{z\} \geq 2 \neg Z \subseteq\) set-mset \(W\)
    shows \(\quad r A^{\prime} \neq W\)
    using weak-representation \([O F \operatorname{assms}(1)]\) assms(2-4) by auto
```

The following lemma (Lemma 2 in the appendix of the paper) is a strengthening of Weak Representation and Strategyproofness in our concrete setting:
Let A be a preference profile containing approval lists X and let Z be a set of parties such that each element of Z is uniquely approved by at least two voters in A. Due to Weak Representation, at least $|X \cap Z|$ members of the committee are then approved by X.

What the lemma now says is that if there exists another voter with approval list $Y \subseteq$ X and $Y \nsubseteq Z$, then there is an additional committee member that is approved by X.
This lemma will be used both in our symmetry-breaking argument and as a means to add more clauses to the SAT instance. Since these clauses are logical consequences of Strategyproofness and Weak Representation, they are technically redundant - but their presence allows us to use consider a smaller set of profiles and still get a contradiction. Without using the lemma, we would need to feed more profiles to the SAT solver to obtain the same information.

```
lemma lemma2:
    assumes \(A\) : is-pref-profile \(A\)
    assumes \(X \in \# A\) and \(Y \in \# A-\{\# X \#\}\) and \(Y \subseteq X\) and \(\neg Y \subseteq Z\)
    assumes \(Z\) : \(\forall z \in Z\). count \(A\{z\} \geq 2\)
    shows size \((\) filter-mset \((\lambda x . x \in X)(r A))>\operatorname{card}(X \cap Z)\)
proof (rule ccontr)
```

For the sake of contradiction, suppose the number of elements approved by X were no larger than $|X \cap Z|$.

```
assume \(\neg\) size \((\) filter-mset \((\lambda x . x \in X)(r A))>\operatorname{card}(X \cap Z)\)
hence le: size (filter-mset \((\lambda x . x \in X)(r A)) \leq \operatorname{card}(X \cap Z)\)
    by linarith
```

```
interpret anon-papp-profile 6 parties 3 A
    by fact
have \(Z \subseteq\) parties
    using \(\operatorname{assms}(1,6)\) by (meson is-committee-def order.trans rule-wf weak-representation')
have \([\) simp \(]\) : finite \(Z\)
    by (rule finite-subset[OF - finite-parties]) fact
```

Due to Weak Representation, each member of $X \cap Z$ must be chosen at least once. But due to the above, it cannot be chosen more than once. So it has to be chosen exactly once.

```
have \(X\)-approved-A-eq: filter-mset \((\lambda x . x \in X)(r A)=\) mset-set \((X \cap Z)\)
proof -
    have mset-set \(Z \subseteq \# r A\)
        using \(Z\) weak-representation \([O F A]\) by (subst mset-set-subset-iff) auto
    hence size \((\) filter-mset \((\lambda x . x \in X)(\) mset-set \(Z)) \leq \operatorname{size}(\) filter-mset \((\lambda x . x \in X)(r A))\)
        by (intro size-mset-mono multiset-filter-mono)
    also have filter-mset \((\lambda x . x \in X)(\) mset-set \(Z)=\) mset-set \(\{x \in Z . x \in X\}\)
        by \(\operatorname{simp}\)
    also have \(\{x \in Z . x \in X\}=X \cap Z\)
        by auto
    also have size \((\) mset-set \((X \cap Z))=\operatorname{card}(X \cap Z)\)
        by \(\operatorname{simp}\)
    finally have size \((\) filter-mset \((\lambda x . x \in X)(r A))=\operatorname{card}(X \cap Z)\)
        using le by linarith
    moreover have mset-set \((X \cap Z) \subseteq \#\) filter-mset \((\lambda x . x \in X)(r A)\)
        using \(Z\) weak-representation \([O F A]\) by (subst mset-set-subset-iff) auto
    ultimately show filter-mset \((\lambda x . x \in X)(r A)=\operatorname{mset}\)-set \((X \cap Z)\)
        by (intro mset-subset-size-ge-imp-eq [symmetric]) auto
qed
have count-eq-1: count \((r A) x=1\) if \(x \in X \cap Z\) for \(x\)
    using that \(X\)-approved- \(A\)-eq
    by (metis 〈finite \(Z\rangle\) count-filter-mset count-mset-set' diff-is-0-eq diff-zero
        finite-subset inf-le2 not-one-le-zero)
```

Let x be some element of Y that is not in Z.

```
obtain \(x\) where \(x: x \in Y-Z\)
    using \(\langle\neg Y \subseteq Z\rangle\) by blast
with assms have \(x^{\prime}: x \in X-Z\)
    by auto
have \([\) simp \(]: x \in\) parties
    using \(A\)-subset assms(2) \(x^{\prime}\) by blast
```

Let A^{\prime} be the preference profile obtained by having voter X lying and pretending she only approves x.

```
define \(A^{\prime}\) where \(A^{\prime}=A-\{\# X \#\}+\{\#\{x\} \#\}\)
have \(A^{\prime}\) : is-pref-profile \(A^{\prime}\)
    using is-pref-profile-replace[OF \(A\langle X \in \# A\rangle\), of \(\{x\}]\) by (auto simp: \(A^{\prime}\)-def)
```

We now show that even with this manipulated profile, the committee members approved by X are exactly the same as before:

```
have X-approved-A'-eq: filter-mset ( }\lambdax.x\inX)(r\mp@subsup{A}{}{\prime})=mset-set ( X \cap Z
proof -
```

Every element of Z must still be in the result committee due to Weak Representation.

```
have mset-set \(Z \subseteq \# r A^{\prime}\)
proof (subst mset-set-subset-iff)
        show \(Z \subseteq\) set-mset ( \(r A^{\prime}\) )
    proof
        fix \(z\) assume \(z: z \in Z\)
        from \(x^{\prime} z\) have \([\operatorname{simp}]: x \neq z\)
            by auto
    have \([\) simp \(]: X \neq\{z\}\)
            using \(x^{\prime}\) by auto
        show \(z \in \# r A^{\prime}\)
            using \(Z\) weak-representation \(\left[\right.\) OF \(A^{\prime}\), of \(\left.z\right] z x x^{\prime}\) by (auto simp: \(A^{\prime}\)-def)
    qed
qed auto
```

Thus the parties in $X \cap Z$ must be in the committee (and they are approved by X).

```
have mset-set \((X \cap Z) \subseteq \#\) filter-mset \((\lambda x . x \in X)\left(r A^{\prime}\right)\)
proof -
    have filter-mset \((\lambda x . x \in X)(\) mset-set \(Z) \subseteq \#\) filter-mset \((\lambda x . x \in X)\left(r A^{\prime}\right)\)
        using \(\left\langle\right.\) mset-set \(\left.Z \subseteq \# r A^{\prime}\right\rangle\) by (intro multiset-filter-mono) auto
    also have filter-mset \((\lambda x . x \in X)(\) mset-set \(Z)=\operatorname{mset}\)-set \((X \cap Z)\)
        by auto
    finally show mset-set \((X \cap Z) \subseteq \#\) filter-mset \((\lambda x . x \in X)\left(r A^{\prime}\right)\).
qed
```

Due to Strategyproofness, no additional committee members can be approved by X, so indeed only $X \cap Z$ is approved by X, and they each occur only once.

```
moreover have \(\neg\) card-manipulable \(A X\{x\}\)
    using not-manipulable by blast
hence size (mset-set \((X \cap Z)) \geq\) size (filter-mset \(\left.(\lambda x . x \in X)\left(r A^{\prime}\right)\right)\) using assms
    by (simp add: card-manipulable-def \(A^{\prime}\)-def strong-committee-preference-iff not-less
                            \(X\)-approved- \(A\)-eq)
ultimately show filter-mset \((\lambda x . x \in X)\left(r A^{\prime}\right)=\) mset-set \((X \cap Z)\)
    by (metis mset-subset-size-ge-imp-eq)
qed
```

Next, we show that the set of committee members approved by Y in the committee returned for the manipulated profile is exactly $Y \cap Z$ (and again, each party only occurs once).

```
have Y-approved-A'-eq: filter-mset ( }\lambdax.x\inY)(r\mp@subsup{A}{}{\prime})=mset-set (Y\capZ
proof -
    have filter-mset (\lambdax. x 位)(filter-mset (\lambdax. x \in X)(r A'))=
```

filter-mset $(\lambda x . x \in Y)($ mset-set $(X \cap Z))$
by (simp only: X-approved- A^{\prime}-eq)
also have filter-mset $(\lambda x . x \in Y)\left(\right.$ filter-mset $\left.(\lambda x . x \in X)\left(r A^{\prime}\right)\right)=$
filter-mset $(\lambda x . x \in Y \wedge x \in X)\left(r A^{\prime}\right)$
by (simp add: filter-filter-mset conj-commute)
also have $(\lambda x . x \in Y \wedge x \in X)=(\lambda x . x \in Y)$
using assms by auto
also have filter-mset $(\lambda x . x \in Y)($ mset-set $(X \cap Z))=\operatorname{mset}$-set $(Y \cap Z)$
using assms by auto
finally show ?thesis .
qed
Next, define the profile $A^{\prime \prime}$ obtained from A^{\prime} by also having Y pretend to approve only x.

```
define }\mp@subsup{A}{}{\prime\prime}\mathrm{ where }\mp@subsup{A}{}{\prime\prime}=\mp@subsup{A}{}{\prime}-{#Y#}+{#{x}#
have }Y\in#\mp@subsup{A}{}{\prime
    using assms by (auto simp: A'-def)
hence }\mp@subsup{A}{}{\prime\prime}\mathrm{ : is-pref-profile }\mp@subsup{A}{}{\prime\prime
    using is-pref-profile-replace[OF A', of Y {x}] by (auto simp: A''-def)
```

Again, the elements of Z must be chosen due to Weak Representation.

```
have \(Z \subseteq\) set-mset ( \(r A^{\prime}\) )
proof
    fix \(z\) assume \(z: z \in Z\)
    from \(x^{\prime} z\) have \([\) simp \(]: x \neq z\)
        by auto
    have \([\) simp \(]: X \neq\{z\} \quad Y \neq\{z\}\)
        using \(x x^{\prime}\) by auto
    show \(z \in \# r A^{\prime \prime}\)
        using \(Z\) weak-representation \(\left[\right.\) OF \(A^{\prime \prime}\), of \(\left.z\right] z x x^{\prime}\)
        by (auto simp: \(A^{\prime \prime}\)-def \(A^{\prime}-d e f\) )
qed
```

But now additionally, x must be chosen, since both X and Y uniquely approve it.

```
moreover have }x\in#r\mp@subsup{A}{}{\prime\prime
```



```
A'-def)
ultimately have insert x (Y\capZ)\subseteq set-mset (r A'\prime) \capY
    using x by blast
```

Now we have a contradiction due to Strategyproofness, since Y can force the additional member x into the committee by lying.

```
hence mset-set (insert \(x(Y \cap Z)) \subseteq \#\) filter-mset \((\lambda w . w \in Y)\left(r A^{\prime \prime}\right)\)
    by (subst mset-set-subset-iff) auto
hence size \((\) mset-set \((\) insert \(x(Y \cap Z))) \leq \operatorname{size}\left(\right.\) filter-mset \(\left.(\lambda w . w \in Y)\left(r A^{\prime \prime}\right)\right)\)
    by (rule size-mset-mono)
hence size \(\left(\right.\) filter-mset \(\left.(\lambda x . x \in Y)\left(r A^{\prime \prime}\right)\right)>\operatorname{size}\left(\right.\) filter-mset \(\left.(\lambda x . x \in Y)\left(r A^{\prime}\right)\right)\)
    using \(x\) by (simp add: \(Y\)-approved- \(A^{\prime}\)-eq)
```

```
    hence card-manipulable }\mp@subsup{A}{}{\prime}Y{x
        using A' x <Y \in# A'`
        unfolding card-manipulable-def strong-committee-preference-iff A''-def by auto
    thus False
        using not-manipulable by blast
qed
```

The following are merely reformulation of the above lemma for technical reasons.

```
lemma lemma2':
    assumes is-pref-profile A
    assumes }\forallz\inZ\mathrm{ . count }A{z}\geq
    assumes }X\in#A\wedge(\existsY.Y\in#A-{#X#}\wedgeY\subseteqX\wedge\negY\subseteqZ
    shows \negfilter-mset ( }\lambdax.x\inX)(rA)\subseteq# mset-set (X\capZ
proof
    assume subset: filter-mset ( }\lambdax.x\inX)(rA)\subseteq# mset-set (X\capZ
    from assms(3) obtain Y where Y:X }\#AY\in#A-{#X#} Y\subseteqX\negY\subseteq
        by blast
    have card (X\capZ)< size {#x\in# r A. x \in X#}
        by (rule lemma2[where Y = Y]) (use Y assms(1,2) in auto)
    with size-mset-mono[OF subset] show False
        by simp
qed
lemma lemma2":
    assumes is-pref-profile A
    assumes }\mp@subsup{A}{}{\prime}\equiv
    assumes }\forallz\inZ\mathrm{ . count }A{z}\geq
    assumes }X\in#A\wedge(\existsY\in\mathrm{ set-mset (A-{#X#}). Y}\subseteqX\wedge\negY\subseteqZ
    assumes filter-mset ( }\lambdax.x\inX)W\subseteq# mset-set ( X\capZ
    shows r A'}=|
    using lemmaQ'[of A Z X] assms by auto
```


3.3 Symmetry Breaking

In the following, we formalize the symmetry-breaking argument that shows that we can reorder the four alternatives C_{1} to C_{4} in such a way that the preference profile

$$
\left\{C_{1}\right\}\left\{C_{2}\right\}\left\{C_{1}, C_{2}\right\} \quad\left\{C_{3}\right\} \quad\left\{C_{3}\right\} \quad\left\{C_{3}, C_{4}\right\}
$$

is mapped to one of the committees $\left[C_{1}, C_{1}, C_{3}\right]$ or $\left[C_{1}, C_{2}, C_{3}\right]$.
We start with a simple technical lemma that states that if we have a multiset A of size 3 consisting of the elements x and y and x occurs at least as often as y, then $A=[x, x, y]$.

