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Abstract

This thesis contains selected contributions investigating various aspects regard-
ing the automated analysis of rewrite systems. The main topics of confluence,
complexity, termination, and automation itself are addressed. For confluence and
complexity analysis, frameworks are presented that admit the combination of dif-
ferent methods, resulting in significant gains in power. Termination criteria whose
automation has been open for many years (interpretations using ordinals or ex-
ponentiation functions) are considered as well as the uncurrying transformation,
which improves the power of first-order termination tools for applicative systems.
Since verification is an essential part of automation we discuss our formalization
of the decreasing diagrams method in the interactive theorem prover Isabelle. To
highlight the results of successful automation efforts we present the tools CSI and
KBCV.
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Part I

Preface





There is nothing as practical as a
good theory.

Kurt Lewin (1890–1947)

1. Introduction

Term rewriting is a Turing complete model of computation [86]. Equipped with
clear semantics it provides the theoretical foundation of declarative programming
paradigms. Furthermore, rewriting techniques have found their way into computer
algebra systems such as Mathematica [195] and interactive theorem provers like
Isabelle [133]. One current trend is to employ rewriting based tools for termination
analysis of real world programs written in C [169], Haskell [57], Java [146], or
Prolog [158].

This thesis discusses (some) challenges which arise in the automation of rewrit-
ing. Here automation means more than just an (efficient) implementation. For a
successful automation often the underlying theory must be adjusted accordingly
or even developed from scratch to culminate in powerful tools. Furthermore veri-
fication also plays an essential role regarding automation because software should
behave as described in its specification. So we propose the following equation:

automation = theory + implementation + verification

This thesis presents contributions to the above (three) aspects of automation for
different properties of rewrite systems. In many crucial places relative rewriting
turned out the appropriate concept to succeed.

Termination, being a central important property of programs, ensures that the
computations performed by a program eventually yield a final result. However,
programs exist that admit incredibly long computation sequences and so far auto-
matic support to capture these systems has been lacking. While the Ackermann
function cannot be bounded by a primitive recursive function it can be easily
proved terminating by path orders [39, 94], which have been implemented success-
fully (see e.g. [33]). While primitive recursion is the upper bound for the multiset
path order [81], multiple recursion is the theoretical limitation for recursive path or-
ders [190], which has also been the bound for automatic tools [125] for a long time.
This thesis describes automation of ordinal interpretations [178], a method that
goes far beyond this bound. Furthermore, this effort has practical applications,
e.g., it enables an automatic termination proof of Goodstein’s theorem [63], which
is not provable in Peano arithmetic [96]. The ideas employed to automate ordinal
interpretations turned out to be helpful to solve another open challenge concern-
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1. Introduction

ing automation. While the use of polynomials in termination proofs [112] is well-
studied and nowadays strong methods for their implementation are known [36, 49],
the situation has been different when considering exponentiation functions. Due
to our contributions also exponentiation functions are now supported in automatic
termination tools.

The second contribution on termination that has been selected for inclusion in
this thesis is concerned with the applicability of first-order termination tools for
functional programs. The use of higher-order functions can be modeled in ap-
plicative rewrite systems. While first-order termination tools nowadays are very
powerful for the majority of systems, applicative rewrite systems lack sufficient
structure to be exploited by the dependency pairs method [13, 60, 174], the under-
lying theoretical framework of these tools. The proposed technique of uncurrying is
able to restore the term structure in applicative systems and significantly improves
the performance of first-order termination tools on such problems. Moreover, our
study of innermost rewriting and derivational complexity aims to further increase
applicability of the uncurrying transformation.

As demonstrated by ordinal interpretations, termination alone is often not suf-
ficient. For many practical applications it is also interesting to know how much
resources a computation requires. Since recently some tools also support the cal-
culation of upper bounds on the number of computation steps needed to produce
a result. While originally upper bounds have been studied to infer the theoretical
limits of a base method (see e.g. [77, 114, 190]), recently the focus has changed
to restrict the base methods suitably in order to obtain polynomial upper bounds
(cf. [15, 126]), which are of interest in the analysis of programs. To overcome the
limitations of each single base method we have designed a framework—based on
relative rewriting—that supports partial complexity proofs. As a consequence it
also admits the combination of different base methods. Because of this combi-
nation “the whole is greater than the sum of the parts” since the interaction of
different criteria facilitates more successful proofs compared to the setting when
all methods are used stand-alone. Furthermore, partial complexity proofs are the
key to appropriately address the fact that complexity is an optimization problem,
i.e., the reported bounds should be as tight as possible.

Another challenge that has been solved was the automation of a powerful base
method. By estimating the frequency and suitably restricting the absolute value
of eigenvalues of (parametric) matrices, polynomial upper bounds can be inferred
for matrix interpretations [44]. Our criterion strictly encompasses an earlier re-
sult [126], and, in contrast to [187] trivially extends to matrix interpretations over
rational or real numbers. However, some challenges had to be solved to automate
this criterion.
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Even if programs terminate (in reasonable time) one further important property
must be ensured. Think of the parallel execution of some computation where the
result depends on the order in which the instructions are performed. Clearly also
in the case of parallel execution the program should report a unique result, called
unique normal form in the terminology of rewriting. While only few techniques are
known that guarantee unique normal forms, many conditions have been proposed
that ensure confluence, a strictly stronger property. However, apart from the cases
of termination (where confluence is decidable [100]) or the sufficient condition of
orthogonality [152], automatic tool support has been very limited and only in 2009
the first automatic confluence prover was announced (cf. [11]). Despite the pres-
ence of many different theoretical results that ensure confluence and the complete
(for countable systems) method of decreasing diagrams [143] there has been no
unifying framework that allows to combine partial confluence proofs so far. Based
on the decreasing diagrams technique, we present the first step in this direction by
proposing various labeling functions that can be combined lexicographically. By
these means the power of different criteria can be mixed to establish decreasingness
of local peaks and hence confluence. The method is fairly easy to implement—
based on a (relative) termination prover—and results in a powerful approach for
left-linear systems.

Rewrite tools are complex pieces of software and do contain bugs. One way to
ensure a high level of certainty that these tools behave correctly is to check their
output with the help of a trustable checker (certifier). Such trustable checkers
can be obtained by formalizing the proofs of the underlying theorems in an inter-
active theorem prover, which facilitates the export of trustable executable check
functions. While for termination proofs there already is a strong support in this
direction (cf. [24, 35, 175, 176]), the picture looks different for confluence proofs
(see [128]). Hence, as a major step we have formalized the decreasing diagrams
technique in the theorem prover Isabelle [133]. This formalization, which is de-
scribed in the thesis has already been used in the Confluence Competition 2014 [12]
where confluence proofs via decreasing diagrams based on the rule labeling have
been confirmed by the trustable checker CeTA.

The best design of a powerful rewrite tool is useless if the underlying imple-
mentation is not efficient. As a selection of efficiently coded rewrite tools we
included the system descriptions of the confluence tool CSI1 and the completion
tool KBCV.2 The latter, albeit designed for educational purposes, can compete
with other state-of-the-art completion tools. For both tools the main conception
has been our responsibility.

1http://cl-informatik.uibk.ac.at/software/csi
2http://cl-informatik.uibk.ac.at/software/kbcv
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1. Introduction

The remainder of this document is organized as follows. In Chapter 2 the contri-
butions of this thesis are described, the main problems that have been solved are
explained, and the main impact of the conducted research is envisaged. Further
contributions, which are not included in the thesis are also discussed. In addition,
an outlook for future directions of research is presented. Afterwards the selected
papers are provided, grouped by topic: Confluence (Part II), complexity (Part III),
termination (Part IV), and automation (Part V).
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2. Contributions

This thesis contains contributions to four main streams in the research of rewriting:
confluence, complexity, termination, and automation. For each of these themes two
publications (addressing different problems and approaches) have been selected
for inclusion with their significance and contributions described in the subsequent
sections. The text of some conference papers (listed in gray) is not included since
these are subsumed by significantly extended journal articles. At the end of this
section we briefly discuss related work and sketch an outlook for future research.

2.1. Confluence

Publications

1. Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp, Labelings for
Decreasing Diagrams, Journal of Automated Reasoning, accepted for publi-
cation, to appear.
doi: 10.1007/s10817-014-9316-y

2. Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp, Labelings for
Decreasing Diagrams, In Proceedings of the 22nd International Conference
on Rewriting Techniques and Applications (RTA 2011), Leibniz International
Proceedings in Informatics 10, pp. 377–392, Schloss Dagstuhl, 2011.
doi: 10.4230/LIPIcs.RTA.2011.377

3. Harald Zankl, Confluence by Decreasing Diagrams – Formalized, In Proceed-
ings of the 24th International Conference on Rewriting Techniques and Ap-
plications (RTA 2013), Leibniz International Proceedings in Informatics 21,
pp. 352–367, Schloss Dagstuhl, 2013.
doi: 10.4230/LIPIcs.RTA.2013.352

History

Confluence holds for orthogonal systems [152] and is decidable in the presence
of termination [100] or (strong) syntactic restrictions (see e.g. [62, 147]). For
systems containing (left-)linear rules only, conditions on the critical pairs have
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2. Contributions

been proposed and refined in [84, 137, 143, 148, 179]. The decreasing diagrams
technique [143] provides a complete method (in the case of countable systems)
for establishing confluence but its automation has been open for many years. By
proposing the rule labeling (for linear systems) the first step towards automation
was made in [138], and actual implementations of this criterion followed soon
(see [4, 70, 71]). In addition, [4] extends the rule labeling to left-linear systems
and [70, 71] employ labeling functions based on relative termination for left-linear
systems. The significantly more challenging case to use decreasing diagrams for
non-left-linear systems is the topic of [7, 97].

Formalizing confluence criteria has a long history in λ-calculus. Huet [85] proved
a stronger variant of the parallel moves lemma in Coq. Isabelle was used in [132] to
prove the Church-Rosser property of β, η, and βη. For β-reduction the standard
Tait/Martin-Löf proof as well as Takahashi’s proof [171] were formalized. The first
mechanically verified proof of the Church-Rosser property of β-reduction was done
using the Boyer-Moore theorem prover [160]. The formalization in Twelf [149] was
used to formalize the confluence proof of a specific higher-order rewrite system
in [168]. Regarding term rewriting the following has been achieved. Newman’s
lemma (for abstract rewrite systems) and Knuth and Bendix’ critical pair theorem
(for first-order rewrite systems) have been proved in [153] using ACL. An alterna-
tive proof of the latter in PVS, following the higher-order structure of Huet’s proof,
is presented in [51]. PVS is also used in the formalization of the lemmas of New-
man and Yokouchi in [50]. Knuth and Bendix’ criterion has also been formalized
in Coq [37] and Isabelle [173].

Contributions

Publication 1 introduces a unifying approach to combine various different labeling
functions (rule labeling, source labeling, redex labeling) for the decreasing dia-
grams technique using relative rewriting. It can be seen as an attempt to unify the
findings in [4] (which is subsumed) and [71] (large parts of which are subsumed).
Furthermore, new labeling functions (based on a measure of the contracted redex)
are introduced. As one key ingredient to the power of the approach we present
preconditions (based on relative termination) which ensure that any labeling func-
tion applicable to linear rewrite systems (such as the rule labeling) is also sound
for left-linear systems. I contributed the overall design and implementation of
the incremental labeling approach. Furthermore, I proposed to study the rule la-
beling in the case of parallel reduction, the technical details of which have been
worked out by Bertram Felgenhauer, who also solved the challenges occurring in
the implementation of parallel reduction.
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2.1. Confluence

Publication 3 is concerned with the soundness of the decreasing diagrams method
and describes a formalization of the main results [138, 143] in the theorem prover
Isabelle. As a fundamental result for confluence based on abstract rewrite systems,
this method can be used as the key to obtain many confluence results for concrete
rewrite systems. Hence it is an ideal candidate for a formalization in a theorem
prover. The main obstacles when mechanizing textual proofs in theorem provers
are often similar. Still, challenges remain to be solved. How to formalize all
required notions? How to convince the theorem prover about gaps that are easily
believed by humans? Which existing formalizations can be reused/adapted? In
contrast to [143], which uses infinite multisets, to make the reasoning about sets,
finite multisets, and sequences uniform we decided to clearly separate these three
notions in the formalization. This allowed to reuse existing Isabelle theories. Still,
we had to augment the available formalization of finite multisets in Isabelle with
an alternative characterization of the multiset extension of an order. Besides, our
formalization introduces a notion of labeled abstract rewriting. For the valley
version of decreasing diagrams the proof of [143] could closely be followed in the
formalization while for the conversion version some intermediate lemmata were
necessary to formalize the approach proposed in [138] in Isabelle.

Impact

Due to the flexible combination of labeling functions our confluence prover CSI is
the most powerful tool when restricted to the left-linear systems in the problem
database used for the confluence competition [12] and only beaten by ACP [11]
when also non-left-linear systems are considered. Hence one natural idea for future
work is to extend the framework to labeling functions for non-left-linear systems.
Another one is to incorporate sufficient criteria to exclude the need for some local
peaks to be shown decreasing. Recent developments regarding this direction have
been reported in [141].

As the decreasing diagrams technique is a fundamental result for confluence,
its formalization has applications in two different directions. One direction is the
formalization of textual proofs for other confluence criteria based on decreasing di-
agrams, e.g., decomposition results such as the direct sum [144], layer systems [47],
or commutation [144]. The other direction is to certify proofs generated by con-
fluence provers. While the Knuth-Bendix’ criterion [100] and (weak) orthogonal-
ity [152] have already been integrated into the certifier CeTA by Thiemann [173],
recently together with Julian Nagele we were able to lift the formalization of de-
creasing diagrams from abstract rewriting to term rewriting and extend CeTA to
confluence proofs based on the rule labeling heuristic [129]. As a consequence
in the certification track of the 2014 edition of the confluence competition such

9



2. Contributions

proofs have been checked by CeTA. One aim on the way to support certifiable
proofs due to the incremental labeling framework is the integration of the main
result presented in [71] into CeTA.

2.2. Complexity

Publications

4. Harald Zankl and Martin Korp, Modular Complexity Analysis for Term
Rewriting, Logical Methods in Computer Science 10(1:19), 33 pages, 2014.
Special issue of RTA 2010.
doi: 10.2168/LMCS-10(1:19)2014

5. Harald Zankl and Martin Korp, Modular Complexity Analysis via Relative
Complexity, In Proceedings of the 21st International Conference on Rewriting
Techniques and Applications (RTA 2010), Leibniz International Proceedings
in Informatics 6, pp. 385–400, Schloss Dagstuhl, 2010.
doi: 10.4230/LIPIcs.RTA.2010.385

6. Friedrich Neurauter, Harald Zankl, and Aart Middeldorp, Revisiting Ma-
trix Interpretations for Polynomial Derivational Complexity of Term Rewrit-
ing, In Proceedings of the 17th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR-17), Lecture Notes
in Computer Science (Advanced Research in Computing and Software Sci-
ence) 6397, pp. 550–564, Springer, 2010.
doi: 10.1007/978-3-642-16242-8_39

History

For a terminating TRS the derivational complexity relates the size of a term with
an upper bound on the length of rewrite sequences (derivations) starting from this
term. Studying upper bounds on the (derivational) complexity induced by various
termination criteria has a long tradition [77, 114, 190] to grasp the theoretical lim-
itations of these methods. However, although most results establish tight bounds,
i.e., those that can actually be reached by some rewrite systems, typically these
bounds are too large and hence impractical for complexity analysis of programs,
where polynomial upper limits are desired. Based on a suitable restriction of poly-
nomial interpretations, the first method aiming in this direction was proposed in
2001 by Hofbauer [80] and implemented in 2008 by Schnabl [127, 156, 157]. Fur-
ther polynomial complexity bounds have been established for match-bounds [55]
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2.2. Complexity

(linear) and matrix interpretations of upper triangular [126] (polynomial in the
dimension) and arctic [104] (linear) shape.

Contributions

Publication 4 proposes a general setting to combine different criteria for deriva-
tional complexity analysis with the help of relative rewriting. Since the framework
is based on derivational complexity it is also applicable to more restricted notions
such as (innermost) runtime complexity (see e.g. [75]). Martin Korp designed and
implemented match-bounds for relative termination while I contributed the overall
design of the modular framework and in particular the findings explained below.
Based on relative rewriting, the framework facilitates partial complexity proofs
where different base methods can be combined. This results in significant gains
in power and we discuss examples where two base methods used stand-alone fail
but in the combined framework they succeed to establish an upper bound. Fur-
thermore, we present examples where two base methods used stand-alone cannot
establish a tight upper bound on the complexity but when used in the combined
framework they can. Due to the support for partial complexity proofs, for the first
time complexity analysis is considered as an optimization problem in a non-trivial
fashion. After some upper bound could be established this bound is tried to be
tightened. To this end an existing proof can be inspected and alternative methods
can be tested for the parts in the proof that contribute more to the inferred upper
bound. Typically these alternative methods induce lower complexity bounds but
are more costly to apply, so they are not employed in the first stage. Finally, we
have generalized the weight gap principle [75] from weight functions to (suitably
restricted) matrix interpretations and explain why similar ideas do not work for
arctic interpretations or match-bounds.

Publication 6 deals with a significant improvement of the base method of ma-
trix interpretations. Due to results from linear algebra (spectral radius theory) the
eigenvalues of a matrix can be used to determine polynomial growth of the entries
in products of this matrix. These findings subsume and extend the results based
on upper triangular matrix interpretations [126]. While the usefulness of spectral
radius theory has been identified and studied by Friedrich Neurauter, my contribu-
tions comprise the automation of the method. The problem is that the search for
suitable matrices must be combined with the conditions that ensure polynomial
bounds on the complexity. This involves the computation (or approximation) of
the absolute values of eigenvalues and their frequency, which is significantly more
challenging than ensuring the property of being an upper triangular matrix, i.e.,
a completely syntactical property. A further challenge is that the matrices are
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not known a priory, so all the computations must be done on parametric matrices
(with unknown coefficients). While the theoretical basis holds for integer domains
as well as for rational and real numbers, automation of matrix interpretations us-
ing the latter domains has been open for a long time. We tackled these issues
by developing appropriate SMT solving techniques [208]. Finally, I contributed
examples showing the benefit for the new approach, i.e., the new method strictly
subsumes the results on upper triangular matrix interpretations and matrices over
the rational numbers may induce tighter bounds than those over the naturals.

Impact

The proposed techniques have been implemented in the automatic complexity
prover CaT, which dominated the category on derivational complexity in the ter-
mination competition [61] from 2008 until 2013. As a consequence of the power
and applicability of the modular framework our approach has found its way into
other rewriting based complexity tools (AProVE [134], TCT [14]) very quickly.

Recently the connection between (joint) spectral radius theory [131] and the ap-
proach for inferring polynomial growth of matrix interpretations based on weighted
automata [187] has been investigated (see Publication 17), revealing the equiva-
lence of two results established in different communities via different formalisms.

2.3. Termination

Publications

7. Harald Zankl, Sarah Winkler, and Aart Middeldorp, Beyond Polynomials and
Peano Arithmetic – Automation of Elementary and Ordinal Interpretations,
Journal of Symbolic Computation, accepted for publication, to appear.
doi: 10.1016/j.jsc.2014.09.033

8. Sarah Winkler, Harald Zankl, and Aart Middeldorp, Beyond Peano Arith-
metic – Automatically Proving Termination of the Goodstein Sequence, In
Proceedings of the 24th International Conference on Rewriting Techniques
and Applications (RTA 2013), Leibniz International Proceedings in Informat-
ics 21, pp. 335–351, Schloss Dagstuhl, 2013.
doi: 10.4230/LIPIcs.RTA.2013.335

9. Nao Hirokawa, Aart Middeldorp, and Harald Zankl, Uncurrying for Termina-
tion and Complexity, Journal of Automated Reasoning 43(2), 279–315, 2013.
doi: 10.1007/s10817-012-9248-3
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2.3. Termination

10. Harald Zankl, Nao Hirokawa, and Aart Middeldorp, Uncurrying for Inner-
most Termination and Derivational Complexity, In Proceedings of the 5th
International Conference on Higher-Order Rewriting (HOR 2010), Electronic
Proceedings in Theoretical Computer Science 49, pp. 46–57, 2011.
doi: 10.4204/EPTCS.49.4

11. Nao Hirokawa, Aart Middeldorp, and Harald Zankl, Uncurrying for Termi-
nation, In Proceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR-15), Lecture Notes
in Computer Science (Lecture Notes in Artificial Intelligence) 5330, pp. 667–
681, Springer, 2008.
doi: 10.1007/978-3-540-89439-1_46

History

Termination is a well-studied topic in rewriting and starting with the beginning
of the new millennium also many criteria have been implemented successfully, as
witnessed by the international competition of termination tools [61]. Due to the
dependency pair framework [13, 60, 174] many different criteria can be combined
and as a consequence modern termination tools can “almost decide”1 termination.
Still some challenges remain. Schnabl [155] conjectured that the derivational com-
plexity of every rewrite system that can be shown terminating automatically by
modern termination tools is limited by a multiple recursive function.

Another problem is to increase the performance of first-order termination tools
to rewrite systems that contain some higher-order concepts.

Contributions

Publication 7 solves the problem of automation for two challenging termination
criteria. Interpretations using ordinals (as e.g. used by Touzet [178]) enable ter-
mination proofs for systems whose derivational complexity cannot be bounded by
multiple recursive functions. When using ordinals for automatic termination proofs
some problems must be solved. Sarah Winkler proposed the shape of restricted
ordinal expressions and suitable approximation functions to achieve automation
of ordinal interpretations. However, addition and multiplication on ordinals are
not strictly monotone, so the popular concept of well-founded monotone algebras
cannot be used. Since these functions are weakly monotone valid termination
proofs are obtained, provided the interpretation functions are simple as shown by
Touzet [178] (and Zantema [209]). But the fact that the lexicographic combination

1I am grateful to Nao Hirokawa for coining this expression.
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2. Contributions

of two weakly monotone functions may destroy this property significantly hampers
automation. Besides some refinements in the proposed approximation functions
one of my contributions was the idea to use relative rewriting to ensure that the
overall interpretation functions are weakly monotone and simple. As a consequence
our implementation can provide automatic termination proofs for some systems
that have been out of reach before, i.e., Touzet’s encoding [178] of the battle of
Hercules and Hydra due to Kirby and Paris [96], Winkler’s encoding [193] of the
Goodstein sequence [63], and (a corrected version of) Beklemishev’s encoding [21]
of the Worm principle, a one-dimensional version of the Hydra battle by Buch-
holz [28], first introduced by Hamano and Okada [67].

Based on our experience with approximation functions for ordinals we also tack-
led problem #28 in the the RTA List Of Open Problems2 proposed by Lescanne
in 1991.

Develop effective methods to decide whether a system decreases with
respect to some exponential interpretation.

Little progress has been achieved on this topic (see [115, 117] for preliminary re-
sults) despite the fact that the problem has been formulated more than 20 years
ago. Furthermore, in a modern reading of this problem statement the search for
suitable interpretation functions should also be performed automatically and not
only the check that these interpretations prove a system terminating. Concern-
ing both parts my contributions comprise the design and implementation of the
approximation functions as well as the conception and evaluation of (necessary)
heuristics for an efficient implementation. As a consequence the motivating exam-
ples (encoding the computation of the factorial function or Fibonacci numbers)
can now be shown terminating by a direct termination proof using interpretations.

Publication 9 is concerned with applicability of termination tools for functional
programs. It addresses the challenge for (first-order) termination provers to han-
dle applicative systems, which model some higher-order concepts. Compared to
its power on plain first-order problems, the dependency pair method [13, 60, 174]
performs rather poorly on applicative systems. The inverse operation of currying
(called uncurrying) allows to reconstruct the structure of applicative systems and
recovers the power of the dependency pair method on the transformed systems. In
contrast to earlier attempts [9], the version proposed by Nao Hirokawa—where the
uncurrying rules are explicitly added to the rewrite system—does not rely on the
presence of types. Also two dependency pair processors have been proposed by my
co-authors. Besides the support for head variables in right-hand sides of rewrite

2http://www.cs.tau.ac.il/~nachum/rtaloop/problems/28.html
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2.4. Automation

rules, uncurrying also preserves minimality when used in the dependency pair set-
ting. This makes uncurrying much more powerful than the transformation A [59],
which pursues the same idea. My contributions comprise the automation of the
method besides the study how the transformation behaves for innermost rewriting
and derivational complexity. Both extensions aim to improve the applicability of
the method to real-world problems. The key insight in establishing that uncurry-
ing preserves and reflects termination for innermost rewriting is that applicative
terms may only be uncurried partially, such that the corresponding rewrite step of
the uncurried system remains innermost. By the same argument, also soundness
and completeness of dependency pair processors for uncurrying regarding the in-
nermost rewriting strategy could be proved. Due to the additional rewrite steps
needed to perform the uncurrying, rewrite sequences can only become longer in the
transformed system. Hence uncurrying preserves upper bounds on the length of
derivations. The useful result towards complexity analysis is that uncurrying also
reflects polynomial complexities, i.e., the uncurrying steps are negligible compared
to the steps performed due to the original system.

Impact

Despite the incredible progress that has been achieved regarding the automation of
termination some (hard) problems have been open for many years. In Publication 7
we have solved two of them, the automation of ordinal interpretations and—by
similar ideas—the search for exponential functions.

Another area where termination tools typically lack power are systems with
higher-order ingredients. Nowadays dedicated methods and tools (THOR [25],
Wanda [102]) for such problems are available but the existence of very powerful
first-order termination provers justifies a transformation method to enhance sup-
port for problems that have some higher-order flavors. Since uncurrying preserves
and reflects polynomial complexities it is also useful in the complexity analysis of
rewrite systems, which is not yet supported by dedicated higher-order tools.

2.4. Automation

Publications

12. Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp, CSI – A Conflu-
ence Tool, In Proceedings of the 23rd International Conference on Automated
Deduction (CADE 2011), Lecture Notes in Computer Science (Lecture Notes
in Artificial Intelligence) 6803, pp. 499–505, Springer, 2011.
doi: 10.1007/978-3-642-22438-6_38
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13. Thomas Sternagel and Harald Zankl, KBCV – Knuth-Bendix Completion
Visualizer, In Proceedings of the 6th International Joint Conference on Au-
tomated Reasoning (IJCAR 2012), Lecture Notes in Computer Science (Lec-
ture Notes in Artificial Intelligence) 7364, pp. 530–536, Springer, 2012.
doi: 10.1007/978-3-642-31365-3_41

History

While automated termination analysis has advanced very well over the years, re-
garding the aspect of automation other important properties of rewriting have
been neglected. Despite the vast number of different confluence criteria available
in the literature, the first tool (ACP [11]) has been announced in 2009 only. In
2010 Hirokawa and Middeldorp proposed the seminal idea to employ the source
labeling together with relative termination for decreasing diagrams [70, 71], which
clearly gave another boost to automatic confluence analysis.

In the field of automatic completion, the tool Slothrop [189] made its appearance
in 2006, with the use of external termination tools as a novel feature. Other
powerful tools have been proposed in subsequent years. MKBTT [192] considers
multiple options to orient an equation into a rewrite rule, while Maxcomp [98] tries
to maximize the number of critical pairs that can be joined when orienting an
equation. None of these tools allows interaction during the process of completion.

Contribution

Publication 12 presents the confluence tool CSI. While originally planned as a
stand-alone tool developed from scratch, soon this design choice was abandoned
and the tool was built on top of the termination tool TTT2 [107] instead. Some
reasons can be found in the setup of Publication 1, which uses various relative
termination techniques for labeling diagrams. While the Knuth-Bendix’ crite-
rion [100] as well as the approach by Hirokawa and Middeldorp [70, 71] may rely
on external (relative) termination tools, our setup of incremental labeling collab-
orates very closely with the relative termination criteria, e.g., the coefficients of a
matrix interpretation are exploited for computing the labels of the diagrams. The
benefit of this close coupling is a significant increase in power. CSI also supports
a decomposition result based on ordered sorts, which has been proposed, studied,
and implemented by Bertram Felgenhauer [47].

Publication 13 presents KBCV, an interactive tool for Knuth-Bendix comple-
tion [100]. Provided with an intuitive graphical user interface it displays the sets
of equations and rules for the current state of completion. Besides the basic and
efficient (following Huet [87]) completion procedures from [17], where the user only
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2.5. Further Contributions

has to select the desired orientation of an equation into a rewrite rule, the tool
also allows to perform completion via choosing the inference rules (on selections of
equations or rules) according to the approach by Bachmair and Dershowitz [18]. In
both settings the duty of maintaining a termination proof for the oriented rewrite
rules is performed by the tool unless the user specifies the desired precedence for
the lexicographic path order. At any stage KBCV allows the user to step backward
(and forward again) in the completion process. Equipped with a fully automatic
mode for completion as well it can compete with other state-of-the art completion
tools such as Maxcomp [98], MKBTT [154], and Slothrop [189]. While Thomas
Sternagel implemented KBCV my contributions comprised the overall design and
several hints for performance related issues. Further contributions going beyond
those listed in the system description are mentioned below.

Impact

With CSI as the third confluence tool being announced, a small but sufficiently
large set of participants for a confluence competition [12] had been available. The
first edition of this competition was conducted in 2012 and since then it has been
held every year. The stimulating effects this competition has triggered on the
community are detailed in the next section.

Actually KBCV is more than just a completion tool. Due to an appropriate
recording of the applied inference rules [167], KBCV can also generate equational
logic proofs and provide checkable completion certificates. The latter sparked the
motivation of the CeTA team to tackle the certification of completion proofs [166,
167], paving the way for checkable confluence proofs [173]. This enabled the in-
stallation of a certified track in the confluence competition.

2.5. Further Contributions

I have co-authored the following further publications after receiving my PhD:

14. Harald Zankl, Decreasing Diagrams, Archive of Formal Proofs, 2013. Formal
Proof Development
url: afp.sourceforge.net/entries/Decreasing-Diagrams.shtml

15. Sarah Winkler, Harald Zankl, and Aart Middeldorp, Ordinals and Knuth-
Bendix Orders, In Proceedings of the 18th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR-18), Lecture
Notes in Computer Science (Advanced Research in Computing and Software
Science) 7180, pp. 420–434, Springer, 2012.
doi: 10.1007/978-3-642-28717-6_33
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16. Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp, Layer Systems for
Proving Confluence, In Proceedings of the 31st IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2011), Leibniz International Proceedings in Informatics 13, pp.
288–299, Schloss Dagstuhl, 2011.
doi: 10.4230/LIPIcs.FSTTCS.2011.288

17. Aart Middeldorp, Georg Moser, Friedrich Neurauter, Johannes Waldmann,
and Harald Zankl, Joint Spectral Radius Theory for Automated Complexity
Analysis of Rewrite Systems, In Proceedings of the 4th International Con-
ference on Algebraic Informatics (CAI 2011), Lecture Notes in Computer
Science (Lecture Notes in Artificial Intelligence) 6742, pp. 1–20, Springer,
2011.
doi: 10.1007/978-3-642-21493-6_1

18. Friedrich Neurauter, Aart Middeldorp, and Harald Zankl, Monotonicity Cri-
teria for Polynomial Interpretations over the Naturals, In Proceedings of the
5th International Joint Conference on Automated Reasoning (IJCAR 2010),
Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)
6173, pp. 502–517, Springer, 2010.
doi: 10.1007/978-3-642-14203-1_42

19. Harald Zankl and Aart Middeldorp, Satisfiability of Non-Linear (Ir)rational
Arithmetic, In Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR-16), Lecture
Notes in Computer Science (Lecture Notes in Artificial Intelligence) 6355,
pp. 481–500, Springer, 2010.
doi: 10.1007/978-3-642-17511-4_27

Next some highlights of these publications are described and some recent activ-
ities are mentioned.

The formalization of decreasing diagrams in the theorem prover Isabelle [197] has
been submitted to the Archive of Formal Proofs (Publication 14), a large collection
of formalizations in the theorem prover Isabelle. By making the formalization
publicly available others can build on it.

The use of ordinals for the Knuth-Bendix order [118], in addition with the result
that actually fairly small ordinals suffice for such an order [108], ignited my interest
in ordinals. Together with Sarah Winkler and Aart Middeldorp in Publication 15
we show that as far as termination proving power is concerned, the Knuth-Bendix
order does not benefit from ordinal domains at all. Furthermore, we propose a
simplification in the definition of this order which does not affect its theoretical
power (variables can be chosen to have weight one).
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2.6. Related and Future Work

Besides my involvement in the tools CSI and KBCV, whose system descriptions
are included in this thesis, I have also co-developed other tools for rewriting (the
termination tool TTT2 [107] and the complexity tool CaT [205]) as well the SMT
solver for non-linear integer/rational/real arithmetic MiniSmt (see Publication 19).
These tools have participated in various competitions (confluence competition [12],
SMT-COMP [34], termination competition [61]) of logic tools and have achieved
top rankings in several categories.

Together with Takahito Aoto and Nao Hirokawa I have designed and organized
the first three editions of the confluence competition (CoCo 2012, CoCo 2013, and
CoCo 2014, see [12]). The last edition was part of the FLoC Olympic Games
2014,3 a merger of 14 different competitions of logic tools. These games, held
during the Vienna Summer of Logic aim to increase the visibility of the tools
and foster progress. For the confluence competition, the progress is evident. In
2014 there have been three new entrants, CONCON and CO3 for the new track
of conditional confluence, and the commutation tool CoLL, participating in the
main track for confluence.4 The other tracks for finding (non-)confluence proofs
and certification thereof have been considered since 2012, with tools progressing
every year. Here we list two distinguishing features of the confluence competition.
The first is that it runs live during a workshop (as part of a presentation where
the setup of the competition is explained), which makes the competition thrilling
and comprehensible for people who did not participate by submitting a tool. The
second is the organization of the confluence problems (Cops)5 considered for the
competition. Together with Nao Hirokawa we have developed an interface that
allows the easy administration, submission, tagging, and query of such problems.
Especially the (automatic) tagging mechanism (which indicates properties that
the problems do satisfy or do not satisfy) has proved itself extremely useful in
combination with the querying functionality that allows to search for problems
satisfying Boolean combinations of these tags.

2.6. Related and Future Work

Nowadays logic based tools are becoming strong enough to be useful in practice.
Due to the myriads of different approaches it is only possible to give a small piece
of the big picture with the principal focus on rewriting based approaches. As a
case study for termination and complexity analysis of programs we also compare
to a selection of tools which do not have their foundations in rewriting.

3http://vsl2014.at/olympics/
4Further information on the tools is available from the competition website.
5http://cl-informatik.uibk.ac.at/users/hzankl/cops
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The tool TERMINATOR supports termination analysis of low-level programs
written in C (e.g. device drivers) and works by synthesizing linear ranking func-
tions [150]. Recently its successor, T26 has been announced. Supporting user-
defined data structures, the tool Speed [66] can compute symbolic complexity
bounds for C/C++ programs. Regarding Java (Bytecode), the tool Costa [3] aims
at automatic cost and termination analysis while Julia [161] allows termination
and non-termination analysis, among others. The findings from [82] allow to infer
upper bounds expressed by multivariate polynomials for a first-order fragment of
OCaml (Resource Aware ML). Rewriting based termination tools are applicable to
various programming languages via transformations (see e.g. [57, 146, 158, 169]).
The international competition of termination tools [61] gives details about the per-
formance on concrete testbeds involving some of the approaches mentioned above.

The use of rewriting based tools for termination (or resource analysis in gen-
eral) has benefits and disadvantages at the same time. The transformation based
approach(es) employing rewriting based tools benefit from the highly advanced
termination criteria which have been developed for rewrite tools and hence often
succeed where challenging termination arguments are required. On the contrary,
the tools supporting a direct approach usually scale better on large programs where
relatively simple arguments suffice to conclude termination. Another benefit of
the rewriting based approach is that large parts of the theory in rewriting have
already been formalized in interactive theorem provers (see e.g. the IsaFoR/CeTA
project [176]).7 As a consequence, the output of several tools can be confirmed to
be correct by trustable checkers, making this approach very appealing for areas
where soundness is critical.

Also automation of confluence techniques does have applications, albeit we are
currently not aware that confluence tools are employed for the analysis of programs.
We mention the use of such tools for showing soundness of abstract forms of
reduction in solving the typing problem [170].

Interactive theorem provers like Isabelle simplify proof obligations according to
a user-controlled set of rewrite rules (the simplifier). However, these rules are not
subject of internal confluence/termination checks and the theorem prover leaves
this important task to the user. To perform these tests automatically strong ter-
mination/confluence/completion tools are required. An approach to ensure con-
fluence and termination of the rules in the simplifier is reported in [93]. It re-
mains to be seen if first-order tools in combination with suitable transformations
or dedicated higher-order tools are better suited for this purpose. While for termi-
nation some higher-order tools have already made their appearance (THOR [25],
Wanda [102]), such tools are still lacking for confluence and completion.

6http://research.microsoft.com/en-us/projects/t2/
7http://cl-informatik.uibk.ac.at/software/ceta/
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Confluence





3. Labelings for Decreasing Diagrams

Publication Details

Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp, Labelings for Decreas-
ing Diagrams, Journal of Automated Reasoning, accepted for publication, to ap-
pear.
doi: 10.1007/s10817-014-9316-y

Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp, Labelings for Decreas-
ing Diagrams, In Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications (RTA 2011), Leibniz International Proceedings in
Informatics 10, pp. 377–392, Schloss Dagstuhl, 2011.
doi: 10.4230/LIPIcs.RTA.2011.377

Abstract

This article is concerned with automating the decreasing diagrams technique of van
Oostrom for establishing confluence of term rewrite systems. We study abstract
criteria that allow to lexicographically combine labelings to show local diagrams
decreasing. This approach has two immediate benefits. First, it allows to use
labelings for linear rewrite systems also for left-linear ones, provided some mild
conditions are satisfied. Second, it admits an incremental method for proving con-
fluence which subsumes recent developments in automating decreasing diagrams.
The techniques proposed in the article have been implemented and experimental
results demonstrate how, e.g., the rule labeling benefits from our contributions.

3.1. Introduction

Confluence is an important property of rewrite systems since it ensures unique
normal forms. It is decidable in the presence of termination [100] and implied by
orthogonality [152] or restricted joinability conditions on the critical pairs [84, 137,
143, 148, 179]. Recently, there is a renewed interest in confluence research, with
a strong emphasis on automation. As one application we mention [170], where
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3. Labelings for Decreasing Diagrams

automated confluence tools are employed for proving soundness of abstract forms
of reduction in solving the typing problem.

The decreasing diagrams technique of van Oostrom [139] is a complete method
for showing confluence of countable abstract rewrite systems. The main idea of
the approach is to show confluence by establishing local confluence under the side
condition that rewrite steps of the joining sequences must decrease with respect to
some well-founded order. For term rewrite systems however, the main problem for
automation of decreasing diagrams is that in general infinitely many local peaks
must be considered. To reduce this problem to a finite set of local peaks one
can label rewrite steps with functions that satisfy special properties. In [138] van
Oostrom presented the rule labeling that allows to conclude confluence of linear
rewrite systems by checking decreasingness of the critical peaks (those emerging
from critical overlaps). The rule labeling has been implemented by Aoto [4] and
Hirokawa and Middeldorp [71]. Already in [138] van Oostrom presented constraints
that allow to apply the rule labeling to left-linear systems. This approach has been
implemented and extended by Aoto [4]. Our framework subsumes the above ideas.

The contributions of this article comprise the extraction of abstract constraints
on a labeling such that for a (left-)linear rewrite system decreasingness of the
(parallel) critical peaks ensures confluence. We show that the rule labeling ad-
heres to our constraints and present additional labeling functions. Furthermore
such labeling functions can be combined lexicographically to obtain new labeling
functions satisfying our constraints. This approach allows the formulation of an
abstract criterion that makes virtually every labeling function for linear rewrite
systems also applicable to left-linear systems. Consequently, confluence of the TRS
in Example 3.1 can be established automatically, e.g., by the rule labeling, while
current approaches based on the decreasing diagrams technique [4, 71] as well as
other confluence criteria like Knuth and Bendix’ criterion or orthogonality (and
its refinements) fail.

Example 3.1. Consider the TRS R (Cops #60)1 consisting of the rules

1 : x+ (y + z)→ (x+ y) + z 6: x× y → y × x
2: (x+ y) + z → x+ (y + z) 7 : s(x) + y → x+ s(y)

3 : sq(x)→ x× x 8: x+ s(y)→ s(x) + y

4: sq(s(x))→ (x× x) + s(x+ x) 9 : x× s(y)→ x+ (x× y)

5 : x+ y → y + x 10: s(x)× y → (x× y) + y

This system is locally confluent since all its 34 critical pairs are joinable.

1COnfluence ProblemS, see http://coco.nue.riec.tohoku.ac.jp/problems/.
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3.2. Preliminaries

The remainder of this article is organized as follows. After recalling preliminar-
ies in Section 3.2 we present constraints (on a labeling) such that decreasingness of
the critical peaks ensures confluence for (left-)linear rewrite systems in Section 3.3.
Three of these constraints are based on relative termination while the fourth em-
ploys persistence. We focus on parallel rewriting in Section 3.4. The merits of these
approaches are assessed in Section 3.5 by discussing the relationship to the recent
literature. Implementation issues are addressed in Section 3.6 before Section 3.7
gives an empirical evaluation of our results. Section 3.8 concludes.

This article is an updated and extended version of [201], which presents the first
incremental approach for labeling decreasing diagrams. Besides a number of small
improvements, the article contains three new major contributions:

• Section 3.3.2, presenting a new labeling measuring the contracted redex,

• Section 3.3.2, which uses persistence to enhance the applicability of L-labelings
for left-linear systems,

• Section 3.4, which studies parallel rewriting to make any weak LL-labeling
applicable to showing confluence of left-linear systems without additional
(relative termination) constraints.

The latter generalizes and incorporates recent findings from [46], which studies the
rule labeling for parallel rewriting.

3.2. Preliminaries

We assume familiarity with term rewriting [17, 172].
Let F be a signature and let V be a set of variables disjoint from F . By T (F ,V)

we denote the set of terms over F and V . The expression |t|x indicates how often
variable x occurs in term t. Positions are strings of natural numbers, i.e., elements
of N∗+. The set of positions of a term t is defined as Pos(t) = {ε} if t is a variable
and as Pos(t) = {ε} ∪ {iq | 1 6 i 6 n and q ∈ Pos(ti)} if t = f(t1, . . . , tn). We
write p 6 q if q = pp′ for some position p′, in which case q\p is defined to be
p′. Furthermore p < q if p 6 q and p 6= q. Finally, p ‖ q if neither p 6 q nor
q < p. Positions are used to address subterm occurrences. The subterm of t at
position p ∈ Pos(t) is defined as t|p = t if p = ε and as t|p = ti|q if p = iq. We
write s E t if s is a subterm of t and s[t]p for the result of replacing s|p with t
in s. The set of function symbol positions PosF(t) is {p ∈ Pos(t) | t|p /∈ V} and
PosV(t) = Pos(t) \ PosF(t). The set of variables occurring in a term t is denoted
by Var(t). We let t|P = {t|p | p ∈ P} if t is a term and P a set of positions.
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3. Labelings for Decreasing Diagrams

A rewrite rule is a pair of terms (l, r), written l→ r, such that l is not a variable
and all variables in r are contained in l. A rewrite rule l → r is duplicating if
|l|x < |r|x for some x ∈ V . A term rewrite system (TRS) is a signature together
with a finite set of rewrite rules over this signature. In the sequel signatures are
implicit. By Rd and Rnd we denote the duplicating and non-duplicating rules of
a TRS R, respectively. A rewrite relation is a binary relation on terms that is
closed under contexts and substitutions. For a TRS R we define →R to be the
smallest rewrite relation that contains R. As usual →=, →+, and →∗ denotes the
reflexive, transitive, and reflexive and transitive closure of →, respectively.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite relation
→R/S = →∗S · →R · →∗S . Sometimes we identify a TRS R with the relative TRS
R/∅ and vice versa. A TRS R (relative TRS R/S) is terminating if →R (→R/S)
is well-founded. Two relations > and > are called compatible if > ·> ·> ⊆ >. A
monotone reduction pair (>, >) consists of a preorder> and a well-founded order>
such that > and > are compatible and closed under contexts and substitutions.
A reduction pair (>, >) is called simple if f(s1, . . . , sn) > si for all 1 6 i 6 n. We
recall how to prove relative termination incrementally according to Geser [56].

Theorem 3.2. A relative TRS R/S is terminating if R = ∅ or there exists a
monotone reduction pair (>, >) such that R ∪ S ⊆ > and (R \>)/(S \>) is
terminating.

A critical overlap (l1 → r1, p, l2 → r2)µ of a TRS R consists of variants of rewrite
rules l1 → r1 and l2 → r2 in R without common variables, a position p ∈ PosF(l2),
and a most general unifier µ of l1 and l2|p. If p = ε then we require that l1 → r1 and
l2 → r2 are not variants. From a critical overlap (l1 → r1, p, l2 → r2)µ we obtain a
critical peak l2µ[r1µ]p ← l2µ→ r2µ and a critical pair l2µ[r1µ]p ←o→ r2µ.

If l → r ∈ R and p is a position, we call the pair π = 〈p, l → r〉 a redex
pattern, and write lπ, rπ, pπ for its left-hand side, right-hand side, and position,
respectively. We write →π (or →pπ ,lπ→rπ) for a rewrite step at position pπ using
the rule lπ → rπ. A redex pattern π matches a term t if t|pπ is an instance of lπ.
If π matches t, there is a unique reduct tπ with t→π tπ.

Let π1 and π2 be redex patterns that match a common term. They are called
parallel (π1 ‖ π2) if pπ1 ‖ pπ2 . If pπ2 6 pπ1 and pπ1\ pπ2 ∈ PosF(lπ2) then π1 and
π2 overlap critically; otherwise they are called orthogonal (π1 ⊥ π2). Note that
π1 ‖ π2 implies π1 ⊥ π2. We write P ⊥ Q if π ⊥ π′ for all π ∈ P and π′ ∈ Q
and similarly P ‖ Q if π ‖ π′ for all π ∈ P and π′ ∈ Q. If P is a set of pairwise
parallel redex patterns matching a term t, we denote by t→pp P t′ the parallel rewrite
step from t to t′ by P , where t′ = tπ1···πn if P = {π1, . . . , πn}. We allow P to be
abbreviated to a set of positions in t→pp P t′.
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3.3. Labelings for Rewrite Steps

We write 〈A, {→α}α∈I〉 to denote the ARS 〈A,→〉 where → is the union of →α

for all α ∈ I. Let 〈A, {→α}α∈I〉 be an ARS and let > and > be relations on I. We
write → <α1···αn for the union of →β where β < αi for some 1 6 i 6 n. We call →α

and →β decreasing (with respect to > and >) if

←−
α
· −→
β
⊆ ∗−→

<α
· =−→

6β
· ∗−−→

<αβ
· ∗←−−

<αβ
· =←−

6α
· ∗←−

<β

An ARS 〈A, {→α}α∈I〉 is decreasing if there exists a preorder > and a well-founded
order > such that > and > are compatible and →α and →β are decreasing for all
α, β ∈ I with respect to > and >.

The following theorem is a reformulation of a result obtained by van Oost-
rom [139] (where > is the identity relation). While allowing a preorder > does not
add power, it is more convenient for our purposes.

Theorem 3.3. Every decreasing ARS is confluent.

3.3. Labelings for Rewrite Steps

In this section we present constraints (on a labeling) such that decreasingness
of the critical peaks ensures confluence of linear (Section 3.3.1) and left-linear
(Section 3.3.2) TRSs. Furthermore, we show that if two labelings satisfy these
conditions then also their lexicographic combination satisfies them.

For a local peak

t = s[r1σ]p ← s[l1σ]p = s = s[l2σ]q → s[r2σ]q = u (1)

there are three possibilities (modulo symmetry):

(a) p ‖ q (parallel),

(b) q 6 p and p\q ∈ PosF(l2) (critical overlap),

(c) q < p and p\q /∈ PosF(l2) (variable overlap).

These cases are visualized in Figure 3.1. Figure 3.1(a) shows the shape of a local
peak where the steps take place at parallel positions. Here we have s →p,l1→r1 t
and u →p,l1→r1 v as well as s →q,l2→r2 u and t →q,l2→r2 v, i.e., the steps drawn at
opposing sides in the diagram are due to the same rules. The question mark in
Figure 3.1(b) conveys that joinability of critical overlaps may depend on auxiliary
rules. Variable overlaps (Figure 3.1(c)) can again be joined by the rules involved in
the diverging step. More precisely, if q′ is the unique position in PosV(l2) such that

27



3. Labelings for Decreasing Diagrams

s

t u

v

(a) (parallel)

s

t u

· ·

?

(b) (critical overlap)

s

t

t1

u

v

pp pp

(c) (variable overlap)

Figure 3.1.: Three kinds of local peaks.

qq′ 6 p, x = l2|q′ , |l2|x = m, and |r2|x = n then we have t →m−1
l1→r1 t1, t1 →l2→r2 v,

and u→n
l1→r1 v.

Labelings are used to compare rewrite steps. In the sequel we denote the set of
all rewrite steps for a TRS R by ΛR and elements from this set by capital Greek
letters Γ and ∆. Furthermore if Γ = s →p,l→r t then C[Γσ] denotes the rewrite
step C[sσ]→p′p,l→r C[tσ] for any substitution σ and context C with C|p′ = 2.

Definition 3.4. Let R be a TRS. A labeling function ` : ΛR → W is a mapping
from rewrite steps into some set W . A labeling (`,>, >) for R consists of a
labeling function `, a preorder >, and a well-founded order > such that > and >
are compatible and for all rewrite steps Γ,∆ ∈ ΛR, contexts C and substitutions σ:

1. `(Γ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]), and

2. `(Γ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]).

All labelings we present satisfy > ⊆ >, which allows to avoid tedious case
distinctions, and we assume this property henceforth. We do so without loss of
generality, because ((>∪>)∗, >) satisfies the conditions of Definition 3.4 if (>, >)
does.

In the sequel W , >, and > are left implicit when clear from the context and a
labeling is identified with the labeling function `. We use the terminology that
a labeling ` is monotone and stable if properties 1 and 2 of Definition 3.4 hold.
Abstract labels, i.e., labels that are unknown, are represented by lowercase Greek
letters α, β, γ, and δ. We write s →π

α t (or simply s →α t) if `(s →π t) = α.
Often we leave the labeling ` implicit and just attach labels to arrows. A local
peak t ← s → u is called decreasing for ` if there are labels α and β such that
t α← s→β u, and→α and→β are decreasing with respect to > and >. To employ
Theorem 3.3 for TRSs, decreasingness of the ARS 〈T (F ,V), {→w}w∈W 〉 must be
shown.
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3.3. Labelings for Rewrite Steps

s

t u

v

α

δ

β

γ

(a) (parallel)

s

t u

v

α

δ

β

γ
=

(b) (variable-linear)

s

t u

v

α

δ

β

pp

γ

(c) (variable-left-linear)

Figure 3.2.: Labeled local peaks.

In this article we investigate conditions on a labeling such that local peaks
according to (parallel) and (variable overlap) are decreasing automatically. This
is desirable since in general there are infinitely many local peaks corresponding
to these cases (even if the underlying TRS has finitely many rules). There are
also infinitely many local peaks according to (critical overlap) in general, but for
a finite TRS they are captured by the finitely many critical overlaps. Still, it is
undecidable if they are decreasingly joinable [71].