```
lemma papp-multiset-3-aux:
    assumes size \(A=3 x \in \# A y \in \# A\) set-mset \(A \subseteq\{x, y\} x \neq y\) count \(A x \geq\) count \(A y\)
    shows \(A=\{\# x, x, y \#\}\)
proof -
    have count \(A x>0\)
        using assms by force
```

```
    have size \(A=\left(\sum z \in\right.\) set-mset \(A\). count \(\left.A z\right)\)
    by (rule size-multiset-overloaded-eq)
    also have set-mset \(A=\{x, y\}\)
    using assms by auto
    also have \(\left(\sum z \in \ldots\right.\) count \(\left.A z\right)=\) count \(A x+\operatorname{count} A y\)
    using assms by auto
    finally have count \(A x+\) count \(A y=3\)
    by (simp add: assms(1))
    moreover from assms have count \(A x>0\) count \(A y>0\)
    by auto
    ultimately have \(*\) : count \(A x=2 \wedge\) count \(A y=1\)
        using <count \(A x \geq\) count \(A y\) by linarith
    show ?thesis
    proof (rule multiset-eqI)
        fix \(z\) show count \(A z=\) count \(\{\# x, x, y \#\} z\)
        proof (cases \(z \in\{x, y\}\) )
        case False
        with assms have \(z \notin\) set-mset \(A\)
            by auto
        hence count \(A z=0\)
            by (simp add: Multiset.not-in-iff)
        thus ?thesis
            using False by auto
    qed (use * in auto)
    qed
qed
```

The following is the main symmetry-breaking result. It shows that we can find parties C_{1} to C_{4} with the desired property.
This is a somewhat ad-hoc argument; in the appendix of the paper this is done more systematically in Lemma 3.
lemma symmetry-break-aux:
obtains C1 C2 C3 C4 where
parties $=\{C 1, C 2, C 3, C 4\}$ distinct $[C 1, C 2, C 3, C 4]$
$r(\{\#\{C 1\},\{C 2\},\{C 1, C 2\},\{C 3\},\{C 4\},\{C 3, C 4\} \#\}) \in\{\{\# C 1, C 1, C 3 \#\},\{\# C 1, C 2$,
C3\#\}\}
proof -
note $I=$ that
have \exists xs. set $x s=$ parties \wedge distinct $x s$
using finite-distinct-list[of parties] by blast
then obtain $x s$ where $x s$: set $x s=$ parties distinct $x s$ by blast
from $x s$ have length $x s=4$
using card-parties distinct-card[of xs] by auto
then obtain C1 C2 C3 C4 where $x s$-eq: $x s=[C 1, C 2, C 3, C 4]$
by (auto simp: eval-nat-numeral length-Suc-conv)
have parties-eq: parties $=\{C 1, C 2, C 3, C 4\}$
by (subst xs(1) [symmetric], subst xs-eq) auto
have [simp]:

```
    C1 f C2 C1 f= C3 C1 = C4
    C2 = C1 C2 }= C3 C2 = C4
    C3 = C1 C3 # C2 C3 }=\mp@subsup{C}{4}{
    C4}\not=C1C4\not=C2 C4 = C3
    using \distinct xs` unfolding xs-eq by auto
define A where }A={#{C1},{C2},{C1,C2},{C3},{C4},{C3,C4}#
define m}\mathrm{ where m=Max (count (rA)'parties)
have A: is-pref-profile A
    unfolding A-def is-pref-profile-iff by (simp add: parties-eq)
hence is-committee (r A)
    by (rule rule-wf)
hence rA: size (r A) = 3 set-mset (r A)\subseteq parties
    unfolding is-committee-def by auto
define X where X = set-mset (r A)
have X\not={} X\subseteq parties
    using rA by (auto simp: X-def)
have m>0
proof -
    obtain }x\mathrm{ where }x\in
        using <X\not={}` by blast
    with }<X\subseteq\mathrm{ parties have C1 }\inX\veeC2\inX\veeC3\inX\veeC4\in
        unfolding parties-eq by blast
    thus?thesis
        unfolding m-def X-def by (subst Max-gr-iff) (auto simp: parties-eq)
qed
have m\leq3
proof -
    have m\leqsize (r A)
        unfolding m-def by (subst Max-le-iff) (auto simp:count-le-size)
    also have ... = 3
        by fact
    finally show?thesis.
qed
have m\in(count (r A) 'parties)
    unfolding m-def by (intro Max-in) auto
then obtain C1' where C1': count (rA)C1'=mC1'\in parties
    by blast
have C1'\in#rA
    using <m>0`C1'(1) by auto
have \exists C2'\inparties-{C1'}. {C1',C2'} \in# A
    using C1' unfolding }A\mathrm{ -def parties-eq
    by (elim insertE; simp add: insert-Diff-if insert-commute)
then obtain C2' where C2': C2' \in parties - {C1'} {C1',C2'}\in# A
```

by blast
have $[$ simp $]: C 1^{\prime} \neq C 2^{\prime} C 2^{\prime} \neq C 1^{\prime}$
using $C 2^{\prime}$ by auto
have disj: $C 1^{\prime}=C 1 \wedge C 2^{\prime}=C 2 \vee C 1^{\prime}=C 2 \wedge C 2^{\prime}=C 1 \vee C 1^{\prime}=C 3 \wedge C 2^{\prime}=C 4 \vee C 1^{\prime}$
$=C 4 \wedge C 2^{\prime}=C 3$
using $C 1^{\prime}$ (2) $C 2^{\prime}$ ' unfolding A-def parties-eq
by (elim insertE; force simp: insert-commute)
obtain $C 3^{\prime}$ where $C 3^{\prime}: C 3^{\prime} \in$ parties- $\left\{C 1^{\prime}, C 2^{\prime}\right\}$
using $C 1^{\prime}(2) C 2^{\prime}$ unfolding parties-eq by (fastforce simp: insert-Diff-if)
obtain $C 4^{\prime}$ where $C 4^{\prime}: C 4^{\prime} \in$ parties $-\left\{C 1^{\prime}, C 2^{\prime}, C 3^{\prime}\right\}$
using $C 1$ '(2) C2' C3' unfolding parties-eq by (fastforce simp: insert-Diff-if)
have A-eq: $A=\left\{\#\left\{C 1^{\prime}\right\},\left\{C 2^{\prime}\right\},\left\{C 1^{\prime}, C 2^{\prime}\right\},\left\{C 3^{\prime}\right\},\left\{C 4^{\prime}\right\},\left\{C 3^{\prime}, C 4^{\prime}\right\} \#\right\}$
using disj C3' ${ }^{\prime}$ C4'
by (elim disjE) (auto simp: A-def parties-eq insert-commute)
have distinct:

$$
\begin{aligned}
& C 1^{\prime} \neq C 2^{\prime} C 1^{\prime} \neq C 3^{\prime} C 1^{\prime} \neq C 4^{\prime} \\
& C 2^{\prime} \neq C 1^{\prime} C 2^{\prime} \neq C 3^{\prime} C 2^{\prime} \neq C 4^{\prime} \\
& C 3^{\prime} \neq C 1^{\prime} C 3^{\prime} \neq C 2^{\prime} C 3^{\prime} \neq C 4^{\prime} \\
& C 4^{\prime} \neq C 1^{\prime} C 4^{\prime} \neq C 2^{\prime} C 4^{\prime} \neq C 3^{\prime} \\
& \text { using } C 1^{\prime} C 2^{\prime} C 3^{\prime} C 4^{\prime} \text { by blast }+
\end{aligned}
$$

have parties-eq': parties $=\left\{C 1^{\prime}, C 2^{\prime}, C 3^{\prime}, C 4^{\prime}\right\}$
using $C 1^{\prime}(2) C 2^{\prime}(1) C 3^{\prime} C 4$ ' distinct unfolding parties-eq by (elim insertE) auto
have $\neg\left\{\# x \in \# r\right.$ A. $\left.x \in\left\{C 3^{\prime}, C 4^{\prime}\right\} \#\right\} \subseteq \# \operatorname{mset}-s e t\left(\left\{C 3^{\prime}, C 4^{\prime}\right\} \cap\{ \}\right)$
by (rule lemma2 '[OF A]) (auto simp: A-eq)
hence $C 34^{\prime}: C 3^{\prime} \in \# r A \vee C 4^{\prime} \in \# r A$
by auto
then consider $C 3^{\prime} \in \# r A C 4^{\prime} \in \# r A\left|C 3^{\prime} \in \# r A C 4^{\prime} \notin \# r A\right| C 3^{\prime} \notin \# r A C 4^{\prime} \in \# r$ A
by blast
thus ?thesis
proof cases
assume $*: C 3^{\prime} \in \# r A C 4^{\prime} \in \# r A$
have $r A=\left\{\# C 3^{\prime}, C 4^{\prime}, C 1^{\prime} \#\right\}$
by (rule sym, rule mset-subset-size-ge-imp-eq)
(use * $\left\langle C 1^{\prime} \in \# r A\right\rangle$ distinct in
«auto simp: «size ($r A$) $=3$ 〉Multiset.insert-subset-eq-iff in-diff-multiset-absorb2〉)
thus ?thesis using distinct
by (intro that[of C3' C4' $\mathrm{C1} 1^{\prime} \mathrm{C} 2$ '])
(auto simp: parties-eq' A-eq add-mset-commute insert-commute)
next
assume *: $C 3^{\prime} \in \# r A C 4^{\prime} \notin \# r A$
show ?thesis
proof (cases C2' $\in \# r A$)
case True

```
    have r A = {#C1',C2',C3'#}
    by (rule sym, rule mset-subset-size-ge-imp-eq)
        (use * <C1' }\in#r A\rangle distinct True in
            <auto simp:<size (r A) = 3`Multiset.insert-subset-eq-iff in-diff-multiset-absorb2`)
    thus ?thesis using distinct
    by (intro that[of C1' C2' C3' C4 ]
        (auto simp: parties-eq' A-eq add-mset-commute insert-commute)
next
    case False
    have r A = {#C1',C1',C3'#}
    proof (rule papp-multiset-3-aux)
        show set-mset (r A)\subseteq{C1',C3'}
        using <set-mset (r A)\subseteq ¢>* False unfolding parties-eq` by auto
    next
        have count (rA)C3'\leqm
            unfolding m-def by (subst Max-ge-iff) (auto simp: parties-eq')
        also have m= count (r A)C1'
            by (simp add:C1')
        finally show count (r A)C3'\leq count (r A)C1'.
    qed (use C1'* False <C1'\in# r A〉 distinct in <auto simp: <size (r A)=3>>)
    thus ?thesis using distinct
        by (intro that[of C1' C2' C3' C4 '])
            (auto simp: parties-eq' insert-commute add-mset-commute A-eq)
qed
next
assume *: C3' ## r A C4' }\in# r A
show ?thesis
proof (cases C2' ' ##r A)
    case True
    have r A={#C1',C2',C4'#}
        by (rule sym, rule mset-subset-size-ge-imp-eq)
            (use * <C1' }\in# r A\rangle distinct True in
                <auto simp:〈size (r A) = 3` Multiset.insert-subset-eq-iff in-diff-multiset-absorb2`)
    thus ?thesis using distinct
        by (intro that[of C1'C2'C4' C3\)
            (auto simp: parties-eq' A-eq add-mset-commute insert-commute)
next
    case False
    have r A = {#C1',C1',C4'#}
    proof (rule papp-multiset-3-aux)
        show set-mset (r A)\subseteq{C1',C4'}
            using <set-mset (r A)\subseteq ->* False unfolding parties-eq' by auto
    next
        have count (rA)C4'\leqm
            unfolding m-def by (subst Max-ge-iff) (auto simp: parties-eq')
            also have m=count (r A)C1'
            by (simp add: C1')
```