For later reference, Figure 3.2 shows labeled local peaks for the case (parallel)
(Figure 3.2(a)) and (variable overlap) if the rule l2 → r2 in local peak (1) is linear
(Figure 3.2(b)) and left-linear (Figure 3.2(c)), respectively. In Figure 3.2(c) the
expression γ denotes a sequence of labels γ1, . . . , γn. In the subsequent analysis
we will always use the fact that the local peaks in Figure 3.2 can be closed by the
rules involved in the peak (applied at opposing sides in the diagram).

3.3.1. Linear TRSs

The next definition presents sufficient abstract conditions on a labeling such that
local peaks according to the cases (parallel) and (variable-linear) in Figure 3.2 are
decreasing. We use the observation that for linear TRSs the (parallel) case can be
seen as an instance of the (variable-linear) case to shorten proofs.

Definition 3.5. Let ` be a labeling for a TRS R. We call ` an L-labeling (for R)
if for local peaks according to (parallel) and (variable-linear) we have α > γ and
β > δ in Figures 3.2(a) and 3.2(b), respectively.

The local diagram in Figure 3.3(a) visualizes the conditions on an L-labeling
more succinctly. We will use L-labelings also for left-linear TRSs, where no con-
ditions are required for local peaks different from (parallel) and (variable-linear).
We call the critical peaks of a TRS R Φ-decreasing if there exists a Φ-labeling `
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3. Labelings for Decreasing Diagrams

for R such that the critical peaks of R are decreasing for `. In the sequel we will
introduce further labelings, e.g., LL-labelings and weak LL-labelings. The place-
holder Φ avoids the need for repeating the definition of decreasingness for these
labelings.

The next theorem states that L-labelings may be used to show confluence of
linear TRSs.

Theorem 3.6. Let R be a linear TRS. If the critical peaks of R are L-decreasing
then R is confluent.

Proof. By assumption the critical peaks of R are decreasing for some L-labeling `.
We establish confluence of R by Theorem 3.3, i.e., show decreasingness of the ARS
〈T (F ,V),→R〉 where rewrite steps are labeled according to `. Since R is linear,
local peaks have the shape (parallel), (variable-linear), or (critical overlap). By
definition of an L-labeling the former two are decreasing. Now consider a local peak
according to (critical overlap), i.e., for the local peak (1) we have q 6 p and p\q ∈
PosF(l2). Let p′ = p\q. Then t|q ← s|q → u|q must be an instance of a critical
peak l2µ[r1µ]p′ ← l2[l1µ]p′ = l2µ → r2µ which is decreasing by assumption. By
monotonicity and stability of ` we obtain decreasingness of the local peak (1).

We recall the rule labeling of van Oostrom [138], parametrized by a mapping
i : R → N. Often i is left implicit. The rule labeling satisfies the constraints of an
L-labeling.

Lemma 3.7. Let R be a TRS and `irl(s→π t) = i(lπ → rπ). Then (`irl,>N, >N) is
an L-labeling for R.

Proof. First we show that (`irl,>N, >N) is a labeling. The preorder >N and the
well-founded order >N are compatible. Furthermore `irl(s →π t) = i(lπ → rπ)
which ensures monotonicity and stability of `irl. Hence (`irl,>N, >N) is a labeling.
Next we show the properties demanded in Definition 3.5. For local peaks according
to cases (parallel) and (variable-linear) we recall that the steps drawn at opposite
sides in the diagram, e.g., the steps labeled with α and γ (β and δ) in Figures 3.2(a)
and 3.2(b), are due to applications of the same rule. Hence α = γ and β = δ in
Figures 3.2(a) and 3.2(b), which shows the result.

Inspired by [71] we propose a labeling based on relative termination.

Lemma 3.8. Let R be a TRS and `rt(s→ t) = s. Then `Srt = (`rt,→∗R,→+
S/R) is

an L-labeling for R, provided →S ⊆ →R and S/R is terminating.

30



3.3. Labelings for Rewrite Steps

Proof. Let > = →∗R and > = →+
S/R. First we show that (`rt,>, >) is a labeling.

By definition of relative rewriting, > and > are compatible and > is well-founded
by the termination assumption of S/R. Since rewriting is closed under contexts
and substitutions, `Srt is monotone and stable and hence a labeling. Next we show
the properties demanded in Definition 3.5. The assumption →S ⊆ →R yields
> ⊆ >. Combining α = s = β, γ = u, and δ = t with s →R t and s →R u
yields α = β > γ, δ for local peaks according to (parallel) and (variable-linear) in
Figures 3.2(a) and 3.2(b).

The L-labeling from the previous lemma allows to establish a decrease with
respect to some steps of R. The next lemma allows to combine L-labelings. Let
`1 : ΛR → W1 and `2 : ΛR → W2. Then (`1,>1, >1) × (`2,>2, >2) is defined as
(`1× `2,>12, >12) where `1× `2 : ΛR → W1×W2 with (`1× `2)(Γ) = (`1(Γ), `2(Γ)).
Furthermore (x1, x2) >12 (y1, y2) if and only if x1 >1 y1 or x1 >1 y1 and x2 >2 y2

and (x1, x2) >12 (y1, y2) if and only if x1 >1 y1 or x1 >1 y1 and x2 >2 y2.

Lemma 3.9. Let `1 and `2 be L-labelings. Then `1 × `2 is an L-labeling.

Proof. First we show that `1 × `2 is monotone and stable whenever `1 and `2 are
labelings. Indeed if (`1 × `2)(Γ) > (`1 × `2)(∆) then `1(Γ) > `1(∆) or `1(Γ) >
`1(∆) and `2(Γ) > `2(∆), which for all contexts C and substitutions σ implies
`1(C[Γσ]) > `1(C[∆σ]) or `1(C[Γσ]) > `1(C[∆σ]) and `2(C[Γσ]) > `2(C[∆σ]) by
stability and monotonicity of `1 and `2, which is equivalent to (`1 × `2)(C[Γσ]) >
(`1 × `2)(C[∆σ]). Showing stability and monotonicity of > is similar. Since the
lexicographic product satisfies >12 ⊆ >12 if `1 and `2 are labelings we conclude
that `1 × `2 is a labeling.

Next we show that `1×`2 satisfies the requirements of Definition 3.5. If `1 and `2

are L-labelings then the diagram of Figure 3.2(b) has the shape as in Figure 3.3(a)
and 3.3(b), respectively. It is easy to see that the lexicographic combination is
again an L-labeling (cf. Figure 3.3(c)).

3.3.2. Left-linear TRSs

For left-linear TRSs the notion of an LL-labeling is introduced. The following
definition exploits that Figure 3.2(b) is an instance of Figure 3.2(c).
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(a) Labeling `1.
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(b) Labeling `2.
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(c) Labeling `1 × `2.

Figure 3.3.: Lexicographic combination of L-labelings.

Definition 3.10. A labeling ` for a TRS R is an LL-labeling (for R) if

1. in Figure 3.2(a), α > γ and β > δ,

2. in Figure 3.2(c), α > γ and β > δ for all permutations of the rewrite steps
of u→pp v, where α > γ means α > γi for 1 6 i 6 n, and

3. in Figure 3.2(c), α > γ for some permutation of the rewrite steps of u →pp v,
where α > γ means α > γ1 and α > γi for 2 6 i 6 n.

A labeling ` is a weak LL-labeling if the first two conditions are satisfied.

We strengthened the definition of (weak) LL-labelings from [201]. All labelings
proposed in [201] satisfy the stronger conditions. Considering all permutations in
condition 2 of Definition 3.10 is necessary to ensure that the lexicographic com-
bination of two weak LL-labelings again is a weak LL-labeling (cf. Lemma 3.13).
Furthermore, this condition facilitates their use for parallel rewriting (Section 3.4).

Remark 3.1. The L-labelings presented so far (cf. Lemmata 3.7 and 3.8) are weak
LL-labelings.

The next theorem states that LL-labelings allow to show confluence of left-linear
TRSs.

Theorem 3.11. Let R be a left-linear TRS. If the critical peaks of R are LL-
decreasing then R is confluent.

Proof. By assumption the critical peaks ofR are decreasing for some LL-labeling `.
We establish confluence of R by Theorem 3.3, i.e., we show decreasingness of the
ARS 〈T (F ,V),→R〉 by labeling rewrite steps according to `. By definition of
an LL-labeling local peaks according to (parallel) and (variable-left-linear) are
decreasing. The reasoning for local peaks according to (critical overlap) is the
same as in the proof of Theorem 3.6.
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3.3. Labelings for Rewrite Steps

The rule labeling from Lemma 3.7 is a weak LL-labeling but not an LL-labeling
since in Figure 3.2(c) we have α = γi for 1 6 i 6 n which does not satisfy α > γ if
n > 1. (See also [71, Example 9].) We return to this problem and propose two solu-
tions (in Sections 3.3.2 and 3.4) after presenting simpler (weak) LL-labelings based
on measuring duplicating steps (Section 3.3.2), the context above the contracted
redex (Section 3.3.2), and the contracted redex (Section 3.3.2).

Measuring duplicating steps

The L-labeling from Lemma 3.8 can be adapted to an LL-labeling.

Lemma 3.12. Let R be a TRS. Then `Rd
rt is an LL-labeling, provided Rd/Rnd is

terminating.

Proof. By Theorem 3.2 the relative TRSRd/Rnd is terminating if and only ifRd/R
is terminating. Hence (`Rd

rt ,>, >) is a labeling by Lemma 3.8. Here > =→∗R and
> = →+

Rd/R. Since `rt(s → t) = s, we have α = β in Figures 3.2(a) and 3.2(c).

We have > ⊆ >. Hence α > γ and α > δ in Figure 3.2(a) and, if l2 → r2 in the
local peak (1) is linear, also in Figure 3.2(c) as γ is empty or γ = γ in this case. If
l2 → r2 is not linear then it must be duplicating and hence α > γi for 1 6 i 6 n.
Because α > δ, `Rd

rt is an LL-labeling for R.

To combine the previous lemma with the rule labeling we study how different
labelings can be combined.

Lemma 3.13. Let `1 be an LL-labeling and let `2 be a weak LL-labeling. Then
`1 × `2 and `2 × `1 are LL-labelings.

Proof. By the proof of Lemma 3.9 `1 × `2 and `2 × `1 are labelings. The only
interesting case of (variable-left-linear) is when l2 → r2 in local peak (1) is non-
linear, i.e., γ contains more than one element. First we show that `1 × `2 is an
LL-labeling. Here labels according to `1 are suffixed with the subscript 1 and
similarly for `2. Recall Figure 3.2(c). Let us first deal with Definition 3.10(2).
We have α1 > γ1, β1 > δ1, α2 > γ2 and β2 > δ2, which yields (β1, β2) > (δ1, δ2),
(α1, α2) > (γ1i, γ2i) for all 1 6 i 6 n, by the definition of the lexicographic
product. Next we consider Definition 3.10(3). By assumption we have α1 > γ1,
and α2 > γ2, which yields the desired (α1, α2) > (γ11, γ21), (α1, α2) > (γ1i, γ2i)
for 2 6 i 6 n. In the proof for `2 × `1 the assumptions yield (β2, β1) > (δ2, δ1)
and (α2, α1) > (γ2i, γ1i) for 1 6 i 6 n for Definition 3.10(2) and additionally
(α2, α1) > (γ2i, γ1i) for 2 6 i 6 n for Definition 3.10(3).
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3. Labelings for Decreasing Diagrams

Remark 3.2. If `1 and `2 are weak LL-labelings then so are `1 × `2 and `2 × `1.
Furthermore, LL-labelings are also weak LL-labelings by definition. In particular
LL-labelings can be composed lexicographically.

From Theorem 3.11 and Lemmata 3.12 and 3.13 we obtain the following result.

Corollary 3.14. Let R be a left-linear TRS. If Rd/Rnd is terminating and all
critical peaks of R are weakly LL-decreasing then R is confluent.

Proof. By Lemma 3.12 `Rd
rt is an LL-labeling. By assumption the critical peaks

of R are decreasing for some weak LL-labeling `. By Lemma 3.13 also `Rd
rt × `

is an LL-labeling. It remains to show decreasingness of the critical peaks for
`Rd

rt × `. This is obvious since for terms s, t, u with s →R t →R u we have
`Rd

rt (s → t) > `Rd
rt (t → u). Hence decreasingness for ` implies decreasingness for

`Rd
rt × `. Confluence of R follows from Theorem 3.11.

We revisit the example from the introduction.

Example 3.15. For the TRS R from Example 3.1 the polynomial interpretation

+N(x, y) = x+ y sN(x) = x+ 1 ×N(x, y) = x2 + xy + y2 sqN(x) = 3x2 + 1

shows termination of Rd/Rnd. It is easy to check that `irl with i(3) = i(6) = 2,
i(4) = i(10) = 1, and i(l → r) = 0 for all other rules l → r ∈ R establishes
decreasingness of the 34 critical peaks. We consider two selected critical peaks
(where the applied rewrite rule is indicated above the arrow in parentheses). The
peaks

t1 = x+ ((y + z) + w)
(1)←−
0
x+ (y + (z + w))

(1)−→
0

(x+ y) + (z + w) = u1

t2 = s(x)× s(x)
(3)←−
2

sq(s(x))
(4)−→
1

(x× x) + s(x+ x) = u2

can be joined decreasingly as follows:

t1
(2)−→
0
x+ (y + (z + w))

(2)←−
0
u1

t2
(10)−→

1
(x× s(x)) + s(x)

(9)−→
0

(x+ (x× x)) + s(x)
(2)−→
0
x+ ((x× x) + s(x))

(8)−→
0
x+ (s(x× x) + x)

(2)←−
0

(x+ s(x× x)) + x
(5)←−
0

(s(x× x) + x) + x

(1)←−
0

s(x× x) + (x+ x)
(8)←−
0
u2
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3.3. Labelings for Rewrite Steps

The next example is concise and constitutes a minimal example to familiarize
the reader with Corollary 3.14.

Example 3.16. Consider the TRS R consisting of the three rules

1 : b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(x))

We have Rd = {3} and Rnd = {1, 2}. Termination of Rd/Rnd can be established
by LPO with precedence a ∼ b and f > g. Taking rule numbers as labels the
rule labeling shows the only critical peak f(g(x, b)) 2← f(g(x, a)) →3 g(f(x), f(x))
decreasing, as f(g(x, b)) →1 f(g(x, a)) →3 g(f(x), f(x)). Hence we obtain the
confluence of R by Corollary 3.14.

Remark 3.3. Using `irl(·) = 0 as weak LL-labeling, Corollary 3.14 gives a condi-
tion (termination of Rd/Rnd) such that t →= u or u →= t for all critical pairs
t ←o→ u implies confluence of a left-linear TRS R. This partially answers one
question in the RTA list of open problems #13.2

Measuring the context above the contracted redex

In [138, Example 20] van Oostrom suggests to count function symbols above the
contracted redex, demands that this measurement decreases for variables that are
duplicated, and combines this with the rule labeling. Consequently local peaks
according to Figure 3.2(c) are decreasing. Below we exploit this idea but incorpo-
rate the following beneficial generalizations. First, we do not restrict to counting
function symbols (which has been adopted and extended by Aoto in [4]) but repre-
sent the constraints as a relative termination problem. This abstract formulation
allows to strictly subsume the criteria from [4, 138] (see Section 3.5) because more
advanced techniques than counting symbols can be applied for proving termina-
tion. Additionally, our setting also allows to weaken these constraints significantly
(cf. Lemma 3.23).

The next example motivates the need for an LL-labeling that does not require
termination of Rd/Rnd.

Example 3.17. Consider the TRS R consisting of the six rules

f(h(x))→ h(g(f(x), x, f(h(a)))) f(x)→ a a→ b

h(x)→ c b→ ⊥ c→ ⊥

As the duplicating rule admits an infinite sequence, Corollary 3.14 cannot succeed.

2http://www.cs.tau.ac.il/~nachum/rtaloop/problems/13.html
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3. Labelings for Decreasing Diagrams

In the sequel we let G be the signature consisting of unary function symbols
f1, . . . , fn for every n-ary function symbol f ∈ F .

Definition 3.18. Let x ∈ V . We define a partial mapping ? from terms in the
original signature and positions T (F ,V)× N∗+ to terms in T (G,V) as follows:

?(f(t1, . . . , tn), p) =

{
fi(?(ti, q)) if p = iq

x if p = ε

For a TRS R we abbreviate R?
>/R?

= by ?(R). Here, for & ∈ {>,=}, R?
& consists

of all rules ?(l, p)→ ?(r, q) such that l→ r ∈ R, l|p = r|q = y ∈ V , and |r|y & 1.

The next example illustrates the transformation ?(·).

Example 3.19. Consider the TRS R from Example 3.17. The relative TRS
?(R) = R?

>/R?
= consists of the TRS R?

> with rules

f1(h1(x))→ h1(g1(f1(x))) f1(h1(x))→ h1(g2(x))

and the TRS R?
= which is empty.

Due to the next lemma a termination proof of ?(R) yields an LL-labeling.

Lemma 3.20. Let R be a TRS and `?(s →π t) = ?(s, pπ). Then (`?,>, >)
is an LL-labeling, provided (>, >) is a monotone reduction pair, R?

> ⊆ >, and
R?
> ∪R?

= ⊆ >.

Proof. Because (>, >) is a monotone reduction pair, (`?,>, >) is a labeling for R.
Note that monotonicity and stability are with respect to the signature G. To
see that the constraints of Definition 3.10 are satisfied we argue as follows. For
Figure 3.2(a) we have α = γ and β = δ because the steps drawn at opposing sides
in the diagram take place at the same positions and the function symbols above
these positions stay the same. Next we consider Figure 3.2(b), i.e., the right-linear
case. Recall the local peak (1). Again we have β = δ because q < p. To see α > γ
consider the step s→q,l2→r2 u and let q′ be the unique position in PosV(l2) such that
qq′r = p with x = l2|q′ for some position r. If |r2|x = 0 then there is no step and we
are done. Otherwise let q′′ be the position in r2 with |r2|q′′ = x. By construction
R?

= contains the rule ?(l2, q
′) → ?(r2, q

′′). Combining the assumption R?
= ⊆ >

with monotonicity and stability of `? yields ?(s, p) > ?(u, qq′′r), i.e., α > γ. Next
we consider Figure 3.2(c) for the duplicating case. Recall the local peak (1).
Again we have β = δ because q < p. To see α > γ (for any permutation of the
steps) consider the step s→q,l2→r2 u and let q′ be the unique position in PosV(l2)
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3.3. Labelings for Rewrite Steps

such that qq′r = p for some position r. Let x = l2|q′ and Q = {q′1, . . . , q′n} with
r2|q′i = x. Then P = {qq′ir | q′i ∈ Q} is the set of descendants of p. By construction
R?
> contains all rules ?(l2, q

′)→ ?(r2, q
′
i) for 1 6 i 6 n. Combining the assumption

R?
> ⊆ > with monotonicity and stability of `? yields ?(s, p) > ?(u, p′i) for p′i ∈ P .

Since u→pp P v we obtain α > γi for 1 6 i 6 n and hence the desired α > γ.

Remark 3.4. It is also possible to formulate Lemma 3.20 as a relative termination
criterion without the use of a monotone reduction pair. However, the monotone
reduction pair may admit more labels to be comparable (in the critical diagrams)
because of the inclusions R?

> ⊆ > and R?
> ∪R?

= ⊆ >.

From Lemma 3.20 we obtain the following corollary.

Corollary 3.21. Let R be a left-linear TRS and let ` be a weak LL-labeling. Let
`?` denote ` × `? or `? × `. Let (>, >) be a monotone reduction pair showing
termination of ?(R). If the critical peaks of R are decreasing for `?` then R is
confluent.

Proof. The function `? is an LL-labeling by Lemma 3.20. Lemma 3.13 yields that
`?` is an LL-labeling. By assumption the critical peaks are decreasing for `?` and
hence Theorem 3.11 yields the confluence of R.

The next example illustrates the use of Corollary 3.21.

Example 3.22. We show confluence of the TRS R from Example 3.17. Termina-
tion of ?(R) (cf. Example 3.19) is easily shown, e.g., the polynomial interpretation

f1N(x) = 2x g1N(x) = g2N(x) = x h1N(x) = x+ 1

orients both rules in R?
> strictly. The labeling `? in combination with the rule

labeling where i(f(h(x))→ h(g(f(x), x, f(h(a))))) = 1 and all other rules receive la-
bel 0 shows decreasingness of the three critical peaks (two of which are symmetric).
For the moment we label a step s →π t with the interpretation of ?(s, pπ). E.g.,
a step f(h(b)) → f(h(⊥)) is labeled 2x + 2 since ?(f(h(b)), 11) = f1(h1(x)) and
[f1(h1(x))]N = 2x+ 2. The critical peak h(g(f(x), x, f(h(a)))) x,1← f(h(x))→x,0 a is
closed decreasingly by

h(g(f(x), x, f(h(a)))) −→
x,0

c −→
x,0
⊥ ←−

x,0
b←−

x,0
a

and the critical peak h(g(f(x), x, f(h(a)))) x,1← f(h(x))→2x,0 f(c) is closed decreas-
ingly by

h(g(f(x), x, f(h(a)))) −→
x,0

c −→
x,0
⊥ ←−

x,0
b←−

x,0
a←−

x,0
f(c)

which allows to prove confluence of R by Corollary 3.21.
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3. Labelings for Decreasing Diagrams

By definition of α > γ (cf. Definition 3.10) we observe that the definition of ?(R)
can be relaxed. If l2 → r2 with l2|q′ = x ∈ V and {q′1, . . . , q′n} are the positions of
the variable x in r2 then it suffices if n− 1 instances of ?(l2, q

′)→ ?(r2, q
′
i) are put

in R?
> while one ?(l2, q

′) → ?(r2, q
′
j) can be put in R?

= (since the steps labeled γ
in Figure 3.2(c) are at parallel positions we can choose the first closing step such
that α > γ1). This improved version of ?(R) is denoted by ??(R) = R??

> /R??
= . We

obtain the following variant of Lemma 3.20.

Lemma 3.23. Let R be a TRS. Then (`?,>, >) is an LL-labeling, provided (>, >)
is a monotone reduction pair, R??

> ⊆ >, and R??
> ∪R??

= ⊆ >.

Obviously any ??(R) inherits termination from ?(R). The next example shows
that the reverse statement does not hold. In Section 3.6 we show how the intrinsic
indeterminism of ??(R) is eliminated in the implementation.

Example 3.24. Consider the TRS R from Example 3.1. The TRS R?
> consists

of the rules

sq1(x)→ ×1(x) sq1(s1(x))→ +1(×1(x)) ×1(x)→ +1(x)

sq1(x)→ ×2(x) sq1(s1(x))→ +1(×2(x)) † : ×1(x)→ +2(×1(x))

sq1(s1(x))→ +2(s1(+1(x))) † : ×2(y)→ +1(×2(y))

sq1(s1(x))→ +2(s1(+2(x))) ×2(y)→ +2(y)

while R?
= consists of the rules

+1(x)→ +1(+1(x)) +1(x)→ +2(x) +1(x)→ +1(s1(x))

+2(+1(y))→ +1(+2(y)) +2(y)→ +1(y) +2(s1(y))→ +2(y)

+2(+2(z))→ +2(z) ×1(x)→ ×2(x) ×2(s1(y))→ +2(×2(y))

+1(+1(x))→ +1(x) ×2(y)→ ×1(y) ×1(s1(x))→ +1(×1(x))

+1(+2(y))→ +2(+1(y)) +1(s1(x))→ +1(x)

+2(z)→ +2(+2(z)) +2(y)→ +2(s1(y))

Let R?
† denote the rules in R?

> marked with †. Termination of ?(R) cannot be
established (because R?

† is non-terminating) but we stress that moving these rules
into R?

= yields a valid ??(R) which can be proved terminating by the polynomial
interpretation with

sq1N(x) = x+ 2 ×1N(x) = ×2N(x) = x+ 1

that interprets the remaining function symbols by the identity function. We remark
that Corollary 3.21 with the labeling from Lemma 3.23 establishes confluence ofR.
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3.3. Labelings for Rewrite Steps

Since all reductions in the 34 joining sequences have only + above the redex and
+1N(x) = +2N(x) = x, the `? labeling attaches x to any of these steps. The rule
labeling that assigns i(3) = i(6) = 2, i(4) = i(10) = 1, and 0 to all other rules
shows the 34 critical peaks decreasing.

Measuring the contracted redex

Instead of the labeling `?, which is based on the context above the contracted
redex, one can also use the contracted redex itself for labeling.

Lemma 3.25. Let R be a TRS and `4(s→π t) = s|pπ . Then (`4,>, >) is a weak
LL-labeling, provided (>, >) is a monotone reduction pair with R ⊆ >.

Proof. Because (>, >) is a monotone reduction pair, (`4,>, >) is a labeling for R.
To see that the constraints of Definition 3.10 are satisfied we argue as follows. For
Figure 3.2(a) we have α = γ and β = δ. For Figure 3.2(c) we get α = γ1 = · · · = γn
(since the same redex is contracted) and β > δ by the assumption R ⊆ > and
monotonicity and stability of >.

The following definition collects the constraints, such that variable overlaps can
be made decreasing.

Definition 3.26. For a TRS R let R4 = {l→ x | l→ r ∈ R and |r|x > 1}.

Due to the next result a termination proof of R4/R enables a weak LL-labeling
to establish confluence.

Corollary 3.27. Let R be a left-linear TRS and let ` be a weak LL-labeling. Let
(>, >) be a simple monotone reduction pair showing termination of R4/R. If the
critical peaks of R are decreasing for `4 × ` then R is confluent.

Proof. Note that `4 × ` is a weak LL-labeling (cf. Remark 3.2), which shows the
peaks in Figure 3.2(a) and Figure 3.2(b) decreasing. For the duplicating case of
Figure 3.2(c) we inspect the labels with regard to `4. Consider the local peak (1).
Clearly, β = l2σ and α = l1σ. Since γi = α, we want to establish β > α. To this
end let q′ ∈ PosV(l2) such that qq′r = p and x = l2|q′ . Note that l2 → x ∈ R4
because we are in the duplicating case. Hence the relative termination assumption
gives l2 > x, and l2σ > xσ is obtained by stability. Now as xσ|r = l1σ the
desired β > α follows from simplicity of the reduction pair since l2σ > xσ > l1σ.
Combining `4 lexicographically with a weak LL-labeling ` into `4 × ` maintains
decreasingness.
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3. Labelings for Decreasing Diagrams

Remark 3.5. Note that the labeling `4 × ` from Corollary 3.27 is not an LL-
labeling. The point is that there are multiple ways of ensuring decreasingness of
Figure 3.2(c). For LL-labelings, we use α > γ, while in Corollary 3.27, β > γi
for 1 6 i 6 n does the job. This is also the reason why ` × `4 cannot be used in
Corollary 3.27. Consider the TRS with the rules 1 : f(x)→ g(x, x) and 2 : a→ b.
Let `rl be the rule labeling attaching the rule numbers as labels. Then the variable
overlap is not decreasing for `rl × `4.

We demonstrate Corollary 3.27 on the TRS from Example 3.16.

Example 3.28. For the TRS from Example 3.16 the polynomial interpretation

gN(x, y) = 2x+ 2y + 1 aN = bN = 0 fN(x) = x2

establishes relative termination of {f(g(x, a))→ x}/R and shows the critical peak
decreasing when labeling steps with the pair obtained by the interpretation of the
redex and the rule labeling, i.e., f(g(x, b)) 0,2← f(g(x, a)) →(2x+1)2,3 g(f(x), f(x))
for the peak and f(g(x, b))→0,1 f(g(x, a))→(2x+1)2,3 g(f(x), f(x)) for the join.

Exploiting Persistence

In this section we show how to exploit persistence of confluence [5, 47] to enhance
the applicability of L-labelings to certain duplicating left-linear TRSs. Compared
to Sections 3.3.2–3.3.2, where variable overlaps were closed decreasingly by a rela-
tive termination criterion, here persistence arguments are employed to avoid rea-
soning about variable overlaps at duplicating variable positions at all. To this end
we recall order-sorted TRSs.

Definition 3.29. Let S be a set of sorts equipped with a partial order ≤. A
signature F and a set of variables V are S-sorted if every n-ary function symbol
f ∈ F is equipped with a sort declaration α1×· · ·×αn → α where α1, . . . , αn, α ∈ S
and every variable x ∈ V has exactly one sort α ∈ S. We write S(f) = α,
S(f, i) = αi for 1 6 i 6 n, and S(x) = α, respectively. We let Vα = {x ∈ V |
S(x) = α} and require that Vα is infinite for all α ∈ S. The set of S-sorted
terms, TS(F ,V), is the union of the sets Tα(F ,V) for α ∈ S that are inductively
defined as follows: Vα ⊆ Tα(F ,V) and f(t1, . . . , tn) ∈ Tα(F ,V) whenever f ∈ F
has sort declaration α1× · · · ×αn → α and ti ∈ T≤αi(F ,V) for all 1 6 i 6 n. Here
T≤α(F ,V) is the union of all Tβ(F ,V) for β ≤ α.

The notion of S-sorted terms properly extends many-sorted terms. Indeed, if
we let ≤ be the identity relation then T≤α(F ,V) = Tα(F ,V), which means that
the i-th argument of f in an S-sorted term must have sort S(f, i).
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3.3. Labelings for Rewrite Steps

Definition 3.30. We extend S(·) and S(·, ·) to S-sorted terms t and non-root
positions of t. If t = f(t1, . . . , tn) then S(t) = S(f), S(t, i) = S(f, i), and S(t, ip) =
S(ti, p) for p 6= ε. If t = x ∈ V then S(t) = S(x).

Example 3.31. Let S = {0, 1, 2} with 0 ≤ 1 and consider the sort declarations
f : 1 → 2 and x : 0. Then t = f(x) ∈ TS({f}, {x}), S(t) = 2, S(t, 1) = 1, and
S(t|1) = 0 ≤ 1.

One easily observes that S(t, p) defines the maximal sort induced by the context
t[�]p: a term t[u]p is S-sorted if and only if u ∈ T≤S(t,p)(F ,V). Consequently, we
have S(t|p) ≤ S(t, p) for all non-root positions p of t.

We are particularly interested in the case where rewriting restricted to S-sorted
terms coincides with ordinary rewriting with initial terms restricted to S-sorted
ones. This property is captured by S-compatible TRSs.

Definition 3.32. A TRS R is S-compatible if for every rule l → r ∈ R there
exists a sort α ∈ S such that l ∈ Tα(F ,V) and r ∈ T≤α(F ,V), and S(l, p) = S(l|p)
for all p ∈ PosV(l).

The following lemma is well-known (e.g. [188]) and easy to prove.

Lemma 3.33. If R is S-compatible then TS(F ,V) and T≤α(F ,V) for every α ∈ S
are closed under rewriting by R.

The following result is a special case of [47, Theorem 6.2].

Theorem 3.34. An S-compatible left-linear TRS R is confluent on T (F ,V) if
and only if it is confluent on TS(F ,V).

Example 3.35. Consider the duplicating TRS R with rules

1 : f(a)→ f(b) 2 : f(x)→ g(f(x), f(x))

Recall that L-labelings (in particular, rule labelings) that are not LL-labelings
are not applicable to non-linear TRSs because the variable overlap diagram (Fig-
ure 3.2(c)) is not decreasing. Let S = {0, 1} with the following sort declarations:

x : 0 a : 0 b : 0 f : 0→ 1 g : 1× 1→ 1

The TRS R is S-compatible and hence we may restrict rewriting to S-sorted terms
without affecting confluence by Theorem 3.34. This has the beneficial effect that
variable overlaps are ruled out. To see how, note that no subterms of sort 1 can
appear inside terms of sort 0. Consider the left-hand side f(x) of R. We have
S(f(x), 1) = 0, so that any term substituted for x must have sort 0. Further note
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that both left-hand sides have sort 1. Consequently, no rule application may be
nested below f(x)→ g(f(x), f(x)) and hence variable overlaps are ruled out. There-
fore, we may use L-labelings to show confluence of R even though R is not linear,
and in fact the rule labeling which takes the rule numbers as labels allows us to
join the sole (modulo symmetry) critical peak t = f(b) 1← f(a)→2 g(f(a), f(a)) = u
decreasingly: t→2 g(f(b), f(b)) 1← g(f(b), f(a)) 1← u.

Formally, we define TEα(F ,V) = {t | t E t′ for some t′ ∈ T≤α(F ,V)}, to capture
which terms may occur as subterms of terms of sort α or below.

Theorem 3.36. Let R be a left-linear S-compatible TRS such that the vari-
able l|p occurs at most once in r whenever l → r ∈ R and l′ → r′ ∈ R with
l′ ∈ TES(l,p)(F ,V) for some p ∈ PosV(l). Then R is confluent if all its critical
peaks are L-decreasing.

Proof. By Theorem 3.34 we may restrict rewriting to S-sorted terms. The proof
follows that of Theorem 3.6, except in the analysis of local peaks, where right-
linearity of R is used, which is not among our assumptions. Instead, we argue
as follows: Since R is left-linear, any local peak has the shape (parallel), (critical
overlap), or (variable-left-linear). In the latter case, the step s→q,l′→r′ t is nested
below s→p,l→r u, and it is easy to see that this implies l′ ∈ TES(l,q′)(F ,V) for some
variable position q′ of l such that pq′ 6 q. Consequently the variable x = l|q′
occurs at most once in r by assumption, and the parallel step (which contains one
rewrite step for every occurrence of x in r) is empty or a single step, resulting in
a decreasing diagram.

As a refinement of Theorem 3.36, instead of ruling out duplicating (variable-left-
linear) overlaps completely, we can also add additional constraints on the labeling
for the remaining variable overlaps.

Definition 3.37. Let ` be a weak LL-labeling for an S-compatible TRS R. We
call ` persistent if whenever rules l → r, l′ → r′ ∈ R satisfy l′ ∈ TES(l,p)(F ,V)
for some p ∈ PosV(l), either |r|l|p 6 1 or β > γ in Figure 3.2(c) for all resulting
variable overlaps with l′ → r′ below l → r. We call R persistent LL-decreasing
if there is a persistent, weak LL-labeling ` such that all critical peaks of R are
decreasing with respect to `.

Theorem 3.38. Let R be a left-linear TRS. If the critical peaks of R are persistent
LL-decreasing then R is confluent.

Proof. The proof follows along the lines of the proof of Theorem 3.36. In the case
of a duplicating variable-left-linear overlap, the additional constraints ensure that
the resulting diagram is decreasing.
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Example 3.39. Suppose we extend the TRS from Example 3.35 with the rule
a→ b, using the same sorts:

1 : f(x)→ g(f(x), f(x)) 2 : f(a)→ f(b) 3 : a→ b

Theorem 3.36 is no longer applicable, because rule 3 may be nested below rule 1,
which is duplicating. However, by the preceding remark, any rule labeling with
`irl(1) > `irl(3) will make the corresponding variable overlaps decreasing.

Remark 3.6. Note that Theorem 3.38 does not subsume Theorem 3.36, because
the former demands a weak LL-labeling whereas the latter requires only an L-
labeling. If we were to restrict the L-labeling and weak LL-labeling conditions to
those variable overlaps that are consistent with the sort declarations, then Theo-
rem 3.38 would subsume Theorem 3.36. We chose not to do so because all our
labelings are weak LL-labelings.

The following example shows that considering order-sorted instead of many-
sorted signatures is beneficial.

Example 3.40. Consider the duplicating TRS R given by the rules

1 : h(a, a)→ f(a) 2 : f(a)→ a 3: f(x)→ h(x, x)

Furthermore, let S = {0, 1} with 1 > 0 and take the sort declarations

h : 0× 0→ 1 f : 0→ 1 a : 0

Considering only S-sorted terms, no rule can be nested below the duplicating rule
f(x) → h(x, x). Basically, there is one critical peak, h(a, a) 3← f(a) →2 a, which
is decreasingly joinable as h(a, a) →1 f(a) →2 a by the rule labeling (using rule
numbers as labels), and confluence follows by Theorem 3.36. Due to the rule
f(a)→ a, any many-sorted sort declaration for R must assign the same sorts to a
and the argument and result types of f. Therefore, f(x)→ h(x, x) may be nested
below itself, and Theorems 3.36 and 3.38 would fail in connection with the rule
labeling.

3.4. Labelings for Parallel Rewriting

In this section, rather than labeling individual rewrite steps, we will label parallel
rewrite steps instead. This is inspired by the parallel moves lemma, which says
that any peak t ←pp s →pp u of two non-overlapping parallel rewrite steps can be
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joined in a diamond as t→pp · ←pp u, and diamonds are comparatively easy to label
decreasingly, as we saw in Section 3.3.1.

The main problem is to label parallel steps such that variable overlaps are de-
creasing. Since {α} 6>mul {α, . . . , α}, the multiset of the single steps’ labels does
not work. Hence we use sets to label parallel steps which we denote by capital
Greek letters. Sets of labels are ordered by the Hoare preorder of (>, >), which
we denote by (>H , >H) and is defined by

Γ >H ∆ ⇐⇒ Γ 6= ∅ ∧ ∀β ∈ ∆ ∃α ∈ Γ (α > β)

Γ >H ∆ ⇐⇒ ∀β ∈ ∆ ∃α ∈ Γ (α > β)

For readability we drop the subscript H when attaching labels to rewrite steps as
in →pp <Γ.

Example 3.41. Let > denote the natural order on N. Then {1} >H {0, 1} and
{1} >H {1, 1, 1} = {1} but {5, 4} 6>H {5, 3}.

The following lemma states obvious properties of Hoare preorders which we
implicitly use in the sequel.

Lemma 3.42. Let (>H , >H) be a Hoare preorder.

1. If (>, >) is a monotone reduction pair then (>H , >H) is a monotone reduction
pair.

2. If Γ ⊇ Γ′ then Γ >H Γ′.

3. If Γ >H Γ′ and ∆ >H ∆′ then Γ ∪∆ >H Γ′ ∪∆′.

4. If Γ >H Γ′ and ∆ >H ∆′ then Γ ∪∆ >H Γ′ ∪∆′.

As we have seen in Section 3.3.2, constructing LL-labelings is quite a bit harder
than constructing L-labelings, because of the duplicated steps in the (variable-
left-linear) case (Figure 3.2(c)). Here, we use weak LL-labelings for labeling single
and parallel rewrite steps. Throughout this section we assume a given left-linear
TRS R, and a weak LL-labeling ` with corresponding labeling function for parallel
steps `‖, as introduced in the following definition.

Definition 3.43. We lift a weak LL-labeling ` to parallel steps t→pp P t′ as follows.
For each π ∈ P , we have a rewrite step t →π tπ. We label a parallel step t →pp P t′
by `‖(t→pp P t′) = {`(t→π tπ) | π ∈ P}.
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∆
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Figure 3.4.: Weak LL-labeling applied to parallel steps.

A parallel rewrite step is labeled by the set of the labels of the single steps
making up the parallel step, written t→pp PΓ t′.

The next example shows that the labels change when decomposing a parallel step
into a sequence of single steps, i.e., the label of the parallel step may be different
from the union of labels of the single steps. However, the proof of Lemma 3.45
reveals that for weak LL-labelings the labels never increase when sequencing a
parallel step.

Example 3.44. Consider the rule a→ b and the extension of the source labeling
`(s → t) = s to parallel steps. Then f(a, a) →pp {f(a,a)} f(b, b) but f(a, a) →pp {f(a,a)}
f(b, a) →pp {f(b,a)} f(b, b). Clearly {f(a, a)} 6= {f(a, a), f(b, a)}. This effect is intrinsic
to labelings that take the context of the rewrite step into account. On the other
hand, the rule labeling gives f(a, a)→pp {1} f(b, b) and f(a, a)→pp {1} f(b, a)→pp {1} f(b, b)
with {1} = {1, 1}, because the labels are independent of the context.

The next lemma is the key to show that even for parallel rewriting overlaps due
to Figure 3.2(a) (parallel) and Figure 3.2(c) (variable-left-linear) are decreasing.

Lemma 3.45.

1. Let t1
P
Γ←pp s→pp

Q
∆ t2 with P ‖ Q. Then there is a term u such that s→pp P∪QΓ∪∆ u

and t1 →pp Q∆′ u P
Γ′←pp t2, where Γ >H Γ′ and ∆ >H ∆′.

2. Let s→pp s′ and σ(x)→pp σ′(x) for all x ∈ V, so that there are parallel rewrite

steps sσ′ PΓ←pp sσ →pp
Q
∆ s′σ. Then sσ′ →pp Q∆′ s′σ′ Γ′←pp s′σ and Γ >H Γ′, ∆ >H ∆′.

Furthermore, if σ(x) = σ′(x) for all x ∈ Var(s′|Q) then sσ →pp Σ s
′σ′ for some

Σ ⊆ Γ ∪∆.
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Proof. 1. First note that since P ‖ Q, a term u with s→pp P∪Q u exists. We have

`‖(s
P∪Q−−−→pp u) = {`(s π−→ sπ) | π ∈ P ∪Q}

= {`(s π−→ sπ) | π ∈ P} ∪ {`(s π−→ sπ) | π ∈ Q}

= `‖(s
P−→pp t1) ∪ `‖(s Q−→pp t2) = Γ ∪∆

by definition. To establish t1 →pp Q∆′ u P
Γ′←pp t2, we use induction on |P | + |Q|. We

consider several base cases. If |P | = 0 or |Q| = 0 then the result follows by
definition of parallel rewriting. If |P | = |Q| = 1 the result follows from the fact
that ` is a weak LL-labeling, Definition 3.10(1) (Figure 3.2(a)). For the induction
step, assume without loss of generality that |P | > 1 and let P = {π} ] P ′. The
proof is illustrated in Figure 3.4. The parallel P -step can be decomposed into a
π-step and a P ′-step. Since {π}, P ′ ⊆ P , the labels are less than or equal to Γ.
Then we apply the induction hypothesis to the peaks

i. sP
′ P ′

6Γ←pp s→pp
{π}

6Γ sπ yielding sπ →pp P ′6Γ t1,

ii. sπ {π}6Γ←pp s→pp
Q
∆ t2 yielding t2 →pp {π}6Γ tπ2 and sπ →pp Q6∆ tπ2 ,

iii. sP
′ P ′

6Γ←pp s →pp
Q
∆ t2 yielding t2 →pp P

′

6Γ tP
′

2 , which we merge with t2 →pp {π}6Γ tπ2 to

obtain t2 →pp P6Γ u, noting that the union of two sets from 6Γ is again in 6Γ,
and finally

iv. t1
P ′

6Γ←pp s
π →pp Q6∆ tπ2 yielding t1 →pp Q6∆ u.

2. The existence of parallel rewrite steps sσ′ →pp s′σ′ and s′σ →pp s′σ′ follows
easily from the definition of parallel steps. We establish Γ >H Γ′ and ∆ >H ∆′ by
induction on |Q|. The reasoning for the induction step (|Q| > 1) is very similar
to the induction step in item 1, cf. Figure 3.5(a): Taking Q = {π} ] Q′, we split

sσ →pp Q∆ s′σ into sσ →pp {π}6∆ sπσ and sσ →pp Q
′

6∆ sQ
′
σ. We apply the induction hypothesis

to the peaks

i. sσ′ PΓ←pp sσ →pp
{π}

6∆ sπσ yielding sσ′ →pp {π}6∆ sπσ′ and sπσ →pp 6Γ s
πσ′,

ii. sσ′ PΓ←pp sσ →pp Q
′

6∆ sQ
′
σ yielding sσ′ →pp Q

′

6∆ sQ
′
σ′, which can be merged with

sσ′ →pp {π}6∆ sπσ′ to obtain sσ′ →pp Q6∆ s′σ′, and finally

iii. sπσ′ 6Γ←pp sπσ →pp
Q′

6∆ s′σ yielding s′σ →pp 6Γ s
′σ′, where sπσ →pp Q

′

6∆ s′σ is obtained

from part 1 of this lemma applied to sQ
′
σ Q′

6∆←pp sσ →pp
{π}

6∆ sπσ.
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(a) Split base step.
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Figure 3.5.: Weak LL-labeling applied to nested parallel steps.

This concludes the induction step. If |Q| = 0, there is nothing to show, so only
the base case |Q| = 1 remains. Note that because R is left-linear, we may as-
sume without loss of generality that s is linear. Therefore, every rewrite step of
sσ →pp P sσ′ can be performed by modifying σ. For P ′ ⊆ P , we write σP

′
for the

substitution τ that satisfies sσ →pp P ′ sτ , and proceed by induction on |P |. For
the induction step (|P | > 1), the argument is again almost the same as before,

cf. Figure 3.5(b). Let P = {π} ] P ′. We split sσ →pp PΓ sσ′ into sσ →pp {π}6Γ sσπ and

sσ →pp P ′6Γ sσ
P ′ . Next we apply the induction hypothesis to the peaks

i. sσπ {π}6Γ←pp sσ →
Q
∆ s′σ yielding sσπ →Q

6∆ s′σπ and s′σ →pp 6Γ s
′σπ,

ii. sσP
′ P ′

6Γ←pp sσ →Q
∆ s′σ yielding s′σ →pp 6Γ s′σP

′
, which can be merged with

s′σ →pp 6Γ s
′σπ to obtain s′σ →pp 6Γ s

′σ′, and finally

iii. sσ′ P
′

6Γ←pp sσ
π →Q

6∆ s′σπ yielding sσ′ →Q

6∆ s′σ′, where sσπ →pp P ′6Γ sσ
′ is obtained

from part 1 of this lemma applied to sσπ {π}6Γ←pp sσ →pp
P ′

6Γ sσ
P ′ .

This concludes the induction step. If |P | = 0 then there is nothing to show.
Finally, if |P | = |Q| = 1, then we are left with a parallel or variable over-
lap, and we conclude by Definition 3.10(1) or 3.10(2), respectively. This con-
cludes the proof that Γ >H Γ′ and ∆ >H ∆′. Now if σ(x) = σ′(x) for all
x ∈ Var(s′|Q), then s′σ →pp P ′ s′σ′ satisfies P ′ ‖ Q. Performing the same rewrite
steps on sσ, we obtain a parallel rewrite step sσ →pp P ′ s′′ with P ′ ⊆ P and
therefore Γ′′ = `‖(sσ →pp P ′ s′′) ⊆ `‖(sσ →pp P sσ′) = Γ. Finally, using the first part
of this lemma, we can combine the two parallel steps from sσ into a single one,

sσ →pp P
′∪Q

Γ′′∪∆ s′σ′ with Σ = Γ′′ ∪∆ ⊆ Γ ∪∆ as claimed.
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3. Labelings for Decreasing Diagrams

Only Definition 3.10(1) was used in the proof of Lemma 3.45(1). This fact can
be exploited for an alternative characterization of weak LL-labelings.

Corollary 3.46. Let ` be a labeling. Then ` is a weak LL-labeling if and only if

1. in Figure 3.2(a), α > γ and β > δ, and

2. in Figure 3.2(c), β > δ and {α} >H `‖(u→pp v).

Proof. Assume that ` is a weak LL-labeling. The first condition of this lemma
is identical to Definition 3.10(1). For the second condition, β > δ follows from
Definition 3.10(2). To establish {α} >H `‖(u →pp P v), we need to show that
α > `(u→pp π uπ) for all π ∈ P . For each π, we can arrange that `(u →pp π uπ) = γ1

by choosing u →pp π uπ as the first step in the permutation of u →pp v, and then
α > γ1 follows from Definition 3.10(2), establishing the claim.

Next assume that ` satisfies the conditions of this lemma. Then the condition
of Definition 3.10(1) holds. To show the conditions of Definition 3.10(2), note
that β > δ holds by assumption. Consider the parallel rewrite step u →pp P v
and a permutation π1, . . . , πn of P . We can decompose u →pp P v into a sequence
u = u0 →π1

γ1
u1 →π2

γ2
· · · →πn

γn un = v. By Lemma 3.45(1) applied to the peaks

· {πi}←−−−

6{α}
pp u

{π1,...,πi−1}−−−−−−−→

6{α}
pp ui−1

we obtain ui−1 →pp {πi}6{α} ui, i.e., {α} >H {γi}, which is equivalent to α > γi. Hence
α > γ.

The following lemma is used to reduce the number of parallel peaks that have
to be considered in the proof of Theorem 3.50.

Lemma 3.47. Let s →pp ∗

<Γ
· →pp 6∆ · →pp

∗

<Γ∆ t and s →pp ∗

<Γ
· →pp 6∆ · →pp

∗

<Γ∆ u be two
rewrite sequences such that all rewrite steps in the sequence to t are at or below a
position p and the rewrite steps in the sequence to u are parallel to p. Then the
two rewrite sequences can be merged into s→pp ∗

<Γ
· →pp 6∆ · →pp

∗

<Γ∆ u[t|p]p.

Proof. Let s →pp ∗

<Γ
t1 →pp 6∆ t2 →pp ∗ <Γ∆ t and s →pp ∗

<Γ
u1 →pp 6∆ u2 →pp ∗ <Γ∆ u. Using

Lemma 3.45(1) repeatedly, we can derive a sequence

s
∗−→

<Γ
pp u1[t1|p]p −−→

6∆
pp u2[t2|p]p

∗−−→

<Γ∆
pp u[t|p]p

which establishes the claim.

In order to perform a critical pair analysis for parallel rewrite steps, we need
parallel critical pairs [64, 181].
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3.4. Labelings for Parallel Rewriting

Definition 3.48. Let l → r be a rule in a TRS R and P be a non-empty set of
pairwise parallel redex patterns such that every π ∈ P critically overlaps with l.
By choosing variants of rules from R appropriately, we may assume that the sets
Var(lπ) for π ∈ P and Var(l) are pairwise disjoint. Assume that the unification
problem {l|pπ ≈ lπ | π ∈ P} has a solution and let σ be a most general unifier.
Then there is a unique term lP such that lσ →pp P lP . We call lP ←pp o→ rσ a parallel
critical pair, and lP ←pp lσ → rσ a parallel critical peak.

Note that every standard critical pair also is a parallel critical pair. The following
lemma states how critical pair analysis for a peak consisting of a parallel and a
root rewrite step is done. It is a straightforward extension of [64, Lemma 4.7].

Lemma 3.49. Let R be a left-linear TRS and t P←pp s→π u with pπ = ε. Then ei-
ther P ⊥ π or there are substitutions σ →pp σ′ and a parallel critical pair t′ ←pp o→ u′

such that t = t′σ′ P\P
′←pp t′σ P ′←pp s→ u′σ = u with P ′ ⊆ P .

Note that left-linearity is essential for the substitutions σ and σ′ to exist in
Lemma 3.49. We are now ready for the main theorem of this section.

Theorem 3.50. A left-linear TRS R is confluent if all its parallel critical peaks
t PΓ←pp s→∆ u can be joined decreasingly as

t
∗−→

<Γ
· −−→

6∆
pp · ∗−−→

<Γ∆
· ∗←−−

<Γ∆
v

Q←−

6Γ
pp · ∗←−−

<∆
u

such that Var(v|Q) ⊆ Var(s|P ).

Proof. We show that →pp is decreasing, which implies confluence of R. Consider
t PΓ←pp s→pp

Q
∆ u. It suffices to show that

t
∗−→

<Γ
· −−→

6∆
pp · ∗−−→

<Γ∆
· ∗←−−

<Γ∆
· ←−

6Γ
pp · ∗←−−

<∆
u (2)

Below we show that (2) holds whenever P = {π} or Q = {π} with pπ = ε. Then

for all p ∈ min {pπ | π ∈ P ∪Q}, t PΓ←pp s→pp
Q
∆ u induces a peak t|p P

′
Γ0
←pp s|p →pp Q

′

∆0
u|p,

where P ′ = {π} or Q′ = {π} for some π with pπ = ε. So for each p, we obtain
a joining sequence for t|p and u|p of shape (2). By the monotonicity of labelings,
this results in joining sequences

s[t|p]p
∗−→

<Γ
· −−→

6∆
pp · ∗−−→

<Γ∆
· ∗←−−

<Γ∆
· ←−

6Γ
pp · ∗←−−

<∆
s[u|p]p

which are mutually parallel since the positions p ∈ min(P ∪ Q) are mutually
parallel. By repeated application of Lemma 3.47 those sequences can be combined
into a single sequence of the same shape.
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Figure 3.6.: Part of the proof of Theorem 3.50.

In order to show (2) for P = {π} or Q = {π} with pπ = ε, assume without loss of
generality that Q = {π}. If P ⊥ π then s = lπσ and, because lπ is linear, there is a
substitution σ′ with t = lπσ

′ and σ(x)→pp σ′(x) for all variables x ∈ V . We conclude
by Lemma 3.45(2). Otherwise P and π overlap, and by Lemma 3.49, there are a
parallel critical peak t′ P

′←pp s′ → u′ and substitutions σ, σ′ such that σ →pp σ′ and
t = t′σ′ P\P

′

6Γ←pp t
′σ P ′

6Γ←pp s
′σ = s→ε

∆ u′σ = u with P ′ ⊆ P . This case is illustrated
in Figure 3.6. By assumption there are u′′, v and v′ with Var(v|Q′) ⊆ Var(s|P ′)
such that we can join t′ and u′ decreasingly, and consequently, using the stability
of labelings we obtain

t′σ
∗−→

<Γ
· −−→

6∆
pp · ∗−−→

<Γ∆
v′σ

∗←−−

<Γ∆
vσ

Q′←−

6Γ
pp u′′σ

∗←−−

<∆
u′σ = u

Furthermore, making repeated use of Lemma 3.45(2),

t = t′σ′
∗−→

<Γ
· −−→

6∆
pp · ∗−−→

<Γ∆
v′σ′

∗←−−

<Γ∆
vσ′ ←−

6Γ
pp vσ

Notably, the step vσ →pp 6Γ vσ
′ is obtained from s′σ →pp 6Γ s

′σ′ by passing through the
rewrite sequence s′σ → u′σ →∗ u′′σ →pp vσ. We have σ(x) = σ′(x) for x ∈ Var(s|P ′)
for otherwise s →pp Γ t would not be a parallel step. Together with the assumption
Var(v|Q′) ⊆ Var(s|P ′), the parallel steps u′′σ →pp 6Γ vσ and vσ →pp 6Γ vσ′ can be
combined into a single →pp 6Γ step by Lemma 3.45(2). Thus we can join t and u
decreasingly with common reduct v′σ′, completing the proof.

To conclude the section we demonstrate Theorem 3.50 on two examples. Both
are based on rule labeling.

50
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Example 3.51. Consider the TRS R consisting of the following five rules with
labels 2 > 1 > 0:

a −→
1

b b −→
0

a f(a, a) −→
1

c f(b, b) −→
2

c h(x) −→
0

h(f(x, x))

There are six parallel critical peaks that can all be joined decreasingly as required
by Theorem 3.50:

f(b, a)←−−
{1}
pp f(a, a) −−→

{1}
c : f(b, a) −−→

{0}
f(a, a) −−→

{1}
c

f(a, b)←−−
{1}
pp f(a, a) −−→

{1}
c : f(a, b) −−→

{0}
f(a, a) −−→

{1}
c

f(b, b)←−−
{1}
pp f(a, a) −−→

{1}
c : f(b, b) −−→

{0}
pp f(a, a) −−→

{1}
c

f(a, b)←−−
{0}
pp f(b, b) −−→

{2}
c : f(a, b) −−→

{0}
f(a, a) −−→

{1}
c

f(b, a)←−−
{0}
pp f(b, b) −−→

{2}
c : f(b, a) −−→

{0}
f(a, a) −−→

{1}
c

f(a, a)←−−
{0}
pp f(b, b) −−→

{2}
c : f(a, a) −−→

{1}
c

Therefore, R is confluent.

Example 3.52. Let R be the TRS (Cops #62) consisting of the (labeled) rules

x− 0 −→
0
x 0− x −→

0
0 s(x)− s(y) −→

0
x− y

0 < s(x) −→
0

true x < 0 −→
0

false s(x) < s(y) −→
0
x < y

gcd(x, 0) −→
0
x gcd(0, x) −→

0
x gcd(x, y) −→

1
gcd(y,mod(x, y))

if(true, x, y) −→
0
x if(false, x, y) −→

0
y

mod(x, 0) −→
0
x mod(0, x) −→

0
0

mod(x, s(y)) −→
1

if(x < s(y), x,mod(x− s(y), s(y)))

There are 12 critical pairs, 6 of which are trivial. One easily verifies that the
remaining 6 pairs can be joined decreasingly, using the order 1 > 0. Hence the
confluence of R follows from Theorem 3.50. Even though R lacks proper parallel
critical pairs, none of the other results in this paper applies. Note that the pre-
conditions for Corollaries 3.14, 3.21, and 3.27 are not satisfied as Rd/Rnd, ?(R),
and R4 are non-terminating (due to the rules with label 1). Finally, persistence
cannot rule out variable overlaps (of the duplicating mod rule below the variable x)
and hence Theorems 3.36 and 3.38 based on the rule labeling fail.
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Figure 3.7.: Interrelationships.

3.5. Assessment

In this section we relate the results from this article to each other (Section 3.5.1)
and to the recent literature [4, 71] (Section 3.5.2).

3.5.1. Interrelationships

The main results for left-linear systems presented in this article can be divided into
three classes. Those that require relative termination as a precondition (Corollar-
ies 3.14, 3.21, and 3.27), those exploiting persistence (Theorems 3.36 and 3.38),
and those considering parallel rewriting (Theorem 3.50). Figure 3.7(a) demon-
strates that these three classes are incomparable. The same holds when focusing
on the results relying on relative termination, cf. Figure 3.7(b). Note that the
regions where only one class is applicable can be populated with examples using
Toyama’s celebrated modularity result [180], e.g., the disjoint union (after renam-
ing function symbols) of the TRSs in Examples 3.56 and 3.57 can only be handled
by the approach based on relative termination. We discuss the interrelationships
in more detail below.

First we observe that Corollaries 3.14, 3.21, and 3.27 subsume Theorem 3.6 since
the preconditions of the corollaries evaporate for linear systems. The inclusion is
strict since Theorem 3.6 cannot deal with the rule f(x) → g(x, x), while all the
corollaries can. Furthermore, Theorem 3.6 is subsumed by Theorem 3.36, which,
if restricted to weak LL-labelings, is subsumed by Theorem 3.38.
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The following three examples show that Corollaries 3.14, 3.21, and 3.27 are
pairwise incomparable in power (for an overview see Figure 3.7(b)).

Example 3.53. Consider the TRS R consisting of the following rules

f(h(x))→ k(g(f(x), x, f(h(a)))) f(x)→ a a→ b

k(x)→ c b→ ⊥ c→ ⊥

This TRS has one critical peak (modulo symmetry). Corollary 3.14 does not
apply since Rd/Rnd is non-terminating, For Corollary 3.21 observe that ?(R)
is terminating using the interpretation h1N(x) = x + 1 and the identify func-
tion for all other function symbols. To show decreasingness we use the labeling
`? × `irl with i(f(x)→ a) = 1 and all other rules receive label 0. The critical peak
t = a x,1← f(h(x))→x,0 k(g(f(x), x, f(h(a)))) = u is closed decreasingly by the join
t →x,0 b →x,0 ⊥ x,0← c x,0← u. Corollary 3.27 also applies since the polynomial
interpretation with hN(x) = 3x + 1 and interpreting all other function symbols
by the sum of its arguments establishes termination of R4/R. The critical peak
t = a 3x+1← f(h(x))→3x+1 k(g(f(x), x, f(h(a)))) = u can be closed decreasingly by
t→0 b→0 ⊥ 0← c 2x+1← u, when taking the identity for ` in Corollary 3.27.

Example 3.54. It is easy to adapt the TRS from Example 3.16 such that ?(R)
becomes non-terminating. Consider the TRS R

1: b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(g(x, c)))

for which termination of Rd/Rnd is proved by LPO with precedence f > g and
a ∼ b > c. Corollary 3.14 applies since the rule labeling establishes decreasingness
of the critical peak t = f(g(x, b)) 2← f(g(x, a)) →3 g(f(x), f(g(x, c))) = u by
the join t →1 f(g(x, a)) →3 u. Note that f1(g1(x)) → g2(f1(g1(x))) ∈ R?

> is
non-terminating and hence Corollary 3.21 does not apply.3 For Corollary 3.27 the
(above) termination proof establishes termination ofR4/R and `4 in combination
with the rule labeling (taking rule numbers as labels) labels the critical peak
t = f(g(x, b)) a,2← f(g(x, a)) →f(g(x,a)),3 g(f(x), f(g(x, c))) = u decreasingly since
t→b,1 f(g(x, a))→f(g(x,a),3 u.

3We remark that it is easy to extend this example such that also ??(R) is non-terminating; just consider
the rule f(g(x, a))→ g(f(x), g(f(g(x, c), f(g(x, c))))).
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Example 3.55. Consider the TRS consisting of the rules

a(a(c))→ a(b(a(c))) b(x)→ h(x, x)

The TRS R has no critical peaks and is terminating by the following matrix
interpretation over N2:

aN2(~x) =

(
1 1
1 2

)
~x+

(
0
3

)
hN2(~x,~y) =

(
1 0
0 0

)
~x+

(
1 0
0 0

)
~y

bN2(~x) =

(
2 0
0 0

)
~x+

(
2
0

)
cN2 =

(
0
0

)
Hence also Rd/Rnd is terminating, and by Corollary 3.14 the TRS R is con-
fluent. Corollary 3.21 also applies since ?(R) is terminating. The derivation
a(a(c))→ a(b(a(c)))→R4 a(a(c))→ · · · shows that R4/R is non-terminating, so
Corollary 3.27 does not apply.

Note that any simple monotone reduction pair showing termination of Rd/Rnd

will also establish termination of R4/R, because if l → x ∈ R4 then there is a
rule l → r ∈ Rd that duplicates x, whence l > r > x. Hence it is no surprise that
Example 3.55 used a matrix interpretation of dimension 2.

Furthermore, the results on relative termination are incomparable with those
on persistence and those based on parallel rewriting. To this end observe that
the first rule of Example 3.39 violates all preconditions of Corollaries 3.14, 3.21,
and 3.27 but Theorems 3.38 and 3.50 apply. Note that Theorem 3.38 based on
arbitrary weak LL-labelings subsumes Corollaries 3.14 and 3.21, since they produce
LL-labelings which may be used to close problematic variable peaks decreasingly
even without persistence. However, if restricted to the rule labeling the following
TRS cannot be handled using persistence while each of the Corollaries 3.14, 3.21,
and 3.27 as well as Theorem 3.50 succeeds.

Example 3.56. Consider the TRS consisting of the rules

1 : f(x, y, a)→ f(x, x, b) 2 : f(f(x, y, b), z, c)→ x

which is orthogonal. Since a most general sort assignment cannot exclude vari-
able overlaps of the first rule with itself, Theorem 3.38 can only succeed when
used in combination with an LL-labeling. Note that all preconditions for Corol-
laries 3.14, 3.21, and 3.27 are satisfied and due to the lack of critical overlaps they
are decreasing. For the same reason Theorem 3.50 applies.

The final example shows that Theorem 3.50 does not subsume the plain version
for linear TRSs (because of the variable condition).
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Example 3.57. Consider the linear TRS consisting of the single rule

(x+ y) + z → (z + y) + x

Note that all steps are labeled the same, because they use the same rule. There is
only one (parallel) critical peak, ((z+y)+x)+u← ((x+y)+z)+u→ (u+z)+(x+y),
which may be joined as ((z + y) + x) + u→ ((x+ y) + z) + u← (u+ z) + (x+ y).
Confluence of R can be established by Theorem 3.6 using the rule labeling from
Lemma 3.7. On the other hand, trying to use Theorem 3.50 fails for this joining
sequence, because Var(((z + y) + x) + u) 6⊆ Var((z + y) + x). All other ways of
joining the critical peak fail to be decreasing because they require more than one
parallel rewrite step from ((z+y)+x)+u or (u+z)+(x+y), e.g. ((z+y)+x)+u→
((x+ y) + z) + y → (y + z) + (x+ y).

3.5.2. Related work

In this section we relate our results to [4, 71]. To compare our setting with the
main result from [71] we define the critical pair steps CPS(R) = {s → t, s → u |
t← s→ u is a critical peak of R}. Furthermore let CPS′(R) be the critical pair
steps which do not give rise to trivial critical pairs.

Theorem 3.58 ([71, Theorem 3]). A left-linear locally confluent TRS R is con-
fluent if CPS′(R)/R is terminating.

Using the weak LL-labeling `
PCPS′(R)
rt , from Theorem 3.50 we obtain the following

corollary. Here PCPS′(R) are the parallel critical pair steps which do not give rise
to trivial parallel critical pairs.

Corollary 3.59. A left-linear TRS R whose parallel critical pairs are joinable is
confluent if PCPS′(R)/R is terminating.

Proof. We need to show that the relative termination assumption eliminates the
variable condition in Theorem 3.50. If PCPS′(R)/R is terminating then for any
(non-trivial) parallel critical peak t PΓ←pp s→∆ u we obtain t→∗

<Γ
· ∗

<∆
← u, hence Q

can be chosen to be empty and ∅ = Var(v|∅) ⊆ Var(s|P ) trivially holds.4

We stress that despite the fact that the preconditions in Corollary 3.59 require
more (implementation) effort to check than those in Theorem 3.58, in theory
Corollary 3.59 subsumes Theorem 3.58. To this end observe that termination

4The condition that {s→ t | u← s→ t is a critical pair}/R is terminating also eliminates the variable
condition.
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of PCPS′(R)/R is equivalent to termination of CPS′(R)/R. Furthermore joinabil-
ity of the parallel critical pairs is a necessary condition for confluence just as local
confluence is.

Due to the flexibility of the `Srt labeling we can choose S to be (a subset of) the
critical diagram steps CDS(R) = {s→ ti, s→ uj | t0 ← s→ u0 is a critical peak
in R, t0 →∗ tn = um

∗← u0, 0 6 i 6 n, and 0 6 j 6 m}. Using CDS(R) allows
to detect a possible decrease also somewhere in the joining part of the diagrams.5

This incorporates (and generalizes) the idea of critical valleys [141]. However, we
remark that our setting does not (yet) follow another recent trend, i.e., to drop
development closed critical pairs (see [69, 141]). We leave this for future work.

Next we show that Corollary 3.21 generalizes the results from [4, Sections 5
and 6]. It is not difficult to see that the encoding presented in [4, Theorem 5.4]
can be mimicked by Corollary 3.21 where linear polynomial interpretations over N
of the shape as in (1)

(1) fiN(x) = x+ cf (2) fiN(x) = x+ cfi

are used to prove termination of ?(R) and `? × `rl is employed to show LL-
decreasingness of the critical peaks. In contrast to [4, Theorem 5.4], which explic-
itly encodes these constraints in a single formula of linear arithmetic, our abstract
formulation has the following advantages. First, we do not restrict to weight func-
tions but allow powerful machinery for proving relative termination and second
our approach allows to combine arbitrarily many labelings lexicographically (cf.
Lemma 3.13). Furthermore we stress that our abstract treatment of ?(R) allows
to implement Corollary 3.21 based on ??(R) (cf. Section 3.6) which admits further
gains in power (cf. Example 3.1 as well as Section 3.7).

The idea of the extension presented in [4, Example 6.1] amounts to using `rl × `?
instead of `? × `rl, which is an application of Lemma 3.13 in our setting. Finally,
the extension discussed in [4, Example 6.3] suggests to use linear polynomial inter-
pretations over N of the shape as in (2) to prove termination of ?(R). Note that
these interpretations are still weight functions. This explains why the approach
from [4] fails to establish confluence of the TRSs in Examples 3.16 and 3.17 since
a weight function cannot show termination of the rules f1(g1(x)) → g1(f1(x)) and
f1(h1(x))→ h1(g1(f1(x))), respectively.

Note that both recent approaches [4, 71] based on decreasing diagrams fail to
prove the TRS R from Example 3.1 confluent. The former can, e.g., not cope
with the non-terminating rule ×1(x)→ +0(×1(x)) in R?

> (cf. Example 3.24) while

5In [201] we employed the strictly weaker system where all steps of the join (e.g., ti → ti+1) are used
whereas here we use s→ ti+1.
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overlaps with the non-terminating rule x+ y → y + x ∈ R prevent the latter ap-
proach from succeeding. In contrast, Examples 3.15 and 3.24 give two confluence
proofs based on our setting.

3.6. Implementation

In this section we sketch how the results from this article can be implemented.
Before decreasingness of critical peaks can be investigated, the critical pairs must

be shown to be convergent. For a critical pair t←o→ u in our implementation we
consider all joining sequences such that t →6n · 6n← u and there is no smaller n
that admits a common reduct. While in theory longer joining sequences might be
easier to label decreasingly, preliminary experiments revealed that the effort due
to the consideration of additional diagrams decreased performance.

To exploit the possibility for incremental confluence proofs by lexicographically
combining labels (cf. Lemmata 3.9 and 3.13) our implementation considers lists
of labels. The search for relative termination proofs (and thus the labelings) is
implemented by encoding the constraints in non-linear (integer) arithmetic. Be-
low we describe how we combine existing labels (some partial progress) with the
search for a new labeling to show the critical peaks decreasing. Note that labelings
use different domains (natural numbers, terms), and, even worse, different orders
(matrix interpretations, LPO, etc.). The crucial observation for incremental label-
ing is that neither the actual labels nor the precise order on the labels have to be
recorded but only how the labels in the join relate to the labels from the peak. We
use the following encoding. Let the local peak have labels t α← s →β u. Then a
step v →γ w is labeled by the pair (◦α, ◦β) where ◦α and ◦β indicates if α ◦α γ and
β ◦β γ, respectively. Here {◦α, ◦β} ⊆ {>,>, ?} and ? means that the labels are
incomparable, e.g., f(x)?g(y) in LPO or 2x+1?x+2 for (matrix) interpretations.6

Decreasingness as depicted in Figure 3.8(a) can then be captured by the conditions
shown in Figure 3.8(b), where ◦ can be replaced by any symbol.

It is straightforward to implement Corollary 3.14. After establishing termination
of Rd/Rnd (e.g., by an external termination prover) any weak LL-labeling can be
tried to show the critical peaks decreasing. In [4, 71] it is shown how the rule
labeling can be implemented by encoding the constraints in linear arithmetic.
Note that when using weak LL-labelings the implementation does not have to test
condition 2 in Definition 3.10 since this property is intrinsic to weak LL-labelings.

We sketch how to implement the labeling `Srt from Lemma 3.8 as a relative
termination problem. First we fix a suitable set S, i.e., the critical diagram steps

6Our previous implementation (reported in [201]) had a bug, as it did not track incomparable labels
properly.
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(b) Encoding of decreasingness.

Figure 3.8.: Encoding the order on the labels.

(see Section 3.5). Facing the relative termination problem S/R we try to simplify
it according to Theorem 3.2 into some S ′/R′. Note that it is not necessary to finish
the proof. By Theorem 3.2 the relative TRS (S \ S ′)/R is terminating and hence

by Lemma 3.8 `
S\S′
rt is an L-labeling. Let > = →∗R and > = →+

(S\S′)/R. Since >
and > can never increase by rewriting, it suffices to exploit the first decrease with
respect to >. Consider a rewrite sequence v1 →R v2 →R · · · →R vl. Take the
smallest k such that v1 → vk+1 ∈ S but v1 → vk+1 /∈ S ′. Then vi →(>,>) vi+1 for
1 6 i 6 k and vi →(>,>) vi+1 for k < i < l. If no such k exists set vi →(>,>) vi+1

for 1 6 i < l. We demonstrate the above idea on an example.

Example 3.60. Consider the following TRS R from [11]:

I(x)→ I(J(x)) J(x)→ J(K(J(x))) H(I(x))→ K(J(x)) J(x)→ K(J(x))

We show how the critical peak H(I(J(x))) ← H(I(x)) → K(J(x)) can be closed
decreasingly H(I(J(x))) →(>,>) K(J(J(x))) →(>,>) K(J(K(J(x)))) (6,6)← K(J(x))
by `Srt. Let S be the TRS consisting of the critical diagram steps from the above
diagram, i.e.,

H(I(x))→ H(I(J(x))) H(I(x))→ K(J(J(x)))

H(I(x))→ K(J(x)) H(I(x))→ K(J(K(J(x))))

The interpretation HN(x) = JN(x) = KN(x) = x and IN(x) = x + 1 allows to
“simplify” termination of the problem S/R according to Theorem 3.2. Since the
rules that reduce the number of I′s are dropped from S (and R), those rules admit
a decrease in the labeling.
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The abstraction works similarly for the labelings `? and `4 from Lemmata 3.20
and 3.25, respectively.

Finally, we explain why ??(R) need not be computed explicitly to implement
Corollary 3.21 with the labeling from Lemma 3.23. The idea is to start with ?(R)
and incrementally prove termination of R?

>/R?
= until some S1/S2 is reached. If all

left-hand sides in S1 are distinct then they must have been derived from different
combinations (l, x) with l→ r ∈ R and x ∈ Var(l).7 Hence they are exactly those
rules which should be placed in R?

=. We show the idea by means of an example.

Example 3.61. We revisit Example 3.1 and try to prove termination of ?(R).
By an application of Theorem 3.2 with the interpretation given in Example 3.24
the problem is termination equivalent to R†/R?

=. By another application of Theo-
rem 3.2 the same proof can be used to show termination of (R?

> \ R?
†)/(R?

= ∪R?
†)

which is a suitable candidate for ??(R) since the rules in R?
† have different left-hand

sides.

We have also implemented Theorems 3.36 and 3.38. The requirements of Theo-
rem 3.36 can be checked effectively by characterizing t ∈ TEα(F ,V) as follows:

Remark 3.7. The condition t ∈ TEα(F ,V) holds if and only if t is S-sorted and
S(t) (≤ ∪ /1)∗ α, where the relation /1 on sorts relates argument types to result
types: S(f, i) /1 S(f) for all function symbols f ∈ F of arity n and 1 6 i 6 n.

We only implemented the simplest case of Theorem 3.38, where ` is a rule
labeling. First, using Remark 3.7, we determine for which rules l → r ∈ R,
l′ → r′ ∈ R, it is possible to nest l′ → r′ below a duplicating variable of l → r.
We add constraints i(l→ r) > i(l′ → r′) to our constraint satisfaction problem for
the rule labeling. The hard work is done by an SMT solver.

To postpone the expensive computation (and labeling) of parallel critical pairs
as long as possible we implemented Theorem 3.50 according the following lazy
approach. We first find ordinary weak LL-labelings for the critical diagrams, as
described earlier in this section. Only if confluence cannot be established by con-
sidering this weak LL-labeling for (non-parallel) critical peaks, we generate parallel
critical peaks together with joining sequences. Finally, we check whether the weak
LL-labeling joins all resulting diagrams (critical and parallel critical) decreasing
as per Theorem 3.50. This check is also responsible for combining single steps into
a parallel one for the joining sequence. We confess that this implementation for
Theorem 3.50 is somewhat opportunistic but allows to reuse partial progress (the
weak LL-labeling) while postponing parallel critical pairs as long as possible.

7When computing ?(R) the implementation renames variables such that (`, x) uniquely identifies a rule
`→ r.
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method pre CR(`rl) CR(`rt) CR

Theorem 3.6 69 42 36 44
Theorem 3.36 92 46 40 48
Theorem 3.38 92 53 – –
Corollary 3.14 65 47 40 49
Corollary 3.21? 66 48 41 50
Corollary 3.21?? 69 51 43 53
Corollary 3.27 65 47 41 49

Theorem 3.50 92 55 55 57

Table 3.1.: Experimental results for 92 left-linear TRSs.

3.7. Experiments

The results from the article have been implemented and form the core of the
confluence prover CSI [200]. For experiments8 using version 0.4 of the tool we
considered the current 276 TRSs in Cops. In the experiments we focus on the 149
systems which have been referenced from the confluence literature. From these
systems 92 are left-linear. Our experiments have been performed on a notebook
equipped with an Intel R© quad core processor i7-2640M running at a clock rate of
2.8 GHz and 4 GB of main memory. For 3 systems not even local confluence could
be established within 60 seconds. All other tests finished within this time limit.

Table 3.1 shows an evaluation of the results from this article. The first column
indicates which criterion has been used to investigate confluence. A ? means that
the corresponding corollary is implemented using ?(R) whereas ?? refers to ??(R).
The column labeled pre shows for how many systems the precondition of the
respective criterion is satisfied, e.g., for Theorem 3.6 the precondition is linearity
while for Corollary 3.14 the precondition is termination of Rd/Rnd. The columns
labeled CR(`) give the number of systems for which confluence could be established
using labeling `. (For Corollary 3.21 implicitly `? is also employed. Similarly
Corollary 3.27 employs `4.) The column labeled CR corresponds to the full power
of each result, i.e., when the lexicographic combination of all labelings is used.

From the table we draw the following conclusions. On this test bed the labeling
function `rl can handle more systems than `rt when considering single steps but
for parallel rewriting both labelings succeed on equally many systems. Still, in
both settings most power is obtained when using all labelings. In practice the
study of parallel rewriting (Theorem 3.50) is beneficial. This suggests that the
preconditions to obtain weak LL-labelings are severe.

8Details available from http://cl-informatik.uibk.ac.at/software/csi/labeling2.
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tool CR not CR

ACP 63 22
CSI 67 20
saigawa 53 12∑

68 22

Table 3.2.: Comparison with other tools on 92 left-linear TRSs.

For reference in Table 3.2 we compare the power of the confluence provers par-
ticipating in the Confluence Competition (CoCo),9 i.e., ACP [11], CSI [200], and
saigawa [71, 97].

• ACP is a powerful confluence prover which implements numerous confluence
criteria from the literature. Its distinctive feature is the strong support for
problems with AC semantics [6].

• CSI gains most of its power from the labeling framework presented here. In
addition it implements development closed critical pairs [143] and persis-
tence [47]. Recently, the techniques introduced in [6] and [97] have also been
integrated.

• saigawa also heavily exploits relative termination, remarkably also to analyze
confluence of non-left-linear systems [97].

From Tables 3.1 and 3.2 we conclude that our framework admits a state-of-the-
art confluence prover for left-linear systems.

3.8. Conclusion

In this article we studied how the decreasing diagrams technique can be automated.
We presented conditions (subsuming recent related results) that ensure confluence
of a left-linear TRS whenever its critical peaks are decreasing. The labelings
we proposed can be combined lexicographically which allows incremental proofs
of confluence and has a modular flavor in the following sense: Whenever a new
labeling function is invented, the whole framework gains power. We discussed
several situations (Examples 3.1, 3.16, 3.17, 3.54) where traditional confluence
techniques fail but our approach easily establishes confluence.

9http://coco.nue.riec.tohoku.ac.jp
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We have also considered parallel rewriting resulting in a significantly more pow-
erful approach. We leave the study of→◦ and the integration of development closed
critical pairs as in [69, 141] as future work.

Recently confluence by decreasing diagrams (for abstract rewrite systems) has
been formalized in the theorem prover Isabelle/HOL [197, 199]. Since the gen-
erated (incremental) labeling proofs are often impossible to check for humans it
seems a natural point for future work to also formalize the labeling framework to
enable automatic certification of confluence proofs. Since our setting is based on a
single method (decreasing diagrams) while still powerful it offers itself as a perfect
candidate for future certification efforts.
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Abstract

This paper presents a formalization of decreasing diagrams in the theorem prover
Isabelle. It discusses mechanical proofs showing that any locally decreasing ab-
stract rewrite system is confluent. The valley and the conversion version of de-
creasing diagrams are considered.

4.1. Introduction

Formalizing confluence criteria has a long history in λ-calculus. Huet [85] proved
a stronger variant of the parallel moves lemma in Coq. Isabelle/HOL was used
in [132] to prove the Church-Rosser property of β, η, and βη. For β-reduction
the standard Tait/Martin-Löf proof as well as Takahashi’s proof [171] were for-
malized. The first mechanically verified proof of the Church-Rosser property of
β-reduction was done using the Boyer-Moore theorem prover [160]. The formal-
ization in Twelf [149] was used to formalize the confluence proof of a specific
higher-order rewrite system in [168].

Newman’s lemma (for abstract rewrite systems) and Knuth and Bendix’ critical
pair theorem (for first-order rewrite systems) have been proved in [153] using ACL.
An alternative proof of the latter in PVS, following the higher-order structure of
Huet’s proof, is presented in [51]. PVS is also used in the formalization of the
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lemmas of Newman and Yokouchi in [50]. Knuth and Bendix’ criterion has also
been formalized in Coq [37] and Isabelle/HOL [173].

Decreasing diagrams [139] are a complete characterization of confluence for ab-
stract rewrite systems whose convertibility classes are countable. As a criterion
for abstract rewrite systems, they can easily be applied for first- and higher-order
rewriting, including term rewriting and the λ-calculus. Furthermore, decreasing
diagrams yield constructive proofs of confluence [144] (in the sense that the joining
sequences can be computed based on the divergence). We are not aware of a (com-
plete) formalization of decreasing diagrams in any theorem prover (see remarks in
Section 4.6).

In this paper we discuss a formalization of decreasing diagrams in the theorem
prover Isabelle/HOL. (In the sequel we just call it Isabelle.) We closely follow
the proofs in [138, 139]. For alternative proofs see [22, 99] or [45, 90, 142] where
proof orders play an essential role. The main contributions of this paper are (two)
mechanical proofs of Theorem 4.1 in Isabelle.

Theorem 4.1 ([138, 139]). Every locally decreasing abstract rewrite system is
confluent.

As a consequence all definitions (lemmata) in this paper have been formalized
(proved) in Isabelle. The definitions from the paper are (modulo notation) iden-
tical to the ones used in Isabelle. Our formalization (Decreasing Diagrams.thy,
available from [198]) consists of approximately 1600 lines of Isabelle code in the
Isar style and contains 31 definitions and 122 lemmata. The valley version [139]
amounts to ca. 1000 lines, 22 definitions, and 97 lemmata while the conversion
version [138] has additional 600 lines of Isabelle comprising 9 definitions and 25
lemmata. Our formalization imports the theory Multiset.thy from the Isabelle li-
brary and Abstract Rewriting.thy [163] from the Archive of Formal Proofs. We used
Isabelle 2012 and the Archive of Formal Proofs from July 30, 2012.

The remainder of this paper is organized as follows. In the next section we
recall helpful preliminaries for our formalization of [139], which is described in
Section 4.3. The conversion version of decreasing diagrams [138] is the topic of
Section 4.4. In Section 4.5 we highlight changes to (and omissions in) the proofs
from [138, 139] before we conclude in Section 4.6.

4.2. Preliminaries

We assume familiarity with rewriting [172] and decreasing diagrams [139]. Basic
knowledge of Isabelle [133] is not essential but may be helpful.
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meaning set multiset sequence/list [139]

empty {} {#} [ ] ∅/ε
singleton {α} {#α#} [α] {α}/[α]/α
membership α ∈ S α ∈#M – ∈
union/concatenation S ∪ T M +N σ@τ ]/στ
intersection S ∩ T M #∩N – ∩
difference S − T M −N – −
sub(multi)set S ⊆ T M ≤ N – ⊆

Table 4.1.: Predefined Isabelle operators.

Given a relation → we write ← for its inverse, →→ for its transitive closure, and
→= (in pictures also

=→) for its reflexive closure. We write ↔ for → or ← and
denote sets by S, T , U , multisets by M , N , I, J , K, Q, single labels by α, β, γ,
and lists of labels by σ, τ , υ, κ, µ, and ρ (possibly primed or indexed).

Table 4.1 gives an overview of several predefined operators in Isabelle for sets,
multisets, and lists (sequences) where we also incorporated the notation from [139]
in the rightmost column. In the paper we will use the Isabelle notation, but drop
the @ for concatenating sequences and write α instead of [α]. In addition to the
operators provided by Isabelle, we need the difference (intersection) of a multiset
with a set. Here M −s S (M ∩s S) removes (keeps) all occurrences of elements
in M that are in S. Sometimes it will be necessary to convert e.g. a multiset to a
set (or a list). In the paper we leave these conversions implicit, since no confusion
can arise. We establish the following useful equivalences:

Lemma 4.2 (parts of [139, Lemma A.3]).

1. (M +N) −s S = (M −s S) + (N −s S)

2. (M −s S) −s T = M −s (S ∪ T )

3. M = (M ∩s S) + (M −s S)

4. (M −s T ) ∩s S = (M ∩s S) −s T

Proof. By unfolding the definitions of multiset and the operators.

4.3. Formalization of Decreasing Diagrams

We assume familiarity with the original proof of decreasing diagrams in [139], upon
which our formalization in this section is based. Nevertheless we will recall the
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important definitions and lemmata. However, we only give proofs if our proof
deviates from the original argument. In addition we state (sometimes small) key
results, since an effective collection of lemmata is crucial for completely formal
proofs.

The remainder of this section is organized as follows: Section 4.3.1 describes
our results on multisets. Section 4.3.2 is dedicated to decreasingness (of sequences
of labels) and Section 4.3.3 is concerned with an alternative formulation of local
decreasingness. Afterwards, Section 4.3.4 lifts decreasingness (from labels) to di-
agrams. Well-foundedness of the measure (on peaks) is proved in Section 4.3.5,
where we also establish the main result.

4.3.1. Multisets

In the sequel we assume ≺ to be a transitive and irreflexive binary relation.

Definition 4.3 ([139, Definition 2.5]).

1. The set

�

α is the strict order ideal generated by (or down-set of) α, defined
by

�

α = {β | β ≺ α}. This is extended to sets

�

S =
⋃
α∈S

�

α. We define�

M and

�
σ to be the down-set generated by the set of elements in M and σ,

respectively.

2. The (standard) multiset extension (denoted by ≺mul) of ≺ is defined by

M ≺mul N if ∃ I J K. M = I +K, N = I + J , K ⊆ � J , and J 6= {#}

The relation4mul is obtained by removing the last condition (J 6= {#}). Note
that 4mul is the reflexive closure of ≺mul (cf. Lemma 4.39 in Section 4.5).

The following result is not mentioned in [139]—while [140, Proposition 1.4.8(3)]
shows a more general result—but turned out handy for our formalization.

Lemma 4.4.

�

(

�

S) ⊆ � S

Proof. Assume x ∈ � ( � S). By Definition 4.3 there must be a y ∈ � S with x ≺ y.
From y ∈ � S we obtain a z ∈ S with y ≺ z. Then x ≺ z by transitivity of ≺ and
hence x ∈ � S.

The multiset extension inherits some properties of the base relation, which we
will implicitly use in the sequel.

Lemma 4.5. Let ≺ be a transitive and well-founded relation. Then ≺mul is tran-
sitive and well-founded, and 4mul is reflexive and transitive.
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4.3. Formalization of Decreasing Diagrams

Proof. By Lemmata 4.38 and 4.39 in combination with existing results in Multi-
set.thy.

We can now establish the following properties.

Lemma 4.6 ([139, Lemma 2.6]).

1.

�

(S ∪ T ) =

�

S ∪ � T and

�

(στ) =

�

σ ∪ � τ and

�

(M −s S) ⊇ � M −s � S

2. M ≤ N ⇒M 4mul N ⇒

�

M ⊆ � N

3. M 4mul N ⇒ ∃ I J K. M = I +K ∧N = I + J ∧K ⊆ � J ∧ J #∩K = {#}

4. N 6= {#} ∧M ⊆ � N ⇒M ≺mul N

5. M 4mul N ⇒M −s � S 4mul N −s

�

S

6. M 4mul N ⇔ Q+M 4mul Q+N

7. Q ⊆ � N − � M ∧M 4mul N ⇒ Q+M 4mul N

8. S ⊆ T ⇒M −s T 4mul M −s S

9. M ≺mul N ⇒ Q+M ≺mul Q+N

Note that statements (5) and (6) slightly differ from [139, Lemma 2.6](5,6), but
are easier to apply. The (easy) statements of (8) and (9) are not mentioned in [139],
which we required for [139, Lemmata 3.5 and 3.6].

4.3.2. Decreasingness

We define the lexicographic maximum measure, which maps lists to multisets,
inductively.

Definition 4.7 ([139, Definition 3.2]).

• |[ ]| = {#}

• |ασ| = {#α#}+ (|σ| −s � α)

The next lemma establishes properties of the lexicographic maximum measure.

Lemma 4.8 ([139, Lemma 3.2]).

1.

� |σ| = � σ

2.

� |στ | = |σ|+ (|τ | −s � σ)
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D

τ

σ σ′

τ ′

(a) Decreasing diagram.

LD

β

α σ′

τ ′

(b) Locally decreasing
diagram.

Figure 4.1.: Diagrams.

Proof.

1. By induction on σ. The base case is trivial. Using Lemma 4.6(1) the inductive
step amounts to

�

α∪ � (|σ| −s � α) =

�

α∪ � σ. The inclusion from left to right
follows from the induction hypothesis. For the inclusion from right to left we
proceed by case analysis. If x ∈ � α then the result immediately follows. If
x /∈ � α then x ∈ � σ and from the induction hypothesis x ∈ � |σ|. Furthermore
x /∈ � α using Lemma 4.4 also yields x /∈ � ( � α). Hence x ∈ � |σ| −s � ( � α)
and from Lemma 4.6(1) we obtain x ∈ � (|σ| −s � α), from which the result
follows.

2. By induction on σ, see [139].

Decreasingness is defined on quadruples (of sequences of labels).

Definition 4.9 ([139, Definition 3.3] for labels). The tuple of labels (τ, σ, σ′, τ ′)
is decreasing (D) if |στ ′| 4mul |τ |+ |σ| and |τσ′| 4mul |τ |+ |σ|. For a visualization
see Figure 4.1a.1

We write D into a diagram to indicate that its labels are decreasing.
Decreasingness can also be stated differently.

Lemma 4.10 ([139, Definition 3.3]). The following two statements are equivalent:

1. |στ ′| 4mul |τ |+ |σ| and |τσ′| 4mul |τ |+ |σ|

2. |τ ′| −s � σ 4mul |τ | and |σ′| −s � τ 4mul |σ|
1Although the results in Sections 4.3.2 and 4.3.3 are on labels only for visualization we already use

diagrams.
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D D

τ

σ σ′

τ ′

υ

υ′

σ′′ ⇒ D

τυ

σ σ′′

τ ′υ′

(a) Lemma 4.11.

D

τ

σ σ′

τ ′

υ

(b) Lemma 4.12.

Figure 4.2.: Pasting preserves decreasingness and is hypothesis decreasing.

Proof. By Lemma 4.8(2) and Lemma 4.6(6).

We have followed the (involved) proofs in [139] that pasting preserves decreas-
ingness (Lemma 4.11) and that pasting is hypothesis decreasing (Lemma 4.12)
without big changes.

Lemma 4.11 ([139, Lemma 3.5] for labels). If (τ, σ, σ′, τ ′) and (υ, σ′, σ′′, υ′) are
decreasing, then (τυ, σ, σ′′, τ ′υ′) is decreasing (see Figure 4.2a).

Proof. As in [139] but we show (|υ′| −s � στ ′) −s � τ 4mul (|υ′| −s � σ′) −s � τ (in-
stead of ⊆) where we needed Lemma 4.6(8) (in the last sequence in [139, Proof of
Lemma 3.5]).

Lemma 4.12 ([139, Lemma 3.6] for labels). If τ is non-empty and we have that
(τ, σ, σ′, τ ′) is decreasing (see Figure 4.2b) then |σ′|+ |υ| ≺mul |σ|+ |τυ|.

Proof. As in [139] using Lemma 4.6(9) in the second step.

4.3.3. Local Decreasingness

Labels (β, α, σ′, τ ′) are locally decreasing (LD) if they are decreasing and both
α and β consist of exactly one label (see Figure 4.1b). Now, LD can also be
formulated differently:

Lemma 4.13 ([139, Prop. 3.4]). The form of locally decreasing labels is specified
in Figure 4.3a.

To show Lemma 4.13 we give names to the joining sequences as in Figure 4.3b.
Then the condition of Figure 4.3a can be expressed as:2

LD′ := σ1 ⊆

�

β ∧ length σ2 ≤ 1 ∧ σ2 ⊆ {α} ∧ σ3 ⊆

�

αβ ∧
τ1 ⊆

�

α ∧ length τ2 ≤ 1 ∧ τ2 ⊆ {β} ∧ τ3 ⊆

�

αβ

2Here length computes the length of a list.
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LD

β

α

�

β

= α

�

αβ

�

α

=

β

�

αβ

(a) Alternative formulation of local decreasingness.

β

α

σ1

= σ2

σ3

τ1

=
τ2 τ3

(b) Giving names to the joining sequences.

Figure 4.3.: Local diagrams.

Local decreasingness of the labels in the diagram of Figure 4.3a yields (using
Lemma 4.10)

LD := |σ′| −s � β 4mul |α| ∧ |τ ′| −s

�

α 4mul |β|

Hence Lemma 4.13 states that LD′ if and only if LD. This means that

(i) if a local diagram satisfies the conditions in Figure 4.3a, i.e. LD′, then it is
decreasing and

(ii) local decreasingness implies that the joining sequences τ ′ and σ′ in Figure 4.1b
can be decomposed into τ1τ2τ3 and σ1σ2σ3 such that the properties of the local
diagram in Figure 4.3a, i.e. LD′, are satisfied.

Lemma 4.15 will be the key result for (i), but first we establish a useful lemma.

Lemma 4.14. |σ| ≤ σ

Proof. By induction on σ. The base case is trivial. The step case amounts to

|ασ| = {#α#}+ (|σ| −s � α) ≤ {#α#}+ (σ −s � α) ≤ ασ

using Definition 4.7 in the first step and the induction hypothesis in the second
step.

In the sequel we will view |σ| and σ as sets and use |σ| ⊆ σ. Now we can prove
the following key result to establish (i).

Lemma 4.15. σ1 ⊆

�

β ∧ length σ2 ≤ 1 ∧ σ2 ⊆ {α} ∧ σ3 ⊆

�

αβ ⇒ |σ1σ2σ3| −s�

β 4mul |α|
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4.3. Formalization of Decreasing Diagrams

Proof. We show the property (?), i.e., (|σ1| −s

�

β) + ((|σ2| −s

�

σ1) −s � β) +
(((|σ3| −s

�

σ2) −s � σ1) −s � β) 4mul {#α#} which is equivalent to the conclusion
by Lemmata 4.8(2), 4.2(1) and Definition 4.7. The hypothesis contains σ1 ⊆

�

β,
which together with Lemma 4.14 yields |σ1| ⊆

�

β and hence

|σ1| −s

�

β = {#} (1)

Similarly from σ3 ⊆

�

αβ we get |σ3| −s (

�

α ∪ � β) = {#} and hence

|σ3| −s (

�

σ2 ∪

�

σ1 ∪

�

α ∪ � β) = {#} (3)

Using length σ2 ≤ 1 ∧ σ2 ⊆ {α} from the hypothesis we consider two cases for σ2.

• If σ2 = [ ] then

(|σ2| −s
�

σ1) −s � β = {#} (2)

and from (3) we have

((|σ3| −s
�

σ2) −s � σ1) −s � β 4mul {#α#} (3’)

using Lemma 4.2(2). Then (?) follows immediately from (1), (2), and (3’).

• If σ2 = [α] then we get (2’)

(|σ2| −s

�

σ1) −s � β = |σ2| −s (

�

σ1 ∪

�

β) Lemma 4.2(2)

= {#α#} −s (

�

σ1 ∪

�

β) σ2 = [α] with Definition 4.7

4mul {#α#} Lemma 4.6(8)

and (because

�

σ2 =

�

α), similar as in the other case from (3) we get

((|σ3| −s

�

σ2) −s � σ1) −s � β = {#} (3”)

From (1), (2’), and (3”) we conclude (?).

Next we prepare for the key lemma to establish (ii), i.e., Lemma 4.17, after
establishing useful intermediate results.

Lemma 4.16.

1. α ∈# |σ| ⇒ ∃σ1σ3. σ = σ1ασ3 ∧ α /∈ � σ1

2. |σ| ⊆ � S ⇒ σ ⊆ � S

3. S ⊆ � T ⇒ � S ⊆ � T
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4. Confluence by Decreasing Diagrams – Formalized

Proof.

1. By induction on σ. The base case is trivial. In the step case we can assume
that α ∈# |βσ|. We proceed by case analysis.

• If α = β then we are done with σ1 = [ ] and σ3 = σ.

• In the other case we have α ∈# |σ| and α /∈ � β from Definition 4.7.
The induction hypothesis yields σ′1 and σ′3 with σ = σ′1ασ

′
3 such that

α /∈ � σ′1. Because α /∈ � β we can conclude with σ1 = βσ′1 and σ3 = σ′3
using Lemma 4.6(1).

2. Assume α ∈ σ. If α∈# |σ| then we are done by the hypothesis. In the other
case there must be a β ∈ |σ| (easy induction on σ) with α ≺ β. From the
hypothesis we get that β ∈ � S and by transitivity also α ∈ � S, which finishes
the proof.

3. By monotonicity of
�

([140, Proposition 1.4.8(2)]) the assumption yields�

S ⊆ � ( � T ). Lemma 4.4 finishes the proof.

Note that Lemma 4.16(2) can be seen as an inverse of Lemma 4.14. With
Lemma 4.16 we can now prove the following key result to establish (ii):

Lemma 4.17. |σ′| −s � β 4mul {#α#} ⇒ ∃σ1σ2σ3. σ
′ = σ1σ2σ3 ∧ σ1 ⊆

�

β ∧
length σ2 ≤ 1 ∧ σ2 ⊆ {α} ∧ σ3 ⊆

�

αβ

Proof. To show the result we perform a case analysis.

• If α ∈# |σ′| −s � β then Lemma 4.16(1) yields σ1 and σ3 with σ′ = σ1ασ3

and α /∈ � σ1. Hence from the hypothesis and Lemma 4.8(2) we get

(|σ1| −s

�

β) + {#α#}+ (((|σ3| −s

�

α) −s � σ1) −s � β) 4mul {#α#}

and since α /∈ � σ1 and α /∈ � β it follows that

|σ1| −s

�

β = {#} and ((|σ3| −s

�

α) −s � σ1) −s � β = {#}

Now, Lemma 4.2(2) yields

|σ1| ⊆

�

β and |σ3| ⊆

�

α ∪ � σ1 ∪

�

β

and from Lemma 4.16(2) we get

σ1 ⊆

�

β and σ3 ⊆

�

α ∪ � σ1 ∪

�

β

The latter simplifies to σ3 ⊆

�

αβ using

�

σ1 ⊆

�

β (from Lemma 4.16(3)) and
Lemma 4.6(1). Hence in this case the result follows with σ2 = [α].
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4.3. Formalization of Decreasing Diagrams

• If α /∈# |σ′| −s � β

⇒ |σ′| −s � β ⊆ � α hypothesis

⇒ |σ′| ⊆ � αβ Lemma 4.6(1)

⇒ σ′ ⊆ � αβ Lemma 4.16(2)

In this case the result follows with empty σ1, empty σ2, and σ′ = σ3.

Now Lemma 4.13 follows from Lemmata 4.15 and Lemma 4.17, which establish
LD′ ⇒ LD and LD⇒ LD′, respectively.

4.3.4. Labeled Rewriting

So far we have only considered sequences of labels. However, for the main result
(Section 4.3.5) we need labeled rewriting. Hence this section sketches how we
formalized labeled (abstract) rewriting before lifting the results from Section 4.3.2
from labels to labeled rewriting (a step which is left implicit in [139]). In the
theory Abstract Rewriting.thy an abstract rewrite system (ARS) is a set of pairs
of objects of the same type, i.e., a binary relation. Confluence is also defined in
Abstract Rewriting.thy, but the theory does not provide support for labeled abstract
rewrite systems. In the sequel we write A (B) for (labeled) ARSs. A labeled ARS B
is a ternary relation. We call (a, α, b) ∈ B a (labeled rewrite) step and write a

α→ b.
Next we define (labeled rewrite) sequences inductively, i.e., for each object a there

is the empty sequence a
[ ]→→ a and if a

α→ b is a step and b
σ→→ c is a sequence then

a
ασ→→ c is a sequence.

Example 4.18. Let B be the labeled ARS {(a, α, b), (b, β, c)}. Then a
α→ b

β→ c

(or a
αβ→→ c) is a sequence in B. The empty sequence a

[]→→ a we also write as a.

We prove useful properties for sequences, i.e., that chopping off a segment of
a sequence again yields a sequence and that two sequences can be concatenated
(provided the last element of the first sequence coincides with the first element of
the second sequence).

Lemma 4.19. Let a1
α1→ · · · αn−1→ an and b1

β1→ · · · βm−1→ bm be sequences.

1. Then a1
α1→ · · · αi−1→ ai and ai

αi→ · · · αn−1→ an are sequences for any 1 6 i 6 n.

2. If an = b1 then a1
α1→ · · · αn−1→ an = b1

β1→ · · · βm−1→ bm is a sequence.

Proof. By induction on a1
α1→ · · · αn−1→ an.

As a next step we introduce diagrams.
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4. Confluence by Decreasing Diagrams – Formalized

Definition 4.20. A diagram is a quadruple of sequences (
τ→→, σ→→, σ

′
→→, τ

′
→→) such

that the start and endpoints of the sequences satisfy the picture in Figure 4.1a. A
diagram is called decreasing if its labels are.

We lift Lemma 4.11 from labels to diagrams.

Lemma 4.21 ([139, Lemma 3.5] for decreasing diagrams). Pasting two decreasing
diagrams yields a decreasing diagram. For a picture see Figure 4.2a.

Proof. With the help of Lemma 4.19(2) we show that pasting two diagrams again
yields a diagram. That pasting preserves decreasingness follows from Lemma 4.11.

4.3.5. Main Result

We establish that if all local peaks of a labeled ARS B are decreasing then all peaks
of B are decreasing, following the structure of the proof of [139, Theorem 3.7].
(Changes are discussed in Section 4.5). Note that only here we need that ≺ is
well-founded, from which irreflexivity immediately follows (to satisfy our global
assumption from Section 4.2). First we introduce (local) peaks.

Definition 4.22. A peak (
τ→→, σ→→) is a pair of labeled rewrite sequences which

originate from the same object. A local peak is a peak where the sequences consist
of a single step.

To prove the main result we introduce a measure on peaks (actually on pairs of
sequences).

Definition 4.23. Let |( τ→→, σ→→)| := |τ |+ |σ|. Then we can lift ≺ as a relation on

labels to a relation on pairs of sequences ≺peak, i.e., we set (
τ→→, σ→→) ≺peak (

τ ′→→, σ
′
→→)

whenever |( τ→→, σ→→)| ≺mul |(
τ ′→→, σ

′
→→)|.

For proofs of induction we establish that ≺peak is well-founded.

Lemma 4.24. Let ≺ be well-founded. Then ≺peak is well-founded.