```
            finally show count (r A) C4'\leq count (r A) C1'.
        qed (use C1'* False <C1'\in# r A〉 distinct in <auto simp: <size (r A)=3>>)
        thus ?thesis using distinct
            by (intro that[of C1'C2' C4' C3 ])
                (auto simp: parties-eq' insert-commute add-mset-commute A-eq)
    qed
    qed
qed
```

We now use the choice operator to get our hands on such values C_{1} to C_{4}.
definition C1234 where
C1234 $=($ SOME xs. set $x s=$ parties \wedge distinct $x s \wedge$
(case xs of $[C 1, C 2, C 3, C 4] \Rightarrow$
$r(\{\#\{C 1\},\{C 2\},\{C 1, C 2\},\{C 3\},\{C 4\},\{C 3, C 4\} \#\}) \in\{\{\# C 1, C 1, C 3 \#\}$,
$\{\# C 1, C 2, C 3 \#\}\}))$
definition C1 where C1 $=C 1234!0$
definition $C 2$ where $C 2=C 1234!1$
definition $C 3$ where $C 3=C 1234$! 2
definition C_{4} where $C_{4}=C 1234$! 3
lemma distinct: distinct $[C 1, C 2, C 3, C 4]$
and parties-eq: parties $=\{C 1, C 2, C 3, C 4\}$
and symmetry-break:
$r(\{\#\{C 1\},\{C 2\},\{C 1, C 2\},\{C 3\},\{C 4\},\{C 3, C 4\} \#\}) \in\{\{\# C 1, C 1, C 3 \#\},\{\# C 1$,
C2, C3\#\}\}
proof -
have C1234:
set C1234 $=$ parties \wedge distinct C1234 \wedge
(case C1234 of $\left[C 1^{\prime}\right.$, C2 $\left.^{\prime}, C 3^{\prime}, C 4\right] \Rightarrow$
$r\left(\left\{\#\left\{C 1^{\prime}\right\},\left\{C 2^{\prime}\right\},\left\{C 1^{\prime}, C 2^{\prime}\right\},\left\{C 3^{\prime}\right\},\left\{C 4^{\prime}\right\},\left\{C 3^{\prime}, C 4^{\prime}\right\} \#\right\}\right) \in$
$\left.\left\{\left\{\# C 1^{\prime}, C 1^{\prime}, C 3^{\prime} \#\right\},\left\{\# C 1{ }^{\prime}, C 2^{\prime}, C 3^{\prime} \#\right\}\right\}\right)$
unfolding C1234-def
proof (rule someI-ex)
obtain $C 1^{\prime} C 2^{\prime} \mathrm{C}^{\prime}{ }^{\prime} \mathrm{C} 4^{\prime}$ where *:
parties $=\left\{C 1^{\prime}, C 2^{\prime}, C 3^{\prime}, C 4{ }^{\prime}\right\}$ distinct $\left[C 1^{\prime}, C 2^{\prime}, C 3^{\prime}, C 4{ }^{\prime}\right]$
$r\left(\left\{\#\left\{C 1^{\prime}\right\},\left\{C 2^{\prime}\right\},\left\{C 1^{\prime}, C 2^{\prime}\right\},\left\{C 3^{\prime}\right\},\left\{C 4^{\prime}\right\},\left\{C 3^{\prime}, C 4^{\prime}\right\} \#\right\}\right) \in$
$\left\{\left\{\# C 1^{\prime}, C 1^{\prime}, C 3^{\prime} \#\right\},\left\{\# C 1^{\prime}, C 2^{\prime}, C 3^{\prime} \#\right\}\right\}$
using symmetry-break-aux by blast
show \exists xs. set $x s=$ parties \wedge distinct $x s \wedge$
(case xs of $\left[C 1^{\prime}, C 2^{\prime}, C 3^{\prime}, C 4\right] \Rightarrow$
$r\left(\left\{\#\left\{C 1^{\prime}\right\},\left\{C 2^{\prime}\right\},\left\{C 1^{\prime}, C 2^{\prime}\right\},\left\{C 3^{\prime}\right\},\left\{C 4^{\prime}\right\},\left\{C 3^{\prime}, C 4^{\prime}\right\} \#\right\}\right) \in$
$\left.\left\{\left\{\# C 1^{\prime}, C 11^{\prime}, C 3^{\prime} \#\right\},\left\{\# C 1^{\prime}, C 2^{\prime}, C 3^{\prime} \#\right\}\right\}\right)$
by (intro ex $\left[\right.$ of - $\left.\left.\left[C 1^{\prime}, C 2^{\prime}, C 3^{\prime}, C 4\right]\right]\right)($ use $*$ in auto)
qed
have length C1234 $=4$
using C1234 card-parties distinct-card[of C1234] by simp
then obtain $C 11^{\prime} C 2^{\prime} C 3 ' C 4 '$ where C1234-eq: C1234 $=\left[C 1{ }^{\prime}, C 2^{\prime}, C 3^{\prime}, C 4\right]$

```
    by (auto simp: eval-nat-numeral length-Suc-conv)
    show distinct [C1,C2,C3,C4] parties ={C1,C2,C3,C4}
        r({#{C1},{C2},{C1,C2},{C3},{C4},{C3,C4}#})\in{{#C1,C1,C3#},{#C1,
C2, C3#}}
    using C1234 by (simp-all add: C1234-eq C1-def C2-def C3-def C4-def)
qed
lemma distinct' [simp]:
```



```
    using distinct by auto
lemma in-parties [simp]: C1 \in parties C2 \in parties C3 \in parties C4 \in parties
    by (subst (2) parties-eq; simp; fail)+
```


3.4 The Set of Possible Committees

Next, we compute the set of the 20 possible committees.
abbreviation $C O M$ where $C O M \equiv$ committees 3 parties
definition $C O M^{\prime}$ where $C O M^{\prime}=$
$[\{\# C 1, C 1, C 1 \#\},\{\# C 1, C 1, C 2 \#\},\{\# C 1, C 1, C 3 \#\},\{\# C 1, C 1, C 4 \#\}$, $\{\# C 1, C 2, C 2 \#\},\{\# C 1, C 2, C 3 \#\},\{\# C 1, C 2, C 4 \#\},\{\# C 1, C 3, C 3 \#\}$, $\{\# C 1, C 3, C 4 \#\},\{\# C 1, C 4, C 4 \#\},\{\# C 2, C 2, C 2 \#\},\{\# C 2, C 2, C 3 \#\}$, $\{\# C 2, C 2, C 4 \#\},\{\# C 2, C 3, C 3 \#\},\{\# C 2, C 3, C 4 \#\},\{\# C 2, C 4, C 4 \#\}$, $\{\# C 3, C 3, C 3 \#\},\{\# C 3, C 3, C 4 \#\},\{\# C 3, C 4, C 4 \#\}$, $\{\# C 4, C 4, C 4 \#\}]$
lemma distinct-COM ${ }^{\prime}$: distinct $C O M^{\prime}$
by (simp add: COM'-def add-mset-neq)
lemma $C O M-e q: C O M=$ set $C O M^{\prime}$
by (subst parties-eq)
(simp-all add: COM'-def numeral-3-eq-3 committees-Suc add-ac insert-commute add-mset-commute)
lemma r-in-COM:
assumes is-pref-profile A
shows $\quad r A \in C O M$
using rule-wf[OF assms] unfolding committees-def is-committee-def by auto
lemma r-in-COM':
assumes is-pref-profile $A A^{\prime} \equiv A$
shows list-ex $\left(\lambda W . r A^{\prime}=W\right) C O M^{\prime}$
using r-in-COM $[O F \operatorname{assms}(1)]$ assms(2) by (auto simp: list-ex-iff COM-eq)
lemma r-right-unique:
list-all $(\lambda(W 1, W 2) . r A \neq W 1 \vee r A \neq W 2)\left(\right.$ pairs $\left.C O M^{\prime}\right)$
proof -
have list-all $(\lambda(W 1, W 2) . W 1 \neq W 2)\left(\right.$ pairs $\left.C O M^{\prime}\right)$

```
        using distinct-COM' unfolding distinct-conv-pairs by blast
    thus ?thesis
        unfolding list-all-iff by blast
qed
end
```


3.5 Generating Clauses and Replaying the SAT Proof

We now employ some custom-written ML code to generate all the SAT clauses arising from the given profiles (read from an external file) as Isabelle/HOL theorems. From these, we then derive False by replaying an externally found SAT proof (also written from an external file).
The proof was found with the glucose SAT solver, which outputs proofs in the DRUP format (a subset of the more powerful DRAT format). We then used the DRAT-trim tool by Wetzler et al. [2] to make the proof smaller. This was done repeatedly until the proof size did not decrease any longer. Then, the proof was converted into the GRAT format introduced by Lammich [1], which is easier to check (or in our case replay) than the less explicit DRAT (or DRUP) format.

```
external-file sat-data/profiles
external-file sat-data/papp-impossibility.grat.xz
context papp-impossibility-base-case
begin
```

ML-file〈papp-impossibility.ML〉
This invocation proves a theorem called contradiction whose statement is False. Note that the DIMACS version of the SAT file that is being generated can be viewed by clicking on "See theory exports" in the messages output by the invocation below.
On a 2021 desktop PC with 12 cores, proving all the clauses takes 8.4 s (multithreaded; CPU time 55 s). Replaying the proof takes 130 s (singlethreaded).

```
local-setup <fn lthy =>
    let
        val thm=
            PAPP-Impossibility.derive-false lthy
                (master-dir + path}<sat-data/profiles`
                (master-dir + path}<sat-data/papp-impossibility.grat.xz>)
    in
        Local-Theory.note ((binding\contradiction`, []), [thm])lthy |> snd
    end
>
end
```

With this, we can now prove the impossibility result:

```
lemma papp-impossibility-base-case:
    assumes card parties =4
    shows \negcard-stratproof-weak-rep-anon-papp 6 parties 3 r
proof
    assume card-stratproof-weak-rep-anon-papp 6 parties 3 r
    then interpret card-stratproof-weak-rep-anon-papp 6 parties 3r .
    interpret papp-impossibility-base-case parties r
        by unfold-locales fact+
    show False
        by (rule contradiction)
qed
end
```


4 Lowering P-APP Rules to Smaller Settings

```
theory Anonymous-PAPP-Lowering
    imports Anonymous-PAPP
begin
```

In this section, we prove a number of lemmas (corresponding to Lemma 1 in the paper) that allow us to take an anonymous P-APP rule with some additional properties (typically Cardinality-Strategyproofness and Weak Representation or Weak Proportional Representation) and construct from it an anonymous P-APP rule for a different setting, i.e. different number of voters, parties, and/or result committee size.

In the reverse direction, this also allows us to lift impossibility results from one setting to another.

4.1 Preliminary Lemmas
 context card-stratproof-anon-papp
 begin

The following lemma is obtained by applying Strategyproofness repeatedly. It shows that if we have l voters with identical approval lists, then this entire group of voters has no incentive to submit wrong preferences. That is, the outcome they obtain by submitting their genuine approval lists is weakly preferred by them over all outcomes obtained where these l voters submit any other preferences (and the remaining $n-l$ voters submit the same preferences as before).

This is stronger than regular Strategyproofness, where we only demand that no voter has an incentive to submit wrong preferences unilaterally (and everyone else keeps the same preferences). Here we know that the entire group of l voters has no incentive to submit wrong preferences in coordination with one another.

```
lemma proposition2:
    assumes size \(B=l\) size \(A+l=n\)-voters
    assumes \(X \neq\{ \} X \subseteq\) parties \(\left\} \notin \# A+B \forall X^{\prime} \in \# A+B . X^{\prime} \subseteq\right.\) parties
```

```
    shows \(\quad r(\) replicate-mset \(l X+A) \succeq[\operatorname{Comm}(X)] r(B+A)\)
    using assms
proof (induction l arbitrary: A B)
    case 0
    thus ?case
        by \(\operatorname{simp}\)
next
    case (Suc l A B)
    from Suc.prems have set-mset \(B \neq\{ \}\)
        by auto
    then obtain \(Y\) where \(Y: Y \in \# B\)
        by blast
    define \(B^{\prime}\) where \(B^{\prime}=B-\{\# Y \#\}\)
    define \(A^{\prime}\) where \(A^{\prime}=A+\{\# Y \#\}\)
    have \([\) simp \(]\) : size \(B^{\prime}=l\)
        using Suc.prems \(Y\) by (simp add: \(B^{\prime}\)-def size-Diff-singleton)
    have \([\) simp \(]\) : size \(A^{\prime}=n\)-voters \(-l\)
        using Suc.prems \(Y\) by (simp add: \(A^{\prime}\)-def)
    have \(r\left(B^{\prime}+A^{\prime}\right) \preceq[\operatorname{Comm}(X)] r\) (replicate-mset \(\left.l X+A^{\prime}\right)\)
        by (rule Suc.IH) (use Suc.prems \(Y\) in «auto simp: \(A^{\prime}\)-def \(B^{\prime}\)-def size-Diff-singleton»)
    also have \(B^{\prime}+A^{\prime}=B+A\)
        using \(Y\) by (simp add: \(B^{\prime}\)-def \(A^{\prime}\)-def)
    also have \(r\) (replicate-mset \(\left.l X+A^{\prime}\right) \preceq[\operatorname{Comm}(X)] r\) (replicate-mset (Suc l) \(X+A\) )
    proof (rule not-manipulable ')
        show replicate-mset (Suc l) \(X+A+\{\# Y \#\}=\) replicate-mset \(l X+A^{\prime}+\{\# X \#\}\)
        by (simp add: \(A^{\prime}\)-def)
    next
        show is-pref-profile (replicate-mset (Suc l) \(X+A\) )
        using Suc.prems by unfold-locales (auto split: if-splits)
    next
        show is-pref-profile (replicate-mset \(l X+A^{\prime}\) )
        using Suc.prems \(Y\) by unfold-locales (auto split: if-splits simp: \(A^{\prime}\)-def)
    qed
    finally show ?case .
qed
end
```

context card-stratproof-weak-rep-anon-papp
begin

In a setting with Weak Representation and Cardinality-Strategyproofness, Proposition 2 allows us to strengthen Weak Representation in the following way: Suppose we at least $l\lfloor n / k\rfloor$ voters with the same approval list X, and X consists of at least l parties. Then at least l of the members of the result committee are in X.
lemma proposition3:
assumes is-pref-profile $A X \subseteq$ parties card $X \geq l$

```
    assumes committee-size \(>0\)
    assumes count \(A X \geq l *\lceil n\)-voters / committee-size \(\rceil\)
    shows size \(\{\# x \in \# r A . x \in X \#\} \geq l\)
    using assms
proof (induction l arbitrary: A X rule: less-induct)
    case (less l A X)
    interpret \(A\) : anon-papp-profile n-voters parties committee-size \(A\)
    by fact
    consider \(l=0|l=1| l>1\)
    by force
thus? case
proof cases
    assume \(l=0\)
    thus ?thesis by simp
next
    assume \([\operatorname{simp}]: l=1\)
    define \(n\) where \(n=\) count \(A X\)
    with less.prems have \(X \neq\{ \}\)
        by auto
    then obtain \(x\) where \(x: x \in X\)
        by blast
    have \(n \leq\) size \(A\)
        unfolding \(n\)-def by (rule count-le-size)
    hence \(n \leq n\)-voters
        by (simp add: A.size-A)
    have count \(A X>0\)
        by (rule Nat.grOI) (use \(n\)-voters-pos less.prems in 〈auto simp: field-simps〉)
    hence \(X \in \# A\)
        by force
    have [simp]: replicate-mset \(n X \subseteq \# A\)
        by (simp add: n-def flip: count-le-replicate-mset-subset-eq)
    define \(A^{\prime \prime}\) where \(A^{\prime \prime}=A\) - replicate-mset \(n X\)
    define \(A^{\prime}\) where \(A^{\prime}=A^{\prime \prime}+\) replicate-mset \(n\{x\}\)
    interpret \(A^{\prime}\) : anon-papp-profile \(n\)-voters parties committee-size \(A^{\prime}\)
        using \(A\). \(A\)-nonempty \(A\). \(A\)-subset A.size- \(A x\langle X \in \# A\rangle\)
        by unfold-locales
            (fastforce simp: \(A^{\prime}\)-def \(A^{\prime \prime}\)-def size-Diff-submset subset-mset.add-increasing2
                        split: if-splits dest!: in-diffD)+
    have \(x \in \# r A^{\prime}\)
    proof (rule weak-representation)
        show is-pref-profile \(A^{\prime}\)
            by (fact \(A^{\prime}\).anon-papp-profile-axioms)
    next
        have \(n\)-voters \(\leq\) committee-size \(* n\)
            using less.prems by (simp add: n-def ceiling-le-iff field-simps flip: of-nat-mult)
            also have \(n \leq\) count \(A^{\prime}\{x\}\)
```

```
    by (simp add: A'-def)
    finally show n-voters }\leq\mathrm{ committee-size * count }\mp@subsup{A}{}{\prime}{x
    by simp
    qed
    hence 1 \leq count (r A')}
    by simp
    also have ... = size {#y f#r A'. y = x #}
    by simp
also have ... \leq size {# y \in#r A'. y \inX #}
    by (intro size-mset-mono multiset-filter-mono') (use x in auto)
    also have r A' \preceq[Comm (X)]rA
    proof -
    have r(replicate-mset n{x} + A'\)\preceq[Comm(X)]r(replicate-mset n X + (A')
    proof (rule proposition2)
        show {}\not\in# A'\prime}+\mathrm{ replicate-mset n {x}
            using A'.A-nonempty by (auto simp: A'-def)
        show }\forall\mp@subsup{X}{}{\prime}\in#\mp@subsup{A}{}{\prime\prime}+\mathrm{ replicate-mset n {x}. X'}\subseteq\mathrm{ parties
            using }\mp@subsup{A}{}{\prime}.A\mathrm{ -subset x by (auto simp: A'-def dest: in-diffD)
        show size }\mp@subsup{A}{}{\prime\prime}+n=n\mathrm{ -voters
            using <n \leq n-voters` by (auto simp: A''
    qed (use less.prems in auto)
    also have replicate-mset n X + A'\prime}=
        by (simp add: A''-def n-def flip:count-le-replicate-mset-subset-eq)
    finally show ?thesis
        by (simp add: A'-def add-ac)
    qed
    hence size {#y\in#r A'. y \in X#} \leq size {# y \in# r A. y \in X #}
    by (simp add: committee-preference-def)
    finally show ?thesis
    by simp
next
    assume l:l>1
    define n}\mathrm{ where n= count AX
    have }n\leq\mathrm{ size }
        unfolding n-def by (rule count-le-size)
    hence n\leq n-voters
    by (simp add: A.size-A)
    define m}\mathrm{ where m=nat (ceiling ( }n\mathrm{ -voters / committee-size))
    have n-voters / committee-size }\leq
        unfolding m-def by linarith
    hence m: n-voters \leq committee-size * m
    using <committee-size > 0` by (simp add: field-simps flip:of-nat-mult)
    have real n-voters / real committee-size > 0
    using n-voters-pos less.prems by auto
```

```
hence \(m^{\prime}:\lceil\) real \(n\)-voters / real committee-size \(\rceil=\) int \(m\)
    by (simp add: m-def)
have \(1 * m \leq l * m\)
    using \(l\) by (intro mult-right-mono) auto
also have \(l * m \leq n\)
    using less.prems by (simp add: \(m^{\prime} n\)-def flip: of-nat-mult)
finally have \(m \leq n\)
    by \(\operatorname{simp}\)
with less.prems \(l\) have \(X \neq\{ \}\)
    by auto
then obtain \(x\) where \(x: x \in X\)
    by blast
have card \((X-\{x\})>0\)
    using less.prems x \(l\) by simp
hence \(X-\{x\} \neq\{ \}\)
    by force
have count \(A X>0\)
    by (rule Nat.gr0I) (use n-voters-pos less.prems lin 〈auto simp: field-simps mult-le-0-iff〉)
hence \(X \in \# A\)
    by force
have [simp]: replicate-mset \(n X \subseteq \# A\)
    by (simp add: n-def flip: count-le-replicate-mset-subset-eq)
define \(A^{\prime \prime}\) where \(A^{\prime \prime}=A\) - replicate-mset \(n X\)
define \(A^{\prime}\) where \(A^{\prime}=A^{\prime \prime}+\) replicate-mset \(m\{x\}+\) replicate-mset \((n-m)(X-\{x\})\)
interpret \(A^{\prime}\) : anon-papp-profile \(n\)-voters parties committee-size \(A^{\prime}\)
proof
    show \(Y \subseteq\) parties if \(Y \in \# A^{\prime}\) for \(Y\)
        using that A.A-subset \(x\langle X \in \# A\rangle\)
        by (fastforce simp: \(A^{\prime}\)-def \(A^{\prime \prime}\)-def dest!: in-diffD split: if-splits)
next
    show \(\left\} \notin \# A^{\prime}\right.\)
        using \(A\).A-nonempty \(x\langle X \in \# A\rangle\langle X-\{x\} \neq\{ \}\rangle\)
        by (auto simp: \(A^{\prime}\)-def \(A^{\prime \prime}\)-def dest!: in-diffD split: if-splits)
next
    show size \(A^{\prime}=n\)-voters
        using \(\langle m \leq n\rangle\)
        by (auto simp: \(A^{\prime}\)-def \(A^{\prime \prime}\)-def A.size-A subset-mset.add-increasing2 size-Diff-submset)
qed
have \(x \in \# r A^{\prime}\)
proof (rule weak-representation)
    show is-pref-profile \(A^{\prime}\)
        by (fact \(A^{\prime}\).anon-papp-profile-axioms)
next
    have \(n\)-voters \(\leq\) committee-size \(* m\)
        by (fact \(m\) )
```

```
        also have m\leq count A' {x}
        by (simp add: A'-def)
    finally show n-voters \leq committee-size * count A' {x}
        by simp
    qed
    hence 1 \leq count (r A') x
    by simp
    also have ... = size {#y\in#r A'. y = x # }
    by simp
    finally have 1: size {#y\in#r A'. y=x#} \geq1.
    have 2: size {# y \in#r A'. y \inX - {x} #} \geql-1
    proof (rule less.IH)
    have int (l-1)*\lceilreal n-voters / real committee-size\rceil = int ((l-1)*m)
        by (auto simp add: m' not-less)
    also have (l-1)*m=l*m-m
        by (simp add: algebra-simps)
    also have l*m\leqn
        using less.prems by (simp add: m' n-def flip:of-nat-mult)
    hence l l*m-m\leqn-m
        by (meson diff-le-mono)
    also have n-m\leq count A'}(X-{x}
        by (simp add: A'-def A''-def)
        finally show int (l-1)*\lceilreal n-voters / real committee-size\rceil \leq int (count A' (X -
{x}))
    by simp
    qed (use l A'.anon-papp-profile-axioms x less.prems in <auto〉)
    have 1+(l-1)\leq size {#y\in#r A'. y = x#} + size {#y f# r A'. y \inX - {x}#}
    by (intro add-mono 1 2)
    also have ... = size ({#y\in#r A'. y = x#} + {#y\in#r A'. y \inX - {x}#})
    by simp
    also have {#y\in#r A'.y=x#}+{#y\in#r r A'. y\inX - {x}#}=
                    {#y\in#r A'. y = x\vee y \inX - {x}#}
    by (rule filter-mset-disjunction [symmetric]) auto
    also have (\lambday.y=x\vee y \inX - {x})=(\lambday. y \inX)
    using x by auto
    also have 1 + (l-1)=l
    using l by simp
    also have r A' \preceq[Comm(X)]rA
    proof -
        have r(replicate-mset m{x} + replicate-mset (n-m) (X - {x}) + A'') \preceq[Comm(X)]
            r(replicate-mset n X + A')
    proof (rule proposition2)
        show {}\not\in# A'I + (replicate-mset m {x} + replicate-mset (n-m) (X - {x}))
            using A'.A-nonempty by (auto simp: A'-def)
            show }\forall\mp@subsup{X}{}{\prime}\in#\mp@subsup{A}{}{\prime\prime}+(\mathrm{ replicate-mset m {x} + replicate-mset (n-m) (X - {x})). X'`
parties
```

```
                using }\mp@subsup{A}{}{\prime}.A\mathrm{ -subset x by (auto simp: A'-def dest: in-diffD)
            show size }\mp@subsup{A}{}{\prime\prime}+n=n\mathrm{ -voters
                using < n \leq n-voters` by (auto simp: A''-def size-Diff-submset A.size-A)
    qed (use less.prems l <m\leqn` in auto)
    also have replicate-mset n}X+\mp@subsup{A}{}{\prime\prime}=
            by (simp add: A''-def n-def flip: count-le-replicate-mset-subset-eq)
        finally show ?thesis
            by (simp add: A'-def add-ac)
    qed
```



```
        by (simp add: committee-preference-def)
    finally show ?thesis
        by simp
    qed
qed
end
```


4.2 Dividing the number of voters

If we have a PAPP rule that satisfies weak representation and cardinality strategyproofness, for $l n$ voters, we can turn it into one for n voters. This is done by simply cloning each voter l times.
Consequently, if we have an impossibility result for n voters, it also holds for any integer multiple of n.
locale divide-voters-card-stratproof-weak-rep-anon-papp $=$
card-stratproof-weak-rep-anon-papp $l * n$-voters parties committee-size r
for $l n$-voters parties committee-size r
begin
definition lift-profile :: 'a set multiset \Rightarrow 'a set multiset where lift-profile $A=\left(\sum X \in \# A\right.$. replicate-mset $\left.l X\right)$
sublocale lowered: anon-papp-election n-voters parties
by standard (use n-voters-pos in auto)
lemma l-pos: $l>0$
using n-voters-pos by auto
lemma empty-in-lift-profile-iff [simp]: $\} \in \#$ lift-profile $A \longleftrightarrow\} \in \# A$ using l-pos by (auto simp: lift-profile-def)
lemma set-mset-lift-profile [simp]: set-mset (lift-profile A) $=$ set-mset A using l-pos by (auto simp: lift-profile-def)
lemma size-lift-profile: size $($ lift-profile $A)=l *$ size A by (simp add: size-mset-sum-mset lift-profle-def image-mset.compositionality o-def)