Proof. From [42] we get that ≺mul is well-founded (this proof is contained in Mul-
tiset.thy). We proceed by contraposition. Assume the measure on peaks is not
well-founded. Then we obtain an infinite sequence · · · ≺peak (τ2, σ2) ≺peak (τ1, σ1)
which entails an infinite sequence on multisets · · · ≺mul |τ2| + |σ2| ≺mul |τ1| + |σ1|
showing the result.
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β υ

µ υ′

τ ′′

τ

σ
τ ′

σ′

D IH1

IH2

α κ κ′

ρ ρ′

(a) Local decreasingness implies
decreasingness.

τ

α κ′

τ ′

DIH1

(b) Pasting D and IH1 into DIH1.

Figure 4.4.: Lemma 4.26.

Definition 4.25. A peak (
τ→→, σ→→) in a labeled ARS is decreasing if it can be

completed into a decreasing diagram, i.e., there are
σ′→→ and

τ ′→→ such that the
conditions of Figure 4.1a are satisfied. A peak is locally decreasing, if it is decreasing
and a local peak.

Lemma 4.26 (similar to [139, Theorem 3.7]). Let B be a labeled ARS and ≺
be a transitive and well-founded relation on the labels. If all local peaks of B are
decreasing, then all peaks of B are decreasing.

Proof. To show that all peaks are decreasing we fix a peak (
τ→→, σ→→) and show that

this peak can be completed into a decreasing diagram. The proof is by well-founded
induction on≺peak and there only is the step case. The interesting situation is when

neither τ nor σ are empty, i.e., (using Lemma 4.19(1) we obtain)
τ→→ =

β→ · υ→→
and

σ→→ =
α→ · ρ→→ (see Figure 4.4a). Hence (

β→, α→) is a local peak and from the

assumption we obtain a decreasing diagram with joining sequences
κ→→ and

µ→→. We
obtain that (

υ→→, κ→→) is a peak and want to show that the measure of this peak is

smaller than that of (
τ→→, σ→→) (to apply the induction hypothesis). Since β is not

empty with Lemma 4.12 we establish that |( υ→→, κ→→)| is smaller than |( τ→→, α→)| and
from |α| 4mul |σ|3 we obtain the desired result. Now, the induction hypothesis
yields that IH1 is a decreasing diagram. Concatenating (using Lemma 4.19(2))
µ→→ and

υ′→→ into a sequence
τ ′→→, using Lemma 4.21 we can paste the diagrams D

and IH1 into a decreasing diagram (DIH1, see Figure 4.4b). The peak (
τ ′→→, ρ→→) is

3This step is not mentioned in [139, 140] but hinted at in [138].
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4. Confluence by Decreasing Diagrams – Formalized

smaller than the peak (
τ→→, σ→→) by a mirrored version of Lemma 4.12 and hence

the induction hypothesis yields the decreasing diagram IH2. Finally, a mirrored
version of Lemma 4.21 pastes DIH1 and IH2 into a decreasing diagram.

We define local decreasingness for ARSs.

Definition 4.27 ([139, Definition 3.8]). An ARS A is locally decreasing if there
exists a transitive and well-founded relation ≺ on the labels such that all local
peaks are decreasing for (a labeled version of) A.

Finally we arrive at the main result for soundness:

Corollary 4.28 ([139, Corollary 3.9]). A locally decreasing ARS is confluent.

Proof. From local decreasingness we get a transitive and well-founded relation ≺
such that all local peaks are decreasing in a labeled version of the ARS. Lemma 4.26
yields that all peaks are decreasing. The result follows by dropping labels from
the labeled rewrite sequences.

4.4. Formalization of the Conversion Version

In this section we give a formal proof for the main result underlying that local de-
creasingness with respect to conversions (see [138]) implies confluence. To this end
we formally introduce (labeled) conversions, similarly to labeled rewrite sequences.

For each object a there is the empty conversion a
[]↔↔ a (also just written a) and if

a
α→ b (a

α← b) is a labeled rewrite step and b
σ↔↔ c is a conversion then a

α→ b
σ↔↔ c

(a
α← b

σ↔↔ c) is a conversion (often written a
ασ↔↔ c). For conversions we prove

similar properties as for sequences (see Lemma 4.19). In addition we establish
that mirroring a conversion again yields a conversion (with the same set of labels)
and that every sequence is a conversion.

Lemma 4.29. Let a1
α1↔ · · · αn−1↔ an and b1

β1↔ · · · βm−1↔ bm be conversions.

1. Then a1
α1↔ · · · αi−1↔ ai and ai

αi↔ · · · αn−1↔ an are conversions for any 1 6 i 6 n.

2. If an = b1 then a1
α1↔ · · · αn−1↔ an = b1

β1↔ · · · βm−1↔ bm is a conversion.

3. Then an
αn−1↔ · · · α1↔ a1 is a conversion and {α1, . . . , αn} = {αn, . . . , α1}.

4. If c1
γ1→ · · · γn−1→ cn is a sequence then c1

γ1↔ · · · γn−1↔ cn is a conversion.
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(a) Local decreasingness wrt. conversions.
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(b) Closing the conversion into a valley.

Figure 4.5.: Conversion version of decreasing diagrams.

Proof. Items (1–3) are proved by induction on the first conversion, item (4) is
proved by induction on the sequence.

We will also use the following easy lemma being a direct consequence of Defini-
tion 4.3.

Lemma 4.30. If M 4mul N and N ⊆ � S then M ⊆ � S.

The following result (stated as observation in [138]) follows from Lemma 4.30.

Lemma 4.31. If (
τ→→, σ→→, σ

′
→→, τ

′
→→) is a decreasing diagram and |( τ→→, σ→→)| ⊆ � M

then also |( σ
′
→→, τ

′
→→)| ⊆ � M .

A local peak (
β→, α→) is decreasing with respect to conversions4 if there exist

conversions such that the constraints from Figure 4.5a are satisfied. Now we can
state the main result underlying soundness of the conversion version of decreasing
diagrams.

Lemma 4.32. Let B be a labeled ARS and ≺ be a transitive and well-founded rela-
tion on the labels. If all local peaks of B are decreasing with respect to conversions,
then all peaks of B are decreasing (with respect to valleys).

Proof. Similar to [138] we follow the proof of the valley version (see Lemma 4.26).

In contrast to Lemma 4.26 we do not get decreasingness of the local peak (
β→, α→)

4Please note the asymmetry to the definition of local decreasingness (Definition 4.25).
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(a) Lemma 4.33 (case →).
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(d) Lemma 4.35.

Figure 4.6.: Lemmata 4.33 and 4.35.

(in Figure 4.4a) by assumption. Instead our assumption yields local decreasingness
with respect to conversions, i.e., as depicted in Figure 4.5a. We close the conversion
into a valley as outlined in Figure 4.5b. To this end we use Lemmata 4.33 and 4.35
(see below) and conclude the valleys as shown in Figure 4.5b. Note that for
the final application of Lemma 4.33 we apply Lemma 4.29 first, to combine the
sequences and conversions into a single conversion. Lemma 4.13 (lifted to rewriting
sequences) then shows decreasingness of the diagram.

The main structure of our proof follows the one from [138]. However, there the
proofs of two key results are sketchy and informal. We identified the statements
as Lemmata 4.33 and 4.35 and provide formal proofs. Note that to establish these
properties we can use the induction hypothesis (from the proof of Lemma 4.32),

e.g., peaks whose measure is smaller than |( β→, α→)| can be completed into a de-
creasing diagram.

Lemma 4.33. Let all peaks smaller than |( β→, α→)| have a decreasing diagram.

Then for any M with M 4mul {#α, β#} we have

�

M
↔↔ ⊆

�

M
→→ ·

�

M
←←.

Proof. By induction on the conversion

�

M
↔↔. The base case is trivial. In the step

case we have

�

M
↔ ·

�

M
↔↔. The induction hypothesis yields

�

M
↔ ·

�

M
→→ ·

�

M
←←. We consider

two cases. If the first step is from left to right, i.e.,

�

M
→ then the result follows from

Lemma 4.29(2) (see Figure 4.6a). In the other case we have

�

M
← ·

�

M
→→ ·

�

M
←←. Since

the peak

�

M
← ·

�

M
→→ has a smaller measure than (

β→, α→) it can be completed into
a decreasing diagram and Lemma 4.31 in combination with Lemma 4.29(2) yields
the result (see Figure 4.6b).
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4.5. Meanderings

To show the second key result we establish a useful decomposition result on
sequences.

Lemma 4.34. Let
σ→→ be a sequence and σ = σ1σ2. Then there are sequences

σ1→→
and

σ2→→ such that
σ→→ =

σ1→→ · σ2→→.

Proof. By induction on the sequence
σ→→.

Below
α→= stands for

α→ (one step) or
[]→→ (zero steps). Please note the similarity

of the following result to the explicit characterization of local decreasingness (cf.
Figure 4.3a).

Lemma 4.35. Let all peaks smaller than |( β→, α→)| have a decreasing diagram.

Then the peak (

�

β
→→, α→=) can be closed by

�

αβ
→→ ·
�

αβ
←← · = α← ·

�

β
←← (see Figure 4.6d).

Proof. Since |(

�

β
→→, α→=)| is smaller than |( β→, α→)|, it can be completed into a de-

creasing diagram (
τ→→, σ→→, σ

′
→→, τ

′
→→) (see Figure 4.6c). First we show τ ′ ⊆ � αβ.

From decreasingness and Lemma 4.10 we get |τ ′| −s � σ 4mul |τ |. The assump-
tion τ ⊆ � β and Lemma 4.14 yields |τ | ⊆ � β. Using Lemma 4.30 we obtain
|τ ′| −s � σ ⊆ � β, i.e. |τ ′| ⊆ � β ∪ � σ. The assumption σ ⊆ α yields

�

σ ⊆ � α and
hence we conclude by Lemmata 4.6(1) and 4.16(2).

Next we show that
σ′→→ can be decomposed into

σ1→→,
σ2→=, and

σ3→→ with σ1 ⊆

�

β,
σ2 ⊆ {α}, length σ2 ≤ 1, and σ3 ⊆

�

αβ. To this end we first observe that
Lemma 4.17 also holds if β is not a single label but a sequence (here τ). Then
from decreasingness we obtain σ′ = σ1σ2σ3, σ1 ⊆

�

τ , length σ2 ≤ 1 σ2 ⊆ {α}, and
σ3 ⊆

�
ασ. Lemma 4.34 lifts the decomposition of labels to a decomposition of

sequences and we can conclude.

An ARS A is locally decreasing with respect to conversions if there exists a
transitive and well-founded relation ≺ on the labels such that all local peaks are
decreasing with respect to conversions for (a labeled version of) A. Finally we
arrive at the main result for soundness:

Corollary 4.36 ([138, Theorem 3]). A locally decreasing with respect to conver-
sions ARS is confluent.

4.5. Meanderings

In this section we discuss differences between our formalization and (the proofs
from) [138, 139].
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4. Confluence by Decreasing Diagrams – Formalized

Within Isabelle (Abstract Rewriting.thy) an ARS is a binary relation while in [139]
the ARS also contains the domain of the relation. A similar statement holds for
labeled ARSs.

General multisets are used in [139], which can represent sets and finite multisets
in one go wheres our formalization clearly separates the two concepts. The reason
is purely practical, i.e., the Isabelle library already contains the dedicated theories
Set.thy and Multiset.thy. The only (negligible) disadvantage we have experienced
from this design choice is the need for multiple definitions of the down-set (for
lists, sets, and multisets) and for Lemma 4.6(1). On the other hand, this saved us
from formalizing general multisets, which we anticipate as a significant endeavour
on its own. Moreover, [139] uses a different multiset extension than Multiset.thy.
The latter defines the multiset extension as the transitive closure of the “one-step”
multiset extension.

Definition 4.37. The one-step multiset extension (denoted ≺mult1) of ≺ is defined
by

M ≺mult1 N if ∃ a I K. M = I +K, N = I + {#a#}, ∀ b ∈ K. b ≺ a

and the multiset extension of ≺ (denoted ≺mult) is the transitive closure of ≺mult1.

Based on the results in Multiset.thy and Definition 4.3(1) we have proven these
two definitions equivalent for any transitive base relation.

Lemma 4.38. If ≺ is transitive then ≺mult and ≺mul coincide.

Moreover we proved the claim in Definition 4.3.

Lemma 4.39. We have that 4mul is the reflexive closure of ≺mul.

Proof. First we show the inclusion from left to right. Let M 4mul N . If J = {#}
then M = N and the result follows. If J 6= {#} then M ≺mul N and we are done.

For the reverse inclusion let (M,N) be in the reflexive closure of ≺mul. If M = N
then we finish with I = M , K = J = {#}. In the other case we get suitable I, J ,
and K from the definition of ≺mul.

Our formalization is first performed for sequences (of labels) and then lifted to
labeled rewrite sequences (conversions), a step which is left implicit in [139]. After
introducing labeled rewriting, we proved useful results in Isabelle (Lemmata 4.19
and 4.29).

In addition to the algebraic proof of Lemma 4.6(3) from [139] our formalization
contains an alternative one. Our proof of Lemma 4.8(1) differs from the informal
one in [139]. Also the formal proof of Lemma 4.13 differs from the sketch given
for [139, Proposition 3.4], requiring auxiliary results (Lemmata 4.14 and 4.16).
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4.6. Conclusion

There are some (tiny) differences between [139, Theorem 3.7] and Lemma 4.26.
In [139] a measure on diagrams is used. However, since the closing/joining steps
of the diagram are just obtained by the induction hypothesis the measure must
be on peaks (which is used in [138]). Moreover, since in either case the measure is
a multiset it is hard to relate arbitrary multisets to a peak. Hence we lifted the
order on labels ≺ to peaks ≺peak (Section 4.3.5) and used well-founded induction
on this order. In the formalization of Lemma 4.26 (Footnote 3) we identified
a necessary step to apply the induction hypothesis. Another aspect where our
formalization deviates from [139] is that the original work uses families of labeled
ARSs whereas our formalization considers a single labeled ARS only. Hence [139,
Theorem 3.7] states the main result on families of ARSs whereas our Lemma 4.26
makes a statement about a single ARS.

Concerning [139] our formal proofs for the alternative formulation of local de-
creasingness (Lemma 4.13) differs from the one in [139, 140]. While this alternative
formulation of local decreasingness was not needed to obtain the main result un-
derlying the valley version ([139, Main Theorem 3.7], i.e., Lemma 4.26), it was (in
a generalized formulation) essential for the main result underlying the conversion
version ([138, Theorem 3], i.e., Lemma 4.32). Furthermore we gave formal proofs
for two (informal) key observations made in the proof of [138, Theorem 3], result-
ing in Lemmata 4.33 and 4.35. Especially the latter has a non-trivial formal proof,
since the induction hypothesis yields decreasingness (see Figure 4.6c) but not the
desired decomposition of the joining sequences (see Figure 4.6d), in contrast to
what the proof in [138] conveys.

4.6. Conclusion

In this paper we have described a formalization of decreasing diagrams in the
theorem prover Isabelle following the original proofs from [138, 139]. In Sec-
tions 4.3.3 and 4.3.4 our formal proofs deviate from the either informal or implicit
ones in [139] and we also elaborate on Lemma 4.35, a result which is implicitly used
in [138]. To show the applicability of our formalization we performed a mechan-
ical proof of Newman’s lemma using decreasing diagrams (following [139, Corol-
lary 4.4]). Our formalization has few dependencies on existing theories. From
Abstract Rewriting.thy we employ some properties for unlabeled abstract rewrit-
ing (and the definition of confluence). The theory Multiset.thy provides standard
multiset operations and a well-foundedness proof of the multiset extension of a
well-founded relation. Note that some of our results on multisets (a formalized
proof of [139, Lemma 2.6(3)], i.e., Lemma 4.6(3)) might be of interest for a larger
community.
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4. Confluence by Decreasing Diagrams – Formalized

In [26] a “point version” of decreasing diagrams is introduced, where objects
are labeled instead of steps. It is unknown if the point version is equivalent to
the standard one. Parts of [26] have been formalized in Coq but 29 axioms are
assumed, i.e., not proven in the theorem prover. Furthermore the more useful
alternative representation of local decreasingness (Lemma 4.13) is not considered
in [26]. The same holds for the conversion version. Hence [26] is only a partial
formalization and essentially different from ours.

We anticipate that our contribution paves the way for future work in several
directions. One possibility is the formalization of confluence results that can be
proven with decreasing diagrams (e.g. Toyama’s theorem [180]). The benefit might
be two-fold. On the one hand side the proof by decreasing diagrams might be
easier to formalize and furthermore proofs by decreasing diagrams are constructive,
cf. [144]. Another idea would be the certification of confluence proofs (based on
decreasing diagrams) given by automated confluence provers.5 Both aims require
to lift our formalization from abstract rewriting to term rewriting, which is a
natural idea for future work.
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Abstract

All current investigations to analyze the derivational complexity of term rewrite
systems are based on a single termination method, possibly preceded by transfor-
mations. However, the exclusive use of direct criteria is problematic due to their
restricted power. To overcome this limitation the article introduces a modular
framework which allows to infer (polynomial) upper bounds on the complexity of
term rewrite systems by combining different criteria. Since the fundamental idea
is based on relative rewriting, we study how matrix interpretations and match-
bounds can be used and extended to measure complexity for relative rewriting,
respectively. The modular framework is proved strictly more powerful than the
conventional setting. Furthermore, the results have been implemented and exper-
iments show significant gains in power.

5.1. Introduction

Term rewriting is a Turing complete model of computation. As an immediate con-
sequence all interesting properties are undecidable. Nevertheless many powerful
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5. Modular Complexity Analysis for Term Rewriting

techniques have been developed to establish termination. The majority of these
techniques have been automated successfully. This development has been stim-
ulated by the international competition of termination tools.1 Most automated
analyzers gain their power from a modular treatment of rewrite systems (typically
via the dependency pair framework [13, 68, 174]).

For terminating rewrite systems Hofbauer and Lautemann [77] consider the
length of derivations as a measurement for the complexity of rewrite systems.
The resulting notion of derivational complexity relates the length of a rewrite se-
quence to the size of its starting term. Thereby it is, e.g., a suitable metric for the
complexity of deciding the word problem for a given confluent and terminating
rewrite system (since the decision procedure rewrites terms to normal form). If
one regards a rewrite system as a program and wants to estimate the maximal
number of computation steps needed to evaluate an expression to a result, then
the special shape of the starting terms—a function applied to data which is in
normal form—can be taken into account. Hirokawa and Moser [75] identified this
special form of complexity and named it runtime complexity.

To show (feasible) upper complexity bounds currently few techniques are known.
Typically termination criteria are restricted such that complexity bounds can be
inferred. The early work by Hofbauer [80] considers polynomial interpretations,
suitably restricted, to admit quadratic derivational complexity. Match-bounds [55]
and arctic matrix interpretations [104] induce linear upper bounds on the deriva-
tional complexity and triangular matrix interpretations [126] admit at most poly-
nomially long derivations (the dimension of the matrices yields the degree of the
polynomial) in the size of the starting term. All these methods share the property
that until now they have been used directly only, meaning that a single termi-
nation technique has to orient all rules in one go. However, using direct criteria
exclusively is problematic due to their restricted power.

In [75, 76] Hirokawa and Moser lifted many aspects of the dependency pair
framework from termination analysis into the complexity setting, resulting in the
notion of weak dependency pairs. So for the special case of runtime complexity for
the first time a modular approach has been introduced. There the modular aspect
amounts to using different interpretation based criteria for (parts of the) weak
dependency graph and the usable rules. However, still all rewrite rules considered
must be oriented strictly in one go and only restrictive criteria may be applied for
the usable rules. A further drawback of weak dependency pairs is that they may
only be used for bounding runtime complexity while there seems to be no hope to
generalize the method to derivational complexity.

In this article we present a different approach which admits a fully modular

1http://termcomp.uibk.ac.at
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5.2. Preliminaries

treatment. The approach is general enough that it applies to derivational com-
plexity (and hence also to runtime complexity) and basic enough that it allows to
combine completely different complexity criteria such as match-bounds and (tri-
angular) matrix interpretations. By the modular combination of different base
methods also gains in power are achieved. These gains come in two flavors. On
the one hand our approach allows to obtain lower complexity bounds for several
rewrite systems where bounds have already been established before and on the
other hand we found bounds for systems that could not be dealt with so far au-
tomatically. More specifically, there are systems where the modular combination
of different criteria allows to establish an upper bound while any of the involved
methods cannot succeed on its own.

The remainder of the article is organized as follows. In Section 5.2 preliminaries
about term rewriting and complexity analysis are fixed. Afterwards, Section 5.3
familiarizes the reader with the concept of a suitable complexity measurement for
relative rewriting. Furthermore, it formulates a modular framework for complexity
analysis based on relative complexity. Criteria for measuring relative complexity
via interpretations and match-bounds are presented in Sections 5.4 and 5.5, re-
spectively. In Section 5.6 we show that the modular setting is strictly more pow-
erful than the conventional approach. Our results have been implemented in the
complexity prover CaT. The technical details can be inferred from Section 5.7. Sec-
tion 5.8 is devoted to demonstrate the power of the modular treatment by means
of an empirical evaluation. Section 5.9 concludes.

This article is a restructured and extended version of [206]. It also incorporates
the results from the two notes [204, 207] presented at informal workshops. Further-
more results and presentation have been generalized to address both derivational
and runtime complexity.

5.2. Preliminaries

We assume familiarity with (relative) term rewriting [17, 56, 172]. Let F be a
signature and V a disjoint set of variables. The set of terms over F and V is
denoted by T (F ,V) and the set of ground terms over F by T (F). We write
Fun(t) for the set of function symbols occurring in a term t. The size of a term t
is denoted |t| and ‖t‖ computes the number of occurrences of function symbols
in t. A term t is called linear if any variable x occurs at most once in t. Positions
are used to address symbol occurrences in terms. Given a term t we use Pos(t) to
denote the set of positions induced by the term t and we write t(p) with p ∈ Pos(t)
for the symbol at position p in the term t. The subset of positions p ∈ Pos(t) such
that t(p) ∈ F is denoted by PosF(t).
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5. Modular Complexity Analysis for Term Rewriting

A rewrite rule is a pair of terms (l, r), written l→ r such that l is not a variable
and all variables in r are contained in l. A rewrite rule l → r is size-preserving
(size-decreasing) if |l| = |r| (|l| > |r|). A term rewrite system (TRS for short)
is a set of rewrite rules. For complexity analysis we assume TRSs to be finite
and terminating. A TRS R is said to be duplicating if there exist a rewrite rule
l → r ∈ R and a variable x that occurs more often in r than in l. A TRS R is
called linear (left-linear, right-linear) if for all rewrite rules l → r ∈ R the terms
l and r (l, r) are linear. We call a TRS R collapsing if it contains a rewrite rule
l → r such that r is a variable. The defined symbols of a TRS R are all function
symbols f for which there is a rewrite rule l → r in R such that f = l(ε). In
the following we denote this set of function symbols by Def(R). Those function
symbols of R which are not defined are called constructor symbols. So the set of
all constructor symbols is defined as Con(R) = F \ Def(R).

A rewrite relation is a binary relation on terms that is closed under contexts
and substitutions. For a TRS R we define →R to be the smallest rewrite relation
that contains R. As usual →∗ denotes the reflexive and transitive closure of →
and →m the m-th iterate of →. A relative TRS R/S is a pair of TRSs R and S
with the induced rewrite relation →R/S = →∗S · →R · →∗S . In the sequel we will
sometimes identify a TRS R with the relative TRS R/∅ and vice versa. Further-
more properties defined for TRSs (as the ones above) naturally extend to relative
TRSs.

The derivation height of a term t with respect to a relation → is defined as
follows: dh(t,→) = sup {m | ∃u t →m u}. The complexity of a relation → with
respect to a (possibly infinite) set of terms (or language) L, denoted by cpL(n,→),
computes the maximal derivation height of all terms in L up to size n and is de-
fined as cpL(n,→) = sup {dh(t,→) | t ∈ L and |t| 6 n}. Sometimes we say that
a TRS R (relative TRS R/S) has linear, quadratic, etc. or polynomial complex-
ity with respect to L if cpL(n,→R) (cpL(n,→R/S)) can be bounded by a linear,
quadratic, etc. function or polynomial in n. Let R be a TRS over some signa-
ture F . The derivational complexity of R, abbreviated by dc(n,R) and defined
as dc(n,R) = cpT (F ,V)(n,→R), computes the complexity of →R with respect to
all terms. In contrast, the runtime complexity of R considers the maximal deriva-
tion height of constructor-based terms only, i.e., rc(n,R) = cpTCon(R,V)(n,→R).
Here, the set of constructor-based terms TCon(R,V) is defined as the set of all
terms t = f(t1, . . . , tm) such that f ∈ Def(R) and ti ∈ T (Con(R),V) for all
i ∈ {1, . . . ,m}.

For functions f, g : N → N we write f(n) = O(g(n)) if there are constants
M,N ∈ N such that f(n) 6M · g(n) for all n > N . Furthermore, f(n) = Ω(g(n))
if g(n) = O(f(n)) and f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).
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5.3. Modular Complexity via Relative Complexity

5.3. Modular Complexity via Relative Complexity

In this section we present the basic idea that allows a modular treatment of com-
plexity proofs. To this end we introduce complexity analysis for relative rewriting,
i.e., given a relative TRS R/S only the R-steps contribute to the complexity. To
estimate the derivational complexity of a relative TRS R/S, a pair of orderings
(�,�) will be used such that R ⊆ � and S ⊆ �. The necessary properties of
these orderings are given in the next definition.

Definition 5.1. A complexity pair (�,�) consists of two finitely branching rewrite
relations � and � that are compatible, i.e., � · � ⊆ � and � · � ⊆ �. We call a
relative TRS R/S compatible with a complexity pair (�,�) if R ⊆ � and S ⊆ �.

The next lemma states that given a relative TRSR/S and a compatible complex-
ity pair (�,�), the � ordering is crucial for estimating the derivational complexity
of R/S. Intuitively the result states that every R/S-step gives rise to at least one
�-step.

Lemma 5.2. Let R/S be a relative TRS compatible with a complexity pair (�,�).
Then for any term t we have dh(t,�) > dh(t,→R/S).

Proof. By assumption R/S is compatible with (�,�). Since � and � are rewrite
relations →R ⊆ � and →S ⊆ � holds. From the compatibility of � and � we
obtain →R/S ⊆ �. Hence for any sequence

t →R/S t1 →R/S t2 →R/S · · ·

also

t � t1 � t2 � · · ·

holds. The result follows immediately from this.

Obviously � must be at least well-founded if finite complexities should be esti-
mated. Because we are especially interested in feasible upper bounds the following
corollary is specialized to polynomials.

Corollary 5.3. Let R/S be a relative TRS compatible with a complexity pair
(�,�). If the complexity of � with respect to some language L is linear, quadratic,
etc. or polynomial then the complexity of R/S with respect to L is linear, quadratic,
etc. or polynomial.

Proof. By Lemma 5.2.
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5. Modular Complexity Analysis for Term Rewriting

This corollary allows to investigate the complexity of (compatible) complex-
ity pairs instead of the complexity of the underlying relative TRS. Sections 5.4
and 5.5 are dedicated to formulate powerful complexity pairs. A severe draw-
back of complexity pairs is that given a relative TRS R/S all rules in R must
be oriented strictly. In the following we present a modular approach which al-
lows to combine different techniques for estimating the complexity of a relative
TRS R/S with respect to a language L. The fundamental idea is based on
the following simple procedure. Instead of computing the complexity of R/S
at once we try to bound the complexity of R/S by splitting R into smaller com-
ponents R1 and R2. Here R = R1 ∪R2. The aim is to over-estimate dh(t,→R/S)
by dh(t,→R1/(R2 ∪ S)) + dh(t,→R2/(R1 ∪ S)). For each relative TRS Ri/(R3−i ∪ S)
with i ∈ {1, 2} we can proceed in two directions: we can either split up Ri into
smaller components or over-estimate dh(t,→Ri/(R3−i ∪ S)) by applying some suit-
able method. (Section 5.7 shows that this choice is performed automatically.)
Finally the complexity of the original system is determined by summing up all in-
termediate results. The next lemma states the main observation in this direction.

Lemma 5.4. Let (R1 ∪R2)/S be a relative TRS and let t be a terminating term.
Then dh(t,→R1/(R2 ∪ S)) + dh(t,→R2/(R1 ∪ S)) > dh(t,→(R1 ∪R2)/S).

Proof. We abbreviate R1 ∪ R2 by R and R3−i ∪ S by Si for i ∈ {1, 2}. Assume
that dh(t,→R/S) = m. Then there exists a rewrite sequence

t→R/S t1 →R/S t2 →R/S · · · →R/S tm−1 →R/S tm (1)

of length m. Next we investigate this sequence for every relative TRS Ri/Si
(1 6 i 6 2) where mi overestimates how often rules from Ri have been applied
in the original sequence. Fix i. If the sequence (1) does not contain an Ri step
then t→m

Si tm and mi = 0. In the other case there exists a maximal (with respect
to mi) sequence

t→Ri/Si tj1 →Ri/Si tj2 →Ri/Si · · · →Ri/Si tjmi−1 →Ri/Si tm (2)

where 1 6 j1 < j2 < · · · < jmi = m. Together with the fact that every rewrite
rule in R is contained in R1 or R2 we have m1 + m2 > m. If mi = 0 we ob-
viously have dh(t,→Ri/Si) > mi and if t →mi

Ri/Si tm with mi > 0 we know that

dh(t,→Ri/Si) > mi by the choice of sequence (2). (Note that in both cases it can
happen that dh(t,→Ri/Si) > mi because sequence (1) need not be maximal with
respect to →Ri/Si .) Putting things together yields

dh(t,→R1/S1) + dh(t,→R2/S2) > m1 +m2 > m = dh(t,→R/S)

which concludes the proof.
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5.3. Modular Complexity via Relative Complexity

As already indicated in the proof, the statement of the above lemma does not
hold for equality. This is illustrated by the following example.

Example 5.5. Consider the relative TRS R/S with R = {a → b, a → c} and
S = ∅. We have a →R/S b or a →R/S c. Hence dh(a,→R/S) = 1. However, the
sum of the derivation heights dh(a,→{a→ b}/{a→ c}) and dh(a,→{a→ c}/{a→ b}) is 2.

Although for Lemma 5.4 equality cannot be established the next result states
that for complexity analysis this does not matter.

Theorem 5.6. Let (R1 ∪R2)/S be a relative TRS and L be a set of terminating
terms. Then cpL(n,→(R1 ∪R2)/S) = Θ(cpL(n,→R1/(R2 ∪ S))+cpL(n,→R2/(R1 ∪ S))).

Proof. We have to show that there are constants M,N and M ′, N ′ such that for
any term t ∈ L the following two properties hold (for N and N ′ choose 0, i.e., a
term t being a normal form):

• dh(t,→(R1 ∪R2)/S) 6M · (dh(t,→R1/(R2 ∪ S)) + dh(t,→R2/(R1 ∪ S)))

• M ′ · dh(t,→(R1 ∪R2)/S) > dh(t,→R1/(R2 ∪ S)) + dh(t,→R2/(R1 ∪ S))

The result then follows from this. Lemma 5.4 shows the first property with M = 1.
For the second property we reason as follows. Let i ∈ {1, 2} and Si = R3−i ∪ S.
Since t →Ri/Si t′ implies t →+

(R1 ∪R2)/S t
′ also dh(t,→(R1 ∪R2)/S) > dh(t,→Ri/Si).

The claim is shown by choosing M ′ = 2.

Theorem 5.6 allows to split a relative TRS (R1 ∪R2)/S into smaller components
R1/(R2 ∪ S) and R2/(R1 ∪ S) and evaluate the complexities of these components
(e.g., by different complexity pairs) independently. Note that this approach is not
restricted to relative rewriting. To estimate the complexity of a (non-relative)
TRS R just consider the relative TRS R/∅. The next example shows how proofs
in the modular framework look like. Section 5.7 gives more details on proof trees.

Example 5.7. Proofs in the modular setting can be viewed as trees. We sketch
such a proof in Figure 5.1 using the TRS R consisting of the following five rules:

1 : rev(x)→ rev′(x, nil)

2 : rev′(nil, y)→ y

3: rev′(cons(x, y), z)→ rev′(y, append(cons(x, nil), z))

4 : append(nil, y)→ y

5: append(cons(x, y), z)→ cons(x, append(y, z))
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R

R/∅

{2, 4}/{1, 3, 5}

∅/R

{1, 3, 5}/{2, 4}

{1}/{2, 3, 4, 5}

∅/R

O(1)

O(1) O(1)

O(n2) O(n3)

O(n)

Figure 5.1.: Sketch of a modular complexity proof.

The root node of the tree is the TRS of interest and the other nodes are rel-
ative rewrite systems representing intermediate complexity problems. The edges
indicate the (derivational) complexity of the proof steps. It is possible to apply
Theorem 5.6 explicitly to split a problem into two (or more) problems as demon-
strated in the second node. Such situations do not affect the complexity of the
given problem which justifies the labels O(1). The remaining proof steps measure
the complexity of the rewrite rules that are moved from the first into the second
component (relative to the remaining rules). These steps rely on an implicit appli-
cation of Theorem 5.6. For instance in the proof tree shown in Figure 5.1 there is an
edge from {1, 3, 5}/{2, 4} to {1}/{2, 3, 4, 5} labeledO(n3), stating that the (deriva-
tional) complexity of {3, 5}/{1, 2, 4} is at most cubic. This step is sound because
from Theorem 5.6 we know that computing an upper bound on {1}/{2, 3, 4, 5}
and {3, 5}/{1, 2, 4} suffice to get a valid upper bound on {1, 3, 5}/{2, 4}. In Sec-
tions 5.4 and 5.5 we study criteria that allow to perform such proof steps. Since the
leaves in the tree give rise to constant complexity, the complexity of the original
problem can be overestimated by summing up the complexities annotated to the
edges; yielding a cubic upper bound in this exemplary case. Later (Example 5.53)
we will see that this bound is not tight.

In the next two sections we study how matrix interpretations and the match-
bounds technique can be suited for relative complexity analysis.
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5.4. Matrix Interpretations

This section is aimed at formulating complexity pairs based on matrix interpre-
tations [44]. Since our interest is in polynomial upper bounds, triangular matrix
interpretations [126] and arctic matrix interpretations [103] are considered. The
last part of this section generalizes the weight gap principle from [75] to (a restric-
tion of) triangular matrix interpretations and relative rewriting.

5.4.1. Preliminaries

An F-algebra A consists of a non-empty carrier A and a set of interpretations fA
for every f ∈ F . By [α]A(·) we denote the usual evaluation function of A according
to an assignment α. An F -algebra A together with two relations � and � on A is
called a monotone algebra if every fA is monotone with respect to � and �, � is a
well-founded order, and � and � are compatible. Any monotone algebra (A,�,�)
induces a well-founded order on terms, i.e., s �A t if for any assignment α the
condition [α]A(s) � [α]A(t) holds. The order �A is defined similarly. A relative
TRS R/S is compatible with a monotone algebra (A,�,�) if R/S is compatible
with (�A,�A).

5.4.2. Triangular Matrix Interpretations

Matrix interpretations (M,�,�) (often just denoted M) are a special form of
monotone algebras. Here the carrier is Nd for some fixed dimension d ∈ N \ {0}.
The order � is the point-wise extension of >N to vectors and ~u � ~v if u1 >N v1

and ~u � ~v. If every f ∈ F of arity n is interpreted as fM( ~x1, . . . , ~xn) = F1 ~x1 +

· · · + Fn ~xn + ~f where Fi ∈ Nd×d for all 1 6 i 6 n and ~f ∈ Nd then monotonicity
of � is achieved by demanding Fi(1,1) > 1 for any f ∈ F and 1 6 i 6 n. Such
interpretations have been introduced in [44].

A matrix interpretation where for every f ∈ F all Fi (1 6 i 6 n where n
is the arity of f) are upper triangular is called triangular matrix interpretation
(abbreviated by TMI). A square matrix A of dimension d is of upper triangular
shape if A(i,i) 6 1 and A(i,j) = 0 if i > j for all 1 6 i, j 6 d. For historic reasons a
TMI based on matrices of dimension one is also called strongly linear interpretation
(SLI for short). In [126] it is shown that the derivational complexity of a TRS R
is bounded by a polynomial of degree d if there exists a TMI M of dimension d
such that R ⊆ �M. For our setting the following formulation is more useful.

Theorem 5.8. Let M be a TMI of dimension d over a signature F . Then
(�M,�M) is a complexity pair. Furthermore cpT (F ,V)(n,�M) = O(nd).

Proof. Straightforward from [126, Theorem 6].
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The following example familiarizes the reader with TMIs.

Example 5.9. Consider the relative TRS R/S over the signature F = {f, g}
defined as R = {f(f(x))→ f(g(f(x)))} and S = {f(x)→ x}. Then the TMI M of
dimension two with

fM(~x) =

(
1 0
0 1

)
~x+

(
1
1

)
gM(~x) =

(
1 0
0 0

)
~x

induces the complexity pair (�M,�M). Furthermore R/S is compatible with
the complexity pair (�M,�M). Theorem 5.8 gives a quadratic upper bound on
cpT (F ,V)(n,�M). Hence the derivational complexity of R/S is at most quadratic
by Corollary 5.3. It is easy to see (cf. Example 5.11) that this bound is not tight.
We remark that there cannot exist an SLI that establishes a linear upper bound
because no SLI can orient the rule f(f(x))→ f(g(f(x))) strictly.

5.4.3. Arctic Matrix Interpretations

We define A = N ∪ {−∞}. For matrices A ∈ An×m and B ∈ Am×p the operation
⊗ yields an n×p matrix and is defined as: (A⊗B)(i,j) = max16k6m{A(i,k) +B(k,j)}
where + and max are extended naturally to deal with −∞ (see [103]). Furthermore
x >A y if and only if x >N y or x = y = −∞, and finally x >A y if and only if
x >N y or y = −∞.2

An arctic matrix interpretation (A,�,�) (abbreviated by AMI and often just
denoted A) is a special form of a monotone algebra. Here the carrier is Ad for some
fixed dimension d ∈ N \ {0}. The orders � and � are the point-wise extensions
of >A and >A to vectors, respectively. Every unary function symbol f ∈ F is
interpreted as fA(~x) = F ⊗ ~x where F ∈ Ad×d and every constant c as cA = ~c
where ~c ∈ Ad. Monotonicity of � is achieved by the restriction to at most unary
function symbols and by demanding that F(1,1) and c1 are different from −∞ for
unary function symbols f and constants c, respectively. In [103] it is shown that the
derivational complexity of a TRS R, which contains unary and constant function
symbols only, is at most linear if there exists an AMI A (of some dimension d)
such that R ⊆ �A.

Theorem 5.10. Let A be an AMI of dimension d over a signature F that contains
constants and unary function symbols only. Then (�A,�A) is a complexity pair.
Furthermore cpT (F ,V)(n,�A) = O(n).

Proof. Straightforward from [103, Lemma 17].

2Note that −∞ >A −∞ and hence >A is not well-founded. Hence such comparisons are disallowed at
certain matrix positions.
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Example 5.11. Consider the TRSs from Example 5.9. Then the AMIA satisfying

fA(~x) =

(
1 3
0 3

)
~x gA(~x) =

(
0 1
−∞ −∞

)
~x

induces the complexity pair (�A,�A) andR/S is compatible with (�A,�A). The-
orem 5.10 gives a linear upper bound on cpT (F ,V)(n,�A). Hence the derivational
complexity of R/S is at most linear by Corollary 5.3. It is easy to see that this
bound is tight.

5.4.4. Complexity Gap Principle

An obvious question is whether it suffices to estimate polynomial complexity of
(R1 ∪R2)/S by establishing polynomial upper bounds on the complexities of
R1/(R2 ∪ S) and R2/S (in contrast to R2/(R1 ∪ S) as in Theorem 5.6). The
following example by Hofbauer [78] shows that in the general case the complexity
of (R1 ∪R2)/S might be much larger than the sum of the components above; even
for systems where both parts have linear complexity. Here S = ∅.

Example 5.12. Consider the TRS R1 consisting of the single rule

c(L(x))→ R(x)

and the TRS R2 consisting of the rewrite rules

R(a(x))→ b(b(R(x))) R(x)→ L(x) b(L(x))→ L(a(x))

The derivational complexity of the relative TRS R1/R2 is linear, due to the SLI
that just counts the c’s. The derivational complexity ofR2 is linear as well since the
system can be proved terminating by the match-bound technique [55]. However,
the TRS R1 ∪R2 admits exponentially long derivations in the size of the starting
term:

cn(L(a(x))) → cn−1(R(a(x))) → cn−1(b(b(R(x)))) → cn−1(b(b(L(x))))

→ cn−1(b(L(a(x)))) → cn−1(L(a(a(x)))) →∗ L(a2n(x))

Under certain circumstances the problem from the preceding example does not
occur. Inspired by the weight gap principle of Hirokawa and Moser [75] (which
was developed to estimate weak dependency pair steps relative to usable rule
steps), below we state abstract criteria on R1 and R2 such that the complexity of
R1/(R2 ∪ S) and R2/S determines the complexity of (R1 ∪R2)/S.
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Theorem 5.13 (Complexity Gap Principle). Let (R1 ∪R2)/S be a relative TRS
and L be a set of terminating terms. If there exist a complexity pair (�,�) and
a constant ∆ such that R2/S is compatible with (�,�) and u →R1 v implies
dh(u,�) + ∆ > dh(v,�) then cpL(n,→(R1 ∪R2)/S) = O(cpL(n,→R1/(R2 ∪ S)) +
cpL(n,�)).

Proof. We show that under the above assumptions, for any term s ∈ L there exists
a constant M such that dh(s,→(R1 ∪R2)/S) 6 M · dh(s,→R1/(R2 ∪ S)) + dh(s,�).
Consider a derivation of maximal length in (R1 ∪R2)/S, written as follows where
s = s0:

s0 →k0
R2/S · →

∗
S t0 →R1 s1 →k1

R2/S · →
∗
S t1 →R1 · · · →R1 sm →km

R2/S · →
∗
S tm (3)

We have dh(s0,→(R1 ∪R2)/S) 6 dh(s0,→R1/(R2 ∪ S)) +
∑

06i6m ki since sequence (3)
is maximal. BecauseR2/S is compatible with (�,�) we conclude that dh(s0,�) >
dh(t0,�) + k0. From the assumption, dh(t0,�) + ∆ > dh(s1,�) follows and
hence dh(s0,�) + ∆ > dh(s1,�) + k0. Repeating this argument establishes that
dh(s0,�)+m ·∆ >

∑
06i6m ki. Because m 6 dh(s0,→R1/(R2 ∪ S)) (note that equal-

ity does not hold since sequence (3) need not be maximal for R1/(R2 ∪ S)) we ob-
tain dh(s0,→(R1 ∪R2)/S) 6 dh(s0,→R1/(R2 ∪ S))+dh(s0,�)+dh(s0,→R1/(R2 ∪ S)) ·∆
which simplifies to dh(s0,→(R1 ∪R2)/S) 6 (∆ + 1) · dh(s0,→R1/(R2 ∪ S)) + dh(s0,�).
Finally, taking M = ∆ + 1 concludes the proof.

To implement the above theorem the question arises which further requirements
besides compatibility ofR2/S with a complexity pair (�,�) are required such that
for any terms u and v a step u→R1 v implies the desired dh(u,�) + ∆ > dh(s,�)
for some constant ∆. One idea is to test dh(l,�) + ∆ > dh(r,�) explicitly for
any l → r ∈ R1 and demand that the complexity pair (�,�) then satisfies
dh(C[lσ],�) + ∆ > dh(C[rσ],�) for all contexts C and substitutions σ.

As we know from [75], SLIs can be used to get a concrete instance of Theo-
rem 5.13 with respect to derivational complexity, if S is empty. Below we state
the result in the relative setting, which is more useful for our purposes.

Corollary 5.14. Let (R1 ∪R2)/S be a relative TRS, R1 be non-duplicating,
and R2/S be compatible with an SLI. Then the following relationship is satisfied
dc(n, (R1 ∪R2)/S) = O(dc(n,R1/(R2 ∪ S)) + n).

Proof. Follows from Theorems 5.13 and 5.8 using the complexity pair (�M,�M)
induced by the SLI M.

An immediate consequence of the above corollary is that for a relative TRS R/S
we can shift rewrite rules in R that are strictly oriented by an SLI M into

96



5.4. Matrix Interpretations

the S-component, provided that R is non-duplicating and all rules in S behave
nicely with respect to �M. Note that the above corollary does not require that
all rules from R are (strictly) oriented. This causes some kind of non-determinism
which is demonstrated in the next example.

Example 5.15. Consider the TRS (Bouchare 06/12)3 consisting of the rules:

1 : b(b(x)→ a(a(a(x))) 2 : b(a(b(x)))→ a(x) 3 : b(a(a(x)))→ b(a(b(x)))

The SLI M with aM(x) = x + 2 and bM(x) = x + 1 transforms the TRS into
{1}/{2, 3} which is compatible with the AMI A (where all matrix coefficients are
smaller than two)

aA(~x) =

 0 0 0
−∞ −∞ 0
−∞ 0 −∞

~x bA(~x) =

 0 1 0
0 1 0
−∞ 0 −∞

~x

showing linear derivational complexity of this TRS. If a different SLI is used in
the first step, e.g., the one that counts just b’s then the intermediate problem
{3}/{1, 2} remains to be solved. For this problem there exists no AMI of dimension
three where all entries are less than 2 (but there exists one where all entries are
less than 3). For an implementation this means that depending on the rules the
SLI orients, later techniques may succeed or fail.

Next we remark on another subtlety of Theorem 5.13. Assume thatR1/(R2 ∪ S)
is compatible with a complexity pair (�,�). Then (R1 ∪R2)/S is transformed
into the problem R2/(R1 ∪ S) and this proof step estimates the complexity of
R1/(R2 ∪ S). If the complexity gap principle is used the situation changes. Since
it does not require (weak) compatibility with R1, it does not make a statement
about the complexity of R1/(R2 ∪ S). Instead it states that the complexity of
(R1 ∪R2)/S is dominated by the complexity of R1/(R2 ∪ S) or the complexity
of R2/S. This behavior is illustrated in the next example.

Example 5.16. Consider the relative TRS R consisting of the two rules

1 : c(x)→ a(x) 2 : a(b(x))→ b(b(c(x)))

We observe that the derivational complexity of the TRS R is at least exponential
because

an(b(x))→2 an−1(b(b(a(x))))→4 an−2(b(b(b(b(a(x))))))→8 · · · →2n b2n(a(x))

3Labels in sans-serif font refer to TRSs from the TPDB 7.0.2, see http://termination-portal.org.
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Obviously both rules are applied exponentially often in this sequence. Nevertheless
by an SLI that counts c’s Corollary 5.14 can be applied to R to obtain the relative
TRS {2}/{1}. As remarked earlier this step does not yield an upper bound on the
complexity of the TRS {1}/{2} but only on the TRS {1}.

Next we give counterexamples that TMIs, AMIs, and match-bounds cannot be
used to implement Theorem 5.13. A suitable but severe restriction of TMIs is
considered in Theorem 5.18.

Example 5.17. Recall the two TRSsR1 andR2 from Example 5.12. Here S = ∅.
Since dc(n,R1/R2) = O(n) and dc(n,R1 ∪R2) = Ω(2n) any method that es-
tablishes dc(n,R2) = O(nk) for some k ∈ N cannot be used to implement the
complexity gap principle.

Since the TMI M with

aM(~x) =

(
1 0
0 1

)
~x+

(
0
1

)
RM(~x) =

(
1 3
0 0

)
~x+

(
2
0

)
bM(~x) =

(
1 0
0 0

)
~x+

(
1
0

)
LM(~x) =

(
1 0
0 0

)
~x

orients all rules in R2 strictly—and hence gives a quadratic upper bound on
dc(n,R2)—in general TMIs cannot adhere to Theorem 5.13. The problem for the
interpretation above is that although there exists a ∆ with dh(l,�)+∆ > dh(r,�)
for all l → r ∈ R1 this property is not closed under substitutions. (The situa-
tion is different, however, if the matrix interpretation has constant growth, see
Theorem 5.18 below.)

Similarly, the AMI A (inducing at most linear derivational complexity of R2) with

aA(~x) =

(
0 −∞
3 3

)
~x RA(~x) =

(
1 3
0 2

)
~x

bA(~x) =

(
1 2
−∞ 0

)
~x LA(~x) =

(
0 −∞
−∞ −∞

)
~x

violates the same requirement in Theorem 5.13 as the TMI M above.

A similar reasoning also holds for match-bounds; one easily verifies that match-
bounds apply to the TRS R2 and hence this system admits linear derivational
complexity. The problem in this setting is that a valid termination proof of R2

using match-bounds does not necessarily yield a rewrite relation � such that
dh(u,�) + ∆ > dh(v,�) whenever u→R1 v, as required by Theorem 5.13.
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Finally we present a criterion that allows to implement Theorem 5.13 based on
TMIs. To this end we introduce the following concepts. A matrix interpretationM
has constant growth if there is a matrix A such that for any p ∈ N and matrices
M1, . . . ,Mp in M we have M1 · . . . ·Mp 6 A. Here 6 is the pointwise extension
of 6N to matrices. Because of the shape of matrix interpretations for terms s
and t there exist k ∈ N, matrices S1, . . . , Sk, T1, . . . , Tk, and vectors ~s, ~t such that
[α]M(s) = S1α(x1)+· · ·+Skα(xk)+~s and [α]M(t) = T1α(x1)+· · ·+Tkα(xk)+~t. In
such a case we denote the non-constant part of the interpretation of s by [α]ncpM (s) =
S1α(x1) + · · · + Skα(xk); similarly for t. We write s �ncp

M t if [α]ncpM (s) � [α]ncpM (t)
holds for all assignments α. Note that this condition can effectively be tested by
requiring Si > Ti (1 6 i 6 k).

Theorem 5.18. Let (R1 ∪R2)/S be a relative TRS, L a set of terminating terms,
M a matrix interpretation with constant growth, R1 ⊆ �ncp

M , and R2/S be com-
patible with M. Then cpL(n,→(R1 ∪R2)/S) = O(cpL(n,→R1/(R2 ∪ S)) + n).

Proof. Throughout this proof we assume that L = T (F ,V). Since the matrix inter-
pretationM has constant growth we have cpL(n,�M) = O(n). SinceR2/S is com-
patible with the complexity pair (�M,�M) using Theorem 5.13 it remains to show
that there is a constant ∆ such that u→R1 v implies dh(u,�M) + ∆ > dh(v,�M).
AsM has constant growth there is a matrix A such that A >M1 · . . . ·Mp for any
p ∈ N where the Mi’s are matrices occurring in M. Let δ = max {~r | l→ r ∈ R1}
(here ~r is the constant part of the interpretation of r and max denotes the pointwise
maximum of vectors). Note that δ is a vector.

Let ∆ = (Aδ)11. The derivation height of a term t wrt. �M is determined
by the first component of the vector [α]M(t). Hence dh(u,�M) + ∆ > dh(v,�M)
whenever [α]M(u) + Aδ > [α]M(v). To show the latter let l→ r ∈ R1, u = C[lσ],

v = C[rσ], [α]M(l) = L1α(x1) + · · ·+Lkα(xk) +~l, and [α]M(r) = R1α(x1) + · · ·+
Rkα(xk) +~r.

By definition of δ we have ~l + δ > ~r. Since R1 ⊆ �ncp
M we have Li > Ri for all

1 6 i 6 k and hence L1α(x1)+· · ·+Lkα(xk)+~l+δ > R1α(x1)+· · ·+Rkα(xk)+~r for

any α, hence L1α(x1σ)+ · · ·+Lkα(xkσ)+~l+δ > R1α(x1σ)+ · · ·+Rkα(xkσ)+~r for

any σ. The latter impliesD(L1α(x1σ)+· · ·+Lkα(xkσ)+~l+δ) > D(R1α(x1σ)+· · ·+
Rkα(xkσ) +~r) for any non-negative matrix D and especially we get DL1α(x1σ) +

· · ·+DLkα(xkσ)+D~l+Aδ > DR1α(x1σ)+ · · ·+DRkα(xkσ)+D~r if A > D (which
is no restriction sinceM has constant growth and any D that can occur is a matrix
product of the shape M1 · . . . ·Mp 6 A for some p ∈ N). The proof concludes by
the observation that the above inequation implies [α]M(C[lσ])+Aδ > [α]M(C[rσ])
for any context C.
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We conclude this section with a discussion of the above theorem. Due to [131,
Theorem 9] TMIs where each matrix M satisfies M(i,i) < 1 for any i > 2 have
constant growth. Since SLIs trivially adhere to this restriction Theorem 5.18
subsumes Corollary 5.14. The next example shows that this inclusion is strict.

Example 5.19. Let R1 = {a(x) → c(x)}, R2 = {a(b(a(x))) → a(b(b(a(x))))},
and S = ∅. Then the TMI M with

aM(~x) =

1 1 0
0 0 0
0 0 0

+

0
0
1

~x bM(~x) =

1 0 0
0 0 1
0 0 0

+ ~x

where cM(~x) = aM(~x) has constant growth and transforms (R1 ∪R2)/S into
R1/(R2 ∪ S) according to Theorem 5.18. However, there exists no SLI that orients
the rule in R2 strictly which shows that Corollary 5.14 cannot achieve this step.

5.5. Relative Match-Bounds

In this section we illustrate how the match-bound technique can be used to prove
relative termination and estimate complexity bounds for relative rewriting. To
maximize the power of the method we combine the ideas in [186] with the ones
in [206]. Preliminaries for match-bounds are introduced in Section 5.5.1. Sec-
tion 5.5.2 shows how the technique works for linear systems before Section 5.5.3
extends applicability to non-left-linear systems. Automation is addressed in Sec-
tion 5.5.4. Throughout this section we consider L ⊆ T (F) which does not affect
the results by assuming that the signature F always contains a constant.

5.5.1. Preliminaries

Let F be a signature, R a TRS over F , and L ⊆ T (F) a set of ground terms.
The set {t ∈ T (F) | s→∗R t for some s ∈ L} of reducts of L is denoted by→∗R(L).
Given a set N ⊆ N of natural numbers, the signature F×N is denoted by FN . Here
function symbols (f, c) with f ∈ F and c ∈ N have the same arity as f and are writ-
ten as fc. The mappings liftc : F → FN, base : FN → F , and height : FN → N are
defined as liftc(f) = fc, base(fc) = f , and height(fc) = c for all f ∈ F and c ∈ N.
They are extended to terms, sets of terms, and TRSs in the obvious way. The TRS
raise(F) over the signature FN consists of all rules fc(x1, . . . , xn)→ fc+1(x1, . . . , xn)
with f an n-ary function symbol in F , c ∈ N, and x1, . . . , xn pairwise distinct vari-
ables. The restriction of raise(F) to the signature F{0,...,c} is denoted by raisec(F).
For terms s, t ∈ T (FN,V) we write s ↑ t for the least term u with s →∗raise(F) u
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and t →∗raise(F) u. Here least refers to the (sum of the) lengths of the joining se-

quences. We extend this notion to ↑S for finite non-empty sets S ⊆ T (FN,V)
in the obvious way. Note that ↑S is undefined whenever S contains two terms s
and t such that base(s) 6= base(t). The TRS match(R) over the signature FN
consists of all rewrite rules l′ → liftc(r) for which there exists a rule l → r ∈ R
such that base(l′) = l and c = 1 + min{height(l′(p)) | p ∈ PosF(l)}. Here c ∈ N.
The restriction of match(R) to the signature F{0,...,c} is denoted by matchc(R).
To be able to apply the match-bound technique to non-left-linear TRSs we de-
fine the relation r−→match(R) on T (FN,V) as follows: s r−→match(R) t if and only if
there exist a rewrite rule l → r ∈ match(R), a position p ∈ Pos(s), a con-
text C, and terms s1, . . . , sn such that l = C[x1, . . . , xn] with all variables displayed,
s|p = C[s1, . . . , sn], base(si) = base(sj) whenever xi = xj for all i, j ∈ {1, . . . , n},
and t = s[rσ]p. Here the substitution σ is defined as follows:

σ(x) =

{
↑{si | xi = x with i ∈ {1, . . . , n}} if x ∈ {x1, . . . , xn}
x otherwise

Let L be a set of ground terms. A TRS R is called match-bounded for L if there
exists a c ∈ N such that the maximum height of function symbols occurring in
terms in→∗match(R)(lift0(L)) is at most c. Similarly, a TRS R is called match-raise-
bounded for L if there exists a c ∈ N such that the maximum height of function
symbols occurring in terms belonging to r−→∗match(R)(lift0(L)) is at most c. If we want

to make the bound c precise, we say that R is match(-raise)-bounded for L by c. If
we do not specify the set of terms L then it is assumed that L = T (F). The main
result underlying the match-bound technique states that a TRS R is terminating
for a language L if R is linear and match-bounded for L or R is non-duplicating
and match-raise-bounded for L.

In order to prove that a TRS R is match(-raise)-bounded for some language L,
the idea is to construct a (quasi-deterministic and raise-consistent) tree automaton
that is compatible with match(R) and lift0(L). In the following we briefly recall the
most important definitions in this connection. A tree automaton A = (F , Q,Qf ,∆)
consists of a signature F , a finite set of states Q, a set of final states Qf ⊆ Q, and
a set of transitions ∆ of the form f(q1, . . . , qn)→ q or p→ q where f is an n-ary
function symbol in F and p, q, q1, . . . , qn ∈ Q. The language L(A) of A is the set
of ground terms t ∈ T (F) such that t →∗∆ q for some q ∈ Qf . We say that A
is compatible with a TRS R and a language L if L ⊆ L(A) and for each rewrite
rule l → r ∈ R and state substitution σ : Var(l) → Q such that lσ →∗∆ q it holds
that rσ →∗∆ q. For left-linear R it is known that →∗R(L) ⊆ L(A) whenever A is
compatible with R and L [53]. To obtain a similar result for non-left-linear TRSs,
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in [106] quasi-deterministic automata are introduced. Let A = (F , Q,Qf ,∆) be
a tree automaton. We say that a state p subsumes a state q if p is final when
q is final and for all transitions f(u1, . . . , q, . . . , un) → u ∈ ∆, the transition
f(u1, . . . , p, . . . , un)→ u belongs to ∆. For a left-hand side l ∈ lhs(∆) of a transi-
tion, the set {q | l → q ∈ ∆} of possible right-hand sides is denoted by Q(l). The
automaton A is said to be quasi-deterministic if for every l ∈ lhs(∆) there exists
a state p ∈ Q(l) which subsumes every other state in Q(l). In general, Q(l) may
contain more than one state that satisfies the above property. In the following we
assume that there is a unique designated state in Q(l), which we denote by pl. The
set of all designated states is denoted by Qd and the restriction of ∆ to transitions
l → q that satisfy q = pl is denoted by ∆d. In [106] it is shown that the tree
automaton induced by ∆d is deterministic and accepts the same language as A.
For non-left-linear TRSs R we modify the above definition of compatibility by
demanding that the tree automaton A is quasi-deterministic and for each rewrite
rule l → r ∈ R and state substitution σ : Var(l) → Qd with lσ →∗∆d

q it holds
that rσ →∗∆ q. To ensure that quasi-deterministic and compatible tree automata
can be used to prove match-raise-boundedness of a TRS R it must be guaranteed
that the obtained tree automata are closed under the implicit raise-steps caused
by the relation r−→match(R). To this end we additionally require that the resulting
tree automata fulfill the property defined below. Let A = (FN , Q,Qf ,∆) be a tree
automaton with N a finite subset of N. We say that A is raise-consistent if for
every transition fc(q1, . . . , qn) → q ∈ ∆ and left-hand side fd(q1, . . . , qn) ∈ lhs(∆)
with c <N d, the transition fd(q1, . . . , qn)→ q belongs to ∆.

By a remark in [55] we know that the derivation height of a term in L is at most
linear in the size of the term whenever R is match-bounded for L. It is easy to
extend this result to match-raise-boundedness and hence to non-duplicating TRSs.
To this end we need the following notions. LetMul(N) denote the set of all finite
multisets over N. For any M ∈ Mul(N) we write M(n) to denote how often the
number n ∈ N occurs in M . Let M,N ∈ Mul(N) be two multisets. We write
M ∪N for the multiset sum of M and N where (M ∪N)(n) = M(n)+N(n) for all
n ∈ N and M ⊆ N for the multiset inclusion, i.e., M(n) 6 N(n) for all n ∈ N. The
multiset difference M \N is defined as (M \N)(n) = M(n)−N(n) if M(n) > N(n)
and (M \ N)(n) = 0 otherwise, for all n ∈ N. We write M �mul N if there are
multisetsX and Y such thatN = (M\X)∪Y , X 6= ∅, and for allm ∈ Y there is an
n ∈ X such that n <N m. We write M �mul N if M �mul N or M = N . Let F be
some signature. We extend the orderings �mul and �mul to terms over the signature
FN as follows: we have s �mul t if H(s) �mul H(t) and s �mul t if H(s) �mul H(t)
for terms s, t ∈ T (FN,V). Here H(t) = {height(t(p)) | p ∈ PosF(t)} denotes the
multiset of the heights of function symbols occurring in the term t.
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Theorem 5.20. Let R be a TRS and L be a language. If R is linear and
match-bounded or non-duplicating and match-raise-bounded for L then we have
cpL(n,→R) = O(n).

Proof. Assume that R is match-raise-bounded for L and hence terminating on L.
(Note that for a linear TRS R, match-boundedness coincides with match-raise-
boundedness.) Let

t→R t1 →R · · · →R tm−1 →R tm
be an arbitrary (terminating) rewrite sequence with t ∈ L. Since every→R rewrite
sequence can be lifted to a r−→match(R) rewrite sequence [105, Lemma 12] we obtain
a derivation

t′ r−→match(R) t
′
1

r−→match(R) · · · r−→match(R) t
′
m−1

r−→match(R) t
′
m

such that t′ = lift0(t) and base(t′i) = ti for all i ∈ {1, . . . ,m}. The proof of [105,
Lemma 8] yields that for any non-duplicating TRS R we have r−→match(R) ⊆ �mul.
It follows that t′i �mul t

′
i+1 for all i ∈ {0, . . . ,m − 1}. Here t′0 = t′. Since R is

match-raise-bounded for L, all terms in this latter sequence belong to T (F{0,...,c})
for some c ∈ N. Let k be the maximal number of function symbols occurring in
some right-hand side in R. Due to a remark in [42] we know that the length of
the �mul chain from t′ to t′m is bounded by ‖t′‖ · (k+ 1)c. Since ‖t′‖ = ‖t‖ and the
�mul chain starting at t′ is at least as long as the lifted and hence original rewrite
sequence, we conclude that the length of the R-rewrite sequence starting at the
term t is bounded by ‖t‖ · (k + 1)c.

Based on Theorem 5.20 it is easy to use the match-bound technique to estimate
the complexity of a relative TRS R/S; just check for match(-raise)-boundedness
of R ∪ S. This process either succeeds by proving that the combined TRS is
match(-raise)-bounded, or, when R ∪ S cannot be proved to be match(-raise)-
bounded, it fails. Since the construction of a (quasi-deterministic, raise-consistent,
and) compatible tree automaton does not terminate when applied to TRSs that are
not match(-raise)-bounded, the latter situation typically does not happen. This
behavior causes a serious problem since we cannot benefit from relative rewriting,
i.e., R/S is match(-raise)-bounded if and only if R∪S is. In [186] this problem has
been addressed by specifying an upper bound on the heights that can be introduced
by rewrite rules in match(S). So one tries to find a c ∈ N such that the maximum
height of function symbols occurring in reductions with the TRS matchc+1(R) ∪
matchc(S)∪ liftc(S) is at most c. If such a bound can be established we know that
R/S is terminating and in addition that it admits at most linear complexity. In
the following we extend this approach to better suit relative rewriting. To this
end we introduce a new enrichment match-RTc(R/S) where the rewrite rules in
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match-RTc(R/S) which originate from size-preserving or size-decreasing rules in S
are labeled in such a way that they do not increase the heights of the function
symbols in a contracted redex.

To simplify the presentation we first consider linear TRSs only. The extension
to non-duplicating TRSs is explained in Section 5.5.3.

5.5.2. RT-Bounds for Left-Linear Relative TRSs

As proposed in [186] we design the new enrichment match-RTc(R/S) such that
rules originating from S may introduce function symbols with height at most c.
In addition (as in [206]) we try to keep the heights of the function symbols in
a contracted redex if a size-preserving or size-decreasing rewrite rule in S (after
dropping all heights) is applied.

Definition 5.21. Let S be a TRS over a signature F and c ∈ N. The TRS
match-RTc(S) over the signature FN consists of all rules l′ → liftd(r) such that
base(l′)→ r ∈ S and

d =


min {c, height(l′(ε))} if ‖base(l′)‖ > ‖r‖ and

liftheight(l′(ε))(base(l
′)) = l′

min {c, 1 + height(l′(p)) | p ∈ PosF(l′)} otherwise

For a relative TRS R/S we define match-RTc(R/S) as match(R)/match-RTc(S).
Let d ∈ N. The restriction of match-RTc(S) to the signature F{0,...,d} is de-
noted by match-RTcd(S). Likewise the relative TRS match-RTcd(R/S) is defined as
matchd(R)/match-RTcd(S). In case c = d then match-RTcd(R/S) is abbreviated by
match-RTc(R/S) and match-RTcd(S) = match-RTc(S).

The idea behind the requirement ‖base(l′)‖ > ‖r‖ in the above definition is that
such rules cannot yield an increase with respect to the multiset measure of heights.
Let us illustrate the above definition on an example.

Example 5.22. Consider the relative TRS R/S with R consisting of the rewrite
rule

1 : rev(x)→ rev′(x, nil)

and S consisting of the rewrite rules

2 : rev′(nil, y)→ y 3: rev′(cons(x, y), z)→ rev′(y, cons(x, z))
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Then the rewrite rules

rev0(x)→ rev′1(x, nil1) rev1(x)→ rev′2(x, nil2)

rev2(x)→ rev′3(x, nil3) · · ·

belong to match(R) and match-RT1(S) contains the rules

rev′0(nil0, y)→ y rev′0(cons0(x, y), z)→ rev′0(y, cons0(x, z))

rev′0(nil1, y)→ y rev′0(cons1(x, y), z)→ rev′1(y, cons1(x, z))

· · · rev′2(cons1(x, y), z)→ rev′1(y, cons1(x, z))

Both TRSs together constitute match-RT1(R/S).

The new enrichment match-RTc(R/S) allows to prove the complexity of the
rewrite rules in R relative to the rules in S.

Definition 5.23. Let R/S be a relative TRS. We call R/S match-RT-bounded
for a language L if there exists a c ∈ N such that the height of function symbols
occurring in terms in →∗match-RTc(R/S)(lift0(L)) is at most c.

An immediate consequence of the next lemma is that every derivation in R/S
can be lifted to a match-RTc(R/S)-sequence of the same length. This result is
used later on to infer termination and complexity results for relative rewriting.

Lemma 5.24. Let R/S be a left-linear relative TRS and c ∈ N. If u →R v
(u →S v) then for all terms u′ with base(u′) = u there exists a term v′ such that
base(v′) = v and u′ →match(R) v

′ (u′ →match-RTc(S) v
′).

Proof. Straightforward.

To be able to prove that a relative TRS R/S admits a linear upper complex-
ity bound whenever it is match-RT-bounded for a language L we slightly modify
the orderings �mul and �mul. Let M,N ∈ Mul(N) be multisets. The function
dropn(M) removes all occurrences of the number n ∈ N from M . So for all m ∈ N
we have dropn(M)(m) = 0 if m = n and dropn(M)(m) = M(m) otherwise. The
orderings �cmul and �cmul are defined as M �cmul N if dropc(M) �mul dropc(N)
and M �cmul N if dropc(M) �mul dropc(N). Let F be some signature. We ex-
tend �cmul and �cmul to terms over the signature FN as follows: we have s �cmul t
if H(s) �cmul H(t) and s �cmul t if H(s) �cmul H(t) for terms s, t ∈ T (FN,V).
The basic idea behind the new orderings �cmul and �cmul is that rewrite rules
in match-RTc(R/S) which originate from R are compatible with �cmul and the
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rules originating from S are compatible with �cmul. However there is one prob-
lem. If R contains a collapsing rule l → r then the rule liftc(l) → liftc(r) ap-
pears in match-RTc(R/S) which cannot be oriented via the ordering �cmul although
liftc(l) �mul liftc(r). The problem is that collapsing rewrite rules do not increase
the heights of function symbols in a contracted redex because the right-hand sides
consist just of single variables. To avoid this problem we assume in the following
that R is non-collapsing. For collapsing R one could follow the approach in [206]
which can handle collapsing rewrite rules because it does not not use an upper
bound c to limit the heights that can be introduced by the enriched system. How-
ever, a disadvantages of this approach is that the heights of a contracted redex are
increased more often. So, apart from the collapsing case the approach presented
here is more powerful than the one introduced in [206] and completely subsumes
the approach in [186].

Lemma 5.25. Let R and S be two non-duplicating TRSs and c ∈ N. If R is
non-collapsing then →matchc(R) ⊆ �cmul and →match-RTc(S) ⊆ �cmul.

Proof. From the proof of [55, Lemma 17] we know that for a non-duplicating
TRS R and terms s and t such that s→matchc(R) t we have s �mul t. So there are
multisets X and Y such that H(t) = (H(s) \X) ∪ Y , X 6= ∅, and for all d′ ∈ Y
there is a d ∈ X such that d <N d

′. Because R is non-collapsing we know from the
definition of matchc(R) that there is a d ∈ X such that d <N c and d <N d

′ for all
d′ ∈ Y . From this it follows that dropc(H(t)) = (dropc(H(s))\dropc(X))∪dropc(Y ),
dropc(X) 6= ∅, and for all d′ ∈ dropc(Y ) there is a d ∈ dropc(X) such that d <N d

′.
As an immediate consequence we have dropc(H(s)) �mul dropc(H(t)) and hence
s �cmul t.

Now let s and t be terms and l → r be a rewrite rule in match-RTc(S) such
that s →{l→r} t. According to Definition 5.21 we have to consider two cases.
The first case amounts to ‖l‖ > ‖r‖ where all function symbols in l and r have
the same heights. But then non-duplication of S implies H(s) ⊇ H(t) and thus
s �cmul t. In the other case if l → r is non-collapsing and l /∈ liftc(base(l)) then
we obtain s �cmul t as before and hence also s �cmul t. If l ∈ liftc(base(l)) then
dropc(H(s)) ⊇ dropc(H(t)) since dropc(H(l)) = dropc(H(r)) = ∅ and if l → r is
collapsing then H(s) ⊇ H(t) since H(r) = ∅. Hence in both situations s �cmul t.

Since the length of every �cmul chain is bounded by a function linear in the size of
the starting term—if the size-increase of the terms in the chain can be bounded by
a constant—we can prove that the complexity induced by the relative TRS R/S
on some language L is at most linear if R/S is match-RT-bounded for L.
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Theorem 5.26. Let R/S be a linear relative TRS and R be non-collapsing. If
R/S is match-RT-bounded for a language L then R/S is terminating on L and
cpL(n,→R/S) = O(n).

Proof. First we show that R/S is terminating on L. Assume to the contrary that
there is an infinite rewrite sequence of the form

t1 →R/S t2 →R/S t3 →R/S · · ·

with t1 ∈ L. Because R∪S is left-linear and R/S is match-RT-bounded for L by
a c ∈ N, according to Lemma 5.24, the above derivation can be lifted to an infinite
match-RTc(R/S) rewrite sequence

t′1 →match-RTc(R/S) t
′
2 →match-RTc(R/S) t

′
3 →match-RTc(R/S) · · ·

starting from t′1 = lift0(t1) such that base(t′i) = ti for all i > 1 and the height
of every function symbol occurring in a term in the lifted sequence is at most c.
Hence the employed rewrite rules in the derivation emanating from t′1 must come
from match-RTc(R/S). With help of Lemma 5.25, transitivity of �cmul, and com-
patibility of the orderings �cmul and �cmul we deduce that t′i �cmul t

′
i+1 for all i > 1.

However, this is excluded because <N is well-founded on {0, . . . , c} and hence �cmul

is well-founded on T (F{0,...,c},V).
To prove the second part of the theorem, consider an arbitrary (terminating)

rewrite sequence
u→R/S u1 →R/S · · · →R/S um

with u ∈ L. This rewrite sequence can be lifted to a match-RTc(R/S)-sequence of
the same length

u′ →match-RTc(R/S) u
′
1 →match-RTc(R/S) · · · →match-RTc(R/S) u

′
m

similar as before such that u′ = lift0(u) and u′i �cmul u
′
i+1 for all i ∈ {0, . . . ,m− 1}.

Here u′0 = u′ and c ∈ N such that the relative TRS R/S is match-RT-bounded
for L by c. Similar as in the proof of Theorem 5.20 we can conclude that the length
of the R/S-rewrite sequence starting at the term u is bounded by ‖u‖ · (k + 1)c

where k is the maximal number of function symbols occurring in some right-hand
side in R∪ S; just replace �mul by �cmul.

We conclude this subsection with an example.

Example 5.27. The relative TRS R/S of Example 5.22 is match-RT-bounded for
T (F) by 1. Here F = {nil, cons, rev, rev′}. Due to Theorem 5.26 we can conclude
that R/S admits at most linear derivational complexity. In Section 5.5.4 it is
explained how match-RT-boundedness can be checked automatically.
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5.5.3. Raise-RT-Bounds for Non-Left-Linear Relative TRSs

In order to generalize Theorem 5.26 to non-duplicating relative TRSs we consider
the relation r−→match-RTc(R/S) instead of→match-RTc(R/S) which uses raise-rules to deal
with non-left-linearity. Thereby the rewrite relation r−→match-RTc(R/S) is defined as
r−→∗match-RTc(S) · r−→match(R) · r−→∗match-RTc(S) where r−→match-RTc(S) is defined similar to
r−→match(R) (but based on match-RTc(S) instead of match(R)). This is essential to

lift rewrite sequences in the relative TRS R/S to sequences in match-RTc(R/S).

Definition 5.28. Let R/S be a relative TRS. We call R/S match-raise-RT-
bounded for a language L if there exists a number c ∈ N such that the height
of function symbols occurring in terms belonging to r−→∗match-RTc(R/S)(lift0(L)) is at
most c.

Note that for left-linear relative TRSs, match-raise-RT-boundedness coincides
with match-RT-boundedness. By using the relation r−→match-RTc(R/S) every deriva-
tion induced by the relative TRS R/S can be simulated via the rewrite rules in
match-RTc(R/S).

Lemma 5.29. Let R/S be a relative TRS and c ∈ N. If u →R v (u →S v) then
for all terms u′ with base(u′) = u there exists a term v′ such that base(v′) = v and
u′ r−→match(R) v

′ (u′ r−→match-RTc(S) v
′).

Proof. Straightforward.

Before we can prove that match-raise-RT-boundedness of R/S induces a linear
upper bound on the complexity we have to ensure that the raise-rules implicitly
used by the relation r−→match-RTc(R/S) can be oriented via �cmul.

Lemma 5.30. For any signature F and c ∈ N it holds that →raisec(F) ⊆ �cmul.

Proof. Assume that there are terms s and t such that s→raisec(F) t. According to
the definition of raisec(F) we have H(t) = (H(s) \ {d}) ∪ {d+ 1} for some height
d <N c. Thus s �cmul t and hence s �cmul t according to the definition of �cmul.

Using Lemma 5.30 it is easy to extend Theorem 5.26 to TRSs that are non-linear
but non-duplicating.

Theorem 5.31. Let R/S be a non-duplicating relative TRS and let R be non-
collapsing. If R/S is match-raise-RT-bounded for a language L then R/S is ter-
minating on L. Furthermore, cpL(n,→R/S) = O(n).
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Proof. First we show that R/S is terminating on L. Assume to the contrary that
there is an infinite rewrite sequence of the form

t1 →R/S t2 →R/S t3 →R/S · · ·

with t1 ∈ L. Let R/S be match-raise-RT-bounded for L by a c ∈ N. Lemma 5.29
yields an infinite r−→match-RTc(R/S) rewrite sequence

t′1
r−→match-RTc(R/S) t

′
2

r−→match-RTc(R/S) t
′
3

r−→match-RTc(R/S) · · ·

starting from t′1 = lift0(t1) such that base(t′i) = ti for all i > 1. Because R/S is
match-raise-RT-bounded for L by c, the height of every function symbol occurring
in a term in the lifted sequence is at most c. Hence the employed rewrite rules in
the derivation emanating from t′1 must come from match-RTc(R/S). With help of
Lemmata 5.25 and 5.30, transitivity of �cmul, and compatibility of �cmul and �cmul

we deduce that t′i �cmul t
′
i+1 for all i > 1. (Note that Lemma 5.25 requires that

R/S is non-duplicating.) However, this is excluded because <N is well-founded on
{0, . . . , c} and hence �cmul is well-founded on T (F{0,...,c},V).

To prove the second part of the theorem, consider an arbitrary (terminating)
rewrite sequence

u→R/S u1 →R/S · · · →R/S um

with u ∈ L. This rewrite sequence can be lifted to a r−→match-RTc(R/S)-sequence of
the same length

u′ r−→match-RTc(R/S) u
′
1

r−→match-RTc(R/S) · · · r−→match-RTc(R/S) u
′
m

similar as before such that u′ = lift0(u) and u′i �cmul u
′
i+1 for all i ∈ {0, . . . ,m− 1}.

Here u′0 = u′ and c ∈ N such that the relative TRS R/S is match-raise-RT-
bounded for L by c. Similar as in the proof of Theorem 5.20 we can conclude
that the length of the R/S-rewrite sequence starting at the term u is bounded by
‖u‖ · (k + 1)c where k is the maximal number of function symbols occurring in
some right-hand side in R∪ S; just replace �mul by �cmul.

5.5.4. Automation

To automatically prove that a given relative TRS is match(-raise)-RT-bounded
for some language L we use (quasi-deterministic, raise-consistent, and) compatible
tree automata. Here a tree automaton A is said to be compatible with a relative
TRS R/S and a language L if A is compatible with R∪ S and L.
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Lemma 5.32. Let R/S be a left-linear relative TRS, L a language, and c ∈ N. Let
A be a tree automaton. If A is compatible with the relative TRS match-RTc(R/S)
and lift0(L) such that the height of each function symbol occurring in transitions
in A is at most c then R/S is match-RT-bounded for L.

Proof. Easy consequence of Definition 5.23 and the fact that compatible tree au-
tomata are closed under left-linear rewriting.

In case of non-left-linear TRSs we obtain the following result.

Lemma 5.33. Let R/S be a relative TRS, L a language, and c ∈ N. Let A
be a quasi-deterministic and raise-consistent tree automaton. If A is compatible
with match-RTc(R/S) and lift0(L) such that the height of each function symbol
occurring in transitions in A is at most c then R/S is match-raise-RT-bounded
for L.

Proof. Straightforward by using the fact that quasi-deterministic, raise-consistent
and compatible tree automata are closed under rewriting.

To prove that a relative TRS R/S is match(-raise)-RT-bounded for a set of
terms L we construct a (quasi-deterministic and raise-consistent) tree automaton
A = (F , Q,Qf ,∆) that is compatible with the rewrite rules of match-RTc(R/S)
and lift0(L). Since the set →∗match-RTc(R/S)(lift0(L)) need not be regular, even for

left-linear R and S and regular L (see [55]) we cannot hope to give an exact
automaton construction. The general idea [53, 55] is to look for violations of the
compatibility requirement: lσ →∗∆ q (lσ →∗∆d

q) and rσ 6→∗∆ q for some rewrite
rule l → r, state substitution σ : Var(l) → Q (σ : Var(l) → Qd), and state q ∈ Q
(q ∈ Qd). Then we add new states and transitions to the current automaton to
ensure rσ →∗∆ q. After rσ →∗∆ q has been established, we repeat this process until
a (quasi-deterministic, raise-consistent, and) compatible automaton is obtained.
Note that this may never happen if new states are repeatedly added. To guess an
appropriate c we start with c = 0. As soon as a new transition fd(q1, . . . , qn)→ q
with d >N c is added to the constructed tree automaton, we set c = d and proceed
with the construction.

Example 5.34. We show that the relative TRS R/S of Example 5.22 over the
signature F = {nil, cons, rev, rev′} is match-RT-bounded for T (F) by construct-
ing a compatible tree automaton. As starting point we consider the initial tree
automaton

nil0 → 1 cons0(1, 1)→ 1 rev0(1)→ 1 rev′0(1, 1)→ 1
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which accepts all ground terms over the enriched signature lift0(F). The first com-
patibility violation we consider is caused by the rewrite rule rev0(x) →match(R)

rev′1(x, nil1). We have rev0(1) → 1 but not rev′1(1, nil1) →∗ 1. To solve this
violation we add the transitions nil1 → 2 and rev′1(1, 2) → 1. The compati-
bility violation caused by the rewrite rule rev′1(nil0, y) →match-RT1(S) y and the
derivation rev′1(nil0, 2) →∗ 1 is solved by adding the transition 2 → 1. Note
that we are currently using match-RT1(S) because the maximal height of a func-
tion symbol occurring in the underlying tree automaton is 1. Next we consider
the compatibility violation rev′1(cons0(1, 1), 2) →∗ 1 but rev′1(1, cons1(1, 2)) 6→∗ 1
induced by the rule rev′1(cons0(x, y), z) →match-RT1(S) rev′1(y, cons1(x, z)). In or-
der to ensure rev′1(1, cons1(1, 2)) →∗ 1 we reuse the transition rev′1(1, 2) → 1
and add the new transition cons1(1, 2) → 2. Finally, rev′0(cons1(1, 2), 1) →∗ 1
and rev′0(cons1(x, y), z) →match-RT1(S) rev

′
1(y, cons1(x, z)) give rise to the transition

cons1(1, 1) → 2. After this step, the obtained tree automaton is compatible with
match-RT1(R/S). Hence R/S is match-RT-bounded for T (F) by 1. Due to Theo-
rem 5.26 we can conclude that R/S admits at most linear complexity. We remark
that the ordinary match-bound technique (Theorem 5.20) fails on R/S because
R∪ S induces quadratic complexity:

revn(x)σm → revn−1(rev′(x, nil))σm →m revn−1(rev′(nil, x))σm

→ revn−1(x)σm →(n−1)(m+2) xσm

with σ = {x 7→ cons(y, x)}) for all n,m > 1.

5.6. Assessment

In this section we compare the complexity proving power of the direct and the
modular setting on a theoretical level. Gains in power in practice are reported in
Section 5.8. In the first part of this section we show that for TMIs of dimension
one, i.e. SLIs, in theory both approaches are equivalent but in the general case the
modular setting allows TMIs of smaller dimensions to succeed. Since the dimension
of the TMI corresponds to the degree of the polynomial bound the modular setting
allows to establish tighter bounds. The second part of this section shows that the
modular setting is strictly more powerful than the direct one, i.e., there are systems
where the modular setting admits a complexity proof but all involved methods
cannot succeed on its own in the direct setting. To make the presentation easier
we assume the original problems to be standard (in contrast to relative) TRSs.
This has no effect on the results. The next lemma states that for SLIs in theory
there is no difference in power between the two settings.
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Lemma 5.35. Let R = R1 ∪ R2 be a TRS. There exists an SLI M compatible
with R if and only if there exist SLIs M1 and M2 such that M1 is compatible
with R1/R2 and M2 is compatible with R2/R1.

Proof. The implication from left to right obviously holds since M is a suitable
candidate forM1 andM2. For the reverse direction we construct an SLIM com-
patible with R based on the SLIsM1 andM2. To this end let fM1(x1, . . . , xm) =
x1 + · · ·+ xm + f1 and fM2(x1, . . . , xm) = x1 + · · ·+ xm + f2. It is straightforward
to check that fM(x1, . . . , xm) = x1 + · · · + xm + f1 + f2 for any f ∈ F yields an
SLI M compatible with R.

Due to Theorem 5.6 the complexity is not affected when using the modular
setting. Hence when using SLIs in theory both approaches can prove the same
bounds. But experiments in Section 5.8 show that in practice proofs are easier to
find in the modular setting since, e.g., the coefficients of the interpretations can
be chosen smaller (cf. the proof of Lemma 5.35). If TMIs of larger dimensions are
applied then just the only-if direction of Lemma 5.35 holds. This is shown with
the help of the next example.

Example 5.36. Consider the TRS R (Strategy removed AG01/#4.21) consisting
of the rules:

1 : f(1)→ f(g(1)) 2 : f(f(x))→ f(x) 3 : g(0)→ g(f(0)) 4 : g(g(x))→ g(x)

The TMIs M1 and M2

fM1(~x) =

(
1 1
0 0

)
~x+

(
0
1

)
gM1(~x) =

(
1 0
0 0

)
~x 0M1 =

(
0
0

)
1M1 =

(
0
1

)
gM2(~x) =

(
1 1
0 0

)
~x+

(
0
1

)
fM2(~x) =

(
1 0
0 0

)
~x 1M2 =

(
0
0

)
0M2 =

(
0
1

)
establish quadratic upper bounds on the derivational complexity of the systems
{3, 4}/{1, 2} and {1, 2}/{3, 4}, respectively. Theorem 5.6 establishes a quadratic
upper bound for R.

Although for the TRS in Example 5.36 TMIs of dimension two could establish
a quadratic upper bound on the derivational complexity in the modular setting,
they cannot do so in the direct setting because of the next lemma. (We remark
that there exist TMIs of dimension three that are compatible with this TRS).

Lemma 5.37. The TRS Strategy removed AG01/#4.21 does not admit a TMI of
dimension two compatible with it.
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Proof. To address all possible interpretations we extracted the set of constraints
that represent a TMI of dimension two compatible with the TRS. MiniSmt [208]
can detect unsatisfiability of these constraints. Details of this proof can be found
at the web site in Footnote 6 on page 122.

The next result shows that any direct proof transfers into the modular setting
without increasing the bounds on the complexity.

Lemma 5.38. Let � be a finitely branching rewrite relation and let R = R1∪R2 be
a TRS compatible with �. Then there exist complexity pairs (�1,�1) and (�2,�2)
which are compatible with the relative TRSs R1/R2 and R2/R1, respectively. Fur-
thermore for any language L we have cpL(n,�) = Θ(cpL(n,�1) + cpL(n,�2)).

Proof. Fix i. Let (�i,�i) be (�,=). It is easy to see that (�,=) is a complexity
pair because � and = are compatible rewrite relations. It remains to show that
for any term t ∈ L we have cpL(n,�) = Θ(cpL(n,�1) + cpL(n,�2)). To this end
we observe that dh(t,�1) + dh(t,�2) = 2 · dh(t,�) for all terms t ∈ L. Basic
properties of the O-notation yield the desired result.

Due to Example 5.36 and Lemmata 5.37 and 5.38 we obtain that the modular
setting allows to use TMIs of smaller dimensions than the direct one, which al-
lows to establish tighter bounds. The next example (together with Lemma 5.38)
shows that in theory the modular complexity setting is strictly more powerful than
the direct one since it allows to combine different criteria to establish an upper
complexity bound while any method on its own cannot succeed.

Example 5.39. Consider the TRS R (Transformed CSR 04/Ex16 Luc06 GM) con-
sisting of the rules:

1 : c→ a 3: mark(a)→ a 5: g(x, y)→ f(x, y)

2 : c→ b 4: mark(b)→ c 6: g(x, x)→ g(a, b) 7 : mark(f(x, y))→ g(mark(x), y)

The following SLI M with aM = 0, bM = 0, cM = 1, fM(x, y) = x + y,
gM(x, y) = x + y + 1, and markM(x) = x + 2 allows Corollary 5.14 to trans-
form the TRS R into the relative TRS {6, 7}/{1, 2, 3, 4, 5}. This problem can be
split according to Theorem 5.6 into the two relative TRSs {6}/{1, 2, 3, 4, 5, 7} and
{7}/{1, 2, 3, 4, 5, 6}. Match-bounds (Theorem 5.31) can show a linear upper bound
on the first problem. The following TMI M

aM =

(
0
0

)
fM(~x,~y) = ~x+

(
1 0
0 0

)
~y +

(
0
1

)
markM(~x) =

(
1 1
0 1

)
~x
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where aM = bM = cM and fM(~x,~y) = gM(~x,~y) gives a quadratic upper bound on
the second relative TRS, establishing a quadratic upper bound on the derivational
complexity of R. The quadratic bound is tight as R admits derivations

markn(x)σm →m markn−1(x)τmγ →m markn−1(x)σmγ →2m(n−1) xσmγn

of length 2mn where σ = {x 7→ f(x, y)}, τ = {x 7→ g(x, y)}, and γ = {x 7→
mark(x)}. Last but not least we remark that none of the involved techniques can
establish an upper bound on its own. In case of match-bounds this follows from
the fact that R admits quadratic derivational complexity. The same reason also
holds for Corollary 5.14 because SLIs induce linear complexity bounds. Finally,
TMIs fail because they cannot orient the rewrite rule g(x, x)→ g(a, b).

Hence we obtain the following corollary.

Corollary 5.40. The modular complexity setting is strictly more powerful than
the direct one.

Proof. By Lemma 5.38 and Example 5.39.

Next we consider the TRS Zantema 04/z086. The question about the deriva-
tional complexity of it has been stated as problem #105 on the RTA LooP.4

Example 5.41. Consider the TRS R (Zantema 04/z086) consisting of the rules:

1 : a(a(x))→ c(b(x)) 2 : b(b(x))→ c(a(x)) 3 : c(c(x))→ b(a(x))

Adian [1] showed that R admits at most quadratic derivational complexity. Since
the proof is based on a low-level reasoning on the structure of R, it is specific to
this TRS and challenging for automation. With our approach we cannot prove the
quadratic bound on the derivational complexity of R. However, Corollary 5.14
permits to establish some progress. Using an SLI counting a’s and b’s, it suffices
to determine the derivational complexity of {3}/{1, 2}. This means that the rule
c(c(x))→ b(a(x)) relative to the other rules dominates the derivational complexity
ofR. The benefit is that now, e.g., a TMI must only orient one rule strictly and the
other two rules weakly (compared to all three rules strictly). It has to be clarified
if the relative formulation of the problem can be used to simplify the proof in [1].

The next example shows that although the modular approach often allows to
establish lower bounds compared to the direct one, further criteria for splitting
TRSs should be investigated.

4http://www.cs.tau.ac.il/~nachum/rtaloop/
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Example 5.42. Consider the TRSR (SK90/4.30) consisting of the following rules:

1 : f(nil)→ nil 3: f(nil ◦ y)→ nil ◦ f(y) 5 : f((x ◦ y) ◦ z)→ f(x ◦ (y ◦ z))

2 : g(nil)→ nil 4: g(x ◦ nil)→ g(x) ◦ nil 6: g(x ◦ (y ◦ z))→ g((x ◦ y) ◦ z)

In [126] a TMI compatible with R of dimension four is given showing that the
derivational complexity is bounded by a polynomial of degree four. Using Theo-
rem 5.6 with TMIs of dimension three yields a cubic upper bound, i.e., the TMIM1

◦M1(~x,~y) =

1 0 0
0 0 1
0 0 1

~x+ ~y +

0
0
1

 fM1(~x) =

1 1 0
0 0 1
0 0 1

~x+

0
1
0


gM1(~x) =

1 0 0
0 0 1
0 0 1

~x nilM1 =

1
1
1


yields a cubic upper bound on {1, 2, 3}/{4, 5, 6}. So does the TMI M2 with

fM2(~x) = gM1(~x) gM2(~x) = fM1(~x) ◦M2(~x,~y) = ◦M1(~y,~x) nilM2 = nilM1

for {4, 5, 6}/{1, 2, 3}. Our approach enables showing a lower complexity than [126]
but the derivational complexity of R is quadratic (see [126]). The quadratic lower
bound is justified as R admits derivations

fn(x)σm →n nil ◦ fn(x)σm−1 →n · · · →n xσmτn

of length nm where σ = {x 7→ nil ◦ x} and τ = {x 7→ f(x)}. We stress that
the recent approach in [187] allows to establish a quadratic upper bound. For a
comment on the integration of this method into our setting we refer to Section 5.9.

5.7. Implementation

In Section 5.7.1 we first show how the various theorems from the previous sections
can be implemented to obtain some complexity proof. Afterwards Section 5.7.2 is
concerned with lowering the bounds starting from an existing complexity proof.

5.7.1. Establishing Bounds

To estimate the complexity of a TRS R with respect to a language L, we first
transform R into the relative TRS R/∅. Obviously cpL(n,→R) = cpL(n,→R/∅).
If the input already is a relative TRS this step is omitted. Afterwards for a
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relative TRS R/S we try to establish a bound on the complexity of R2/(R1 ∪ S)
with respect to L for someR1, R2 withR1 = R\R2 and continue with the relative
TRS R1/(R2 ∪ S). This step is executed repeatedly until the remaining problem
equals ∅/(R∪ S). Then the complexity of R/S with respect to L is obtained by
summing up all intermediate bounds. In order to establish a maximal number of
complexity proofs we run all techniques from Sections 5.4 and 5.5 in parallel and
the first technique that can shift some rules is used to achieve progress.

Note that the procedure sketched above contains an implicit application of Theo-
rem 5.6, i.e., some method immediately proves a bound forR2/(R1 ∪ S) and leaves
R1/(R2 ∪ S) as open proof obligation. In contrast to an explicit application of
Theorem 5.6, here the method that establishes the bound on R2/(R1 ∪ S) can
select the decomposition of R into R1 and R2 which is beneficial for performance.
As an immediate consequence, proof trees degenerate to lists (cf. Example 5.50).
In the following we describe the presented approach more formal and refer to it as
the complexity framework.

Definition 5.43. A complexity problem (CP problem for short) is a pair (R/S, L)
consisting of a relative TRS R/S and a language L.

To operate on CP problems so called complexity processors are used. Similar
as in the dependency pair framework we distinguish between sound and complete
processors. Here sound complexity processors are used to prove an upper bound
on the complexity of a given CP problem whereas complete complexity processors
are applied to derive lower bounds on the complexity.

Definition 5.44. A complexity processor (CP processor for short) is a function
that takes a CP problem (R/S, L) as input and as output it returns a set of
pairs

⋃
16i6m{((Ri/Si, Li), fi)}.5 Here (Ri/Si, Li) is a complexity problem and

fi : N→ N for each 1 6 i 6 m. A complexity processor is sound if

cpL(n,→R/S) = O(f1(n)+ · · ·+fm(n)+cpL1
(n,→R1/S1)+ · · ·+cpLm(n,→Rm/Sm))

and it is called complete if

cpL(n,→R/S) = Ω(f1(n)+ · · ·+fm(n)+ cpL1
(n,→R1/S1)+ · · ·+ cpLm(n,→Rm/Sm))

holds.

In the sequel zero denotes the constant zero function, i.e., zero : N → N with
zero(n) = 0. Next we list some CP processors that can be derived from the
previous sections. The first one is based on complexity pairs and can, e.g., be
implemented by Theorems 5.8 and 5.10.

5For reasons of readability we write pairs ((Ri/Si, Li), fi) as triples (Ri/Si, Li, fi).
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Theorem 5.45. The CP processor

(R/S, L) 7→


{(R1/(R2 ∪ S), L, f)} if R2/(R1 ∪ S) is compatible

with a complexity pair (�,�)

{(R/S, L, zero)} otherwise

where R = R1 ∪R2, and f(n) = cpL(n,�) is sound.

Proof. Follows from Corollary 5.3 and Theorem 5.6.

The above processor is implemented by demanding that all rules in R ∪ S are
weakly oriented while at least one rule in R is oriented strictly. Hence the decom-
position of R into R1 and R2 is performed automatically. The next CP processor
requires a mild condition on R1 only. Again the decomposition of R into R1

and R2 is performed automatically since in the implementation we just demand
that the S-rules are weakly oriented while the R-rules may increase by a constant
factor and at least one of the rules in R is oriented strictly.

Theorem 5.46. The CP processor

(R/S, L) 7→


{(R1/(R2 ∪ S), L, f)} if M is a matrix interpretation with

constant growth, R1 ⊆ �ncp
M , and

R2/S is compatible with M
{(R/S, L, zero)} otherwise

where R = R1 ∪R2, and f(n) = n is sound.

Proof. Follows from Theorem 5.6 and Theorem 5.18.

The next CP processor is based on match-bounds.

Theorem 5.47. The CP processor

(R/S) 7→


{(R1/(R2 ∪ S), L, f)} if R2/(R1 ∪ S) is

linear and match-RT-bounded for L or
non-duplicating and match-raise-RT-bounded
for L

{(R/S, L, zero)} otherwise

where R = R1 ∪R2, R2 is non-collapsing, and f(n) = n is sound.

Proof. Follows from Theorems 5.6, 5.26, and 5.31.

117



5. Modular Complexity Analysis for Term Rewriting

The above processor is implemented by considering for any rule l → r ∈ R
the decompositions R2 = {l → r} and R1 = R \ R2 in parallel. The next CP
processor we present is not implemented for finding a bound (cf. the discussion
at the beginning of the section) but very suitable to tighten existing bounds (see
Section 5.7.2).

Theorem 5.48. The CP processor

(R/S, L) 7→ {(R1/(R2 ∪ S), L, zero), (R2/(R1 ∪ S), L, zero)}

where R = R1 ∪R2 is sound and complete.

Proof. By Theorem 5.6.

Finally, the main theorem states that the CP framework may be applied to
complexity analysis. We say that P is a complexity proof for a relative TRS R/S
and a language L if all leaves in P are of the shape ∅/(R∪ S).

Theorem 5.49. Let R/S be a relative TRS and L be a language. Let P be a
complexity proof for R/S and L and f1, . . . , fm be the complexities in this proof. If
all CP processors in P are sound then cpL(n,→R/S) = O(f1(n) + · · ·+ fm(n)). If
all CP processors in P are complete then cpL(n,→R/S) = Ω(f1(n) + · · ·+ fm(n)).

Proof. By Definition 5.44 as well as basic properties of O-notation.

We conclude the section with an (abstract) example which illustrates the behav-
ior of the complexity framework.

Example 5.50. Consider the TRSR of Example 5.7 on page 91 with the complex-
ity proof depicted in Figure 5.2. After transforming R into the relative TRS R/∅
the CP processor of Theorem 5.45 is applied twice. First the (derivational) com-
plexity of the relative TRS {1, 3, 5}/{2, 4} is estimated by a polynomial of degree
five. As a consequence, the rules 1, 3, and 5 are moved into the relative component
yielding a CP problem consisting of the relative TRS {2, 4}/{1, 3, 5}. After that
the (derivational) complexity of {2, 4}/{1, 3, 5} is estimated by a quadratic bound.
Since the remaining CP problem is of the shape ∅/R according to Theorem 5.49
the (derivational) complexity of R is at most quintic.

5.7.2. Tightening Bounds

In contrast to termination, which is a plain YES/NO question, complexity corre-
sponds to an optimization problem. Hence automated tools should try to establish
as tight bounds as possible. In the direct setting all complexity methods can be ex-
ecuted in parallel and after a fixed amount of time the tightest bound is reported.
The next example shows such a case.
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R

R/∅

{2, 4}/{1, 3, 5}

∅/R

O(1)

O(n5)

O(n2)

Figure 5.2.: Sequential complexity proof.

Example 5.51. Consider the TRS Rbits (nontermin/AG01/#4.28) consisting of
the following five rules:

1 : half(0)→ 0 4: bits(0)→ 0

2: half(s(0))→ 0 5: bits(s(x))→ s(bits(half(s(x))))

3 : half(s(s(x)))→ s(half(x))

For this TRS the complexity analyzer CaT (cf. Section 5.8) finds a proof by root-
labeling followed by a TMI of dimension two, establishing a quadratic upper bound
within five seconds. However, after 90 seconds the tool finds the following AMI A
that shows a linear upper bound:

bitsA(~x) =

0 1 2
0 4 5
0 6 7

~x halfA(~x) =

1 −∞ −∞
1 −∞ −∞
1 −∞ −∞

~x

sA(~x) =

1 1 −∞
7 0 2
1 6 0

~x 0A =

 0
0
−∞


So, whenever the tool is allowed more than 90 seconds the linear bound can be
reported and if the user sets the global timeout to less, then still the quadratic
bound can be output.

In the modular setting this simple idea does not work because two problems
emerge. The first problem is that the tool does not know how much time it may
spend in a single proof step. If it spends too much then it may not finish the
proof within the global time limit and if it spends too little then it can miss a low
bound. The second problem is that in the modular setting separate criteria may
make statements about the complexity of different rules. The question is then to
identify the better bound. The next example demonstrates this scenario.
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Example 5.52. Consider the TRSs

1: a(b(x))→ b(a(x)) 2 : g(x, x)→ g(c, d)

The TMI M with gM(~x,~y) = ~x+ ~y and

aM(~x) =

(
1 1
0 1

)
~x bM(~x) =

(
1 0
0 1

)
~x+

(
0
1

)
cM(~x) =

(
0
0

)
dM(~x) =

(
0
0

)
establishes a quadratic upper bound on the complexity of {1}/{2} whereas match-
bounds yield a linear upper bound for {2}/{1}. The question now is with which
remaining proof obligation ({2}/{1} or {1}/{2}) the tool should continue. Note
that both bounds are tight.

The following idea overcomes both problems: First we establish some complexity
proof according to the procedure described at the beginning of Section 5.7.1 to
obtain a bound for as many systems as possible. Afterwards we optimize this
bound. The next example shows how the latter works.

Example 5.53. Consider the TRS R of Example 5.7 with the complexity proof
depicted in Figure 5.3a. In this exemplary case one part in this proof, highlighted
by a solid box, is overestimated by a cubic upper bound. Hence the complexity of
the whole system is at most cubic. We remark that this proof step estimates the
complexity of {3, 5}/{1, 2, 4}. Now assume that the cubic bound is not optimal,
i.e., there exists a proof (that may be longer and harder to find) that induces a
quadratic upper bound on the complexity of {3, 5}/{1, 2, 4}. Then the proof is op-
timized as illustrated in Figure 5.3b, i.e., {1, 3, 5}/{2, 4} is split into the problems
{1}/{2, 3, 4, 5} and {3, 5}/{1, 2, 4} by an application of Theorem 5.6. After that,
the proof part of {1}/{2, 3, 4, 5} is reused in the optimized proof (cf. the dashed
boxes in Figure 5.3a and Figure 5.3b) whereas the original proof of {3, 5}/{1, 2, 4}
is replaced by the new one, as indicated by the solid box in Figure 5.3b. Now, the
proof in Figure 5.3b establishes a quadratic upper bound on the complexity of R.
For completeness we state that the proof in Figure 5.3a can be obtained from the
sequential proof tree shown in Figure 5.2 by optimization. To show the procedure
on a non-linear proof tree this presentation was chosen.

As the previous example demonstrates the basic idea is to replace single proof
steps by new proofs that induce tighter bounds. This procedure is repeated until
either the global time limit is reached or none of the bounds can be tightened
further. Note that the transformation is sound by Theorem 5.49.