```
lemma count-lift-profile [simp]: count (lift-profile A) \(x=l *\) count \(A x\)
    unfolding lift-profile-def by (induction A) auto
lemma is-pref-profile-lift-profile [intro]:
    assumes lowered.is-pref-profile \(A\)
    shows is-pref-profile (lift-profile A)
proof -
    interpret anon-papp-profile n-voters parties committee-size \(A\)
        by fact
    show ?thesis
        using \(A\)-nonempty \(A\)-subset size- \(A\)
        by unfold-locales
            (auto simp: lift-profile-def size-mset-sum-mset image-mset.compositionality o-def)
qed
sublocale lowered: anon-papp n-voters parties committee-size \(r\) ○ lift-profile
proof
    fix \(A\) assume lowered.is-pref-profile \(A\)
    hence is-pref-profile (lift-profile A)
        by blast
    hence is-committee (r (lift-profile A))
        using rule-wf by blast
    thus lowered.is-committee (( \(r \circ\) lift-profile) \(A)\)
        by \(\operatorname{simp}\)
qed
sublocale lowered: weak-rep-anon-papp n-voters parties committee-size \(r \circ\) lift-profile
proof
    fix \(A x\)
    assume \(A\) : lowered.is-pref-profile \(A\) and \(x: n\)-voters \(\leq\) committee-size \(*\) count \(A\{x\}\)
    from \(A\) have \(A^{\prime}\) : is-pref-profile (lift-profile \(A\) )
        by blast
    from \(x\) have \(l * n\)-voters \(\leq l *(\) committee-size \(*\) count \(A\{x\})\)
        by (rule mult-left-mono) auto
    also have \(\ldots=\) committee-size \(*\) count (lift-profile \(A\) ) \(\{x\}\)
        by \(\operatorname{simp}\)
    finally have \(x \in \# r\) (lift-profile A)
        by (intro weak-representation \(A^{\prime}\) )
    thus \(x \in \#\) ( \(r \circ\) lift-profile) \(A\)
        by simp
qed
sublocale lowered: card-stratproof-anon-papp n-voters parties committee-size \(r\) ○ lift-profile
proof
    fix \(A X Y\)
    show \(\neg\) lowered.card-manipulable \(A X Y\)
        unfolding lowered.card-manipulable-def
    proof (rule notI, elim conjE)
```

```
    assume A: lowered.is-pref-profile A and XY:X \in# A Y\not={} Y\subseteq parties
    assume *: (r \circ lift-profile) A}\prec[lowered.committee-preference X
    (r\circlift-profile) (A - {#X#} +{#Y#})
    interpret anon-papp-profile n-voters parties committee-size A
    by fact
    have X:X\not={} X\subseteq parties
    using XY A-nonempty A-subset by auto
    define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=A-{#X#
    have }\mp@subsup{A}{}{\prime}:A=\mp@subsup{A}{}{\prime}+{#X#
    using }XY\mathrm{ by (simp add: A'-def)
    have r(lift-profile A) \prec[committee-preference X]
        r(lift-profile (A - {#X#} + {#Y#}))
    using * by simp
    also have r (lift-profile }(A-{#X#}+{#Y#}))\preceq[committee-preference X
            r(lift-profile A - {#X#} + {#Y#})
    proof -
    have r(replicate-mset (l-1)Y ( (lift-profile A' + {#Y#})) \preceq[committee-preference X]
                r(replicate-mset (l-1)X + (lift-profile A'}+{#Y#})
    proof (rule proposition2)
        show size (lift-profile A'}+{#Y#})+(l-1)=l*n-voter
            using XY l-pos n-voters-pos
            by (simp add: A'-def size-lift-profile size-Diff-singleton
                        algebra-simps Suc-diff-le size-A)
    next
        show {}\not## lift-profile A'}+{#Y#}+replicate-mset (l-1)
            using XY A-nonempty by (auto simp: A'-def dest: in-diffD)
    next
        show }\forall\mp@subsup{X}{}{\prime}\in#lift-profile A' + {#Y#}+ replicate-mset (l-1)Y. X'\subseteq partie
                using XY A-subset by (auto simp: A'-def dest: in-diffD)
    qed (use X in auto)
    thus ?thesis
        by (simp add: A' replicate-mset-rec l-pos lift-profile-def)
    qed
    finally have card-manipulable (lift-profile A) X Y
    unfolding card-manipulable-def using XY A by auto
    with not-manipulable show False
    by blast
qed
qed
sublocale lowered: card-stratproof-weak-rep-anon-papp n-voters parties committee-size \(r\) ○ lift-profile
    ..
end
```

locale divide-voters-card-stratproof-weak-prop-rep-anon-papp $=$

```
    card-stratproof-weak-prop-rep-anon-papp l*n-voters parties committee-size r
    for l n-voters parties committee-size r
begin
sublocale divide-voters-card-stratproof-weak-rep-anon-papp ..
sublocale lowered: card-stratproof-weak-prop-rep-anon-papp
    n-voters parties committee-size r ○ lift-profile
proof
    fix }Ax\mp@subsup{l}{}{\prime
    assume A:lowered.is-pref-profile A and x: l' * n-voters }\leq\mathrm{ committee-size * count A{x}
    from A have A': is-pref-profile (lift-profile A)
        by blast
    from x have l*( l''* n-voters )\leql*(committee-size * count A {x})
        by (rule mult-left-mono) auto
    also have ... = committee-size * count (lift-profile A) {x}
        by simp
    also have l * (l'* n-voters ) = l'}*(l*n\mathrm{ -voters 
        by (simp add: algebra-simps)
    finally have count (r (lift-profile A)) }x\geq\mp@subsup{l}{}{\prime
        by (intro weak-proportional-representation A')
    thus count ((r\circlift-profile) A) }x\geq\mp@subsup{l}{}{\prime
        by simp
qed
end
```


4.3 Decreasing the number of parties

If we have a PAPP rule that satisfies weak representation and cardinality strategyproofness, for m parties, we can turn it into one for $m-1$ parties. This is done by simply duplicating one particular party (say x) in the preference profile, i.e. whenever x is part of an approval list, we add a clone of x (say y) as well. Should y then end up in the committee, we simply replace it with x.
Consequently, if we have an impossibility result for k parties, it also holds for $\geq m$ parties.
locale remove-alt-card-stratproof-weak-rep-anon-papp $=$
card-stratproof-weak-rep-anon-papp n-voters parties committee-size r
for n-voters and parties :: 'a set and committee-size $r+$
fixes $x y$:: ' a
assumes $x y: x \in$ parties $y \in$ parties $x \neq y$
begin
definition lift-applist :: 'a set \Rightarrow ' a set where
lift-applist $X=($ if $x \in X$ then insert $y X$ else $X)$
definition lift-profile :: ' a set multiset \Rightarrow ' a set multiset where
lift-profile $A=$ image-mset lift-applist A

```
definition lower-result where lower-result \(C=\) image-mset ( \(\lambda z\). if \(z=y\) then \(x\) else \(z\) ) \(C\)
definition lowered where lowered \(=\) lower-result \(\circ r \circ\) lift-profile
lemma lift-profile-empty \([\) simp \(]\) : lift-profile \(\{\#\}=\{\#\}\)
    by (simp add: lift-profile-def)
lemma lift-profile-add-mset [simp]:
    lift-profile \((\) add-mset \(X A)=\) add-mset \((\) lift-applist \(X)(\) lift-profile \(A)\)
    by (simp add: lift-profile-def)
lemma empty-in-lift-profile-iff [simp]: \(\} \in \#\) lift-profile \(A \longleftrightarrow\} \in \# A\)
    by (auto simp: lift-applist-def lift-profile-def)
lemma size-lift-profile [simp]: size (lift-profile \(A\) ) \(=\) size \(A\)
    by (simp add: lift-profile-def)
lemma lift-applist-eq-self-iff [simp]: lift-applist \(X=X \longleftrightarrow x \notin X \vee y \in X\)
    by (auto simp: lift-applist-def)
lemma lift-applist-eq-self-iff' [simp]: lift-applist \((X-\{y\})=X \longleftrightarrow(x \in X \longleftrightarrow y \in X)\)
    by (cases \(y \in X\) ) (auto simp: lift-applist-def \(x y\) )
lemma in-lift-applist-iff: \(z \in\) lift-applist \(X \longleftrightarrow z \in X \vee(z=y \wedge x \in X)\)
    by (auto simp: lift-applist-def)
lemma count-lift-profile:
    assumes \(\forall Y \in \# A . y \notin Y\)
    shows count (lift-profile A) \(X=(\) if \(x \in X \longleftrightarrow y \in X\) then count \(A(X-\{y\})\) else 0\()\)
    using assms \(x y\) by (induction A) (auto simp: lift-applist-def)
lemma \(y\)-notin-lower-result \([\) simp \(]: y \notin \#\) lower-result \(C\)
    using \(x y\) by (auto simp: lower-result-def)
lemma lower-result-subset: set-mset (lower-result \(C\) ) \(\subseteq\) insert \(x\) (set-mset \(C-\{y\}\) )
    using \(x y\) by (auto simp: lower-result-def)
lemma lower-result-subset': set-mset \(C \subseteq\) parties \(\Longrightarrow\) set-mset (lower-result \(C\) ) \(\subseteq\) parties
    using \(x y\) by (auto simp: lower-result-def)
lemma size-lower-result \([\) simp \(]\) : size (lower-result \(C\) ) \(=\) size \(C\)
    by (simp add: lower-result-def)
lemma count-lower-result:
    count (lower-result C) \(z=\)
        (if \(z=y\) then 0
        else if \(z=x\) then count \(C x+\) count \(C y\)
```

```
        else count C z)
    using xy by (induction C) (auto simp: lower-result-def)
lemma in-lower-result-iff:
    z\in# lower-result }C\longleftrightarrowz\not=y\wedge(z\in#C\vee(z=x\wedgey\in#C)
    unfolding lower-result-def using xy by (induction C) auto
sublocale lowered: anon-papp-election n-voters parties - {y}
    by standard (use n-voters-pos xy in auto)
lemma is-pref-profile-lift-profile [intro]:
    assumes lowered.is-pref-profile A
    shows is-pref-profile (lift-profile A)
proof -
    interpret anon-papp-profile n-voters parties - {y} committee-size A
        by fact
    show ?thesis
        using A-nonempty A-subset size-A
        by unfold-locales
            (auto simp: lift-profile-def lift-applist-def xy
                size-mset-sum-mset image-mset.compositionality o-def)
qed
sublocale lowered: anon-papp n-voters parties - {y} committee-size lowered
proof
    fix A assume lowered.is-pref-profile A
    hence is-pref-profile (lift-profile A)
        by blast
    hence is-committee (r (lift-profile A))
        using rule-wf by blast
    thus lowered.is-committee (lowered A)
        unfolding lowered.is-committee-def is-committee-def lowered-def
        using lower-result-subset'[of r (lift-profile A)] by auto
qed
sublocale lowered: weak-rep-anon-papp n-voters parties - {y} committee-size lowered
proof
    fix A z
    assume A: lowered.is-pref-profile A and z: n-voters \leqcommittee-size * count A {z}
    interpret A: anon-papp-profile n-voters parties - {y} committee-size A
        by fact
    have committee-size > 0
        using z n-voters-pos by (intro Nat.grOI) auto
    from A have A': is-pref-profile (lift-profile A)
        by blast
    have count A{z}>0
        using z n-voters-pos by (intro Nat.gr0I) auto
```

```
    hence \(\{z\} \in \# A\)
    by \(\operatorname{simp}\)
    hence \(z^{\prime}: z \in\) parties \(-\{y\}\)
    using \(A\). \(A\)-subset \(z\) by auto
    define \(C\) where \(C=r\) (lift-profile \(A\) )
    show \(z \in \#\) lowered \(A\)
    proof (cases \(z=x\) )
        case False
        have \(n\)-voters \(\leq\) committee-size \(*\) count \(A\{z\}\)
        by fact
    also have count \(A\{z\} \leq\) count (lift-profile \(A\) ) \(\{z\}\)
        using A.A-subset \(z^{\prime}\) False by (subst count-lift-profile) auto
    hence committee-size \(*\) count \(A\{z\} \leq\) committee-size \(*\) count (lift-profile \(A\) ) \(\{z\}\)
        by (intro mult-left-mono) auto
    finally have \(z \in \# r\) (lift-profile A)
        by (intro weak-representation \(A^{\prime}\) )
    thus \(z \in \#\) lowered \(A\)
        using False \(z^{\prime}\) by (simp add: lowered-def in-lower-result-iff)
next
    case [simp]: True
    have \(1 \leq\) size \(\{\# z \in \# C . z \in\{x, y\} \#\}\)
        unfolding \(C\)-def
    proof (rule proposition3)
        have \([\operatorname{simp}]:\{x, y\}-\{y\}=\{x\}\)
            using \(x y\) by auto
        hence \(n\)-voters \(\leq\) committee-size \(*\) count (lift-profile \(A)\{x, y\}\)
            using \(x y\) A.A-subset \(z\) by (subst count-lift-profile) auto
        thus int \(1 *\lceil\) real n-voters / real committee-size \(\rceil \leq \operatorname{int}(\) count (lift-profile \(A)\{x, y\})\)
            using <committee-size > 0〉
            by (auto simp: ceiling-le-iff field-simps simp flip: of-nat-mult)
    qed (use \(A^{\prime} x y\) 〈committee-size \(>0\) 〉in auto)
    also have \(\ldots=\) count \(C x+\) count \(C y\)
        using \(x y\) by (induction C) auto
    also have \(\ldots=\) count (lowered A) \(x\)
        using \(x y\) by (simp add: lowered-def count-lower-result C-def)
    finally show \(z \in \#\) lowered \(A\)
        by \(\operatorname{simp}\)
    qed
qed
lemma filter－lower－result－eq：
    \(y \notin X \Longrightarrow\{\# x \in \#\) lower-result \(C . x \in X \#\}=\) lower-result \(\{\# x \in \# C . x \in\) lift-applist \(X \#\}\)
    by (induction C) (auto simp: lower-result-def lift-applist-def)
sublocale lowered: card-stratproof-anon-papp n-voters parties \(-\{y\}\) committee-size lowered
proof
    fix \(A X Y\)
```