The final example in this section shows that it may be easier to find proofs in
the modular setting.
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R

R/∅

{2, 4}/{1, 3, 5}

∅/R

{1, 3, 5}/{2, 4}

{1}/{2, 3, 4, 5}

∅/R

O(1)

O(1) O(1)

O(n2) O(n3)

O(n)

(a) Initial proof.

R

R/∅

{2, 4}/{1, 3, 5}

∅/R

{1, 3, 5}/{2, 4}

{1}/{2, 3, 4, 5}

∅/R

{3, 5}/{1, 2, 4}

{5}/{1, 2, 3, 4}

∅/R

O(1)

O(1) O(1)

O(n2) O(1) O(1)

O(n) O(n2)

O(n2)

(b) Optimized proof.

Figure 5.3.: Tightening bounds.

Example 5.54. Recall the TRS from Example 5.51. Corollary 5.14 with an SLI
that just counts function symbols allows to transform the initial problem into
{5}/{1, 2, 3, 4}. The AMI of dimension three with

bitsA(~x) =

0 0 0
0 3 2
0 2 2

~x halfA(~x) =

0 −∞ −∞
0 −∞ −∞
0 −∞ −∞

~x

sA(~x) =

 0 −∞ 0
−∞ −∞ 3

4 0 0

~x 0A =

0
0
0


allows to show linear derivational complexity of Rbits. Note that CaT finds this
interpretation within three seconds whereas it took the tool 90 seconds to find a
suitable interpretation for the direct setting.

5.8. Experimental Results

The techniques described in the preceding sections are implemented in the com-
plexity analyzer CaT (freely available from http://cl-informatik.uibk.ac.at/

software/cat) which is built on top of TTT2 [107], a powerful termination tool for
TRSs.
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5. Modular Complexity Analysis for Term Rewriting

O(nk) O(n) O(n2) O(n3) time

direct 315 202 234 259 1.7
direct? 315 215 303 312 7.9
modular 334 208 228 261 2.6
modular? 334 221 321 329 10.6

CaT 328 216 310 319 4.2
CaT? 328 219 317 324 11.5

Table 5.1.: Derivational complexity of 1172 TRSs.

Below we report on the experiments6 we performed. We considered the 2132
TRSs in version 7.0.2 of the TPDB without strategy or theory annotation. The
1172 non-duplicating systems of this collection have been used for experiments
with derivational complexity (note that a duplicating system gives rise to at least
exponentially long derivations). For runtime complexity we considered the 1339
systems that are not trivial, e.g., where the set of constructor-based terms is not
finite and terminating. In this collection there are 910 non-duplicating systems.
All tests have been performed on a server equipped with eight dual-core AMD
Opteron R© processors 885 running at a clock rate of 2.6 GHz and 64 GB of main
memory. We remark that similar results have been obtained on a dual-core laptop.
If a tool did not report an answer within 60 seconds, its execution was aborted.

As complexity preserving transformations we employ uncurrying [202] for ap-
plicative systems whenever it applies and root-labeling [162] in parallel to the
base methods. As base methods we use the match-bounds technique as well as
TMIs [126, 131] and AMIs [104] of dimensions one to five. The latter two are
implemented by bit-blasting arithmetic operations to SAT [44]. All base methods
are run in parallel and started upon program execution.

Our results are summarized in Tables 5.1 and 5.2. Here, direct refers to the
conventional setting where all rules must be oriented at once whereas modular first
transforms a TRS R into a relative TRS R/∅ before the CP processors from
Section 5.7.1 (except Theorem 5.48) are employed. In the tables the postfix ?
indicates that after establishing a bound it is tried to be tightened as explained
in Section 5.7.2. The columns O(n), O(n2), . . . , O(nk) give the number of linear,
quadratic, . . . , polynomial upper bounds that could be established. We also list
the average time (in seconds) needed for finding a bound in the last column. For
reference we also give the data for the winners of the corresponding categories in
the 2010 edition of the termination competition. For derivational complexity this
is CaT and for runtime complexity this is TCT [16].

6Full details available from http://cl-informatik.uibk.ac.at/software/cat/10lmcs.
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O(nk) O(n) O(n2) O(n3) time

direct 372 354 358 365 0.6
direct? 372 355 370 371 1.1
modular 376 358 359 364 0.5
modular? 376 362 374 375 1.2

TCT 354 351 353 354 4.8
TCT(1339) 363 360 362 363 4.8

Table 5.2.: Runtime complexity of 910 TRSs.

Table 5.1 shows the results for derivational complexity. Here the modular ap-
proach allows to prove significantly more polynomial bounds (column O(nk)) and
furthermore these bounds are also smaller than for the direct approach (especially
if tightening of bounds is used). The modular setting is slower since there typi-
cally more proofs are required to succeed. The rows postfixed ? prove that refining
bounds is beneficial, especially if all criteria are run in parallel, which is essential to
maximize the total number of upper bounds. The 2010 version of CaT did not use
tightening of bounds. To maximize the number of low bounds the tool executes
criteria that yield larger complexity bounds slightly delayed. This explains why
for CaT tightening bounds increases the global performance less compared to direct
and modular. On the contrary, CaT misses some proofs compared to modular since
(costly) criteria are not executed for up to 60 seconds.

Table 5.2 shows the results for runtime complexity on the 910 TRSs that are
non-duplicating and non-trivial. Here, the starting language for the match-bounds
technique has been restricted to constructor-based terms, i.e., no defined symbols
are allowed below the root. This makes match-bounds a very powerful technique
for runtime complexity, explaining the high number of linear bounds.7 We re-
mark that in contrast to the criteria we employ TCT can also estimate polynomial
bounds for duplicating systems based on weak dependency pairs [75, 76]. The row
TCT(1339) corresponds to TCT run on all 1339 TRSs in the benchmark for runtime
complexity. Hence this row includes duplicating TRSs. For 9 of these TCT can
prove a polynomial upper bound.

For further comparison with other tools we refer the reader to the international
termination competition (referenced in Footnote 1 on page 86). Since 2008, when
the complexity categories have been installed in the termination competition, CaT
won the division for derivational complexity every year.

7In the 2010 competition CaT proved upper bounds on the derivational complexity also in the category
for runtime complexity. This explains why our methods here outperform TCT while in the competition
CaT came second in this division.
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5.9. Conclusion

In this article we have introduced a modular approach for estimating the com-
plexity of TRSs by considering relative rewriting. We showed how existing criteria
(for full rewriting) can be lifted into the relative setting. The modular approach
is easy to implement and has been proved strictly more powerful than traditional
methods in theory and practice. Since the modular method allows to combine
different criteria, typically smaller complexity bounds are achieved than with the
direct setting. Furthermore the modular treatment allows to establish bounds for
systems where each of the involved basic methods alone fails. Although originally
developed for derivational complexity our results directly apply to more restric-
tive notions of complexity, e.g., runtime complexity (see also below). Finally we
remark that our setting allows a more fine-grained complexity analysis, i.e., while
traditionally quadratic derivational complexity ensures that any rule is applied at
most quadratically often, our approach can make different statements about single
rules. Hence even if a proof attempt does not succeed completely, it may highlight
the problematic rules.

We remark that complexity proofs using TMIs (for relative rewriting) can be
certified with CeTA [176].

As related work we mention [78] which also considers relative rewriting for com-
plexity analysis. However, there the complexity of R1 ∪R2 is investigated by con-
sidering R1/R2 and R2. Hence [78] also gives rise to a modular reasoning but the
obtained complexities are typically beyond polynomials. For runtime complexity
analysis Hirokawa and Moser [75, 76] consider weak dependency pair steps relative
to the usable rules, i.e., WDP(R)/UR(R). However, since in the current formula-
tion of weak dependency pairs some complexity might be hidden in the usable rules
they do not really obtain a relative problem. As a consequence they can only ap-
ply restricted criteria for the usable rules. Note that our approach can directly be
used to show bounds on WDP(R)/UR(R) by considering WDP(R) ∪ UR(R). Due
to Corollary 5.14 this problem can be transformed into an (unrestricted) relative
problem WDP(R)/UR(R) whenever the constraints in [75] are satisfied. Moreover,
if somehow the problematic usable rules could be determined and shifted into the
WDP(R) component, then this improved version of weak dependency pairs cor-
responds to a relative problem without additional restrictions, admitting further
benefit from our contributions.

Recently two approaches were proposed which admit polynomially bounded ma-
trix interpretations going beyond TMIs. While [187] considers weighted automata,
in [131] (joint) spectral radius theory is employed. For ease of presentation these
criteria have not been considered in this work but since both are based on matrix
interpretations, they perfectly suit our modular setting.
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5.9. Conclusion

For future work we plan to investigate criteria that allow to analyze the com-
plexity of a TRS R by the complexities of R1 and R2 where R = R1 ∪ R2. We
anticipate that results from modularity [135] are helpful for this aim.
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Abstract

Matrix interpretations can be used to bound the derivational complexity of term
rewrite systems. In particular, triangular matrix interpretations over the natu-
ral numbers are known to induce polynomial upper bounds on the derivational
complexity of (compatible) rewrite systems. Using techniques from linear algebra,
we show how one can generalize the method to matrices that are not necessarily
triangular but nevertheless polynomially bounded. Moreover, we show that our
approach also applies to matrix interpretations over the real (algebraic) numbers.
In particular, it allows triangular matrix interpretations to infer tighter bounds
than the original approach.

6.1. Introduction

Many powerful techniques for establishing termination of term rewrite systems
have been developed in the course of time, most of which have been automated
successfully, as is evident in the results of the (annual) international competition for
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termination and complexity tools.1 Moreover, Hofbauer and Lautemann observe
in [77] that “proving termination with one of these specific techniques in general
proves more than just the absence of infinite derivations. It turns out that in many
cases such a proof implies an upper bound on the maximal length of derivations”,
which they consider as a natural measure for the complexity of (terminating) term
rewrite systems. More precisely, the resulting notion of derivational complexity
relates the length of a longest derivation to the size of its initial term. For exam-
ple, polynomial interpretations imply a double-exponential upper bound on the
derivational complexity [77]. However, since term rewriting is a model of compu-
tation and algorithms of polynomial complexity are widely accepted as feasible,
one is especially interested in polynomial derivational complexity. But currently
only few techniques for establishing feasible upper complexity bounds are known.
Commonly, they are stripped-down variants of existing termination techniques.
For example, if a term rewrite system can be shown terminating by a matrix
interpretation (over the natural numbers) [44, 79] that orients all rewrite rules
strictly, then its derivational complexity is at most exponential. However, by re-
stricting the shape of the matrices to upper triangular form, one obtains a method
for establishing polynomial derivational complexity [126], where the degree of the
polynomial depends on the dimension of the matrices. Using match-bounds [55] or
arctic matrix interpretations [103], linear derivational complexity can be inferred.

In this paper we investigate the method of (triangular) matrix interpretations
that is widely used in current automated termination and complexity tools. Us-
ing techniques from linear algebra, we show how one can generalize the method
of triangular matrix interpretations, as introduced in [126], to matrix interpreta-
tions that are not necessarily triangular but nevertheless induce polynomial upper
bounds on the derivational complexity of compatible term rewrite systems. More-
over, we show that our approach also applies to matrix interpretations over the
real (algebraic) numbers. In particular, we also show how one can infer tighter
bounds from triangular matrix interpretations by examining the diagonal structure
of upper triangular (complexity) matrices.

The remainder of this paper is organized as follows. Section 6.2 introduces basic
notions of term rewriting and some mathematical prerequisites. In Section 6.3,
we review matrix interpretations in the context of complexity analysis of term
rewriting, before presenting our main result in Section 6.4. In Section 6.5, we give
details on implementation-specific issues. Finally, we provide experimental results
in Section 6.6, before concluding in Section 6.7.

1http://termcomp.uibk.ac.at
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6.2. Preliminaries

6.2. Preliminaries

We assume familiarity with the basics of term rewriting [17, 172]. Let V denote a
countably infinite set of variables and F a fixed-arity signature. The set of terms
over F and V is denoted by T (F ,V). The size |t| of a term t is defined as the
number of symbols occurring in it and the depth of t is defined as follows: if t
is a variable or a constant, then depth(t) := 0, otherwise depth(f(t1, . . . , tn)) :=
1 + max{depth(ti) | 1 6 i 6 n}. A rewrite rule is a pair of terms written as
l → r, such that l is not a variable and all variables in r are contained in l. A
term rewrite system R (TRS for short) over T (F ,V) is a set of rewrite rules. For
complexity analysis we assume TRSs to be finite. The rewrite relation induced by
→ is denoted by→R. As usual,→∗R denotes the reflexive transitive closure of→R
and →n

R its n-th iterate. A term s ∈ T (F ,V) is called a normal form if there is
no term t such that s→R t.

The derivation height of a term t with respect to a TRS R is defined as follows:
dh(t,→R) := max{n | ∃u t →n

R u}. The derivational complexity function of a
terminating TRS R computes the maximal derivation height of all terms up to
a given size, i.e., dcR : N \ {0} → N, k 7→ max{dh(t,→R) | |t| 6 k}. Sometimes
we say that R has linear, quadratic, etc. derivational complexity if dcR(k) can be
bounded by a linear, quadratic, etc. polynomial in k.

An important concept for establishing termination of TRSs is the notion of
well-founded monotone algebras. An F -algebra A consists of a non-empty car-
rier A and interpretation functions fA : An → A for every n-ary f ∈ F . By
[α]A(·) : T (F ,V) → A we denote the usual evaluation function of A with respect
to a variable assignment α : V → A. A well-founded monotone F-algebra is a
pair (A, >A), where A is an F -algebra and >A is a well-founded order on A such
that every fA is strictly monotone in all arguments (with respect to >A). A well-
founded monotone algebra naturally induces an order �A on terms: s �A t if
[α]A(s) >A [α]A(t) for all assignments α of elements of A to the variables in s
and t. Finally, it is well-known that a TRS R is terminating if and only if it is
compatible with a well-founded monotone algebra (A, >A), where compatibility
means that l �A r for every rewrite rule l→ r ∈ R.

Linear Algebra. As usual, we denote by N, Z, Q and R the sets of natural, in-
teger, rational and real numbers. Given some D ∈ {N,Z,Q,R} and m ∈ D, >D

denotes the natural order of the respective domain and Dm := {x ∈ D | x > m};
e.g., R0 refers to the set of all non-negative real numbers. For any ring R (e.g.,
Z, Q, R), we denote the ring of all n-dimensional square matrices over R by
Rn×n, and R[x1, . . . , xn] denotes the associated polynomial ring in n indetermi-
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nates x1, . . . , xn. In the special case n = 1, a polynomial P ∈ R[x] can be written

as follows: P (x) =
∑d

k=0 akx
k (d ∈ N). For the largest k such that ak 6= 0, we

call akx
k the leading term of P , ak its leading coefficient and k its degree. P is

said to be monic if its leading coefficient is one. Moreover, it is said to be linear,
quadratic, cubic etc. if its degree is one, two, three etc.

We say that a matrix is non-negative if all its entries are non-negative. Abusing
notation, we denote the set of all non-negative n-dimensional square matrices of
Zn×n by Nn×n. An upper triangular matrix is a matrix, where all entries below the
main diagonal are zero. An upper triangular complexity matrix is a non-negative
upper triangular matrix whose diagonal entries are at most one and whose top-left
entry is exactly one. As usual, we denote the transpose of a matrix (vector) A
by AT . The characteristic polynomial of a square matrix A ∈ Rn×n is defined as
χA(λ) := det(λIn − A), where In denotes the n-dimensional identity matrix and
det the determinant of a matrix. It is monic and its degree is n. The equation
χA(λ) = 0 is called the characteristic equation of A. The eigenvalues of A are
precisely the solutions of its characteristic equation, and the spectral radius ρ(A)
of A is the maximum of the absolute values of all eigenvalues. By mλ we denote
the multiplicity of the eigenvalue λ. A non-zero vector x is an eigenvector of A if
Ax = λx for some eigenvalue λ of A. The Cayley-Hamilton theorem [151] states
that every matrix satisfies its own characteristic equation, that is, χA(A) = 0, and
it holds for square matrices over commutative rings.

Recurrence Relations. Informally, a recurrence relation is an equation that recur-
sively defines a sequence; each element of the sequence is defined as a function
of the preceding elements. For example, the Fibonacci numbers are defined by
Fn = Fn−1 + Fn−2 with F0 = 0 and F1 = 1. Solving a recurrence relation means
obtaining a closed-form solution; in this example, a non-recursive function of n.

A linear homogeneous recurrence relation with constant coefficients is an equa-
tion of the form an = c1an−1 + c2an−2 + · · ·+ cdan−d, where the d > 1 coefficients
c1, . . . , cd are constants with cd 6= 0. The same coefficients yield the characteristic
polynomial χ(λ) := λd− c1λ

d−1− c2λ
d−2−· · ·− cd whose d roots play a key role in

the solution of a recurrence relation (cf. [29, 30]). To be precise, if λ1, λ2, . . . , λr
(1 6 r 6 d) are the distinct (possibly complex) roots of the characteristic polyno-
mial such that λi is of multiplicity mi (i = 1, 2, . . . , r), then the general solution
of the recurrence relation is given by

an =
r∑
i=1

(ci1 + ci2n+ · · ·+ cimin
mi−1)λni

where the cik’s are (complex) constants. Any real solution is of this form as well,
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with the imaginary part zero. Moreover, if the coefficients of χ(λ) are real numbers,
its non-real roots always come in conjugate pairs; i.e., if λj := rj(cos(φj)+i sin(φj))
is a root of χ(λ), then so is its complex conjugate λ∗j := rj(cos(φj)− i sin(φj)). In
this case, avoiding the use of complex numbers, the most general real solution can
be written as

an =
∑
i

(ci1 + ci2n+ · · ·+ cimin
mi−1)λni

+
∑
j

(dj1 + dj2n+ · · ·+ djmjn
mj−1)rnj cos(nφj)

+
∑
j

(d′j1 + d′j2n+ · · ·+ d′jmjn
mj−1)rnj sin(nφj)

where the cik’s, djk’s and d′jk’s are real constants, the λi’s the distinct real roots of
χ(λ) and the λj’s, λj := rj(cos(φj)+ i sin(φj)), the distinct complex roots (modulo
conjugates).

6.3. Matrix Interpretations and Derivational Complexity

Next we review the method of matrix interpretations in the context of complexity
analysis of term rewriting. Matrix interpretations [44, 79] were originally intro-
duced over the natural numbers. Later on they were lifted to the reals [2, 52, 208]
using the same technique that was already used to lift polynomial interpretations
from N to R (cf. [80]). Similarly, the first results relating matrix interpretations
and derivational complexity of TRSs (cf. [126], triangular matrix interpretations)
are based on matrix interpretations over the natural numbers. But these results
have never been lifted to the reals. In the next section we shall see, however, how
this follows from a more general result that holds for matrix interpretations over
both N and R, the foundations of which are laid in the present chapter.

Let F denote a signature. A matrix interpretation M over N is a well-founded
monotone algebra, where the carrier M is the set Nn for some fixed dimension
n ∈ N \ {0}. The well-founded order >M on M is defined as follows:

(x1, x2, . . . , xn)T >M (y1, y2, . . . , yn)T :⇐⇒ x1 >N y1 ∧ x2 >N y2 ∧ · · · ∧ xn >N yn

For each k-ary function symbol f ∈ F , we choose an interpretation function

fM : (Nn)k → Nn, ( ~x1, . . . , ~xk) 7→ F1 ~x1 + · · ·+ Fk ~xk + ~f

where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n. In addition, we require (Fi)1,1 >N 1 for
all i = 1, . . . , k to achieve strict monotonicity of fM in all arguments. Finally, a

131



6. Matrix Interpretations for Polynomial Derivational Complexity

triangular matrix interpretation over N is a matrix interpretation over N, where
all matrices are upper triangular complexity matrices.

When extending matrix interpretations from N to R, the main problem is the
non-well-foundedness of >R. This problem is overcome by >R,δ, which is defined as
follows: given some fixed positive real number δ, x >R,δ y if and only if x− y >R δ
for all x, y ∈ R. Thus >R,δ is well-founded on subsets of R that are bounded
from below. Then a matrix interpretation M over R is a well-founded monotone
algebra, where the carrier M is the set Rn

0 for some fixed dimension n ∈ N \ {0}.
The well-founded order >M on M is defined as follows:

(x1, x2, . . . , xn)T >M (y1, y2, . . . , yn)T :⇐⇒ x1 >R,δ y1 ∧ x2 >R y2 ∧ · · · ∧ xn >R yn

For each k-ary function symbol f , we choose an interpretation function

fM : (Rn
0 )k → Rn

0 , ( ~x1, . . . , ~xk) 7→ F1 ~x1 + . . .+ Fk ~xk + ~f

where ~f ∈ Rn
0 and F1, . . . , Fk are non-negative matrices in Rn×n with (Fi)1,1 >R 1

for all i = 1, . . . , k in order to achieve strict monotonicity of fM in all arguments.
Again, a triangular matrix interpretation over R is a matrix interpretation over R,
where all matrices are upper triangular complexity matrices.

Remark 6.1. Concerning polynomial interpretations, it was recently shown in
[130] that it suffices to consider the set Ralg of real algebraic2 numbers instead
of the entire set R of real numbers. To be precise, it was shown that polynomial
termination over R is equivalent to polynomial termination over Ralg. Observing
that the technique of [130] readily applies to matrix interpretations as well, we may
draw the conclusion that matrix interpretations over R are equivalent to matrix
interpretations over Ralg with respect to proving termination of TRSs.

Matrix interpretations over R can be used to bound the derivational complexity
of compatible TRSs.3 LetM be a matrix interpretation over R that is compatible
with some TRS R. Then any rewrite sequence

t = t0 →R t1 →R t2 →R t3 →R t4 →R · · ·

gives rise to a strictly decreasing sequence of vectors of non-negative real numbers

[α]M(t) >M [α]M(t1) >M [α]M(t2) >M [α]M(t3) >M [α]M(t4) >M · · ·
2A real number is said to be algebraic if it is a root of a non-zero polynomial in one variable with

integer coefficients.
3The reasoning presented in the sequel readily includes matrix interpretations over N as a special case

(by letting δ = 1 and observing that x >N y if and only if x >N y + 1).
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for all variable assignments α. In particular, by definition of >M , the first com-
ponents of these vectors form a sequence of non-negative real numbers that is
strictly decreasing with respect to the order >R,δ, and every rewrite step causes a
decrease of at least δ. Hence, the first component of the vector 1

δ
· [α]M(t) gives

an upper bound on dh(t,→R). So if we manage to bound (the first component of)
this vector for all terms t up to a given (but arbitrary) size k, then we have actu-
ally established an upper bound on the derivational complexity of R. Moreover,
as we are only interested in the asymptotic growth of 1

δ
· [α]M(t) with respect to

the size of t, we may neglect the multiplicative factor 1
δ

because δ is a constant.
As already observed in [126], this problem essentially reduces to bounding the
entries of finite matrix products of the form M1 ·M2 · . . . ·Mk, Mi ∈ M. Such
products arise naturally when evaluating terms in a matrix interpretation; e.g., if

t := f(g(a, b), c) then [α]M(t) = F1G1~a + F1G2
~b + F1~g + F2~c + ~f . As in [126], we

reduce this problem to the analysis of the growth of the powers of a single matrix.
To this end, we note that for all 1 6 i, j 6 n, (M1 ·M2 · . . . ·Mk)i,j 6 (Ak)i,j, where
the matrix A is the component-wise maximum of all matrices occurring inM; i.e.,
Ai,j := max{Bi,j | B ∈ M} for all 1 6 i, j 6 n. If |t| 6 k then the length of
each product is at most depth(t) (6 k) and the number of products equals the
number of subterms of t, which is also bounded by k. Thus any lemma stating
that the entries of the matrix Ak are polynomially bounded in k of degree d − 1
can readily be used as the basis of a corresponding theorem that establishes a
polynomial upper bound of degree d on the derivational complexity of all TRSs
that are compatible with the matrix interpretationM. In [126], for example, this
is achieved by restricting the shape of the matrices to upper triangular form.

Lemma 6.1 ([126, Lemma 5]). Let A ∈ Nn×n be an upper triangular complexity
matrix and k ∈ N. Then (Ak)i,j ∈ O(kn−1) for all 1 6 i, j 6 n.

Theorem 6.2 ([126, Theorem 6]). If a TRS R is compatible with a triangular
matrix interpretation of dimension n, then dcR(k) ∈ O(kn).

However, we claim that Lemma 6.1 only gives a rough estimate of the growth of
the entries of the matrix Ak, i.e., the degree of the polynomial bound can be low-
ered in many cases. To this end, we provide a more concise analysis of the growth
of Ak in the next section, obtaining a replacement for Lemma 6.1, which allows us
to tighten the bounds established by Theorem 6.2. In particular, our refinement
holds for matrix interpretations over both N and R. Moreover, we remark that the
restriction of the shape of the matrices is another source for improvement. Clearly,
there are also non-triangular matrices that exhibit polynomial growth, but in gen-
eral non-triangular matrix interpretations do not induce polynomial (but rather
exponential) upper bounds on the derivational complexity of compatible TRSs.
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So in order to be useful in (automated) complexity analysis of term rewriting,
a characterization of polynomially bounded matrices is required such that, when
searching for a compatible matrix interpretation for a given TRS, it is guaranteed
beforehand that the search process only considers such matrices. This is the main
goal of the following sections.

6.4. Main Result

In this section we elaborate on how to lift the restriction to upper triangular
matrices. To this end, we leverage the Cayley-Hamilton theorem and the theory
of linear homogeneous recurrence relations to completely characterize the growth
of the powers of real square matrices (independently of the shape of the matrices).
In particular, we show that the key point with respect to polynomial boundedness
of such matrices is the nature of their eigenvalues. According to the discussion in
Section 6.3, our results apply to matrix interpretations over N and R alike.

Lemma 6.3. Let A ∈ Rn×n
0 . Then ρ(A) 6 1 if and only if all entries of Ak

(k ∈ N) are asymptotically bounded by a polynomial in k of degree d, where
d := maxλ(0,mλ − 1) and λ are the eigenvalues with absolute value exactly one.

Proof. First, let us assume that ρ(A) > 1, i.e., A has an eigenvalue λ of absolute
value strictly greater than one. For any eigenvector x associated to λ, we have
Ax = λx and hence Akx = λkx. Since x is non-zero by definition and |λ| > 1,
there is at least one component of λkx whose absolute value grows exponentially
in k. But this can only be the case if at least one entry of Ak grows exponentially
in k as well. Conversely, if ρ(A) 6 1, we have to show that the entries of Ak are
polynomially bounded. Since A is a real n×n matrix, its characteristic polynomial
χA(λ) is a monic polynomial of degree n with real coefficients. Without loss of
generality, it can be written as χA(λ) = λt · p(λ), 0 6 t 6 n, where t is maximal
and p is a monic polynomial of degree n− t. By the Cayley-Hamilton theorem, A
satisfies its own characteristic equation, that is, χA(A) = 0. Clearly, if t = n then
Ak = 0 for all k > n and d = 0, such that the claim follows trivially. If t < n we
rearrange the equation χA(A) = 0 into the form An = c1A

n−1+c2A
n−2+· · ·+cn−tAt

with coefficients c1, . . . , cn−t, readily obtaining a recursive equation for the powers
of A, namely, for all k > n ∈ N Ak = c1A

k−1 + c2A
k−2 + · · ·+ cn−tA

k−(n−t). Thus
we establish the following recurrence relation

Ak = c1Ak−1 + c2Ak−2 + · · ·+ cn−tAk−(n−t) (6.1)

and note that the sequence (Aj)j>t where Aj := Aj satisfies it by construction.
This is a linear homogeneous recurrence relation with constant coefficients and
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characteristic polynomial χ(λ) = p(λ). Since the coefficients of χ(λ) are real
numbers, the non-real roots (eigenvalues) always come in conjugate pairs; i.e., if
λj := rj(cos(φj) + i sin(φj)) is a root of χ(λ), then so is its complex conjugate
λ∗j := rj(cos(φj)− i sin(φj)). Thus the general solution of (6.1) can be written as

Ak =
∑
i

(Ci,0 + Ci,1k + · · ·+ Ci,mi−1k
mi−1)λki

+
∑
j

(Dj,0 +Dj,1k + · · ·+Dj,mj−1k
mj−1)rkj cos(kφj) (6.2)

+
∑
j

(D′j,0 +D′j,1k + · · ·+D′j,mj−1k
mj−1)rkj sin(kφj)

where the λi’s are the distinct real roots of χ(λ), each having multiplicity mi,
and the λj’s, λj := rj(cos(φj) + i sin(φj)), the distinct complex roots (modulo
conjugates), each having multiplicity mj. By assumption, the absolute values of
all eigenvalues are at most one; hence, |λi| 6 1 and rj 6 1 in (6.2), such that
the asymptotic growth of the entries of the matrix Ak is polynomial rather than
exponential. In particular, the degree d of the polynomial bound is at most m−1,
where m is the largest of the multiplicities of the eigenvalues with absolute value
exactly one. If there are no such eigenvalues, then ρ(A) < 1 and limk→∞A

k = 0,
such that d = 0.

Example 6.4. Consider the 4 × 4 matrix A := (Ai,j)16i,j64 with all entries zero
except A1,1 = A2,4 = A3,2 = A4,3 = 1. It has one real eigenvalue λ1 = 1 of

multiplicity two and a pair of complex conjugate eigenvalues λ2 = 1
2
(−1 + i

√
3)

and λ∗2 = 1
2
(−1− i

√
3) of multiplicity one, all of which have absolute value exactly

one. Hence, the spectral radius ρ(A) of A is also one. According to Lemma 6.3,
the entries of the matrix Ak, k ∈ N, are bounded by a linear polynomial in k. The
actual bound, however, is even lower since A4 = A, such that the powers of A are
trivially bounded by a constant, and we can use the method outlined in the proof
of Lemma 6.3 to show this. To this end, we note that the characteristic polynomial
of A is χA(λ) = λ4−λ3−λ+1. Thus, by the Cayley-Hamilton theorem, we obtain
the recursive equation Ak = Ak−1 + Ak−3 − Ak−4 for all k > 4 ∈ N, the general
solution of which can be written as

Ak = (C0 + C1k)λk1 +D rk cos(kφ) +D′ rk sin(kφ) (6.3)

where r(cos(φ) + i sin(φ)) = λ2, that is, r = 1 and φ = 2π
3

. In the next step,
the exact values of the four constants C0, C1, D and D′ can be determined, for
example, by letting k = 4, 5, 6, 7 in (6.3) and solving the resulting systems of linear
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equations. In doing so, one learns that C1 is zero, which means that the linear
summand in (6.3) vanishes. Further, we obtain Ak = C0 +D cos(kφ) +D′ sin(kφ),

C0 :=


1 0 0 0

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

 D :=


0 0 0 0

0 2
3
−1

3
−1

3

0 −1
3

2
3
−1

3

0 −1
3
−1

3
2
3

 D′ :=


0 0 0 0

0 0 −
√

3
3

√
3

3

0
√

3
3

0 −
√

3
3

0 −
√

3
3

√
3

3
0


which explains why the powers of A are bounded by a constant. In particular, the
periodic nature of the sequence (Ak)k∈N becomes evident.

On the basis of Lemma 6.3, we now establish the following theorem concerning
complexity analysis of TRSs that holds for matrix interpretations over N and R.

Theorem 6.5. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let A denote the component-wise maximum of all matrices
occurring inM. If the spectral radius of A is at most one, then dcR(k) ∈ O(kd+1),
where d := maxλ(0,mλ − 1) and λ are the eigenvalues of A with absolute value
exactly one.

Remark 6.2. Actually the d in Theorem 6.5 can be strengthened to maxλ(0,mλ)−1
because the pathological case ρ(A) < 1 implies dcR(k) ∈ O(k0).

The next example shows why triangular matrices may fail. Similar (but larger)
systems are contained in TPDB [183], e.g., TRS/Cime 04/dpqs.xml.

Example 6.6. Consider the TRS R = {f(f(x))→ f(c(f(x))), c(c(x))→ x}, which
is compatible with the matrix interpretation

fM(~x) =

 1 1 0
0 0 0
0 0 0

~x+

 0
1
0

 cM(~x) =

 1 0 2
0 0 1
0 1 0

~x+

 0
0
1


The eigenvalues of the component-wise maximum matrix are −1, 1 and 1; hence,
Theorem 6.5 deduces a quadratic upper bound on the derivational complexity
of R. There cannot exist a triangular matrix interpretation compatible with R
since the second rule demands that all diagonal entries in cM are non-zero, but
then the first rule can no longer be oriented.

Next we specialize Theorem 6.5 to triangular matrix interpretations. In such in-
terpretations all matrices are upper triangular complexity matrices whose diagonal
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entries are restricted to the closed interval [0, 1] and whose top-left entry is always
one. Hence, this is also true for the component-wise maximum matrix A. Since
the diagonal entries of a triangular matrix give the multiset of its eigenvalues, the
matrix A is therefore guaranteed to have spectral radius one.

Theorem 6.7. Let R be a TRS and M a compatible triangular matrix interpre-
tation over N or R of dimension n. Further, let A denote the component-wise
maximum of all matrices occurring in M, and let d denote the number of ones
occurring along the diagonal of A. Then dcR(k) ∈ O(kd).4

Note that the bound established by Theorem 6.7 for matrix interpretations
over N is at least as tight as the one of Theorem 6.2 since d 6 n.

Example 6.8. The TRSR = {a(b(a(x)))→ a(b(b(a(x)))), b(b(b(x)))→ b(b(x))}5

is compatible with the triangular matrix interpretation

aM(~x) =

 1 2 1
0 0 1
0 0 0

~x+

 0
1
1

 bM(~x) =

 1 0 2
0 0 1
0 0 0

~x+

 1
0
0


The diagonal of the component-wise maximum of the two matrices has the shape
(1, 0, 0). Hence, R has (at most) linear derivational complexity by Theorem 6.7,
whereas the bound established by Theorem 6.2 is cubic. Incidentally, the bound
inferred from Theorem 6.7 is even optimal since it is easy to see that the deriva-
tional complexity of R is at least linear. It is easy to show that there are no
triangular matrix interpretations of dimension one and two compatible with R.

The final example shows the benefit of matrix interpretations over R.

Example 6.9. Consider the TRS R.6 There exists a matrix interpretation (see
website in Footnote 8) compatible withR such that the diagonal of the component-
wise maximum matrix has the shape (1, 1

2
, 0). Due to Theorem 6.7, the derivational

complexity of R is at most linear. Our implementation could find a triangular
matrix interpretation of the same dimension over N compatible withR establishing
a quadratic but not a linear bound.

6.5. Implementation Issues

In Theorem 6.5, we consider some TRS together with a compatible matrix inter-
pretation and demand that the component-wise maximum matrix A has spectral

4Independently in [187, Proposition 7.6] the same result has been established for N.
5TPDB problem TRS/Zantema 04/z126.xml
6TPDB problem TRS/Secret 05 SRS/matchbox2.xml
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radius at most one. So we have to make sure that the absolute values of all
its eigenvalues (real and complex ones) are at most one. However, since A is a
non-negative real square matrix, we only have to ensure this condition for all (non-
negative) real eigenvalues of A. This follows directly from the Perron-Frobenius
theorem ([159], weak form), which states that the spectral radius of a non-negative
real square matrix is an eigenvalue of the matrix; i.e., there exists a non-negative
real eigenvalue that dominates in absolute value all eigenvalues.

Concerning the automation of Theorem 6.5, the main problem that has to be
dealt with is the following. Given some square matrix A with unknown entries, all
of which are supposed to be non-negative real (or integer) numbers, we need a set
of constraints, expressed in terms of the unknown entries, that enforce ρ(A) 6 1;
e.g., for which non-negative values of a, b, c and d has the matrix

A :=

(
a b
c d

)
spectral radius at most one? In the sequel, we present three different approaches.

(A)

The first approach is based on the explicit calculation of the eigenvalues of A,
i.e., the explicit calculation of the roots of the characteristic polynomial χA(λ).
For the two-dimensional case, we have χA(λ) = λ2 − (a + d)λ + ad − bc, and

by the quadratic formula we obtain the roots λ1,2 = a+d
2
±
√

(a−d)2+4bc

2
, both of

which are real because all matrix entries are non-negative. In particular, λ2 (> λ1)
is non-negative, such that it suffices to require λ2 6 1 according to the Perron-
Frobenius theorem. Simplifying this condition as much as possible, we infer that
the matrix A has spectral radius at most one if and only if a+ d 6 2 and a+ d 6
ad − bc + 1. This explicit approach also applies to matrices of dimension three
and four since there exist formulas for the solution of arbitrary cubic and quartic
polynomial equations with symbolic coefficients (though the respective calculations
are tedious). However, for equations of degree five or higher, there are no formulas
that express the solutions of such equations in terms of their coefficients using only
the four basic arithmetic operations and radicals (n-th roots, for some integer n).

(B)

Next we present an alternative and simpler approach for three-dimensional ma-
trices. To this end, let A be some arbitrary three-dimensional non-negative real
square matrix with entries a, b, . . . , i and characteristic polynomial χA(λ)

λ3−(a+e+i)λ2 +(ei−fh+ai−cg+ae−bd)λ−(aei+bfg+cdh−ceg−bdi−afh)
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which we abbreviate by λ3 + pλ2 + qλ + r. By the Perron-Frobenius theorem,
it suffices to constrain the real roots of χA(λ) to the closed interval [−1, 1]. To
this end, we make use of the well-known fact that a cubic polynomial like χA(λ)
either has only one real root (and two complex conjugate roots) if its discriminant
D := p2q2−4q3−4p3r−27r2 +18pqr is negative or three (not necessarily distinct)
real roots if D > 0. Visualizing the geometric shape of χA(λ), it is not hard to
see that in the latter case all three roots are in [−1, 1] if and only if χA(−1) 6 0,
χA(1) > 0 and χ′A(λ) > 0 for all λ ∈ R with |λ| > 1 (here χ′A denotes the first
derivative of χA). Thus we conclude that the matrix A has spectral radius at most
one if and only if

(D < 0 ∧ χA(−1) 6 0 ∧ χA(1) > 0)∨
(χA(−1) 6 0 ∧ χA(1) > 0 ∧ χ′A(λ) > 0 for all |λ| > 1)

These are polynomial constraints in the entries of A. In particular, the constraint
χ′A(λ) = 3λ2 + 2pλ+ q > 0 for all |λ| > 1 can be shown to be equivalent to

(p2 − 3q 6 0) ∨ (−3 6 p 6 3 ∧ −(q + 3) 6 2p 6 q + 3)

by means of the quadratic formula. Here the term p2 − 3q is essentially the dis-
criminant of χ′A(λ); if it is negative, then χ′A(λ) has no real root, such that the
constraint holds trivially, otherwise it has two real roots λ1 and λ2. In case λ1 = λ2,
the constraint also holds because then χ′A(λ) = 3 · (λ − λ1)2. Finally, if λ1 6= λ2,
then both must necessarily lie in the closed interval [−1, 1] for the constraint to
hold, which is ensured by the second disjunct in the above formula.

(C)

Last but not least, we present a generic method that works for matrices with un-
known entries of any dimension. To this end, let A be an n-dimensional square ma-
trix whose entries are supposed to be real numbers (not necessarily non-negative).
Its characteristic polynomial is a monic polynomial of degree n, which can be
written as χA(λ) = λn +

∑n−1
i=0 ciλ

i, where the coefficients ci, 0 6 i 6 n − 1, are
polynomial expressions in the entries of A. Since all coefficients are supposed to
be real numbers, χA(λ) can always be factored as

χA(λ) = (λ− r)b ·
∏
j

(λ2 + pjλ+ qj)
mj (6.4)

where b = 0 if n is even, b = 1 otherwise, mj > 1 (mj ∈ N) is the multiplicity of
the quadratic factor λ2 +pjλ+qj, and r, pj, qj ∈ R. Thus the absolute values of all
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roots (real and complex ones) of χA(λ) are at most one if and only if |r| 6 1 (in case
b = 1) and the absolute values of the roots of all quadratic factors are at most one.
So when does the latter condition hold for a given quadratic factor λ2 + pjλ+ qj?

By the quadratic formula, we obtain the roots λ1,2 := −pj
2
±
√
p2j−4qj

2
. If the

discriminant p2
j−4qj is negative, both roots are complex, i.e., λ1,2 := −pj

2
±i
√

4qj−p2j
2

and have absolute value |λ1| = |λ2| =
√
qj. Hence, we demand

√
qj 6 1, or

equivalently, qj 6 1. In the other case, if p2
j − 4qj > 0, both roots are real, and the

constraints |λ1| 6 1 and |λ2| 6 1 simplify to

−2 6 pj 6 2 and − (qj + 1) 6 pj 6 qj + 1

As a consequence, the matrix A ∈ Rn×n with characteristic polynomial (6.4) has
spectral radius at most one if and only if b = 1 implies −1 6 r 6 1 and for all
quadratic factors λ2 + pjλ+ qj in (6.4),

(p2
j−4qj < 0 ∧ qj 6 1) ∨ (p2

j−4qj > 0 ∧ −2 6 pj 6 2 ∧ −(qj +1) 6 pj 6 qj +1)

Non-negative Integer Matrices. If all matrix entries are non-negative integers, one
can also apply a totally different approach. It is based on graph theory and the
following lemma, which is an immediate consequence of [91, Corollary 1].7

Lemma 6.10. Let A ∈ Nn×n. Then ρ(A) > 1 if and only if (Ak)i,i > 1 for some
k ∈ N and i ∈ {1, . . . , n}.

Viewing A ∈ Nn×n as the adjacency matrix of a directed weighted graph GA of
n vertices numbered from 1 to n, such that for every positive entry Ai,j there is
an edge from vertex i to vertex j of weight Ai,j, the condition (Ak)i,i > 1 for some
i ∈ {1, . . . , n} mentioned in the previous lemma holds if and only if

1. there is a cycle in GA containing at least one edge of weight w > 1, or

2. there are (at least) two different paths (cycles) from some vertex to itself.

This is due to the well-known fact that the entry (Ak)i,j equals the sum of the
weights of all distinct paths in GA of length k from vertex i to vertex j, where the
weight w of a path is the product of the weights of its edges (in particular, w > 1).
Hence, we have ρ(A) 6 1 if and only if neither of the two conditions holds. Since
every cycle of GA is composed of simple cycles, that is, cycles with no repeated
vertices (aside from the necessary repetition of the start and end vertex), we may
restrict to simple cycles for both conditions.

7The joint spectral radius of a singleton set {A} of matrices coincides with ρ(A).
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Next we make two important observations. First, for A ∈ Nn×n, GA cannot have
a simple cycle containing an edge of weight greater than one if every matrix in the
set {A,A2, . . . , An} has diagonal entries less than or equal to one. Concerning the
second condition, let us assume that there are two different simple cycles C1 and
C2 of length l1 and l2, 1 6 l1, l2 6 n, from some vertex i to itself. Considering
all paths of length lcm(l1, l2), the least common multiple of l1 and l2, we clearly
have (Alcm(l1,l2))i,i > 1. In addition, we also have (Al1+l2)i,i > 1 because there
are two different cycles, each of weight at least one, from vertex i to itself of
length l1 + l2, namely, the concatenation of C1 and C2 as well as the concatenation
of C2 and C1. Hence, we can detect the existence of the cycles C1 and C2 by
examining the diagonal entries of all matrices in the set {A,A2, . . . , Am}, where
m := min(l1 + l2, lcm(l1, l2)). More generally, we can detect any pair of cycles
satisfying condition 2 by examining the diagonal entries of the matrices in the set
{A,A2, . . . , Ap(n)}, where p(n) := max{min(l1 + l2, lcm(l1, l2)) | 1 6 l1, l2 6 n}.
The left part of the table below shows the values of p(n) for various values of n.

n 1 2 3 4 5 6
p(n) 1 2 5 7 9 11

n 1 2 3 4 5 6
q(n) 1 2 3 5 7 9

In particular, we observe that p(n) > n for n > 1, and we draw the following
conclusion. If every matrix in the set {A,A2, . . . , Ap(n)} has diagonal entries less
than or equal to one, then neither condition 1 nor condition 2 can hold, which
implies ρ(A) 6 1. The converse is obvious.

Now let us apply this result to matrix interpretations. By definition, all matrices
of a matrix interpretation M must have a top-left entry of at least one. Hence,
this is also true for the maximum matrix A ofM. In other words, in GA, vertex 1
has a loop (of length one) to itself. This corresponds to a dimension reduction by
one for precluding all instances of condition 2. More precisely, we do not have to
consider the cases l1 = n or l2 = n because then not only C1 and C2 but also C1

(C2) and the loop of vertex 1 satisfy condition 2 (for n > 1), and we can detect this
by examining the diagonal entries of the matrix An, which has to be considered
anyway for precluding all instances of condition 1. Therefore, if A1,1 > 0, we have
ρ(A) 6 1 if and only if every matrix in the set {A,A2, . . . , Aq(n)} has diagonal
entries less than or equal to one, where q(n) := max(n, p(n − 1)) for n > 1 and
q(1) := 1. Some values for q(n) are displayed in the right part of the above table.

6.6. Experimental Results

The criteria proposed in this paper have been implemented in the complexity tool
CaT [206] and the 1172 non-duplicating TRSs in TPDB 7.0.2 have been considered.
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O(k) O(k2) O(k3) O(kn)

Theorem 6.2|6.7N |6.7R 46| 85| 88 158|184|185 177|202|196 203|205|199
A|B|C|Lemma 6.10 61|68| 80| 64 158|176|185|175 –|182|191|180 –|–|193|190
row 1|row 2|row 1+2 88| 80| 88 191|185|200 205|191|209 208|196|212
CaT (2009)|CaT (2010) 208|214 299|309 310|321 328|329

Table 6.1.: Polynomial bounds for 1172 systems.

All tests have been performed on a server equipped with 64 GB of main memory
and eight dual-core AMD Opteron R© 885 processors running at a clock rate of
2.6 GHz with a time limit of 60 seconds per system.8

We searched for matrix interpretations of dimension d ∈ {1, . . . , 5} by encoding
the constraints as an SMT problem (quantifier-free non-linear arithmetic), which
is solved by bit-blasting. We used max(2, 6−d) (7−d) bits to represent coefficients
(intermediate results). The numerators of rational numbers are represented with
the bit-width mentioned above while all denominators are 2. CaT found compati-
ble matrix interpretations (not necessarily polynomially bounded) for 287 TRSs,
giving an upper bound on the number of systems our results can apply to (if used
stand-alone).

Table 6.1 indicates the number of systems where the labeled approach yields
polynomial upper bounds on the derivational complexity. The first row shows
that the theorems proposed in this paper allow to infer tighter upper bounds from
triangular matrices than [126]; e.g., the number of linear (quadratic) upper bounds
increases by 84% (16%) if one compares Theorems 6.2 and 6.7N. The results for
(possibly) non-triangular matrix interpretations are reported in the second row.
The generic method based on factoring the characteristic polynomial (C) is im-
plemented by comparing the coefficients from the characteristic polynomial with
the coefficients of equation (6.4). Note that only this non-triangular approach
allows to add upper bounds on the multiplicity of eigenvalues to the matrix en-
coding, which explains the high score for linear bounds. Since encoding A (B)
is becoming harder for larger dimensions, we implemented it for dimensions one
and two (and three) only (explaining the – in the table). Row three relates the
approaches based on triangular and non-triangular matrices. Here row 1 corre-
sponds to the accumulated power of Theorems 6.2 and 6.7 and row 2 to A, B, C,
and Lemma 6.10, respectively. The impact of the methods proposed in this paper
when integrated into the 2009 competition version of CaT is shown in row four. CaT
was the strongest (derivational) complexity prover in 2008, 2009, and 2010. Since
most parts of this paper aim at tightening bounds, it is not surprising that the
total number of polynomial bounds did not increase significantly.

8For full details see http://cl-informatik.uibk.ac.at/software/cat/polymatrix.
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6.7. Conclusion, Related and Future Work

We have presented a characterization of matrix interpretations that induce polyno-
mial upper bounds on the derivational complexity of compatible TRSs. Contrary
to previous approaches, our method applies to matrix interpretations over N and R
alike and does not restrict the shape of the matrices. At the core of our method is
the analysis of the growth of finite products of matrices. In particular, we estimate
the growth of a product of the form M1 ·M2 · . . . ·Mk by the growth of a (suitably
chosen) matrix Ak, which is determined by its spectral radius. For future work,
the investigation of joint spectral radius theory [91] looks promising since the joint
spectral radius is a measure of the maximal growth of products of matrices taken
from a set and has been the subject of intense research.

Concerning related work, very recently (and independently) Waldmann [187]
provides a characterization of polynomially bounded matrix interpretations over N,
which extends triangular matrix interpretations. In [187] matrices are viewed as
weighted (word) automata and the derivational complexity of TRSs is bounded
by the growth of the weight function computed by such automata. We believe
that the method is at least as powerful as our approach for matrix interpretations
over N. In contrast to our approach, it can handle the TRS in [187, Example 7.5],
probably because it is not based on the maximum matrix. In practice, the method
based on automata is much harder to implement (cf. [187, Section 8]). Unlike our
approach, it only applies to matrix interpretations over N; the extension to R (Q)
raises non-trivial issues (cf. [187, Section 10]).
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(RTA 2013), Leibniz International Proceedings in Informatics 21, pp. 335–351,
Schloss Dagstuhl, 2013.
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Abstract

Kirby and Paris (1982) proved in a celebrated paper that a theorem of Goodstein
(1944) cannot be established in Peano arithmetic. We present an encoding of
Goodstein’s theorem as a termination problem of a finite rewrite system. Using
a novel implementation of algebras based on ordinal interpretations, we are able
to automatically prove termination of this system, resulting in the first automatic
termination proof for a system whose derivational complexity is not multiple re-
cursive. Our method can also cope with the encoding by Touzet (1998) of the
battle of Hercules and Hydra as well as a (corrected) encoding by Beklemishev
(2006) of the Worm battle, two further systems which have been out of reach for
automatic tools, until now. Based on our ideas of implementing ordinal algebras
we also present a new approach for the automation of elementary interpretations
for termination analysis.
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7.1. Introduction

Since the beginning of the millennium there has been much progress regarding
automated termination tools for rewrite systems.1 Despite the many different
techniques that have been developed, it seems that (terminating) TRSs which ad-
mit very long derivations are out of reach even for the most powerful tools. This is
not surprising since many base methods induce rather small upper bounds on the
derivational complexity, which is a function that bounds the length of the longest
possible derivation (rewrite sequence) by the size of its starting term. Hofbauer
and Lautemann [77] have shown that polynomial interpretations are limited to
double exponential derivational complexity. They further showed that the deriva-
tional complexity of a rewrite system compatible with the Knuth-Bendix order
(KBO) cannot be bounded by a primitive recursive function. Later, Lepper [114]
established the Ackermann function as an upper bound for KBO, whereas Weier-
mann [190] proved a multiple recursive upper bound for the lexicographic path
order (LPO). More recently, Moser and Schnabl [125, 155] have studied upper
bounds on the complexity when using these base methods in the dependency pair
framework. Although dependency pairs significantly increase termination proving
power, from the viewpoint of derivational complexity the limit is still multiple re-
cursive. This has led to the conjecture [155, Conjecture 6.99] that for any system
whose termination can be proved automatically by modern tools the length of its
derivations can be bounded by a multiple recursive function (in the size of the
starting terms).