```
    show \neglowered.card-manipulable A X Y
    unfolding lowered.card-manipulable-def
    proof (rule notI, elim conjE)
    assume A:lowered.is-pref-profile A and XY:X\in# A Y ={} Y\subseteq parties - {y}
    assume *: lowered A\prec[lowered.committee-preference X] lowered (A-{#X#} +{#Y#})
    interpret anon-papp-profile n-voters parties - {y} committee-size A
        by fact
    have X:X\not={} X\subseteq parties - {y}
        using XY A-nonempty }A\mathrm{ -subset by auto
    define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=A-{#X#
    have }\mp@subsup{A}{}{\prime}:A=\mp@subsup{A}{}{\prime}+{#X#
        using XY by (simp add: A'-def)
    from * have size {#x\in# lower-result (r (lift-profile A' + {#lift-applist X#})). x }\inX|=
<
                size {#x\in# lower-result (r (lift-profile A' + {#lift-applist Y#})). x 
        by (simp add: lowered-def A' lowered.strong-committee-preference-iff)
```



```
                lower-result {#x \in#r (lift-profile A' + {#lift-applist X#}). x lift-applist X#}
        using X by (subst filter-lower-result-eq) auto
```



```
                    lower-result {#x \in#r (lift-profile A'}+{#lift-applist Y#}). x lift-applist X#
        using X by (subst filter-lower-result-eq) auto
    finally have size {#x \in# r (lift-profile A' + {#lift-applist X#}). x lift-applist X#}<
```



```
        by simp
    hence r(lift-profile A'}+{#\mathrm{ lift-applist X#}) }\prec\mathrm{ [committee-preference (lift-applist X)]
            r(lift-profile A' + {#lift-applist Y#})
        by (simp add: strong-committee-preference-iff)
    moreover have }\negr(\mathrm{ lift-profile A'}+{#\mathrm{ lift-applist X#}) }<\mathrm{ [committee-preference (lift-applist
X)]
                r(lift-profile A' + {#lift-applist Y#})
    proof (rule not-manipulable' [where Y = lift-applist Y])
        have is-pref-profile (lift-profile A)
        using A by blast
        thus is-pref-profile (lift-profile A' + {#lift-applist X#})
            using }A\mathrm{ by (simp add: A')
    next
        have is-pref-profile (lift-profile (A-{#X#} + {#Y#}))
            using A XY lowered.is-pref-profile-replace by blast
        thus is-pref-profile (lift-profile A'+ {#lift-applist Y#})
            by (simp add: A')
    qed auto
    ultimately show False
        by contradiction
    qed
qed
sublocale lowered: card-stratproof-weak-rep-anon-papp n-voters parties \(-\{y\}\) committee-size
```

end
The following lemma is now simply an iterated application of the above. This allows us to restrict a P-APP rule to any non-empty subset of parties.

```
lemma card-stratproof-weak-rep-anon-papp-restrict-parties:
    assumes card-stratproof-weak-rep-anon-papp \(n\) parties \(k r\) parties \({ }^{\prime} \subseteq\) parties parties \(^{\prime} \neq\{ \}\)
    shows \(\exists r\). card-stratproof-weak-rep-anon-papp \(n\) parties' \(k r\)
proof -
    have finite parties
    proof -
        interpret card-stratproof-weak-rep-anon-papp \(n\) parties \(k r\)
            by fact
        show ?thesis
            by (rule finite-parties)
    qed
    thus ?thesis
        using assms
    proof (induction parties arbitrary: r rule: finite-psubset-induct)
        case (psubset parties r)
        show ?thesis
        proof (cases parties \(=\) parties \({ }^{\prime}\) )
            case True
            thus ?thesis
                using psubset.prems by auto
            next
            case False
            obtain \(x\) where \(x: x \in\) parties \(^{\prime}\)
                using psubset.prems by blast
            from False and psubset.prems have parties - parties \(^{\prime} \neq\{ \}\)
                by auto
            then obtain \(y\) where \(y: y \in\) parties - parties \({ }^{\prime}\)
                by blast
            interpret card-stratproof-weak-rep-anon-papp \(n\) parties \(k r\)
                by fact
            interpret remove-alt-card-stratproof-weak-rep-anon-papp n parties \(k r x y\)
                by standard (use x y psubset.prems in auto)
            show ?thesis
            proof (rule psubset.IH)
                show parties \(-\{y\} \subset\) parties and parties \({ }^{\prime} \subseteq\) parties \(-\{y\}\) parties \({ }^{\prime} \neq\{ \}\)
                    using \(x\) y psubset.prems by auto
            next
                show card-stratproof-weak-rep-anon-papp \(n(\) parties \(-\{y\}) k\) lowered
                    using lowered.card-stratproof-weak-rep-anon-papp-axioms .
            qed
        qed
```


qed

qed

4.4 Decreasing the committee size

If we have a PAPP rule that satisfies weak representation and cardinality strategyproofness, for $l(k+1)$ voters, $m+1$ parties, and a committee size of $k+1$, we can turn it into one for $l k$ voters, m parties, and a committee size of k.
This is done by again cloning a party x into a new party y and additionally adding l new voters whose preferences are $\{x, y\}$. We again replace any y occuring in the output committee with x. Weak representation then ensures that x occurs in the output at least once, and we then simply remove one x from the committee to obtain an output committee of size $k-1$.
Consequently, if we have an impossibility result for a committee size of m, we can extend it to a larger committee size, but at the cost of introducing a new party and new voters, and with a restriction on the number of voters.

```
locale decrease-committee-card-stratproof-weak-rep-anon-papp \(=\)
    card-stratproof-weak-rep-anon-papp \(l *(k+1)\) insert y parties \(k+1 r\)
    for \(l k y\) and parties :: 'a set and \(r+\)
    fixes \(x::\) ' \(a\)
    assumes \(x y: x \in\) parties \(y \notin\) parties
    assumes \(k: k>0\)
begin
definition lift-applist :: 'a set \(\Rightarrow\) ' \(a\) set where
    lift-applist \(X=(\) if \(x \in X\) then insert \(y X\) else \(X)\)
definition lift-profile :: 'a set multiset \(\Rightarrow\) ' \(a\) set multiset where
    lift-profile \(A=\) image-mset lift-applist \(A+\) replicate-mset \(l\{x, y\}\)
definition lower-result
    where lower-result \(C=\) image-mset ( \(\lambda z\). if \(z=y\) then \(x\) else \(z\) ) \(C-\{\# x \#\}\)
definition lowered where lowered \(=\) lower-result \(\circ r \circ\) lift-profile
```

lemma $l: l>0$
using n-voters-pos by auto
lemma x-neq-y $[$ simp $]: x \neq y y \neq x$
using $x y$ by auto
lemma lift-profile-empty [simp]: lift-profile $\{\#\}=$ replicate-mset $l\{x, y\}$
by (simp add: lift-profile-def)
lemma lift-profile-add-mset [simp]:
lift-profile $($ add-mset $X A)=$ add-mset $($ lift-applist $X)($ lift-profile $A)$

```
by (simp add: lift-profile-def)
```

```
lemma empty-in-lift-profile-iff [simp]: \(\} \in \#\) lift-profile \(A \longleftrightarrow\} \in \# A\)
    by (auto simp: lift-applist-def lift-profile-def)
lemma size-lift-profile \([\) simp \(]\) : size \((\) lift-profile \(A)=\) size \(A+l\)
    by (simp add: lift-profile-def)
lemma lift-applist-eq-self-iff [simp]: lift-applist \(X=X \longleftrightarrow x \notin X \vee y \in X\)
    by (auto simp: lift-applist-def)
lemma lift-applist-eq-self-iff' \([\) simp \(]\) : lift-applist \((X-\{y\})=X \longleftrightarrow(x \in X \longleftrightarrow y \in X)\)
    by (cases \(y \in X\) ) (auto simp: lift-applist-def \(x y\) )
lemma in-lift-applist-iff: \(z \in\) lift-applist \(X \longleftrightarrow z \in X \vee(z=y \wedge x \in X)\)
    by (auto simp: lift-applist-def)
lemma count-lift-profile:
    assumes \(\forall Y \in \# A . y \notin Y\)
    shows count (lift-profile A) \(X=\)
    (if \(x \in X \longleftrightarrow y \in X\) then count \(A(X-\{y\})\) else 0\()+\)
    (if \(X=\{x, y\}\) then \(l\) else 0 )
    using assms \(x y\) by (induction A) (auto simp: lift-applist-def)
```

lemma y-notin-lower-result $[$ simp $]: y \notin \#$ lower-result C
using $x y$ by (auto simp: lower-result-def dest: in-diffD)
lemma lower-result-subset: set-mset (lower-result C) \subseteq insert x (set-mset $C-\{y\}$)
using $x y$ by (auto simp: lower-result-def dest: in-diffD)
lemma lower-result-subset': set-mset $C \subseteq$ insert y parties \Longrightarrow set-mset (lower-result C) \subseteq
parties
by (rule order.trans[OF lower-result-subset]) (use $x y$ in auto)
lemma size-lower-result [simp]:
assumes $x \in \# C \vee y \in \# C$
shows size (lower-result C) $=$ size $C-1$
using assms by (auto simp: lower-result-def size-Diff-singleton)
lemma size-lower-result': size (lower-result $C)=$ size $C-($ if $x \in \# C \vee y \in \# C$ then 1 else 0)
proof -
define f where $f=(\lambda C$. image-mset $(\lambda z$. if $z=y$ then x else $z) C)$
have size (lower-result $C)=$ size $(f C-\{\# x \#\})$
by (simp add: lower-result-def f-def)
also have $\ldots=$ size $(f C)-($ if $x \in \# f C$ then 1 else 0$)$
by (simp add: diff-single-trivial size-Diff-singleton)

```
    finally show ?thesis
    by (auto simp: f-def)
qed
lemma count-lower-result:
    count (lower-result C) z=
        (if z=y then 0
        else if z=x then count Cx+ count Cy-1
        else count C z) (is - = ?rhs)
proof -
    define f}\mathrm{ where f}=(\lambdaC\mathrm{ . image-mset ( }\lambdaz\mathrm{ . if z=y then x else z) C)
    have count (lower-result C) z=count (fC-{#x#}) z
        by (simp add: lower-result-def f-def)
    also have ... = count (fC)z-(if z=x then 1 else 0)
        by auto
    also have count (fC)z=(if z=y then 0 else if z=x then count C x + count C y else
count Cz)
            using xy by (induction C) (auto simp: f-def)
    also have ... - (if z=x then 1 else 0) = ?rhs
        by auto
    finally show ?thesis.
qed
lemma in-lower-resultD:
    z\in# lower-result C\Longrightarrowz=x\veez\in#C
    using xy by (auto simp: lower-result-def dest!: in-diffD)
lemma in-lower-result-iff:
    z\in# lower-result C}\longleftrightarrowz\not=y\wedge(ifz=x then count Cx+ count Cy>1 else z\in#C
    (is - = ?rhs)
proof -
    have z\in# lower-result C \longleftrightarrow count (lower-result C) z>0
        by auto
    also have ... \longleftrightarrow ?rhs
        by (subst count-lower-result) auto
    finally show ?thesis.
qed
lemma filter-lower-result-eq:
    assumes y}\not\in
    shows }{#z\in# lower-result C. z\inX#} = lower-result {#z\in# C.z\in lift-applist X#
proof -
    define f}\mathrm{ where f=( }\lambdaC.{#\mathrm{ if }z=y\mathrm{ then x else z. z G#C#})
    have lower-result {#z\in#C.z\in lift-applist X#} =f{#z\in#C.z\in lift-applist X#} -
{#x#}
    by (simp add: f-def lower-result-def)
    also have f{#z\in#C.z\in lift-applist X#}}={#z\in#fC.z\inX#
    using assms by (induction C) (auto simp: f-def lift-applist-def)
    also have ... - {#x#}={#z\in#fC-{#x#}. z\inX#}
```

```
        by (subst filter-diff-mset') auto
    also have fC-{#x#} = lower-result C
        by (simp add: f-def lower-result-def)
    finally show ?thesis ..
qed
sublocale lowered: anon-papp-election l* k parties k
    by standard (use n-voters-pos xy finite-parties k in auto)
lemma is-pref-profile-lift-profile [intro]:
    assumes lowered.is-pref-profile A
    shows is-pref-profile (lift-profile A)
proof -
    interpret A: anon-papp-profile l*k parties k A
        by fact
    show ?thesis
        using A.A-nonempty A.A-subset A.size-A l
        by unfold-locales
            (auto simp: lift-profile-def lift-applist-def xy
                size-mset-sum-mset image-mset.compositionality o-def)
qed
lemma is-committee-lower-result:
    assumes is-committee Cx\in#C\vee y\in#C
    shows lowered.is-committee (lower-result C)
    using assms unfolding is-committee-def lowered.is-committee-def
    using lower-result-subset'[of C] by auto
lemma x-or-y-in-r-lift-profile:
    assumes lowered.is-pref-profile A
    shows }\quadx\in#r(lift-profile A)\vee y \in#r (lift-profile A)
proof -
    interpret A: anon-papp-profile l * k parties k A
        by fact
    have size {#z\in#r (lift-profile A). z\in{x,y}#} \geq1
    proof (rule proposition3)
        have real (l*(k+1))/real (k+1) = real l
            by (simp add: field-simps)
        also have int 1*\lceil\ldots\rceil= int l
            by simp
        also have l\leq count (lift-profile A) {x,y}
            using xy A.A-subset by (subst count-lift-profile) auto
        finally show int 1*\lceilreal (l*(k+1))/real (k+1)\rceil\leqint (count (lift-profile A) {x,y})
            by simp
    next
        show is-pref-profile (lift-profile A)
            by (intro is-pref-profile-lift-profile) fact
    qed (use xy in auto)
```

```
    hence \(\{\# z \in \# r(\) lift-profile \(A) . z \in\{x, y\} \#\} \neq\{\#\}\)
        by force
    thus ?thesis
        by auto
qed
sublocale lowered: anon-papp \(l * k\) parties \(k\) lowered
proof
    fix \(A\) assume \(A\) : lowered.is-pref-profile \(A\)
    hence is-pref-profile (lift-profile A)
        by blast
    hence is-committee (r (lift-profile \(A\) ))
        using rule-wf by blast
    thus lowered.is-committee (lowered A)
        unfolding lowered-def o-def using \(x\)-or- \(y\)-in-r-lift-profile \([\) of \(A] A\)
        by (intro is-committee-lower-result) auto
qed
sublocale lowered: weak-rep-anon-papp \(l * k\) parties \(k\) lowered
proof
    fix \(A z\)
    assume \(A\) : lowered.is-pref-profile \(A\) and \(z: l * k \leq k *\) count \(A\{z\}\)
    interpret \(A\) : anon-papp-profile \(l * k\) parties \(k A\)
        by fact
    from \(A\) have \(A^{\prime}\) : is-pref-profile (lift-profile \(A\) )
        by blast
    have count \(A\{z\}>0\)
        using \(z k\)-voters-pos by (intro Nat.gr0I) auto
    hence \(\{z\} \in \# A\)
        by \(\operatorname{simp}\)
hence \(z^{\prime}: z \in\) parties
        using \(A\). \(A\)-subset \(z\) by auto
    hence [simp]: \(y \neq z z \neq y\)
        using \(x y\) by auto
    define \(C\) where \(C=r\) (lift-profile \(A)\)
show \(z \in \#\) lowered \(A\)
proof (cases \(z=x\) )
    case False
    have \(l \leq\) count \(A\{z\}\)
        using \(z k\) by (simp add: algebra-simps)
    hence \(l *(k+1) \leq(k+1) *\) count \(A\{z\}\)
        by (subst mult.commute, intro mult-right-mono) auto
    also have count \(A\{z\}=\) count (lift-profile \(A\) ) \(\{z\}\)
        using False A.A-subset xy by (subst count-lift-profile) auto
    finally have \(z \in \# r\) (lift-profile A)
        by (intro weak-representation \(A^{\prime}\) )
```

```
    thus z\in# lowered A
        using False by (auto simp: lowered-def in-lower-result-iff)
    next
    case [simp]: True
    from }xy\mathrm{ have [simp]:{x,y}-{y}={x}
        by auto
    have size {#z\in# C. z\in{x,y}#}\geq2
        unfolding C-def
    proof (rule proposition3)
        have real (l*(k+1)) / real (k+1)=l
            unfolding of-nat-mult using }k\mathrm{ by (simp add: divide-simps)
        also have int 2*\lceil\ldots\rceil= int (2*l)
            by simp
        also have ... \leq count (lift-profile A) {x,y}
            using zk xy A.A-subset by (subst count-lift-profile) auto
            finally show int 2 * 「real (l* (k+1)) / real (k+1)\rceil\leq\ldots.
    qed (use A' }xy\mathrm{ in auto)
    also have size {#z\in#C.z\in{x,y}#}= count Cx+ count C y
        by (induction C) auto
    finally have }x\in#\mathrm{ lower-result C
            by (subst in-lower-result-iff) auto
    thus z\in# lowered A
        by (simp add: lowered-def C-def)
    qed
qed
sublocale lowered: card-stratproof-anon-papp l*k parties k lowered
proof
    fix A XY
    show \neglowered.card-manipulable A X Y
    unfolding lowered.card-manipulable-def
    proof (rule notI, elim conjE)
    assume A: lowered.is-pref-profile A and XY:X\in# A Y\not={} Y\subseteq parties
    assume *: lowered A\prec[lowered.committee-preference X] lowered (A-{#X#} + {#Y#})
    interpret anon-papp-profile l*k parties k A
        by fact
    have }X:X\not={}X\subseteq\mathrm{ parties
        using XY A-nonempty }A\mathrm{ -subset by auto
    define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=A-{#X#
    have }\mp@subsup{A}{}{\prime}:A=\mp@subsup{A}{}{\prime}+{#X#
        using XY by (simp add: A'-def)
    from xy XXY have [simp]: y\not\inXy\not\inY
        by auto
    define Al1 where Al1 = lift-profile A
    define Al2 where Al2 = lift-profile (A'}+{#Y#}
    have }\mp@subsup{A}{}{\prime}\mathrm{ -plus- Y: lowered.is-pref-profile ( }\mp@subsup{A}{}{\prime}+{#Y#}
        unfolding A'-def using A XY lowered.is-pref-profile-replace by blast
```

```
    have Al1: is-pref-profile Al1
    unfolding Al1-def using A by blast
    have Al2: is-pref-profile Al2
    unfolding Al2-def unfolding }\mp@subsup{A}{}{\prime}\mathrm{ -def using A XY lowered.is-pref-profile-replace by blast
    have size-aux: size (lower-result {#x }##r\mathrm{ (lift-profile A). x lift-applist X#})=
                size {#x\in#r (lift-profile A). }x\in\mathrm{ lift-applist X#} - (if }x\inX\mathrm{ then 1 else 0)
    if A: lowered.is-pref-profile A for A
    using x-or-y-in-r-lift-profile[OF A]
    by (subst size-lower-result') (auto simp: lift-applist-def)
```



```
    by (simp add: Al1-def Al2-def lowered-def A' lowered.strong-committee-preference-iff)
    also have {#x\in# lower-result (r Al1). x 位#} = lower-result {#x \in# r Al1. x \in
lift-applist X#}
    using X xy by (subst filter-lower-result-eq) auto
    also have {#x\in# lower-result (r Al2). x 位#} = lower-result {#x }|#r\mathrm{ Al2. }x
lift-applist X#}
    using X xy by (subst filter-lower-result-eq) auto
    also have size (lower-result {#x\in# r Al1. x lift-applist X#})=
                size {#x\in#r Al1. x lift-applist X#} - (if x }\inX\mathrm{ X then 1 else 0)
    unfolding Al1-def by (rule size-aux) fact
    also have size (lower-result {#x\in#r Al2. x l lift-applist X#})=
```



```
    unfolding Al2-def by (rule size-aux) fact
```



```
X#}
            by auto
    hence r Al1 \prec[committee-preference (lift-applist X)] r Al2
            by (simp add: strong-committee-preference-iff)
    moreover have }\negr\mathrm{ Al1 }\prec[committee-preference (lift-applist X)]r Al2
            by (rule not-manipulable' [where Y = lift-applist Y])
                (use Al1 Al2 in <auto simp: Al1-def Al2-def A'>)
    ultimately show False
            by contradiction
    qed
qed
sublocale lowered: card-stratproof-weak-rep-anon-papp \(l * k\) parties \(k\) lowered
    ..
end
For Weak Proportional Representation, the lowering argument to decrease the committee size is somewhat easier since it does not involve adding a new party; instead, we simply add \(l\) new voters whose preferences are \(\{x\}\).
```

```
locale decrease-committee-card-stratproof-weak-prop-rep-anon-papp \(=\)
    card-stratproof-weak-prop-rep-anon-papp \(l *(k+1)\) parties \(k+1 r\)
    for \(l k\) and parties \(::\) 'a set and \(r+\)
    fixes \(x::{ }^{\prime} a\)
    assumes \(x: x \in\) parties
    assumes \(k: k>0\)
begin
definition lift-profile :: 'a set multiset \(\Rightarrow\) 'a set multiset where
    lift-profile \(A=A+\) replicate-mset \(l\{x\}\)
definition lower-result
    where lower-result \(C=C-\{\# x \#\}\)
definition lowered where lowered \(=\) lower-result \(\circ r \circ\) lift-profile
lemma \(l: l>0\)
    using n-voters-pos by auto
lemma lift-profile-empty \([\) simp \(]\) : lift-profile \(\{\#\}=\) replicate-mset \(l\{x\}\)
    by (simp add: lift-profile-def)
lemma lift-profile-add-mset [simp]:
    lift-profile \((\) add-mset \(X A)=\) add-mset \(X(\) lift-profile \(A)\)
    by (simp add: lift-profile-def)
lemma empty-in-lift-profile-iff \([\) simp \(]:\{ \} \in \#\) lift-profile \(A \longleftrightarrow\} \in \# A\)
    by (auto simp: lift-profile-def)
lemma size-lift-profile \([\) simp \(]\) : size (lift-profile \(A)=\) size \(A+l\)
    by (simp add: lift-profile-def)
lemma count-lift-profile:
    count (lift-profile A) \(X=\) count \(A X+(\) if \(X=\{x\}\) then l else 0)
    by (auto simp: lift-profile-def)
lemma size-lower-result [simp]:
    assumes \(x \in \# C\)
    shows size (lower-result \(C\) ) \(=\) size \(C-1\)
    using assms by (auto simp: lower-result-def size-Diff-singleton)
lemma size-lower-result': size (lower-result \(C)=\) size \(C-(\) if \(x \in \# C\) then 1 else 0\()\)
    by (induction C) (auto simp: lower-result-def size-Diff-singleton)
lemma count-lower-result:
    count (lower-result \(C) z=\) count \(C z-(\) if \(z=x\) then 1 else 0\()\)
    by (auto simp: lower-result-def)
```

```
lemma in-lower-resultD:
    z\in# lower-result C\Longrightarrowz\in#C
    by (auto simp:lower-result-def dest!: in-diffD)
lemma in-lower-result-iff:
    z\in# lower-result C}\longleftrightarrow(\mathrm{ if }z=x\mathrm{ then count C x>1 else z }\in#C
    (is - = ?rhs)
proof -
    have z\in# lower-result C \longleftrightarrow count (lower-result C) z>0
        by auto
    also have ... \longleftrightarrow ?rhs
        by (subst count-lower-result) auto
    finally show ?thesis.
qed
sublocale lowered: anon-papp-election l*k parties k
    by standard (use n-voters-pos finite-parties k in auto)
lemma is-pref-profile-lift-profile [intro]:
    assumes lowered.is-pref-profile A
    shows is-pref-profile (lift-profile A)
proof -
    interpret A: anon-papp-profile l*k parties k A
        by fact
    show ?thesis
        using A.A-nonempty A.A-subset A.size-A l
        by unfold-locales
            (auto simp:lift-profile-def x size-mset-sum-mset image-mset.compositionality o-def)
qed
lemma is-committee-lower-result:
    assumes is-committee C x \in# C
    shows lowered.is-committee (lower-result C)
    using assms unfolding is-committee-def lowered.is-committee-def
    by (auto simp: lower-result-def size-Diff-singleton dest: in-diffD)
lemma x-in-r-lift-profile:
    assumes lowered.is-pref-profile A
    shows }\quadx\in#r(lift-profile A
proof (rule weak-representation)
    show is-pref-profile (lift-profile A)
        using assms by blast
next
    have (k+1)*l\leq(k+1)* count (lift-profile A) {x}
        by (intro mult-left-mono) (auto simp: count-lift-profile)
    thus l * (k+1)\leq(k+1)* count (lift-profile A) {x}
        by (simp add: algebra-simps)
```