Ordinals have been used in termination arguments for many decades (e.g.,
[54, 184]). In fact ordinals are essential to prove termination of the battle of
Hercules and Hydra (also due to [96]), or the sequences associated with Good-
stein’s theorem since these derivations cannot be bounded by a multiple recursive
function (Cichon [31]). Although TRS encodings of the Hydra battle are known for
many years (e.g., by Touzet [178]), they could so far not be handled by automatic
termination tools, witnessing Schnabl’s conjecture. Indeed a successful implemen-
tation of ordinals for automatic termination proofs is still lacking. Very recently,
Urban and Miné [185] presented an approach to conclude termination of imper-
ative programs by inferring ordinal-valued ranking functions. Here ordinals are
essential to handle nondeterminism, though only ordinals below ωω

ω
are involved

and hence the ranking functions are still multiple recursive. The theorem prover
Vampire uses ordinal numbers (see [108, Section 7]) in its implementation of KBO
but only for weights of predicate symbols. As these symbols occur only at the root
of atomic expressions no ordinal arithmetic is needed but comparisons suffice.

1http://www.termination-portal.org/
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In this article we first encode the computation of Goodstein sequences (see The-
orem 7.9) as a rewrite system G such that termination of G implies Goodstein’s
theorem. Since these sequences cannot be bounded by a multiple recursive func-
tion, this also holds for the derivational complexity of G. After presenting this
motivating example, we discuss automation of a termination criterion based on
ordinal interpretations which is capable of proving G terminating, thereby over-
coming the limitations alleged by the above conjecture. Our implementation can
also cope with Touzet’s encoding [178] of the battle of Hercules and Hydra, as well
as a (corrected) encoding of the Worm battle [21].

Automation of ordinal interpretations is challenging since ordinal arithmetic
does, e.g., not satisfy commutativity. Hence in contrast to polynomial interpreta-
tions terms do not evaluate to expressions of a canonical shape. We tackle this de-
ficiency by introducing approximations which yield expressions of a special shape.
Approximations (albeit less involved) have already been used for polynomial in-
terpretations with negative [49, 72] or irrational [208] coefficients. In preliminary
work [194, 203] already used ordinal domains to increase automatic termination
proving power. However, in [203] the focus is on string rewriting and the inter-
pretation functions have a very limited shape to avoid ordinal arithmetic. As a
consequence the method is limited to systems with at most multiple exponential
derivational complexity. Similarly, [194] use ordinal domains for generalized KBO,
again for string rewriting only. In the respective implementation, function symbol
weights are moreover below ωω. We anticipate that our treatment of arithmetic
for ordinals up to ε0 could improve some of the results from [108, 185, 194].

Lescanne [115] proposed elementary functions for proving (AC-)termination but
his implementation is limited to checking the orientation of rules for given in-
terpretations. Lucas [117] considers so-called linear elementary interpretations
(LEIs) of the shape A(x) +B(x)C(x) where A(x), B(x), and C(x) are linear poly-
nomials. Furthermore, he proposes an approach based on rewriting, constraint
logic programming (CLP), and constraint satisfaction problems (CSPs) to also
find suitable interpretation functions. He leaves an actual implementation of his
method as future work and mentions the need for heuristics to achieve an efficient
implementation. In this article we propose a different shape of interpretation func-
tions because LEIs are neither closed under (scalar) multiplication, addition, nor
composition. Furthermore, the motivating example in [117] (which is a simplified
version of the leading example in [115]), uses a non-linear (elementary) interpre-
tation for multiplication. We show that also an implementation of algebras with
elementary interpretations can take advantage from an approximation-based ap-
proach. These findings are related to Problem #28 in the RTA List of Open
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Problems,2 which asks to “develop effective methods to decide whether a system
decreases with respect to some exponential interpretation”. Our contribution is
restricted to a subclass of elementary interpretations but also admits the search
for suitable interpretations.

This article is organized as follows. In the next section we recall ordinal arith-
metic and weakly monotone algebras for termination proofs. In Section 7.3 we
present our encoding of Goodstein’s theorem and prove its correctness. Section 7.4
discusses how ordinal algebras can be automated and applies the approach to sev-
eral rewrite systems (some of them encoding the Hydra battle), where also the
limitations of our method become apparent. Likewise, Section 7.5 adapts the
approach to elementary interpretations. Experimental results are the topic of Sec-
tion 7.6. We conclude in Section 7.7.

This article is an updated and extended version of [193]. In particular, the exten-
sion to elementary interpretations (Section 7.5) and the experimental evaluation
(Section 7.6) are new. Furthermore, in Section 7.4 the approximation +µ has been
refined (to succeed on the Worm battle) while tiny flaws in the approximations +ν

and ⊕ν have been corrected (cf. Definition 7.22).

7.2. Preliminaries

We recall some preliminaries about ordinal numbers. Ordinals are transitive sets
well-ordered with respect to ∈. Hence α < β if and only if α ∈ β. By identifying
∅, {∅}, {∅, {∅}}, . . . with 0, 1, 2, . . . , the natural numbers are embedded in
the ordinals. If α is an ordinal then the ordinal α ∪ {α} is its successor, denoted
by α + 1. An ordinal β constitutes a successor ordinal if there is some α such
that β = α + 1, otherwise β is called a limit ordinal. For instance 1, 2, 3, . . . are
successor ordinals, whereas 0 and the smallest infinite ordinal ω are limit ordinals.
The latter is equivalent to the set of all natural numbers. The following ordinal
arithmetic operations constitute extensions of the respective operations on natural
numbers (see [92] for details).

Definition 7.1. For ordinals α and β their sum α+β is defined by recursion over
β as (a) α+0 = α, (b) α+β = (α+γ)+1 if β = γ+1, and (c) α+β =

⋃
γ<β α+γ

if β is a non-zero limit ordinal.

Addition satisfies associativity α+(β+γ) = (α+β)+γ but is not commutative,
e.g., 1 + ω = ω 6= ω + 1.

2http://www.cs.tau.ac.il/~nachum/rtaloop/

150

http://www.cs.tau.ac.il/~nachum/rtaloop/


7.2. Preliminaries

Definition 7.2. For ordinals α and β their product α · β is defined by recursion
over β as (a) α · 0 = 0, (b) α · β = α · γ +α if β = γ + 1, and (c) α · β =

⋃
γ<β α · γ

if β is a non-zero limit ordinal.

Since 2 · ω = ω 6= ω · 2 multiplication is not commutative, and as (ω + 1) · 2 =
(ω+1)+(ω+1) = ω+ω+1 = ω ·2+1 also not right-distributive, but associativity
α · (β · γ) = (α · β) · γ and left-distributivity α · (β + γ) = (α · β) + (α · γ) hold.
We mostly write αa for α · a whenever α is an ordinal and a a finite ordinal, i.e.,
a < ω.

Definition 7.3. For ordinals α and β, recursion over β allows to define exponenti-
ation αβ as follows: (a) α0 = 1, (b) αβ = αγ ·α if β = γ+ 1, and (c) αβ =

⋃
γ<β α

γ

if β is a non-zero limit ordinal.

Examples of infinite ordinals include ω1 = ω, ω 3 = ω + ω + ω, ω2 = ω · ω,
ωω+1, and ωω

ω
. The ordinal ε0 is the smallest ordinal α which satisfies αω = α.

Let O denote the class of ordinal numbers smaller than ε0, N the ordinal numbers
smaller than ω (the natural numbers), > the standard order on ordinals, and >
its reflexive closure.

Recall that every ordinal α < ε0 can be represented in Cantor normal form
(CNF), i.e.,

α = ωα1a1 + · · ·+ ωαnan (7.1)

such that α1 > · · · > αn are in CNF as well and a1, . . . , an ∈ N>0. The ordinal 0
is represented as the empty sum.

Definition 7.4. Let α = ωα1a1 + · · · + ωαnan and β = ωβ1b1 + · · · + ωβmbm
be ordinals in CNF, and {γ1, . . . , γk} = {α1, . . . , αn} ∪ {β1, . . . , βm} such that
γ1 > · · · > γk. The natural sum of α and β is defined as follows: α ⊕ β =
ωγ1(a′1 + b′1) + · · · + ωγk(a′k + b′k) where a′i = aj (b′i = bj) if γi = αj (γi = βj) for
some j, and a′i = 0 (b′i = 0) otherwise.

In contrast to standard addition, natural addition on ordinals enjoys all proper-
ties known from addition on natural numbers, e.g., 2 ⊕ ω = ω ⊕ 2 = ω + 2. For
ordinal algebras as considered later in this article we rely critically on the fact that
addition, natural addition, multiplication, and exponentiation are weakly mono-
tone in both arguments.

We assume familiarity with term rewriting and termination [17, 172].
The derivation height of a term t with respect to a well-founded and finitely

branching rewrite relation →R is defined as dhR(t) = max {m | ∃u t→m
R u}. The
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derivational complexity of R computes the maximal derivation height of all terms
up to size n and is defined as dcR(n) = max {dhR(t) | |t| 6 n}.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite relation
→R/S =→∗S · →R · →∗S .

We consider well-founded algebras A with interpretation functions fA. An inter-
pretation function fA is simple if fA(a1, . . . , an) > ai for all 1 6 i 6 n. It is mono-
tone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) > fA(. . . , ai−1, b, ai+1, . . .) and weakly
monotone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) > fA(. . . , ai−1, b, ai+1, . . .). An
algebra is simple/monotone/weakly monotone if all its interpretation functions are
simple/monotone/weakly monotone. An assignment α maps variables to values in
the carrier of A. By [α]A(t) we denote the interpretation of the term t based on
the assignment α. A TRS R is compatible with an algebra A if [α]A(`) > [α]A(r)
for every ` → r ∈ R and assignment α (also written R ⊆ >A). Algebras may
yield termination proofs.

Theorem 7.5. A TRS is terminating if and only if it is compatible with a well-
founded monotone algebra.

Theorem 7.6 ([178, 209]). A TRS is terminating if it is compatible with a well-
founded weakly monotone simple algebra.

7.3. The Goodstein Sequence

In this section we present a TRS for the Goodstein sequence, whose definition
requires the following key notion. Given n > 1, a natural number α is in hereditary
base n representation, which we indicate by writing (α)n, if

(α)n = n(αk)n · ak + n(αk−1)n · ak−1 + · · ·+ n(α0)n · a0 (7.2)

such that all (αk)n > · · · > (α0)n are in hereditary base n representation and
0 < ai < n for all 0 6 i 6 k. For m > n we denote by (α)mn the result of replacing
n by m in (α)n, so (α)mn = m(αk)mn · ak +m(αk−1)mn · ak−1 + · · ·+m(α1)mn · a1 + a0 is
in hereditary base m representation.

For instance, (1)2 = 20 · 1, where we drop the coefficient 1 and simply write

(1)2 = 20. Moreover, (2)2 = 21 = 220 and (5)2 = 22 + 1 = 222
0

+ 20, whereas

(5)3
2 = 333

0

+ 30 = 28.

Definition 7.7. The Goodstein sequence gα with starting value α is defined by
gα(0) = α and gα(i+ 1) = (gα(i))i+3

i+2 − 1 for all i > 0.
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Example 7.8. For α = 2 the Goodstein sequence yields

g2(0) = 2

g2(1) = (2)3
2 − 1 = (21)3

2 − 1 = 31 − 1 = 2

g2(2) = (2)4
3 − 1 = 2− 1 = 1

g2(3) = (1)5
4 − 1 = 1− 1 = 0

while for α = 5 we obtain

g5(0) = 5

g5(1) = (5)3
2 − 1 = (22 + 20)3

2 − 1 = 33 + 30 − 1 = 27

g5(2) = (27)4
3 − 1 = (33)4

3 − 1 = 44 − 1 = 255

g5(3) = (255)5
4 − 1 = (43 · 3 + 42 · 3 + 4 · 3 + 3)5

4 − 1 = 53 · 3 + 52 · 3 + 5 · 3 + 2

= 467

Theorem 7.9 (Goodstein [63]). For all α there exists a k such that gα(k) = 0.

By G(α) we denote the smallest number k with this property. Totality of this
function is not provable in Peano arithmetic, as shown by Kirby and Paris [96].
Cichon [31] presented a very short proof using results concerning recursion theo-
retic hierarchies of functions. In particular, he showed that the growth rate of G
cannot be bounded by any Hα such that α < ε0.3

Definition 7.10. For all n > 1 we define a mapping [·]n to represent natural
numbers in (hereditary) base n as ground terms over {c, 0}, where c is a binary
function symbol and 0 a constant. Let (α)n be a natural number in hereditary
base n representation as in (7.2). The term c(x, c(x, · · · c(x, y) · · · )) containing
k > 0 occurrences of c is denoted ck(x, y). In particular, c0(x, y) = y. Then [·]n is
recursively defined such that [0]n = 0 and

[α]n = ca0([α0]n , . . . c
ak−1([αk−1]n , c

ak([αk]n , 0)) . . . )

Intuitively, given base n, the term c([α]n , [β]n) represents the number nα + β,
and terms contributing to the base n representation of a number are combined in
increasing order. This is in contrast to (7.2), where terms are sorted in a decreasing
way.

3Here H is the Hardy function: H0(n) = n+ 1, Hα+1(n) = Hα(n+ 1), and Hλ(n) = Hλn(n) for a limit
ordinal λ which is the supremum of an ordinal sequence (λn)n∈N.
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Example 7.11. For (1)2 = 20 we have [1]2 = c(0, 0), for (2)2 = 220 we have [2]2 =

c(c(0, 0), 0), for (7)2 = 222
0

+ 220 + 20 we have [7]2 = c(0, c(c(0, 0), c(c(c(0, 0), 0)))),

and for (7)3 = 330 · 2 + 30 we have [7]3 = c(0, c(c(0, 0), c(c(0, 0), 0))). Note that
different numbers over different bases might be represented by the same term, for
instance (2)2 = (3)3 = c(c(0, 0), 0).

The following TRS G works on inputs of the form [·]n to model gα. Its definition
is inspired by Touzet’s encoding of the Hydra battle [178] (see Example 7.30).

Definition 7.12. Consider the following TRS G over a signature consisting of
unary function symbols •, 8, ◦ and binary function symbols f, h, in addition to 0
and c:

8 ◦x→ ◦ 8x (A1)

• 8x→ 8 • •x (A2)

◦x→ • 8x (A3)

c(0, x)→ ◦x (B1)

• c(c(x, y), z)→ • f(c(x, y), z) (B2)

• f(0, x)→ ◦x (C1)

• f(c(x, y), z)→ h(• f(x, y), • • f(f(x, y), z)) (C2)

• h(x, y)→ h(•x, • • c(x, y)) (D1)

h(x, y)→ ◦ y (D2)

• f(x, y)→ f(•x, y) (E1)

• c(x, y)→ c(•x, • y) (E2)

•x→ x (E3)

◦x→ x (E4)

The basic idea of the encoding is to perform a step in the Goodstein sequence
as follows. The current base n and sequence element α are encoded as • 8n [α]n.
Using rule (A2), the symbol • is repeatedly duplicated while moving over the 8’s,

until a term of the form 8
n

•2n [α]n is reached. The copies of • can move to places
(using rules (E1) and (E2)) in [α]n where changes are required to turn [α]n into

[β]n+1 for β = (α)n+1
n −1. This is achieved using rules (B1) – (D2) and the symbols

f and h for auxiliary purposes, and produces at least one ◦ symbol which can then
travel back up the 8’s using (A1). Finally, the base is increased by (A3), which
yields a term • 8n+1 [β]n+1. Whenever there are too many • or ◦ symbols, they are
removed with rules (E3) and (E4).
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This idea is made precise in the following theorem, according to which G simu-
lates for any starting value the computation of the Goodstein sequence. In partic-
ular, termination of G (Theorem 7.15) enforces for any α ∈ N the existence of a k

with • 82 [α]2 →∗G • 8k [0]k, and thus implies Theorem 7.9.

Theorem 7.13. Let α, n ∈ N such that α > 0 and n > 1. Then it follows that
• 8n [α]n →

+
G • 8n+1 [β]n+1 where β = (α)n+1

n − 1.

The proof of this result requires some auxiliary facts about G.

Lemma 7.14.

(a) •n h(s, t)→+
G ◦ cn(•n s, •2n t) for all terms s and t.

(b) Let α, β ∈ N and n ∈ N such that n > 1, β + nα is positive, s = [α]n and
t = [β]n. Then •n f(s, t)→+

G ◦u where u = [β + nα − 1]n.

Proof.

(a) By induction on n. If n = 0 then h(s, t) →G ◦ t in a single step using (D2).
If n > 0 then

•n+1 h(s, t) →G •n h(• s, • • c(s, t)) (D1)

→+
G ◦ c

n(•n+1 s, •2(n+1) c(s, t)) (?)

→+
G ◦ c

n(•n+1 s, c(•2(n+1) s, •2(n+1) t)) (E2)

→+
G ◦ c

n(•n+1 s, c(•n+1 s, •2(n+1) t)) (E3)

= ◦ cn+1(•n+1 s, •2(n+1) t)

where (?) applies the induction hypothesis.

(b) By induction on α. If α = 0 then [α]n = 0 and •n f(0, t) →G •n−1 ◦ t →∗G ◦ t
using rules (C1) and (E3). Since β+n0−1 = β and t = [β]n the claim holds.
If α > 0 then [α]n = c(s′, t′) and s′ = [γ]n and t′ = [δ]n for some γ, δ ∈ N, so
α = δ + nγ. We have

•n f(c(s′, t′), t) →G •n−1 h(•f(s′, t′), • • f(f(s′, t′), t)) (C2)

→+
G ◦ c

n−1(•n f(s′, t′), •2n f(f(s′, t′), t)) (a)

→∗G ◦ cn−1(•n f(s′, t′), •n f(•n f(s′, t′), t)) (E1)

→+
G ◦ c

n−1(◦w, •n f(◦w, t)) (?)

→+
G ◦ c

n−1(w, •n f(w, t)) (E4)

→+
G ◦ c

n−1(w, ◦w′) (??)

→G ◦ cn−1(w,w′) (E4)
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where in (?) we apply the induction hypothesis since γ < α and so we
obtain a term w = [δ + nγ − 1]n. Since δ + nγ − 1 < α, we can apply
the induction hypothesis again in (??), which yields a term w′ such that
w′ =

[
β + nδ+n

γ−1 − 1
]
n
. Let ν = δ + nγ − 1. For the term v = cn−1(w,w′)

we thus have

v = [β + nν · (n− 1) + nν − 1]n =
[
β + nν+1 − 1

]
n

= [β + nα − 1]n .

Proof of Theorem 7.13. Since α > 0, we have [α]n = c(s, t) for some terms s and t.
We apply case analysis on s. If s = 0 then t = [α− 1]n and we have

• 8n c(0, t)→G 8n c(0, t) (E3)

→G 8n ◦ t (B1)

→+
G ◦ 8n t (A1)

→G • 8n+1 t (A3)

Otherwise, s = c(u, v) so let c(u, v) = [γ]n and t = [δ]n for some γ, δ ∈ N. There
is the following rewrite sequence:

• 8n c(c(u, v), t)→+
G 8n •2n c(c(u, v), t) (A2)

→∗G 8n •n+1 c(c(u, v), t) (E3)

→∗G 8n •n+1 f(c(u, v), t) (B2)

→+
G 8n ◦w (?)

→+
G ◦ 8nw (A1)

→G • 8n+1w (A3)

where (?) applies Lemma 7.14(b), according to which w = [δ + (n+ 1)γ − 1]n+1.

Theorem 7.15. The TRS G is terminating.

Proof. We show termination of G by employing Theorem 7.6. Consider the follow-
ing algebra A over the well-founded domain O× N× N:

0A = (0, 0, 0) 8A(x,m, n) = (x, 2m+ 2, n)

cA((x,m, n), (y, k, l)) = (ωx ⊕ y + 1, 0, 0) ◦A(x,m, n) = (x, 2m+ 3, n)

fA((x,m, n), (y, k, l)) = (ωx ⊕ y, 0, 0) •A(x,m, n) = (x,m, n+m+ 1)

hA((x,m, n), (y, k, l)) = (y + ωx+1, 0, 0)
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Note that A is simple and weakly monotone, and it strictly orients all rules of G:

(x, 4m+ 8, n) > (x, 4m+ 7, n) (A1)

(x, 2m+ 2, 2m+ n+ 3) > (x, 2m+ 2, 2m+ n+ 2) (A2)

(x, 2m+ 3, n) > (x, 2m+ 2, n+ 2m+ 3) (A3)

(x+ 2, 0, 0) > (x, 2m+ 3, n) (B1)

(ωω
x⊕y+1 ⊕ z + 1, 0, 1) > (ωω

x⊕y+1 ⊕ z, 0, 1) (B2)

(x+ 1, 0, 1) > (x, 2m+ 3, n) (C1)

(ωω
x⊕y+1 ⊕ z, 0, 1) > (z + ωω

x⊕y+1, 0, 0) (C2)

(y + ωx+1, 0, 1) > (y + ωx+1, 0, 0) (D1)

(y + ωx+1, 0, 0) > (y, 2k + 3, l) (D2)

(ωx ⊕ y, 0, 1) > (ωx ⊕ y, 0, 0) (E1)

(ωx ⊕ y + 1, 0, 1) > (ωx ⊕ y + 1, 0, 0) (E2)

(x,m, n+m+ 1) > (x,m, n) (E3)

(x, 2m+ 3, n) > (x,m, n) (E4)

Hence G is terminating. Note that rule (C2) has a weak decrease in its first
component since ordinal addition might consume its left argument but natural
addition does not, i.e., α⊕β = β⊕α > β+α for all ordinals α and β in CNF.

The proof of Theorem 7.15 (again inspired by the termination proof in [178]) lex-
icographically combines ordinal with linear polynomial interpretations. However,
we remark that weak monotonicity of the lexicographic product does not follow
from weak monotonicity of the single interpretations (cf. Example 7.26). Still, the
search for suitable interpretation functions can be automated (see Section 7.4.2).

7.4. Automation of Ordinal Algebras

In order to automate the search for suitable ordinal interpretations, we restrict
ourselves to interpretation functions of a certain shape (see Definition 7.16). In
Section 7.4.1 we show how for a given algebra with interpretation functions of
this shape one can encode whether the interpretation of one term is larger than
that of another term. In contrast to other termination criteria, ordinal arithmetic
(non-commutative, expressions may be consumed) significantly complicates the en-
coding. Section 7.4.2 elaborates on implementation issues needed for a successful
automation, where we also explain how to find suitable coefficients for the inter-
pretation functions. Section 7.4.3 considers different encodings of Hydra battles
where also the limitations of the approach are discussed.
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In the sequel we consider ordinal expressions of the following shape. By x we
abbreviate x1, . . . , xn.

Definition 7.16. A restricted ordinal expression (ROE ) over variables x is either 0
or4 ∑

16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xif̂i ⊕ f0 (7.3)

where f0, f1, . . . , fn, f̂1, . . . , f̂n, fω are natural numbers and f ′(x) is an ROE over x.
The depth of an ROE is the height of the tower of ω’s. An ROE algebra is an
algebra O where for every n-ary function symbol f the interpretation function fO
is an ROE over x.

7.4.1. Encodings

Let f(x) and g(x) be ROEs of the form

f(x) =
∑

16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xif̂i ⊕ f0

g(x) =
∑

16i6n

xigi + ωg
′(x)gω ⊕

⊕
16i6n

xiĝi ⊕ g0

(7.4)

We assume that these expressions depend on the same variables x (otherwise the
respective coefficients can be set to 0), and that variables appear in the same order.
We first encode some auxiliary properties of ROEs.

Useful Abbreviations

Let zero(f(x)) be true if and only if f(x) = 0 or all of f0, fi, f̂i and fω are 0. Let
ci = max(fi, gi) for all i ∈ {0, . . . , n, ω}. An upper bound omax(f, g)(x) is then
given by omax(f, 0)(x) = omax(0, f)(x) = f(x) and

omax(f, g)(x) =
∑

16i6n

xici + ωomax(f ′,g′)(x)cω ⊕
⊕

16i6n

xi max(f̂i, ĝi)⊕ c0

otherwise. For instance, if f(x) = x1 + ωx2+1 ⊕ x3 and g(x) = ωx12 ⊕ x2 + 1
then omax(f, g)(x) = x1 + ωx1+x2+12⊕ x2 ⊕ x3 + 1. Clearly, for all assignments α
we have that [α](f(x)) 6 [α](omax(f, g)(x)) and [α](g(x)) 6 [α](omax(f, g)(x)).

4To enhance readability we drop parentheses in expressions of the form x+ y⊕ z, which are to be read
as (x+ y)⊕ z rather than x+ (y⊕ z). Note that these expressions are in general not equivalent, e.g.,
(1 + 0)⊕ ω = ω + 1 but 1 + (0⊕ ω) = ω.
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Whether a variable xi contributes to the value of f(x) can be recursively encoded
as follows:

coni(f(x)) =

{
⊥ if f(x) = 0

fi > 0 ∨ f̂i > 0 ∨ (coni(f
′(x)) ∧ fω > 0) otherwise

If f(x) and g(x) are defined as above then coni(f(x)) = conj(g(x)) = > for all
1 6 i 6 3 and 1 6 j 6 2, but con3(g(x)) = ⊥.

Comparisons

Consider ROEs f(x) and g(x) as in (7.4). We want to derive sufficient (checkable)
conditions such that [α](f(x)) > [α](g(x)) for all assignments α. The following
example shows that whether one ROE is larger than another one significantly
depends on the assignment.

Example 7.17. Consider x1 + x2 and x2 + x1. Let α be an assignment such that
α(x1) = ω and α(x2) = 1. Then [α](x1 + x2) = ω + 1 > ω = 1 + ω = [α](x2 + x1).
Conversely we have [β](x1 +x2) = 1+ω = ω < ω+1 = [β](x2 +x1) when β(x1) = 1
and β(x2) = ω.

We use the following underapproximation to check whether [α](f(x)) > [α](g(x))
for all assignments α, which is a tradeoff between accuracy and efficiency.

Definition 7.18. Let f(x) and g(x) be ROEs as in (7.4).

[f(x) > g(x)] = [f(x) >0 g(x)] ∧
∧

16i6n

[f(x) >i g(x)]

[f(x) >0 g(x)] = ([f ′(x) >0 g
′(x)] ∧ fω > 0) ∨

([f ′(x) >0 g
′(x)] ∧ fω > gω ∧ f0 > g0) ∨

(gω = 0 ∧ f0 > g0)
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[f(x) >i g(x)] = ¬coni(g(x)) ∨ (a)

([f ′(x) >i g
′(x)] ∧ fω > gω ∧ gi = 0 ∧ ĝi = 0) ∨ (b)

(coni(ω
f ′(x)fω) ∧ ¬coni(ω

g′(x)gω)) ∨ (c)

(coni(ω
f ′(x)fω) ∧ [f ′(x) >i g

′(x)] ∧ fω > gω) ∨ (d)

(coni(ω
f ′(x)fω) ∧ [f ′(x) >i g

′(x)] ∧ fω = gω ∧ f̂i > ĝi) ∨ (e)

(¬coni(ω
g′(x)gω) ∧ f̂i > ĝi ∧ fi + f̂i > gi + ĝi) ∨ (f)

((zero(g′(x)) ∨ gω = 0) ∧ fi + f̂i > gi + ĝi) (g)

[f(x) > g(x)] = [f(x) > g(x)] ∧ [f(x) >0 g(x)]

[f(x) >0 g(x)] = ([f ′(x) >0 g
′(x)] ∧ fω > 0) ∨

([f ′(x) >0 g
′(x)] ∧ fω > gω ∧ f0 > g0) ∨

(gω = 0 ∧ f0 > g0)

Here [f(x) >0 g(x)] ([f(x) >0 g(x)]) encodes that the constant part in f(x) is
greater (or equal) than the constant part in g(x), whereas [f(x) >i g(x)] encodes
that the coefficients of the variable xi in f(x) are greater than or equal to the
respective coefficients in g(x). The last disjunct in the definition of [f(x) >0 g(x)]
was added to the earlier version of our encoding [193]; it is essential to handle
the last rule of the TRS W ′3 in Example 7.31. Our comparisons are (much) more
involved than the absolute positiveness approach [83] for polynomials because of
ordinal arithmetic. We illustrate the different cases in the encoding of >i in the
following example.

Example 7.19. Case (a) yields [ωx1+x2 >1 ω
x2 ] while (b) admits [ωx123 >1 ω

x13].
From (c) validity of [ωx12 >1 x13] is obtained and [ωx12 >1 ω

x11⊕x15] is due to (d).
Case (e) obviously allows [ωx12⊕ x12 >1 ω

x12⊕ x11] but also [ωx1 >1 x110 + ωx1 ].
Case (f) implies [x12 +ωx2 ⊕ x13 >1 x13 +ωx2 ⊕ x12]. Finally, [x14 +ωx2 ⊕ x11 >1

x12⊕x13] is ensured by (g). It is not hard to check that for all these example ROEs
satisfying [f(x1, x2) >1 g(x1, x2)] we indeed have [α](f(x1, x2)) > [α](g(x1, x2))
for any assignment α (though additional constraints are required to ensure this).

In the example for case (f), the test f̂1 > ĝ1 is required if ωα(x2) consumes the
preceding α(x1)2 (and hence α(x1)3) for some assignment α. Otherwise the test

f1 + f̂1 > g1 + ĝ1 is required. For case (g), if for some α the term ωα(x2) consumes

α(x1)4 then it also dominates α(x1)2. Otherwise we need the test f1 + f̂1 > g1 + ĝ1.

Clearly, the encoding of > is only an approximation. E.g., [ωx1+1 >1 ω
x12] is not

valid, despite the fact that ωα(x1)+1 > ωα(x1)2 for any α. While it is straightforward
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to extend Definition 7.18(b) accordingly for this particular case, we do not strive
for a precise encoding, which seems out of reach for practical applications.

The encodings of comparisons are sound.

Lemma 7.20. Let f(x) and g(x) be ROEs as in (7.4).

(a) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.

(b) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.

Proof. Each of the disjunctions (a)–(g) in Definition 7.18 is a sound criterion for
the comparison [α](f(x)) >i [α](g(x)) for all 1 6 i 6 n.

Composition

In contrast to e.g. polynomial interpretations, ROEs are not closed under scalar
multiplication and standard/natural addition (cf. Example 7.21), and thus also
not under composition. Hence we cannot compute an ROE corresponding to the
interpretation of a term t with respect to an ROE algebra O. Instead, we define
ROEs µ(t) and ν(t) to under- and overapproximate tO. To this end we present
in Definition 7.22 bounds for the results of ordinal arithmetic operations (based
on the algorithms given in [119] for ordinals in CNF) and demonstrate them in
Example 7.23 before Lemma 7.24 shows their soundness.

Example 7.21.

(a) Consider the ROEs x+1 and 2. If α(x) < ω then [α]((x+1) ·2) = [α](x2+2)
but [α]((x+ 1) · 2) = [α](x2 + 1) otherwise.

(b) Consider the ROEs ω2 and ω3. There is no ROE for ω2 ⊕ ω3.

(c) Consider the ROEs x⊕1 and y. If α(y) < ω then [α]((x⊕1)+y) = [α](x+y+1)
but [α]((x⊕ 1) + y) = [α](x+ y) otherwise.

Definition 7.22. Let f(x) and g(x) be ROEs as in (7.4).

(a) For a ∈ N, let (f ·µ a)(x) = (f ·ν a)(x) = 0 if a = 0 or f(x) = 0, and otherwise

(f ·µ a)(x) =
∑

16i6n

xifi + ωf
′(x)(fω · a)⊕

⊕
16i6n

xi(f̂i · a)⊕ (f0 · a)

(f ·ν a)(x) =
∑

16i6n

xi(fi · a) + ωf
′(x)(fω · a)⊕

⊕
16i6n

xi(f̂i · a)⊕ (f0 · a)
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(b) Let (f ⊕µ g)(x) = (f ⊕ν g)(x) = g(x) if f(x) = 0 and similarly we set
(f ⊕µ g)(x) = (f ⊕ν g)(x) = f(x) if g(x) = 0. Otherwise, let si and ti
abbreviate coni(ω

f ′(x)fω) ? 0 : 1 and coni(ω
g′(x)gω) ? 0 : 1, where b ? t : e

encodes “if b then t else e”. Let

(h(x), hω) =


(f ′(x), fω + 1) if [ωf

′(x)fω > ωg
′(x)gω]

(g′(x), gω + 1) if [ωg
′(x)gω > ωf

′(x)fω]

(omax(f ′, g′)(x), fω + gω) otherwise

and (k(x), kω) = [ωf
′(x)fω > ωg

′(x)gω] ? (f ′(x), fω) : (g′(x), gω). Then

(f ⊕µ g)(x) =
∑

16i6n

xi max(fisi, giti) + ωk(x)kω ⊕
⊕

16i6n

xi(f̂i + ĝi)⊕ (f0 + g0)

(f ⊕ν g)(x) = nat(g(x)) ?
∑

16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xi(f̂i + ĝi)⊕ (f0 + g0) :

nat(f(x)) ?
∑

16i6n

xigi + ωg
′(x)gω ⊕

⊕
16i6n

xi(f̂i + ĝi)⊕ (f0 + g0) :

ωh(x)hω ⊕
⊕

16i6n

xi(f̂i + ĝi + giti + fisi)⊕ (f0 + g0)

Here nat(f(x)) abbreviates f1 = 0 ∧ · · · ∧ fn = 0 ∧ fω = 0, and similarly
for g(x). This definition of (f ⊕ν g)(x) allows for a more precise encoding
compared to the version in [193]. In particular, a tighter upper bound is
obtained for the cases where f(x) or g(x) are just linear polynomials (i.e.,
where nat(f(x)) or nat(g(x)) is true).

(c) Let (f +µ g)(x) = (f +ν g)(x) = g(x) if f(x) = 0 and similarly (f +µ g)(x) =
(f +ν g)(x) = f(x) if g(x) = 0. Otherwise, we define lower and upper bounds
for f(x)+g(x) by distinguishing different cases using if-then-else expressions:

(f +µ g)(x) = [ωf
′(x)fω > ωg

′(x)gω] ? f(x) :

(∑
16i6n

(gi = 0 ? xifi : 0) + g(x)

)
(f +ν g)(x) = [ωg

′(x)gω > ωf
′(x)fω] ? φ1 :(

[ωf
′(x)fω > ωg

′(x)gω] ? φ2 : (f ⊕ν g)(x)
)

where

φ1 =
∑

16i6n

xi(fisiti + f̂itiu+ giti) + ωg
′(x)gω ⊕

⊕
16i6n

xi(f̂iti(1− u) + ĝi)⊕ c0

φ2 =
∑

16i6n

xifisi + ωf
′(x)(fω + 1)⊕

⊕
16i6n

xi(f̂iti + giti + ĝi)⊕ c0
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with c0 = ([g′(x) > 0] ∧ gω > 0) ? g0 : f0 + g0 and u is 1 if all fisiti are zero

and at most one of f̂iti is greater zero and 0 otherwise.

(d) Definitions (a)–(c) can be used to inductively set lower and upper bounds
for the composition f(g)(x) = f(g1(x), . . . , gn(x)). We write

∑µ
16i6n hi to

abbreviate h1 +µ · · ·+µ hn, and use similar shorthands for ⊕ and ν. We set

f(g)µ(x) =

µ∑
16i6n

gi(x) ·µ fi +µ ω
f ′(g)µ(x)fω ⊕µ

µ⊕
16i6n

gi(x) ·µ f̂i ⊕µ f0

f(g)ν(x) =
ν∑

16i6n

gi(x) ·ν fi +ν ω
f ′(g)ν(x)fω ⊕ν

ν⊕
16i6n

gi(x) ·ν f̂i ⊕ν f0

(e) Let t be a term, and O be an ROE algebra. By induction on the term
structure we define ROEs µO(t) and νO(t) such that

µO(t) =

{
t if t ∈ V
fO(µO(t1), . . . , µO(tn))µ otherwise

νO(t) =

{
t if t ∈ V
fO(νO(t1), . . . , νO(tn))ν otherwise

The following example illustrates these definitions of upper and lower bounds
for ROE arithmetic.

Example 7.23.

(a) Consider the ROE f(x) = x1 +x2. Then (f ·µ2)(x) = x1 +x2 and (f ·ν 2)(x) =
x12 + x22. We clearly have x1 + x2 6 (x1 + x2)2 6 x12 + x22 for all values of
x1 and x2. Note that (x1 + x2)2 6= x12 + x22 since · does not right-distribute
over +, as shown after Definition 7.2.

(b) Consider the ROEs f(x) = ωx1+x2+1 ⊕ x3 + 1 and g(x) = x2 + ωx12 ⊕ x3.
As ωx1+x2+1 > ωx12 we have (k(x), kω) = (x1 + x2 + 1, 1) and (h(x), hω) =
(x1 +x2 +1, 2). Thus (f⊕µ g)(x) = x2 +ωx1+x2+1⊕x32+1 and (f⊕ν g)(x) =
ωx1+x2+12⊕ x2 ⊕ x32 + 1. It is not difficult to see that

x2 + ωx1+x2+1 ⊕ x32 + 1 6 f(x)⊕ g(x) 6 ωx1+x2+12⊕ x2 ⊕ x32 + 1

for all values of x1, x2, and x3.
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(c) Consider the ROEs f(x) = x3 + ωx2 ⊕ x1 and g(x) = ωx1+x2+1 + 1. As
ωx2 6> ωx1+x2+1 we have (f +µ g)(x) = x3 + g(x) = x3 + ωx1+x2+1 + 1. Since
x1 + x2 + 1 > x2 the first case for +ν applies, where u = 0 as f3s3t3 = 1. We
thus have (f +ν g)(x) = ωx1+x2+1 ⊕ x3 + 1. Note that the term ⊕ x1 in f(x)
disappears as x1 contributes to the exponent of g(x). We have

x3 + ωx1+x2+1 + 1 6 (x3 + ωx2 ⊕ x1) + (ωx1+x2+1 + 1) 6 ωx1+x2+1 ⊕ x3 + 1

for all values of x1, x2, and x3.

(d) For the ROEs f(x) = x2 +ωx1+1, g1(x) = ωx1 ⊕x2, and g2(x) = ωω
x1⊕x2 ⊕x3

we obtain

f(g)µ(x) = (ωω
x1⊕x2 ⊕ x3) +µ ω

ωx1⊕x2+1 = ωω
x1⊕x2+1

f(g)ν(x) = (ωω
x1⊕x2 ⊕ x3) +ν ω

ωx1⊕x2+1 = x3 + ωω
x1⊕x2+1

(e) Consider ` = • f(c(x1, x2), x3) and r = h(• f(x1, x2), • • f(f(x1, x2), x3)) from
rule (C2) of G. Let O be the ordinal part of the ROE algebra defined in
the proof of Theorem 7.15 such that hO(x1, x2) = x2 + ωx1+1, cO(x1, x2) =
ωx1 ⊕ x2 + 1, •O(x1) = x1, and fO(x1, x2) = ωx1 ⊕ x2. Then we have µO(`) =
νO(`) = ωω

x1⊕x2+1 ⊕ x3. It is easy to see that for r′ = f(f(x1, x2), x3) we get
µO(r′) = νO(r′) = ωω

x1⊕x2 ⊕ x3. From the computation in (d) we thus obtain
νO(r) = x3 + ωω

x1⊕x2+1. Note that [µO(`) > νO(r)] holds: We obviously
have [µO(`) >0 νO(r)], [µO(`) >1 νO(r)], and [µO(`) >2 νO(r)] as the two
expressions are equal in the relevant parts, and [µO(`) >3 νO(r)].

Note that in [193, Definition 17] we approximated (x+ω00)⊕ν ωx by x+ωx (but
[α](x⊕ ωx) > [α](x + ωx) for α(x) = 1), and (x⊕ y) +ν ω by x + y + ω (whereas
[α]((x ⊕ y) + ω) > [α](x + y + ω) for α(x) = ω and α(y) = ω2). Definition 7.22
corrects these flaws and sets (x+ω00)⊕ν ωx = ωx⊕x and (x⊕y)+ν ω = ω⊕x⊕y.
We now show that Definition 7.22 yields valid over- and underapproximations.

Lemma 7.24. Let O be an ROE algebra and t be a term. Then [α](µO(t)) 6
[α]O(t) 6 [α](νO(t)) for all assignments α.

Proof. We argue that all approximations in Definition 7.22 constitute valid lower
and upper bounds. Let α be an arbitrary assignment.

(a) It is easy to see that [α](f(x)·a) 6 [α](f ·ν a)(x). For any β in CNF as in (7.1)
and a ∈ N>0 we have βa = ωβ1a1a+ ωβ2a2 + · · ·+ ωβnan [119]. Since for any
1 6 i 6 n we have ωβ1a1a+ · · ·+ωβnan > ωβ1a1 + · · ·+ωβiaia+ · · ·+ωβnan,
(f ·µ a)(x) constitutes a safe (though modest) lower bound for f(x)a.
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(b) We have

f(x)⊕ g(x) =

(∑
16i6n

xifi + ωf
′(x)fω

)
⊕

(∑
16i6n

xigi + ωg
′(x)gω

)
(7.5)

⊕
⊕

16i6n

xi(f̂i + ĝi)⊕ (f0 + g0)

Note that the term xifi disappears in f(x) ⊕ g(x) if xi contributes to ωf
′(x)

and fω > 0, and the term xigi disappears in f(x)⊕ g(x) if xi contributes to
ωg
′(x) and gω > 0. Hence we may multiply all occurrences of fi by si, and

occurrences of gi by ti. We then have [α](f ⊕µ g)(x) 6 [α](f(x) ⊕ g(x)) as
(f ⊕µ g)(x) underapproximates(∑

16i6n

xifi + ωf
′(x)fω

)
⊕

(∑
16i6n

xigi + ωg
′(x)gω

)
by a coefficient-wise maximum of the respective components in f(x) and
g(x). Concerning the upper bound, the first two cases are obvious from (7.5).
Otherwise, it is easy to see that ωf

′(x)fω ⊕ ωg
′(x)gω 6 ωh(x)hω. As the sum

of xifi and xigi can be overapproximated by the natural sum of all terms
(fisi + giti)xi we have [α](f(x)⊕ g(x)) 6 [α](f ⊕ν g)(x).

(c) We clearly have [α](f +µ g)(x) 6 [α](f(x) + g(x)). For the upper bound,
assume for a first case [ωg

′(x)gω > ωf
′(x)fω], so ωf

′(x)fω + ωg
′(x)gω = ωg

′(x)gω.

Note that the term xif̂i disappears in f(x)+g(x) if xi is contained in ωg
′(x)gω,

i.e., if xi occurs with a positive coefficient somewhere in g′(x) and gω > 0.
The term gixi disappears as well if xi is contained in ωg

′(x)gω, and fixi disap-
pears if xi occurs in ωf

′(x)fω, or if xi occurs in ωg
′(x)gω. Hence all occurrences

of f̂i and gi may be multiplied by ti, and occurrences of fi may be multiplied
by siti. Clearly all terms xifisiti and xigiti may be put in the standard addi-
tion part of (f +ν g)(x), and xiĝi occurs in the natural addition part. As far

as the terms xif̂iti are concerned, adding them to the natural addition part is
obviously sound; but note that we may also put xif̂iti into the standard addi-
tion part if xif̂i is the only part of f(x) that survives, which is captured by the
condition u = 1. Now suppose [ωf

′(x)fω > ωg
′(x)gω], so ωf

′(x)fω + ωg
′(x)gω 6

ωf
′(x)(fω + 1). The term f̂ixi disappears in f(x) + g(x) if xi is contained in

ωg
′(x)gω, the term gixi disappears as well if xi is contained in ωg

′(x)gω. Hence
for any variable xi the sum of xif̂i, xigi, and xiĝi can be overapproximated
by xi(f̂iti + giti + ĝi) such that [α](f(x) + g(x)) 6 [α](f +ν g)(x). Finally,
f(x) + g(x) 6 f(x)⊕ g(x) 6 (f ⊕ν g)(x) holds in any case.
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(d) By (a)–(c) and weak monotonicity of the ordinal operations ·, +, and ⊕.

(e) By induction on the term structure of t, using (d).

Main Theorem

Any ROE is weakly monotone and well-defined by definition. It is easy to encode
a criterion for an ROE f(x) to be simple:

simple(f(x)) =
∧

16i6n

coni(f(x))

Finally we obtain the main result of this section.

Theorem 7.25. Let R be a TRS over a signature F and O an ROE algebra on F .
If ∧

`→r∈R

[µO(`) > νO(r)] ∧
∧
f∈F

simple(fO(x))

holds then R is terminating.

Proof. We already observed that any ROE is weakly monotone and well-defined.
By the assumption, every fO is simple. Hence the result follows by Theorem 7.6
in combination with Lemmata 7.20 and 7.24.

7.4.2. Implementation

In this section we discuss crucial issues for a successful implementation. Sec-
tion 7.4.2 explains the search for suitable interpretations. Section 7.4.2 shows
how to ensure that the lexicographic combination of partial proofs preserves weak
monotonicity. Section 7.4.2 deals with the problem of a compatible variable order
and Section 7.4.2 is dedicated to efficiency considerations.

Search for Interpretations

In automatic termination proofs suitable interpretation functions must be con-
structed. While easy heuristics can be employed for the depth of an ROE (see
Section 7.4.2), the main challenge is to establish suitable coefficients. To this end
we consider parametric ROEs which are of the shape (7.4) with the exception that

now f0, f1, . . . , fn, f̂1, . . . , f̂n, fω are unknowns over the naturals. The encodings
from the previous section then allow to reduce the search for suitable coefficients
to finding models in existentially quantified non-linear integer arithmetic for which
suitable SMT solvers exist (see e.g. [208]).
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Lexicographic Combination of Interpretations

The termination proof of the TRS G (Theorem 7.15) performs a lexicographic
combination of algebras into a simple and weakly monotone algebra. The proof
can be seen as the lexicographic product of (1) an ordinal algebra and (2) a linear
(polynomial) interpretation and (3) a matrix interpretation of dimension 2 [44].5

Regarding automation one can either encode the search for the lexicographic com-
bination or search for (partial) proofs and combine them lexicographically. We
adopted the latter, although the lexicographic combination of weakly monotone
algebras need not be weakly monotone, as shown by the following example.

Example 7.26. Consider the nonterminating TRSR = {f(a)→ f(b), b→ a}. For
the weakly monotone simple interpretation fO(x) = x+ω, bO = 1, aO = 0 we have
[f(a)]O = ω > ω = [f(b)]O and [b]O = 1 > 0 = [a]O. If we removed the second rule,
then the weakly monotone simple interpretation fN (x) = x + 1, aN = 1, bN = 0
shows termination of the remaining rule f(a)→ f(b). Note that the lexicographic
combination is no longer weakly monotone, i.e., [b]O×N = (1, 0) >lex (0, 1) = [a]O×N
but [f(b)]O×N = (ω, 1) 6>lex (ω, 2) = [f(a)]O×N .

However, weak monotonicity of a lexicographic interpretation can be partially
recovered: If both fO(x) and fA(x) are weakly monotone this also holds for the
lexicographic combination (fO(x), fA(x)) provided that an argument xi is ignored
in fA(x) whenever fO(x) is not strictly—but still weakly—monotone with respect
to xi. This fact was already exploited in the termination proof by Touzet (see
Example 7.30) and is also used in the proof of Theorem 7.15.

Example 7.27. For the interpretations gO(x) = x+ ω and gN (x) = 1 the lexico-
graphic combination gO×N ((x, k)) = (x+ ω, 1) is weakly monotone. Similarly, for
hO(x, y) = y + x and hN (x, y) = x+ 1 also hO×N ((x, k), (y,m)) = (y + x, k + 1) is
weakly monotone (note that hO×N is strictly monotone in its first argument).

To encode monotonicity of an ROE f(x) in its i-th argument we set

moni(f(x)) =
(
fi > 0 ∧ (

∧
i<j6n

fj = 0) ∧ fω = 0
)
∨ f̂i > 0 ∨ (fω > 0 ∧moni(f

′(x)))

mon(f(x)) =
∧

16i6n

moni(f(x))

Then it follows that ¬mon(f(x)) (¬moni(f(x))) holds whenever f(x) is not strictly
monotone (in its i-th argument). In the implementation we consider relative
rewriting and add a rule f ′(π(x1, . . . , xn)) → f(x1, . . . , xn) in the relative part

5Item (3) can also be seen as a lexicographic combination of two linear (polynomial) interpretations.
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whenever mon(f(x)) is not satisfied. Here f ′ is a fresh function symbol and
π(x1, . . . , xn) returns the variables xi1 , . . . , xim for 1 6 i1 6 · · · 6 im 6 n in
which f(x) is strictly monotone, i.e., monij(f(x)) is satisfied. In presence of a rule
f ′(π(x1, . . . , xn)) → f(x1, . . . , xn), compatible interpretation functions fA cannot
depend on variables xj /∈ π(x1, . . . , xn). The idea is shown by the examples below.

Example 7.28 (Example 7.26 revisited). Consider the TRSR from Example 7.26.
After applying the first interpretation we are left with the following relative TRS
{f(a) → f(b)}/{f ′ → f(x)}. Although this system is terminating there is no
compatible interpretation since f may not depend on its arguments due to the
second rule.

Example 7.29 (Example 7.27 revisited). Let hO(x1, x2) = x2 + x1. Then we
obtain mon1(hO(x1, x2)) = > and mon2(hO(x1, x2)) = ⊥. Hence π(x1, x2) = x1

and subsequent interpretations have to orient h′(x1)→ h(x1, x2) weakly and cannot
depend on h’s second argument while e.g., hA(x1, x2) = x1 + 1 is possible.

However, adding rules f ′(π(x1, . . . , xn)) → f(x1, . . . , xn) is likely to disable the
orientation of rules whose left-hand sides are rooted by f (in order to satisfy
[α]A(f ′(π(x1, . . . , xn))) > [α]A(f(x1, . . . , xn)) the interpretation of f may not de-
pend on arguments xi which do not occur in π(x1, . . . , xn)) and consequently the
termination proof might not be successful. To avoid this situation in the implemen-
tation we add constraints demanding to orient such rules only if the interpretation
of f is not strictly monotone. Then rules rooted with f must be oriented before a
rule f ′(π(x1, . . . , xn))→ f(x1, . . . , xn) is added.

Another necessary requirement is that the (lexicographic) algebra is simple.
Again we avoid an explicit lexicographic encoding. Rather, in a preprocessing step
for every f ∈ F we add the embedding rules f(x1, . . . , xn) → xi (for 1 6 i 6 n)
into the relative component of the TRS. This then ensures [α]A(f(x1, . . . , xn)) >
[α]A(xi) for each 1 6 i 6 n.

All in all, for a TRS R over a signature F we execute the following procedure:

S := {f(x1, . . . , xn)→ xi | f ∈ F has arity n and 1 6 i 6 n}
while R 6= ∅ do

find an algebra A satisfying R∪ S ⊆ >A and (R∪ S) ∩>A 6= ∅
NmonA(R) := {f ′(π(x1, . . . , xn))→ f(x1, . . . , xn) | f ∈ F has arity n,

1 6 i 6 n, and xi /∈ π(x1, . . . , xn) if
fA is not strictly monotone in xi}

R := R \>A and S := (S \>A) ∪ NmonA(R)

report terminating
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Instead of proving termination of R we try to establish termination of R relative
to S. This pre-processing step ensures that the algebras constructed in the body
of the while loop are simple. We use SMT to find appropriate ROEs and matrix
interpretations (of different dimensions), respectively. If no suitable algebra is
found, the while loop is aborted and the procedure fails. Adding NmonA(R) to the
relative part ensures that the lexicographic combination of the employed algebras
is weakly monotone.