```
qed
sublocale lowered: anon-papp l*k parties k lowered
proof
    fix A assume A:lowered.is-pref-profile A
    hence is-pref-profile (lift-profile A)
        by blast
    hence is-committee (r (lift-profile A))
        using rule-wf by blast
    thus lowered.is-committee (lowered A)
        unfolding lowered-def o-def using x-in-r-lift-profile[of A] A
        by (intro is-committee-lower-result) auto
qed
sublocale lowered: weak-prop-rep-anon-papp l*k parties k lowered
proof
    fix }Az\mp@subsup{l}{}{\prime
    assume A: lowered.is-pref-profile A and z: l'* (l*k)\leqk* count A{z}
    interpret A: anon-papp-profile l * k parties k A
        by fact
    show count (lowered A) z\geql'
    proof (cases l'>0)
        case False
        thus ?thesis by auto
    next
        case l:True
        from A have A': is-pref-profile (lift-profile A)
        by blast
        have count A{z}>0
            using zk n-voters-pos l by (intro Nat.grOI) auto
        hence {z}\in#A
            by simp
        hence z':z\in parties
            using A.A-subset z by auto
        define C where C=r(lift-profile A)
        show count (lowered A) z\geql'
        proof (cases z=x)
            case False
            have}\mp@subsup{l}{}{\prime}*l\leq\mathrm{ count A{z}
            using zk by (simp add: algebra-simps)
            hence l'}\mp@subsup{l}{}{\prime}*l*(k+1)\leq(k+1)*\mathrm{ count A{z}
                by (subst mult.commute, intro mult-right-mono) auto
            also have count A {z} = count (lift-profile A) {z}
                using False A.A-subset by (subst count-lift-profile) auto
            finally have count (r (lift-profile A)) z\geql'
```

```
            by (intro weak-proportional-representation A') (auto simp: algebra-simps)
        thus l'}\leq\mathrm{ count (lowered A) z
            using False by (simp add: lowered-def lower-result-def)
        next
            case [simp]: True
            have ll}\mp@subsup{l}{}{\prime}l\leq\mathrm{ count A{x}
            using zk by (simp add: algebra-simps)
            hence l'*l*(k+1)\leq(k+1)* count A{x}
            by (subst mult.commute, intro mult-right-mono) auto
            also have \ldots+(k+1)*l=(k+1)* count (lift-profile A) {x}
            by (simp add: count-lift-profile algebra-simps)
            finally have }(\mp@subsup{l}{}{\prime}+1)*(l*(k+1))\leq(k+1)* count (lift-profile A) {x
            by (simp add: algebra-simps)
            hence count (r (lift-profile A)) x \geql' + 1
            by (intro weak-proportional-representation A')
            thus l'
            by (simp add: lowered-def lower-result-def)
    qed
    qed
qed
sublocale lowered: card-stratproof-anon-papp l*k parties k lowered
proof
    fix A X Y
    show \neglowered.card-manipulable A X Y
    unfolding lowered.card-manipulable-def
proof (rule notI, elim conjE)
    assume A: lowered.is-pref-profile A and XY:X\in#A Y\not={} Y\subseteq parties
    assume *: lowered A\prec[lowered.committee-preference X] lowered (A - {#X#} + {#Y#})
    interpret anon-papp-profile l*k parties k A
        by fact
    have }X:X\not={}X\subseteq\mathrm{ parties
        using XY A-nonempty }A\mathrm{ -subset by auto
    define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=A-{#X#
    have }\mp@subsup{A}{}{\prime}:A=\mp@subsup{A}{}{\prime}+{#X#
        using XY by (simp add: A'-def)
    define Al1 where Al1 = lift-profile A
    define Al2 where Al2 = lift-profile ( }\mp@subsup{A}{}{\prime}+{#Y#}
    have }\mp@subsup{A}{}{\prime}\mathrm{ -plus-Y: lowered.is-pref-profile ( }\mp@subsup{A}{}{\prime}+{#Y#}
        unfolding A'-def using A XY lowered.is-pref-profile-replace by blast
    have Al1: is-pref-profile Al1
        unfolding Al1-def using A by blast
    have Al2: is-pref-profile Al2
        unfolding Al2-def unfolding A'-def using A XY lowered.is-pref-profile-replace by blast
```



```
                size {#x\in#r (lift-profile A). x 
        if A:lowered.is-pref-profile }A\mathrm{ for A
```

```
        using x-in-r-lift-profile[OF A] by (subst size-lower-result') auto
    from * have size {#x\in# lower-result (r Al1). x 位#}<
```



```
        by (simp add: Al1-def Al2-def lowered-def A' lowered.strong-committee-preference-iff)
    also have {#x\in# lower-result (r Al1). x 位#} = lower-result {#x\in# r Al1. x }\inX|
        using X x unfolding lower-result-def by (subst filter-diff-mset') auto
```



```
        using X x unfolding lower-result-def by (subst filter-diff-mset') auto
```



```
                size {#x\in#r Al1. }x\inX#}-(\mathrm{ if }x\inX\mathrm{ then 1 else 0)
        unfolding Al1-def by (rule size-aux) fact
```



```
                size {#x\in# r Al2. }x\inX#}-(\mathrm{ if }x\inX\mathrm{ then 1 else 0)
        unfolding Al2-def by (rule size-aux) fact
    finally have size {#x\in#r Al1. x 位#}< size {#x\in# r Al2. x }\inX|#
        by auto
    hence r Al1 \prec[committee-preference X] r Al2
        by (simp add: strong-committee-preference-iff)
    moreover have }\neg\mathrm{ r Al1 }\prec[\mathrm{ committee-preference X] r Al2
        by (rule not-manipulable' [where Y=Y])
            (use Al1 Al2 in <auto simp: Al1-def Al2-def A'>)
    ultimately show False
        by contradiction
    qed
qed
sublocale lowered: card-stratproof-weak-prop-rep-anon-papp l*k parties k lowered
end
end
```


5 Lifting the Impossibility Result to Larger Settings

```
theory PAPP-Impossibility
    imports PAPP-Impossibility-Base-Case Anonymous-PAPP-Lowering
begin
```

In this section，we now prove the main results of this work by combining the base case with the lifting arguments formalized earlier．

First，we prove the following very simple technical lemma：a set that is infinite or finite with cardinality at least 2 contains two different elements x and y ．

```
lemma obtain-2-elements:
    assumes infinite }X\vee\mathrm{ card }X\geq
```

```
    obtains \(x y\) where \(x \in X y \in X x \neq y\)
proof -
    from assms have \(X \neq\{ \}\)
        by auto
    then obtain \(x\) where \(x \in X\)
        by blast
    with assms have infinite \(X \vee \operatorname{card}(X-\{x\})>0\)
        by (subst card-Diff-subset) auto
    hence \(X-\{x\} \neq\{ \}\)
        by (metis card-gt- 0 -iff finite.emptyI infinite-remove)
    then obtain \(y\) where \(y \in X-\{x\}\)
        by blast
    with \(\langle x \in X\rangle\) show ?thesis
        using that \([\) of \(x y]\) by blast
qed
```

We now have all the ingredients to formalise the first main impossibility result: There is no P-APP rule that satisfies Anonymity, Cardinality-Strategyproofness, and Weak Representation if $k \geq 3$ and $m \geq k+1$ and n is a multiple of $2 k$.
The proof simply uses the lowering lemmas we proved earlier to first reduce the committee size to 3 , then reduce the voters to 6 , and finally restrict the parties to 4 . At that point, the base case we proved with SAT solving earlier kicks in.
This corresponds to Theorem 1 in the paper.

```
theorem papp-impossibility1:
    assumes k\geq3 and card parties }\geqk+1\mathrm{ and finite parties
    shows \negcard-stratproof-weak-rep-anon-papp (2*k*l) parties kr
    using assms
proof (induction k arbitrary: parties r rule: less-induct)
    case (less k parties r)
    show ?case
    proof (cases k=3)
        assume [simp]:k=3
```

If the committee size is 3 , we first use our voter-division lemma to go from a P-APP rule for $6 l$ voters to one with just 6 voters. Next, we choose 4 arbitrary parties and use our party-restriction lemma to obtain a P-APP rule for just 4 parties.
But this is exactly our base case, which we already know to be infeasible.

```
show ?thesis
proof
    assume card-stratproof-weak-rep-anon-papp (2*k*l) parties kr
    then interpret card-stratproof-weak-rep-anon-papp l*6 parties 3 r
        by (simp add: mult-ac)
    interpret divide-voters-card-stratproof-weak-rep-anon-papp l 6 parties 3 r ..
    have card parties \geq4
        using less.prems by auto
    then obtain parties' where parties': parties' }\subseteq\mathrm{ parties card parties' }=
```

```
            by (metis obtain-subset-with-card-n)
    have \existsr.card-stratproof-weak-rep-anon-papp 6 parties' 3 r
    proof (rule card-stratproof-weak-rep-anon-papp-restrict-parties)
            show card-stratproof-weak-rep-anon-papp 6 parties 3 (r ○ lift-profile)
            by (rule lowered.card-stratproof-weak-rep-anon-papp-axioms)
    qed (use parties' in auto)
    thus False
        using papp-impossibility-base-case[OF parties'(2)] by blast
    qed
next
    assume k\not=3
```

If the committee size is greater than 3 , we use our other lowering lemma to reduce the committee size by 1 (while also reducing the number of voters by $2 l$ and the number of parties by 1).

```
with less.prems have \(k>3\)
    by \(\operatorname{simp}\)
    obtain \(x y\) where \(x y: x \in\) parties \(y \in\) parties \(x \neq y\)
    using obtain-2-elements[of parties] less.prems by auto
    define parties' where parties' \(=\) parties \(-\{y\}\)
    have \([\) simp \(]\) : card parties \({ }^{\prime}=\) card parties -1
    unfolding parties'-def using \(x y\) by (subst card-Diff-subset) auto
    show ?thesis
    proof
        assume card-stratproof-weak-rep-anon-papp \((2 * k * l)\) parties \(k r\)
        then interpret card-stratproof-weak-rep-anon-papp
        \(2 * l *(k-1+1)\) insert y parties' \(k-1+1 r\)
        using \(\langle k>3\rangle x y\) by (simp add: parties'-def insert-absorb mult-ac)
    interpret decrease-committee-card-stratproof-weak-rep-anon-papp \(2 * l k-1\) y parties \({ }^{\prime} r x\)
        by unfold-locales (use \(\langle k>3\rangle x y\) in 〈auto simp: parties \({ }^{\prime}\)-def〉)
    have \(\neg\) card-stratproof-weak-rep-anon-papp \((2 *(k-1) * l)\) parties \(^{\prime}(k-1)\) lowered
        by (rule less.IH) (use \(\langle k>3\rangle\) xy less.prems in auto)
    with lowered.card-stratproof-weak-rep-anon-papp-axioms show False
        by (simp add: mult-ac)
    qed
qed
qed
```

If Weak Representation is replaced with Weak Proportional Representation, we can strengthen the impossibility result by relaxing the conditions on the number of parties to $m \geq 4$.
This works because with Weak Proportional Representation, we can reduce the size of the committee without changing the number of parties. We use this to again bring k down to 3 without changing m, at which point we can simply apply our previous impossibility result for Weak Representation.
This corresponds to Theorem 2 in the paper.

```
corollary papp-impossibility2:
    assumes }k\geq3\mathrm{ and card parties }\geq4\mathrm{ and finite parties
    shows \negcard-stratproof-weak-prop-rep-anon-papp (2*k*l) parties kr
    using assms
proof (induction k arbitrary: parties r rule: less-induct)
    case (less k parties r)
    show ?case
    proof (cases k=3)
        assume [simp]: k=3
```

For committee size 3 , we simply employ our previous impossibility result:

```
show ?thesis
proof
    assume card-stratproof-weak-prop-rep-anon-papp (2 * k*l) parties kr
    then interpret card-stratproof-weak-prop-rep-anon-papp l*6 parties 3r
                by (simp add: mult-ac)
    have card-stratproof-weak-rep-anon-papp (l*6) parties 3 r ..
    moreover have ᄀcard-stratproof-weak-rep-anon-papp (l* 6) parties 3 r
            using papp-impossibility1[of 3 parties l r] less.prems by (simp add: mult-ac)
    ultimately show False
            by contradiction
    qed
next
assume k\not=3
```

If the committee size is greater than 3 , we use our other lowering lemma to reduce the committee size by 1 (while also reducing the number of voters by $2 l$).

```
with less.prems have \(k>3\)
    by \(\operatorname{simp}\)
have parties \(\neq\{ \}\)
    using less.prems by auto
then obtain \(x\) where \(x: x \in\) parties
    by blast
    show ?thesis
    proof
    assume card-stratproof-weak-prop-rep-anon-papp (2 \(* k * l\) ) parties \(k r\)
    then interpret card-stratproof-weak-prop-rep-anon-papp
        \(2 * l *(k-1+1)\) parties \(k-1+1 r\)
        using \(\langle k>3\rangle\) by (simp add: mult-ac)
    interpret decrease-committee-card-stratproof-weak-prop-rep-anon-papp \(2 * l k-1\) parties
\(r x\)
        by unfold-locales (use \(\langle k>3\rangle x\) in auto)
    have \(\neg\) card-stratproof-weak-prop-rep-anon-papp \((2 *(k-1) * l)\) parties \((k-1)\) lowered
        by (rule less.IH) \((\) use \(\langle k>3\rangle\) less.prems in auto)
    with lowered.card-stratproof-weak-prop-rep-anon-papp-axioms show False
        by (simp add: mult-ac)
qed
```

```
    qed
```

qed
end

References

[1] P. Lammich. The GRAT tool chain - efficient (UN)SAT certificate checking with formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Applications of Satisfiability Testing - SAT 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages 457-463. Springer, 2017.
[2] N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014, Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422-429. Springer, 2014.