Compatible Variable Orders

When interpreting or comparing terms we might get ROEs not having the same
variable order. E.g., the rule s(g(x, y))→ g(y, x) results in the constraint x+y+1 >
y + x, if gO(x, y) = x + y and sO(x) = x + 1. The assignment α(x) = 1 and
α(y) = ω yields 1 + ω + 1 = ω + 1 6> ω + 1 but according to Definition 7.18
the constraint [x + y + 1 > y + x] is valid. The same effect also happens in
arithmetic operations, e.g., the overapproximation of + in Lemma 7.24(d). Taking
fO(x, y) = gO(x, y) = x+y with α(x) = 1 and α(y) = ω, the term f(g(x, y), g(y, x))
evaluates to (1 + ω) + (ω + 1) = ω2 + 1 but the overapproximation based on the
variable order [x, y] yields 2 + ω2 = ω2. Clearly ω2 + 1 66 ω2. Hence we have
to ensure our global assumption that two ROEs have compatible variable orders
(in the standard addition part) when comparing, composing, or adding them. Let∑

16i6n xifi and
∑

16i6n yigi be ordinal expressions over the same variables (so y
is a permutation of x). Let i < j. Two variables xi and xj are not compatible
if there exist i′ and j′ with 1 6 i′ < j′ 6 n such that xi = y′j, xj = y′i and
fi, fj, gi′ , gj′ are positive. In such a case we constrain one of the coefficients to be
zero, i.e., fi = 0 ∨ fj = 0 ∨ gi′ = 0 ∨ gj′ = 0. For example consider e1 = x11 + x21,
e2 = x21 + x11, and e3 = x21 + x10. Then e1 and e2 do not have compatible
variable orders while e1 and e3 do.

Efficiency

While the implementation fixes some initial depth d for the interpretation of func-
tion symbols, this depth increases when evaluating terms (when approximating
compositions f(g1(x), . . . , gn(x))). Not surprisingly, for efficiency it is necessary
to bound the depth of expressions occurring in evaluations of terms. Dropping
parts of an interpretation is sound as an underapproximation while for the overap-
proximation we add constraints (to the SMT solver) that the dropped part must
evaluate to zero.
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7.4.3. Examples and Limitations

We have implemented the search for suitable ROEs in TTT2 [107] (see Section 7.6
for the global setup). For the automatic termination proof of the TRS G in TTT2
we (lexicographically) combine ordinal algebras with matrix interpretations [44].
Then, TTT2 manages G within nine seconds when using depth 1 for interpreting
function symbols and limiting the depth of evaluations to 2. The CNF of the
underlying SAT problem has approximately 120,000 variables and 300,000 clauses.

In their influential paper Kirby and Paris [96] also presented the battle of Her-
cules and Hydra as a combinatorial game on trees. Generalizations of the Hydra
battle are found in many papers ([48] contains a nice survey) and several differ-
ent encodings of the battle into a termination problem of a specific TRS can be
found in the literature [27, 40, 41, 43, 113, 178]. Not all of these TRSs faithfully
model the battle, and termination of some of them is not independent of Peano
arithmetic.

Example 7.30. Touzet [178] presents the following TRS H to describe the battle
between Hercules and Hydra for starting terms corresponding to ordinals α < ωω

ω

and using the standard strategy :

◦x→ • 8x H(0, x)→ ◦x • c1(x, y)→ c1(x,H(x, y))

• 8x→ 8 • •x •H(H(0, y), z)→ c1(y, z) • c2(x, y, z)→ c2(x,H(x, y), z)

8 ◦x→ ◦ 8x•H(H(H(0, x), y), z)→ c2(x, y, z) c1(y, z)→ ◦ z
•x→ x c2(x, y, z)→ ◦H(y, z)

So far all termination tools failed on this example whose derivational complexity
cannot be bounded by a multiple recursive function. Its termination can be shown
by the following simple and weakly monotone interpretation A over the domain
O× N× N, where f(x, y) = y + ωx+1 [178]:

0A = (0, 0, 0) 8A(x,m, n) = (x, 2m+ 2, n)

HA((x,m, n), (y, k, l)) = (ωx ⊕ y, 0, 0) ◦A(x,m, n) = (x, 2m+ 3, n)

c1
A((x,m, n), (y, k, l)) = (f(x, y), 0, 0) •A(x,m, n) = (x,m, n+m+ 1)

c2
A((x,m, n), (y, k, l), (z, i, j)) = (ωf(x,y) ⊕ z, 0, 0)

Compared to G, TTT2 requires more resources (initial depth 2, intermediate depth 3,
12 seconds, 160,000 variables, 410,000 clauses) to automatically prove termination
of H. This is surprising as the derivational complexity of G far exceeds that of the
Hydra system H, which is bounded by the Hardy function Hωωω .
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Example 7.31. Beklemishev [21] presents two infinite TRSs and one finite TRS
describing the Worm battle (corresponding to a one-dimensional version of Buch-
holz’ Hydra battle [28], first introduced by Hamano and Okada [67]). The second
infinite TRS W2 consists of the rules

(x · y) · z → x · (y · z) f(0)→ 0m f(0 · x)→ (0 · f(x))m

for m > 1, where tm abbreviates the term t · (· · · (t · (t · t)) · · · ) with m copies of t.
The ROE algebra 0O = 1, fO(x) = ωx, and x ·O y = 2x⊕y⊕1 is weakly monotone
and simple on O and orients W2:

4x⊕ 2y ⊕ z ⊕ 3 > 2x⊕ 2y ⊕ z ⊕ 2

ω > 3m− 2

ωx⊕3 > ωx(2m− 1)⊕ (7m− 4)

The finite system W ′3 to simulate the Worm sequence consists of the following
rules:6

1: (x · y) · z → x · (y · z) 2 : f(0 · x)→ b(0 · f(x))

3 : f(0)→ b(0) 4 : a(f(x))→ f(a(x))

5 : a(x · y)→ a(x) · y 6: a(b1(x))→ b1(a(x))

7 : f(b(x))→ b(f(x)) 8 : b(x) · y → b(x · y)

9 : a(f(0 · x))→ b1(f(0 · x) · (0 · f(x))) 10 : a(f(0))→ b1(f(0) · 0)

11 : b1(b(x))→ b(b(x)) 12 : c(b(x))→ c(a(x))

13 : a(b(x))→ b(a(x)) 14 : a(0 · x)→ b(b(x))

Consider the algebra A on O>0 × N× N:

cA(x,m, n) = (x+ 1, 2m+ 2, 2m) 0A = (1, 0, 0)

bA(x,m, n) = (x,m+ 1, n) b1A(x,m, n) = (x, 2m,n+ 1)

aA(x,m, n) = (x,m,m+ 2n) fA(x,m, n) = (ωx,m,m+ 3)

(x,m, n) ·A (y, k, l) = (y + x,m,m+ n+ 1)

6Note that we added rule (14) to the TRSW3 originally presented in [21] since personal communication
with Lev Beklemishev revealed that such an additional rule is in fact required to faithfully model the
worm sequence. We believe the derivational complexity of W3 to be actually smaller than that of
W2 and W ′3, which is also supported by the fact that termination of W3 can be shown by TTT2 with
standard techniques.
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This algebra is simple (note that (x,m, n) ·A (y, k, l) > (y, k, l) since x 6= 0), weakly
monotone, and orients all rules of W ′3:

1 : (z + y + x,m, 2m+ n+ 2) > (z + y + x,m,m+ n+ 1)

2: (ωx+1, 0, 3) > (ωx + 1, 1, 1)

3 : (ω, 0, 3) > (1, 1, 0)

4 : (ωx,m, 3m+ 6) > (ωx,m,m+ 3)

5: (y + x,m, 3m+ 2n+ 2) > (y + x,m, 2m+ 2n+ 1)

6: (x, 2m, 2m+ 2n+ 2) > (x, 2m,m+ 2n+ 1)

7: (ωx,m+ 1,m+ 4) > (ωx,m+ 1,m+ 3)

8: (y + x,m+ 1,m+ n+ 2) > (y + x,m+ 1,m+ n+ 1)

9: (ωx+1, 0, 6) > (ωx + 1 + ωx+1, 0, 5)

10: (ω, 0, 6) > (ω, 0, 5)

11: (x, 2m+ 2, n+ 1) > (x,m+ 2, n)

12 : (x+ 1, 2m+ 4, 2m+ 2) > (x+ 1, 2m+ 2, 2m)

13 : (x,m+ 1,m+ 2n+ 1) > (x,m+ 1,m+ 2n)

14 : (x+ 1, 0, 2) > (x,m+ 2, n)

for all x, y, z ∈ O>0 and m,n, k, l ∈ N. Thus this algebra shows termination of
the system W ′3 by Theorem 7.6.

The termination proof from the above example cannot be reproduced within
TTT2, since the interpretation function of · is simple on the carrier O>0 × N2 but
not on O × N2, which would be used by TTT2. However, TTT2 succeeds in the
dependency pair setting where it manages the crucial SCC by lexicographically
combining an ROE algebra of degree 2 with a linear interpretation. The overall
time is about four seconds while the CNF of the underlying SAT problem has
approximately 87,000 variables and 205,000 clauses.

7.5. Automation of Elementary Algebras

Similar to ordinal algebras (Section 7.4), we give encodings of elementary inter-
pretation functions (Section 7.5.1) before implementation aspects are addressed in
Section 7.5.2 and examples (and limitations) are discussed in Section 7.5.3.

The shape of FBIs (see below) suffices to go beyond polynomial interpretations,
which fail on Examples 7.33 and 7.34.7 Furthermore, a fixed base allows to use
more powerful approximations of comparisons/arithmetic.
7We remark that establishing termination of these systems becomes much easier when using depen-
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Definition 7.32. A fixed-base elementary interpretation function (FBI) of depth 0
is

f(x) =
∑

16i6n

xifi + f0

and an FBI of depth d+ 1 is

f(x) =
∑

16i6n

xifi + f0 + bf
′(x)

(∑
16i6n

xif̂i + f̂0

)
(7.6)

where f0, f1, . . . , fn, f̂0, f̂1, . . . , f̂n are naturals, f ′(x) is an FBI of depth d, and
b > 2 is a fixed natural number. Throughout this section we use the following
abbreviations:

ḟ(x) =
∑

16i6n

xifi + f0 f̂(x) =
∑

16i6n

xif̂i + f̂0

An FBI algebra has N>1 as carrier and FBIs as interpretation functions for all
function symbols in the signature.

It is known that for polynomial interpretations the carriers N and N>µ admit the
same termination proving power for any µ ∈ N (see e.g. [36, 172]). However, the
situation is different for FBI’s. The function 2xy is not monotone on N but it is
on N>1. The typical transformation converts 2xy into the function 2x+1(y+ 1)−1,
but the latter does not admit an FBI representation. The following examples show
the usefulness of 2xy, so we restrict to the carrier N>1 in the sequel.

Example 7.33. Termination of Lescanne’s factorial example [115]

0 + x→ x 0 · x→ 0 fact(0)→ s(0)

s(x) + y → s(x+ y) s(x) · y → x · y + y fact(s(x))→ s(x) · fact(x)

x · (y + z)→ x · y + x · z

can be shown by an FBI algebra A of depth 2 with base b = 2 and interpretation
functions 0A = 2, sA(x) = x+2, x+Ay = 2x+y+1, x·Ay = 2xy, and factA(x) = 22x .
We have

x+ 5 > x 22x > 2 222 > 4

2x+ y + 5 > 2x+ y + 3 2x+2y > 2x+1y + y + 1 22x+2

> 2x+2+2x

2x(2y + z + 1) > 2x+1y + 2xz + 1

for all x, y, z > 1.

dency pairs but then totality of the order is lost, which is essential for applications such as ordered
completion.

173



7. Beyond Polynomials and Peano Arithmetic

Example 7.34. Termination of Lucas’ factorial example [117]

x+ 0→ x 0 · x→ 0 fact(0)→ s(0)

x+ s(y)→ s(x+ y) s(x) · y → x · y + y fact(s(x))→ s(x) · fact(x)

can also be shown by an FBI algebra A of depth 2 with base b = 2 and interpre-
tation functions 0A = 2, sA(x) = x + 2, x +A y = x + 2y + 1, x ·A y = 2xy, and
factA(x) = 22x . We have

x+ 5 > x 22x > 2 222 > 4

x+ 2y + 5 > x+ 2y + 3 2x+2y > 2xy + 2y + 1 22x+2

> 2x+222x = 2x+2+2x

for all x, y > 1.

In the sequel we sometimes treat an FBI f(x) of depth 0 as
∑

16i6n xifi+f0 +b00
to avoid case distinctions.

7.5.1. Encodings

Let f(x) and g(x) be FBIs of the form

f(x) =
∑

16i6n

xifi + f0 + bf
′(x)

(∑
16i6n

xif̂i + f̂0

)
g(x) =

∑
16i6n

xigi + g0 + bg
′(x)

(∑
16i6n

xiĝi + ĝ0

) (7.7)

Useful Abbreviations

First we introduce lower and upper bounds for two FBIs:

fmin(f, g)(x) =
∑

16i6n

xi min(fi, gi) + min(f0, g0)

+ bfmin(f ′,g′)(x)

(∑
16i6n

xi min(f̂i, ĝi) + min(f̂0, ĝ0)

)
fmax(f, g)(x) =

∑
16i6n

xi max(fi, gi) + max(f0, g0)

+ bfmax(f ′,g′)(x)

(∑
16i6n

xi max(f̂i, ĝi) + max(f̂0, ĝ0)

)
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Again we introduce the notation of contribution of a variable xi to f(x), which
we denote by coni(f(x)):8

coni(f(x)) = fi > 0 ∨ f̂i > 0 ∨ (coni(f
′(x)) ∧ f̂(x) > 0)

Comparisons

The following recursive definition reduces the comparison of FBIs to the com-
parison of non-linear polynomials. The latter can be compared by the absolute
positiveness approach, see [83]. For comparing polynomials we take the carrier N>1

into account such that e.g. 3y > y + 1 evaluates to true.

Definition 7.35. Let f(x) and g(x) be FBIs as in (7.7). Let

bbf ′(x)c =
(
(ḟ ′(x) + f̂ ′(x) = 0) ? 1 : b (ḟ ′(x) + f̂ ′(x))

)
Note that bf(x) > bbf(x)c. Furthermore let p(x) = ḟ ′(x) + f̂ ′(x)− ġ′(x)− ĝ′(x) and

h(x) = bbp(x)cf̂(x)− ĝ(x). We set

[f(x) > g(x)] = (ĝ(x) > 0→ [f ′(x) > g′(x)]) ∧
(

(f̂(x) > 0 ∧ [f ′(x) b > g(x)]) ∨ (a)

(ḟ(x) > ġ(x) ∧ f̂(x) > ĝ(x)) ∨ (b)

(h(x) > 0 ∧ p(x) > 0 ∧ f̂ ′(x) > ĝ′(x) ∧
ḟ(x) + bbg′(x)cbbp(x)cf̂(x) > ġ(x) + bbg′(x)cĝ(x))

)
(c)

[f(x) > g(x)] = (ĝ(x) > 0→ [f ′(x) > g′(x)]) ∧
(

(f̂(x) > 0 ∧ [f ′(x) b > g(x)]) ∨ (d)

(ḟ(x) > ġ(x) ∧ f̂(x) > ĝ(x) ∧
((f̂(x) > 0 ∧ [f ′(x) > g′(x)]) ∨ ḟ(x) > ġ(x) ∨ f̂(x) > ĝ(x))) ∨ (e)

(h(x) > 0 ∧ p(x) > 0 ∧ f̂ ′(x) > ĝ′(x) ∧
ḟ(x) + bbg′(x)cbbp(x)cf̂(x) > ġ(x) + bbg′(x)cĝ(x))

)
(f)

The difference between [f(x) > g(x)] and [f(x) > g(x)] is that in the latter
we demand at least one strict decrease. The following example shows that our
encodings of comparisons are very accurate.

8Here f̂(x) > 0 tests the linear polynomial f̂(x) for positiveness.
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Example 7.36. The encoding of [2x+1 > 1 + 2x] evaluates to true. The only
interesting case is (f) where p(x) = 1 and b2xcb21c = 4x > 1 + 2x = 1 + b2xc, i.e.,
2x > 1, which holds for all x ∈ N>1.

The encodings of comparisons are sound.

Lemma 7.37. Let f(x) and g(x) be FBIs as in (7.7).

(a) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.

(b) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.

Proof. We only show (b) the argument for (a) is similar. Case (a) in Defini-

tion 7.35 approximates the situation when bf
′(x)f̂(x) > g(x) and case (b) is obvi-

ous. Finally, case (c) follows from the argument below. Let p(x) and h(x) be as
in Definition 7.35. For the moment assume f ′(x) > p(x) + g′(x). Then

ḟ(x) + bf
′(x)f̂(x) > ġ(x) + bg

′(x)ĝ(x)

⇐= ḟ(x) + bp(x)+g′(x)f̂(x) > ġ(x) + bg
′(x)ĝ(x)

⇐⇒ ḟ(x)

bg′(x)
+ bp(x)f̂(x) >

ġ(x)

bg′(x)
+ ĝ(x)

⇐⇒ ḟ(x)

bg′(x)
+ bp(x)f̂(x) + h(x) >

ġ(x)

bg′(x)
+ ĝ(x) + h(x)

⇐=
ḟ(x)

bg′(x)
+ h(x) >

ġ(x)

bg′(x)
∧ bp(x)f̂(x) > ĝ(x) + h(x)

⇐⇒ ḟ(x) + bg
′(x)h(x) > ġ(x) ∧ bp(x)f̂(x) > ĝ(x) + h(x)

⇐= h(x) > 0 ∧ ḟ(x) + bbg′(x)ch(x) > ġ(x) ∧ bbp(x)cf̂(x) > ĝ(x) + h(x) (?)

⇐⇒ h(x) > 0 ∧ ḟ(x) + bbg′(x)ch(x) > ġ(x) (†)
⇐⇒ h(x) > 0 ∧ ḟ(x) + bbg′(x)cbbp(x)cf̂(x) > ġ(x) + bbg′(x)cĝ(x)

In the step (?) the non-negativity of h(x) is used and the step (†) follows from the
definition of h(x). Finally we have to show that our assumption f ′(x) > p(x)+g′(x)
follows from the constraints. We observe

f ′(x) > p(x) + g′(x)

⇐⇒ ḟ ′(x) + bf
′′(x)f̂ ′(x) > ḟ ′(x) + f̂ ′(x)− ġ′(x)− ĝ′(x) + ġ′(x) + bg

′′(x)ĝ′(x)

⇐⇒ (bf
′′(x) − 1)f̂ ′(x) > (bg

′′(x) − 1)ĝ′(x)

⇐= (ĝ′(x) > 0→ [f ′′(x) > g′′(x)]) ∧ f̂ ′(x) > ĝ′(x)

While the above proof does not rely on p(x) > 0 this (redundant) constraint in
Definition 7.35 might cut the search space.
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Composition

Similar as for ROEs, FBIs are not closed under addition and composition.

Example 7.38. The sum 2x+2y of the FBIs 2x and 2y has no FBI representation.
Also, substituting the FBI 2y + 1 for x in the FBI 2xx results in 22y+1(2y + 1) =
22y+y+1 + 22y+1, which also has no equivalent FBI representation.

We thus define under- and overapproximations for addition, multiplication, and
composition.

Definition 7.39. Let f(x) and g(x) be FBIs as in (7.7).

(a) Multiplication of an FBI by a scalar again yields an FBI, i.e.

f(x) a =
∑

16i6n

xifia+ f0a+ bf
′(x)

(∑
16i6n

xif̂ia+ f̂0a

)

(b) For addition we use fmin (fmax) to estimate a lower (upper) bound for both
f(x) and g(x), and introduce approximations by FBIs as follows:

f(x) +µ g(x) =
∑

16i6n

xi(fi + gi) + (f0 + g0)

+ beµ(x)

(∑
16i6n

xi(f̂i + ĝi) + (f̂0 + ĝ0)

)
f(x) +ν g(x) =

∑
16i6n

xi(fi + gi) + (f0 + g0)

+ beν(x)

(∑
16i6n

xi(f̂i + ĝi) + (f̂0 + ĝ0)

)
with eµ(x) abbreviating f̂(x) = 0 ? g′(x) :

(
ĝ(x) = 0 ? f ′(x) : fmin(f ′, g′)(x)

)
and eν(x) abbreviating f̂(x) = 0 ? g′(x) :

(
ĝ(x) = 0 ? f ′(x) : fmax(f ′, g′)(x)

)
.

(c) To approximate multiplication of an expression of the form bg
′(x) with f(x)

by an FBI, we may use

bg
′(x) ·µ f(x) = f̂(x) > 0 ? ḟ(x) + bf

′(x)+µg′(x)f̂(x) : bg
′(x)ḟ(x)

bg
′(x) ·ν f(x) = f̂(x) > 0 ? bf

′(x)+νg′(x)

(∑
16i6n

xi(f̂i + fi) + (f̂0 + f0)

)
: bg

′(x)ḟ(x)
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(d) Finally we can give approximations for the composition of two functions
f(g)(x) = f(g1(x), . . . , gn(x)):

f(g)µ(x) =

µ∑
16i6n

gi(x)fi +µ f0 +µ b
f ′(g)µ(x) ·µ

( µ∑
16i6n

gi(x)f̂i +µ f̂0

)

f(g)ν(x) =
ν∑

16i6n

gi(x)fi +ν f0 +ν b
f ′(g)ν(x) ·ν

( ν∑
16i6n

gi(x)f̂i +ν f̂0

)

(e) Let t be a term and A an FBI algebra. By induction on the term structure
we define FBIs µA(t) and νA(t) such that

µA(t) =

{
t if t ∈ V
fA(µA(t1), . . . , µA(tn))µ otherwise

νA(t) =

{
t if t ∈ V
fA(νA(t1), . . . , νA(tn))ν otherwise

The following example illustrates Definition 7.35.

Example 7.40. We consider the cases for addition and multiplication.

(b) We have fmin(x+1, x) = x and fmax(x+1, x) = x+1, thus 2x+1y+µ2x(z+1) =
2x(y + z + 1) but 2x+1y +ν 2x(z + 1) = 2x+1(y + z + 1).

In certain pathological cases the approximations of addition are not commuta-
tive. To be more precise, the resulting FBIs may be syntactically different but
denote the same elementary function. For instance, 2x ·0+µ 2x+1 ·0 = 2x+1 ·0
while 2x+1 · 0 +µ 2x · 0 = 2x · 0. Still, we do not regard this a problem for our
application as the encoding of comparisons takes these cases into account.

(c) For multiplication we have 2x+1 ·µ22x = 2(x+1)+µ2x = 2x+1+2x and 2x+1 ·ν 22x =
2x+1+2x , the approximation is thus precise in these cases. On the other hand,
as (x+ 1) +µ 2x = (x+ 1) +ν 2x = x+ 1 + 2x we have 2x+1 ·µ (z+ 1 + 22xy) =
z + 1 + 2x+1+2xy, while 2x+1 ·ν (z + 1 + 22xy) = 2x+1+2x(y + z + 1).

The following example shows that in practice our approximations are very ac-
curate, i.e., for Examples 7.33 and 7.34 the approximations are exact.

178



7.5. Automation of Elementary Algebras

Example 7.41. For Example 7.33 we get the following constraints

x+ 5 > x 22x > 2 222 > 4

2x+ y + 5 > 2x+ y + 3 2x+2y > y + 1 + 2x2y 22x+2

> 2x+2+2x

2x(2y + z + 1) > 1 + 2x(2y + z)

while Example 7.34 yields

x+ 5 > x 22x > 2 222 > 4

x+ 2y + 5 > x+ 2y + 3 2x+2y > 2y + 1 + 2xy 22x+2

> 2x+2+2x

We now show that Definition 7.39 yields valid over- and underapproximations.

Lemma 7.42. Let A be an FBI algebra and t be a term. Then [α](µA(t)) 6
[α]A(t) 6 [α](νA(t)) for all assignments α.

Proof. We argue that all approximations in Definition 7.39 constitute valid lower
and upper bounds. Let α be an arbitrary assignment.

(a) Since scalar multiplication is no approximation there is nothing to show.

(b) For +µ (the reasoning for +ν is analogous) one of the three cases applies:

f(x)+g(x) > ḟ(x)+ ġ(x)+


bg
′(x)ĝ(x) if f̂(x) = 0

bf
′(x)f̂(x) if ĝ(x) = 0

bh
′(x)(f̂(x) + ĝ(x)) if [α](f ′(x)) > [α](h′(x))

and [α](g′(x)) > [α](h′(x))

(c) If f̂(x) = 0 then bg
′(x)f(x) = bg

′(x)ḟ(x) and if f̂(x) > 0 we obtain for ·µ

bg
′(x) · f(x) = bg

′(x)ḟ(x) + bf
′(x)+g′(x)f̂(x) > ḟ(x) + bf

′(x)+g′(x)f̂(x)

> ḟ(x) + bf
′(x)+µg′(x)f̂(x) = bg

′(x) ·µ f(x)

while ·ν is justified by

bg
′(x) · f(x) = bg

′(x)ḟ(x) + bf
′(x)+g′(x)f̂(x) 6 bf

′(x)+g′(x)ḟ(x) + bf
′(x)+g′(x)f̂(x)

= bf
′(x)+g′(x)(ḟ(x) + f̂(x)) 6 bf

′(x)+νg′(x)(ḟ(x) + f̂(x))

= bg
′(x) ·ν f(x)

(d) By (a)–(c) and weak monotonicity of addition, multiplication, and exponen-
tiation.

(e) By induction on the term structure of t, using (d).
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Main Theorem

An FBI f(x) is monotone if all variables xi contribute to it. Monotonicity of f(x)
is thus expressed by

mon(f(x)) =
∧

16i6n

coni(f(x))

An FBI f(x) is well-defined if [f(x) > 1] holds.
Finally we obtain the main result of this section.

Theorem 7.43. Let R be a TRS over a signature F and A be an FBI algebra
on F . If ∧

`→r∈R

[µA(`) > νA(r)] ∧
∧
f∈F

(
[fA(x) > 1] ∧mon(fA(x))

)
holds then R is terminating.

Proof. By the assumption any fA is well-defined and monotone. Hence the result
follows by Theorem 7.5 in combination with Lemmata 7.37 and 7.42.

7.5.2. Implementation

To find suitable coefficients we consider parametric FBIs where we let the coef-
ficients f0, f1, . . . , fn, f̂0, f̂1, . . . , f̂n in (7.7) be unknowns over the naturals. Then
the encodings from the previous section reduce the problem to finding models in
existentially quantified non-linear integer arithmetic. For an efficient implemen-
tation the following heuristics (which are applied to interpretations of a function
symbol but not enforced for FBIs occurring when evaluating terms) have been
proved useful:

(d) depth: A function symbol f is interpreted by an FBI using max{0, dR(f)−2}
as depth where d∅(f) = 0 and otherwise we compute the depth by dS(f) =
1 + max{dS\Sf (g) | `→ r ∈ Sf and g occurs in r}. Here Sf denotes the rules
in S whose left-hand sides have root f . For Examples 7.33 and 7.34 the
heuristic yields depth 2 for fact, depth 1 for ·, and depth 0 for the remaining
function symbols.

(1) shape: Every variable may only appear once in each FBI, i.e., either in ḟ(x)

or in f̂(x) or in f ′(x). We enforce this by adding a side constraint.
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(2) shape: Note that in the motivating examples every function symbol is inter-
preted by an FBI f(x) satisfying∧

16i6n

(fi = 0 ∨ f̂i = 0) (7.8)

Heuristic (2) shares the variables for the coefficients fi and f̂i. This is achieved
by using fresh boolean variables bi and interpreting a function by (here fi =

cibi and f̂i = ci(1− bi))∑
16i6n

xibici + c0b0 + bf
′(x)

(∑
16i6n

xi(1− bi)ci + c0(1− b0)

)
Heuristic (2) does not work recursively but takes the constant part into ac-
count (in contrast to heuristic (1)).

(3) shape: At most one of f̂i (0 6 i 6 n) is greater than zero.

(4) shape: If f̂(x) = 0 we demand all coefficients in ḟ ′(x) and f̂ ′(x) to be zero.

(5) shape: If f̂(x) = 0 we demand all coefficients in f ′(x) to be zero.

Note that (5) is more restrictive than (4); while the latter admits an interpretation

of the form bb
2·0 · 0, this is not allowed when applying (5).

7.5.3. Examples and Limitations

It is not hard to construct TRSs where FBI termination proofs require interpreta-
tions of arbitrary depth.

Example 7.44. Let Rn for n > 0 consist of the rules

x+ 0→ x x+ s(y)→ s(x+ y) exp0(x)→ x

expi+1(0)→ expi(s(0)) expi+1(s(x))→ expi(exp1(x) + exp1(x))

for all 0 6 i < n. Termination of Rn can be shown by the FBI algebra A with
base b = 2 and interpretations 0A = 1, sA(x) = x + 1, x +A y = x + 2y, and
expi,A(x) = expi2(2x+ 1) where expi2(x) denotes i-fold exponentiation with base 2,

i.e., exp0
2(x) = x and expi+1

2 (x) = 2expi2(x):

x+ 2 > x x+ 2y + 2 > x+ 2y + 1 2x+ 1 > x

expi+1
2 (3) > expi2(5) expi+1

2 (2x+ 3) > expi2(22x+1 + 2 · 22x+1)

The last two inequalities can be verified by simple inductive arguments. It is easy
to see that any FBI algebra that orients Rn needs to have at least depth n.
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It can be shown that already R1 admits multiple exponential complexity. As
to be expected, actually any TRS compatible with an FBI algebra is bounded
by a multiple exponential function. A more precise upper bound is given by the
following lemma.

Lemma 7.45. For any TRS R compatible with an FBI algebra A having base b
and maximal depth d− 1, dhR(n) ∈ expdnb (O(n)).

Proof. As dhR(t) 6 [t]A, it suffices to find a k ∈ N such that any ground term t

satisfies [t]A 6 exp
d|t|
b (k d |t|). Let m−1 be the maximal arity in F , c the maximum

of 2 and all coefficients occurring in fA for f ∈ F , and k = 1 + logb(cm). We
apply induction on t.

Suppose t is a constant a. In order to show aA 6 expdb(k d) we consider a slightly
more general statement. Let α be an FBI of depth e with base b and maximum co-
efficient smaller than or equal to c, such that α depends on no variables. We verify
α 6 expe+1

b (k (e + 1)) by induction on e, such that in particular aA 6 expdb(k d).
If e = 0 then α 6 c 6 cm = exp1

b(logb(cm)) 6 exp1
b(k). Otherwise, α has depth

e + 1 and thus α can be written as α = bα
′
c1 + c2 where c1, c2 ∈ N and α′ has

depth e. By the induction hypothesis, α′ 6 expe+1
b (k (e+ 1)), and hence

α 6 bexpe+1
b (k (e+1))c+ c = (bexpe+1

b (k (e+1)) + 1)c 6 bexpe+1
b (k (e+1))+1blogb(c)

6 bexpe+1
b (k (e+1))+k 6 bexpe+1

b (k (e+2)) = expe+2
b (k(e+ 2))

Suppose t = g(t1, . . . , tn) is not a constant. Let αi = [ti]A. Since |ti| 6 |t| − 1,

the induction hypothesis yields αi 6 exp
d (|t|−1)
b (k d (|t| − 1)). To verify [t]A 6

exp
d |t|
b (k d |t|) we consider a more general statement. Let f(x) be an FBI of the

shape (7.6), having base b, maximum coefficient at most c and depth e. We

abbreviate f(α1, . . . , αn) by α and show α 6 exp
d (|t|−1)+e+1
b (k d (|t|−1)+k (e+1))

by induction on e.

If e = 0 then f(x) is just a linear function and thus

α 6 exp
d (|t|−1)
b (k d (|t| − 1)) cm 6 bexp

d (|t|−1)
b (k d (|t|−1))+logb(cm)

6 bexp
d (|t|−1)
b (k d (|t|−1)+k) = exp

d (|t|−1)+1
b (k d (|t| − 1) + k)

Now suppose f(x) has depth e+ 1. Thus f ′(x) has depth e and, by the induction
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hypothesis, f ′(α1, . . . , αn) 6 exp
d (|t|−1)+e+1
b (k d (|t|− 1) +k (e+ 1)) = β. Therefore

α =
∑

16i6n

αifi + f0 + bf
′(α)

(∑
16i6n

αif̂i + f̂0

)
6 bβexp

d (|t|−1)
b (k d (|t| − 1)) cm+ exp

d (|t|−1)
b (k d (|t| − 1)) cm

= (bβ + 1) exp
d (|t|−1)
b (k d (|t| − 1)) cm 6 bβ+1 exp

d (|t|−1)
b (k d (|t| − 1)) cm

6 bβ+1bexp
d (|t|−1)
b (k d (|t|−1))blogb(cm) = bβ+exp

d (|t|−1)
b (k d (|t|−1))+k

= bexp
d (|t|−1)+e+1
b (k d (|t|−1)+k (e+1))+exp

d (|t|−1)
b (k d (|t|−1))+k

6 bexp
d (|t|−1)+e+1
b (k d (|t|−1)+k (e+2)) = exp

d (|t|−1)+e+2
b (k d (|t| − 1) + k (e+ 2))

In particular, gA(α) 6 exp
d (|t|−1)+d
b (k d (|t|−1)+k d) = exp

d |t|
b (k d |t|) as the depth

of gA is smaller than d.

The next example shows that the lack of multiplication is a weakness of FBIs.

Example 7.46. The following TRS (from [115, Fig. 2]) cannot be oriented by
FBIs:

0 + x→ x s(x) + y → s(x+ y) x · (y + z)→ x · y + x · z
0 · x→ 0 s(x) · y → x · y + y x ↑ (y + z)→ (x ↑ y) · (x ↑ z)

x ↑ 0→ s(0) x ↑ s(y)→ x · (x ↑ y) (x · y) ↑ z → (x ↑ z) · (y ↑ z)

(x ↑ y) ↑ z → x ↑ (y · z)

This is because for any linear function x +A y the interpretation x ·A y has to
involve exponentiation (as in Examples 7.33 and 7.34). As a consequence the rule
x ↑ (y + z)→ (x ↑ y) · (x ↑ z) is no longer orientable since the maximal power of b
occurring in the (approximated) interpretation of the right-hand side exceeds the
maximal power for the left-hand side. In contrast, elementary interpretations with
non-fixed base succeed (cf. [115, Fig. 2]).

7.6. Experimental Results

We implemented the algebras from Sections 7.4 and 7.5 in the termination tool
TTT2 [107]. In version 1.15, which is available from the tool’s website,9 ordinal
algebras can be used by executing ./ttt2 -s HYDRA <file> and FBI algebras
by ./ttt2 -s FBI <file>, respectively. Furthermore, the web interface has been
updated accordingly.

9http://cl-informatik.uibk.ac.at/software/ttt2/
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method YES avg. time G (Def. 7.12) H (Ex. 7.30) W ′3 (Ex. 7.31)

ROE algebras 329 2.1 8.2 11.4 4.0

Table 7.1.: Experimental results for ROE algebras.

For experiments10 we considered the 1463 TRSs in the Standard TRS category
of the Termination Problems Data Base (TPDB 8.0.7)11 and the examples from
the paper. The experiments have been performed using a single node of a machine
equipped with 12 quad-core AMD OpteronTM processors 6174 running at a clock
rate of 2.2 GHz and 330 GB of main memory. If a TRS could not be handled
within 60 seconds, the execution of TTT2 was aborted.

For the evaluation in Table 7.1 the following setup is used. ROE algebras (ac-
cording to the description in Section 7.4.2) with interpretation functions of initial
depth two are used in combination with weakly monotone matrix interpretations
of dimension two. The coefficients are represented with up to four bits. The
method is applied directly (establishing simple termination, if successful) and in
the DP setting in combination with dependency graphs, SCC analysis and the
subterm criterion. The left part of Table 7.1 shows the performance of this ROE
algebra-based strategy on TPDB while the relevant examples from the paper are
considered in the right part of the table where the numbers indicate the execution
time in seconds.

Table 7.2 compares the power of FBIs (of depth at most 2) with linear polyno-
mial interpretations when used in direct termination proofs (orient all rules by a
single interpretation). For numbers in parentheses TTT2 was not successful. The
numbers in brackets indicate which heuristics have been used. FBIs as well as
linear interpretations use two bits to encode coefficients and six bits for arithmetic
evaluations.

Our experiments show the need for a heuristic concerning the depth of the FBIs.
The other heuristics are much less important, i.e., they either slightly decrease the
execution time or increase the number of systems shown terminating. We remark
that any proper subset of the heuristics {1, 2, 3, 4, 5} has only tiny effects on the
execution speed of the examples in the right part of Table 7.2 while the whole set
admits significant gains. The systems where FBIs succeed but linear polynomials
fail often require interpretation functions of non-linear shape.

While FBIs are successful on the examples from the right part of Table 7.2, TTT2
cannot establish termination using ROE algebras. On the other hand, FBIs cannot
cope with the examples from the right part of Table 7.1 due to their derivational
complexity.

10Details available from http://cl-informatik.uibk.ac.at/ttt2/ordinals
11Available from http://termcomp.uibk.ac.at.
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method YES avg. time Ex. 7.33 Ex. 7.34 [115, Fig. 1]

poly 125 0.3 (0.2) (0.4) (0.3)
fbi 41 29.7 1443.4 731.0 13540.5
fbi[d] 170 4.7 16.1 10.0 27.8
fbi[d12345] 174 4.2 8.9 7.9 24.1

Table 7.2.: Experimental results for FBI algebras.

7.7. Conclusion

We have encoded Goodstein’s sequence as a TRS and discussed automation of a
termination criterion which can cope with this system. Furthermore our imple-
mentation is also successful on an encoding of the battle of Hercules and Hydra, for
which a (sound) automatic termination proof has been lacking so far. While pre-
liminary experiments on the termination problems database TPDB did not yield
proofs for previously unknown problems, we regard the main attraction of our
method that it allows to go beyond multiple recursive derivation length. As shown
in the article, automation of lexicographic combinations of termination proofs with
respect to Theorem 7.6 is more challenging than with respect to Theorem 7.5.

Needless to say, there will always be TRSs whose termination is out of reach
of automatic tools. Lepper [113] presented an infinite sequence (Rk)k>1 of TRSs
that simulate Hydra battles. Each of these TRSs is simply terminating, but the
derivational complexity of Rk cannot be bounded by an α-recursive function such
that α < ∆k, where ∆k approaches the small Veblen ordinal ϑ(Ωω) when k tends
to infinity. With ROE algebras one can only prove termination of TRSs whose
derivational complexity is ε0-recursive.

The very first encoding of the Hydra battle in [41] still defeats TTT2. A (difficult)
termination proof of this TRS can be found in [123].
TTT2 also fails on the Hydra encoding of Buchholz [27], which is not simply

terminating although it admits a comparatively concise termination argument.

Furthermore, we have also shown how elementary interpretations can be auto-
mated using similar means, a challenge formulated as Problem #28 in the RTA
List of Open Problems. Somehow surprisingly, FBIs require further heuristics to
admit an efficient implementation. We believe that ordinal arithmetic is easier for
the underlying SMT solver since expressions might be consumed while this is not
the case for elementary arithmetic.

Concerning future work we mention that the approximation of term interpre-
tations could partially be made more precise. As an example, we discuss scalar
multiplication for ordinals. Since the approximations must be correct for all values
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of x, the overapproximation (f ·ν a)(x) is already optimal. To see this consider
(x+ y) ·ν 2 for natural values of x and y. Inspecting the proof of Lemma 7.24(a),
instead of the current underapproximation (f ·µ a)(x) we could also use (when
a > 0)

(f ·µ′ a)(x) =
∑

16i6n

xi(fi · ei) + ωf
′(x)(fω · a)⊕

⊕
16i6n

xi(f̂i · a)⊕ (f0 · a)

where exactly one of ei is a and all others are one. The underlying SMT solver can
then choose an appropriate summand to be multiplied with a such that subsequent
operations (addition, comparison, etc.) benefit. Refining the approximations for
other operations (addition/comparison) is more involved and it is unclear if the ad-
ditional precision prevails the increasing difficulty of the resulting SMT problems.
Moreover, currently we do not know of any other TRSs with high derivational
complexity that are within reach of our technique and could benefit from such
improvements.

It is non-trivial to decide whether, given two ROEs f(x) and g(x) with given
coefficients, [α](f(x)) > [α](g(x)) holds for all assignments α. Though this prob-
lem is undecidable for polynomials, note that in the case of ROEs only linear
constraints are involved. Further investigation of this issue might also lead to a
better approximation of the encoding [f(x) > g(x)].

Generalizing elementary interpretations to a non-fixed base is an obvious choice
for future work. However, we anticipate that suitable approximations will neither
give further deep insights nor significantly improve termination proving power
and hence we propose a different line of research. Since they are elementary
interpretations, FBIs yield a totalizable order on ground terms. This holds despite
the fact that our implementation relies on approximations when evaluating or
comparing terms (see Example 7.36). Hence our implementation cannot be used
to decide ordered rewriting, for instance to decide word problems using ground-
convergent systems. However, since unfailing completion procedures never rely on
the fact that s >A t does not hold, FBIs can be used for ordered completion as
in [191].

It is easy to enforce AC compatibility of algebras based on elementary and
ordinal interpretation functions. For the case of FBI algebras, any AC symbol f
must be interpreted by an FBI of the shape

(x1 + x2)f1 + f0 + bf
′(x1,x2)

(
(x1 + x2)f̂1 + f̂0

)
where f ′(x1, x2) is AC compatible as well. For instance, if + is considered an AC
symbol then AC termination of all TRSs in Examples 7.33, 7.34, and 7.44 can be
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shown with AC compatible FBI algebras (by picking x +A y = 2x + 2y + c for a
suitable constant c, and adapting the interpretations of other symbols accordingly).
An ROE algebra is AC compatible if any AC symbol f is interpreted by an ROE

ωf
′(x1,x2)fω ⊕ x1f̂1 ⊕ x2f̂1 ⊕ f0 (7.9)

where f ′(x1, x2) is again AC compatible. However, note that if a TRS R can be
oriented with an ROE algebra where all interpretations match the shape (7.9) then
a similar argument as used in [194, Theorem 13] shows that R is also compatible
with an FBI algebra with sufficiently large base b.

Since non-linear polynomials give rise to an exponential size SMT encoding,
such interpretations are hardly used within termination tools. We anticipate that
suitable approximations could improve the performance of these implementations.

Formalizing our approximations in a theorem prover would extend the contri-
butions from [119] and enable certification of such termination proofs.
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8.1. Introduction

In this article we are concerned with proving (innermost) termination of first-order
applicative term rewrite systems. These systems provide a natural framework for
modeling higher-order aspects found in functional programming languages. A
prominent example of a first-order applicative system is combinatory logic. The
signature of an applicative term rewrite system consists of constants and a single
binary function symbol called application which is denoted by the infix and left-
associative symbol ?. In term rewriting, properties such as termination and inner-
most termination are of particular interest since they are essential for many rewrit-
ing techniques including equational reasoning and confluence analysis (cf. [172]).
Moreover, innermost termination has received a renewed interest in termination
analysis of functional programs [57].

Proving termination of applicative term rewrite systems is challenging because
the rewrite rules lack sufficient structure. As a consequence, simplification orders
are not effective as ? is the only function symbol of non-zero arity. Moreover,
the dependency pair method is of little help as ? is the only defined non-constant
symbol. To remedy this issue two solutions have been suggested. The first line of
research is based on types [8, 9, 10, 23, 89, 111, 182] and allows to study properties
like termination or strong computability directly. The second approach [59, 74]
aims for transformations that recover the structure of applicative rewrite rules to
enable methods that do not rely on types. The benefit of the first approach is that
the type information may make proving termination properties easier. However,
most of those studies are within the realm of simply typed systems and hence
miss polymorphism, which is used in many functional programming languages.
Moreover, in contrast to untyped rewriting, no powerful automated tools are (yet)
available. This is in sharp contrast to the untyped first-order setting where pow-
erful tools exist as witnessed by the annual competition of termination tools.1

The main contribution of this article is a new transformation that recovers the
structure in applicative rewrite rules, thereby enabling traditional methods for
proving termination and innermost termination. Our transformation can deal with
partial applications as well as head variables in right-hand sides of rewrite rules.
The key ingredients are the η-saturation of rewrite rules (Definition 8.15) and the
addition of sufficiently many uncurrying rules to the transformed system. These
rules are also crucial for a smooth transition into the dependency pair frame-
work. Unlike the transformation of applicative dependency pair problems pre-
sented in [59, 174], our uncurrying processor preserves minimality (cf. Section 8.6),
which means that it can be used at any node in a modular (non-)termination proof.

1http://termcomp.uibk.ac.at
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We remark that our results for proving innermost termination with the help
of uncurrying are directly applicable for functional programming languages that
adopt an eager evaluation strategy. Surprisingly, these results are also helpful
in the case of lazy evaluation. Since applicative term rewrite systems modeling
functional programs are left-linear and non-overlapping, termination and inner-
most termination coincide (see [65] for a more general result). Hence instead of
establishing full termination for lazy languages we investigate innermost termi-
nation, which is equivalent in this case but typically easier to establish. In this
context it is worth noting the recent work of Giesl et al. In [57] they present a
two-stage transformation method from (functions in) Haskell programs to applica-
tive dependency pair problems such that termination of the former is concluded
from innermost finiteness of the latter. This approach is capable of automatically
proving the termination of most functions in standard Haskell libraries.

The remainder of this article is organized as follows. After recalling prelimi-
naries in Section 8.2, we present a new uncurrying transformation and prove that
it preserves and reflects termination for full rewriting in Section 8.3. Results
for innermost termination and derivational complexity are studied in Sections 8.4
and 8.5, respectively. Two extensions to the dependency pair framework are pre-
sented in Section 8.6. How these extensions behave for full termination is the topic
of Section 8.6.1 while Section 8.6.2 is concerned with their properties concerning
innermost termination. Our results are empirically evaluated in Section 8.7 and
we conclude with a discussion of related work in Section 8.8.

A preliminary version of this article appeared in [74]. Several of the results
on innermost rewriting and derivational complexity have been published in [202].
Theorems 8.33 and 8.52 are new contributions. So is the material in Section 8.6.2.
Moreover, we close a non-trivial gap in the proof of [74, Theorem 33]. Some of the
new contributions go beyond the scope of uncurrying, e.g., Theorem 8.52 gives a
condition when the length of reductions is the same for innermost and full rewrit-
ing, which has an immediate impact on (automated) complexity analysis. Another
fundamental new result deals with signature extensions, which do not affect ter-
mination [120, 136] but surprisingly may destroy finiteness of DP problems [165].
Finally, Lemma 8.70 shows that innermost finiteness is not affected by signature
extensions.

8.2. Preliminaries

In this section we fix preliminaries on rewriting, complexity, dependency pairs,
and currying.
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8.2.1. Term Rewriting

We assume familiarity with term rewriting [17] in general and termination [210]
in particular. Let F be a signature and V be a set of variables disjoint from F .
By T (F ,V) we denote the set of terms over F and V . The size of a term t is
denoted |t| and the root symbol of t is denoted root(t). A rewrite rule is a pair of
terms (`, r), written ` → r such that ` is not a variable and all variables in r are
contained in `. A term rewrite system (TRS for short) is a set of rewrite rules.
A TRS R is said to be duplicating if there exist a rewrite rule ` → r ∈ R and a
variable x that occurs more often in r than in `. By Fun(R) we denote the set of
function symbols that occur in a TRS R.

Contexts are terms over the signature F ∪ {2} with exactly one occurrence
of the fresh constant 2 (called hole). The expression C[t] denotes the result of
replacing the hole in C by the term t. A substitution σ is a mapping from variables
to terms and tσ denotes the result of replacing the variables in t according to σ.
Substitutions may change only finitely many variables (and are thus written as
{x1 7→ t1, . . . , xn 7→ tn}). The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable and as Pos(t) = {ε} ∪ {iq | q ∈ Pos(ti)} if t = f(t1, . . . , tn).
Positions are used to address occurrences of subterms. The subterm of t at position
p ∈ Pos(t) is defined as t|p = t if p = ε and as t|p = ti|q if p = iq. We say a
position p is to the right of a position q if p = p1ip2 and q = q1jq2 with p1 = q1

and i > j. For a term t and positions p, q ∈ Pos(t) we say t|p is to the right of t|q
if p is to the right of q.

A rewrite relation is a binary relation on terms that is closed under contexts and
substitutions. For a TRS R we define →R to be the smallest rewrite relation that
contains R. We call s →R t a rewrite step if there exist a context C, a rewrite
rule ` → r ∈ R, and a substitution σ such that s = C[`σ] and t = C[rσ]. In
this case we call `σ a redex and say that `σ has been contracted. A root rewrite
step, denoted by s →ε

R t, has the shape s = `σ →R rσ = t for some ` → r ∈ R.
A rewrite sequence is a sequence of rewrite steps. The set of normal forms of a
TRS R is defined as NF (R) = {t ∈ T (F ,V) | t contains no redexes}. A redex
`σ in a term t is called innermost if proper subterms of `σ are normal forms, and
rightmost innermost if in addition `σ is to the right of any other innermost redex
in t. A rewrite step is called innermost (rightmost innermost) if an innermost
(rightmost innermost) redex is contracted, written i→ and ri→, respectively.

If the TRS R is not essential or clear from the context the subscript R is omitted
in →R and its derivatives. As usual, →+ (→∗) denotes the transitive (reflexive
and transitive) closure of → and →m its m-th iterate. A TRS is terminating
(innermost terminating) if →+ ( i→+) is well-founded. If s →∗R t and t ∈ NF (R)
then we write s→!

R t.
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An overlap (`1 → r1, p, `2 → r2)µ of a TRS R consists of variants `1 → r1

and `2 → r2 of rules of R without common variables, a non-variable position
p ∈ Pos(`2), and a most general unifier µ of `1 and `2|p. If p = ε then we require
that `1 → r1 and `2 → r2 are not variants of the same rewrite rule. A TRS
without overlaps is called non-overlapping. An overlay system is a TRS whose
overlaps emerge at root positions only.

Let P be a property of TRSs and let Φ be a transformation on TRSs with
Φ(R) = R′. We say Φ preserves P if P(R) implies P(R′) and Φ reflects P if
P(R′) implies P(R). Sometimes we call Φ P preserving if Φ preserves P and P
reflecting if Φ reflects P , respectively.

8.2.2. Derivational Complexity

For complexity analysis we assume TRSs to be finite and (innermost) terminating.
Hofbauer and Lautemann [77] introduced the concept of derivational complexity
for terminating TRSs. The idea is to measure the maximal length of rewrite
sequences (derivations) depending on the size of the starting term. Formally,
the derivation height of a term t (with respect to a finitely branching and well-
founded relation →) is defined on natural numbers as dh(t,→) = max{m ∈ N |
t→m u for some u}. The derivational complexity dcR(n) of a TRS R is then
defined as

dcR(n) = max{dh(t,→R) | |t| 6 n}

Similarly we define the innermost derivational complexity as

idcR(n) = max{dh(t, i→R) | |t| 6 n}

Since we regard finite TRSs only, these functions are well-defined if R is (inner-
most) terminating. If dcR(n) is bounded from above by a linear, quadratic, cubic,
. . . function or polynomial, R is said to have linear, quadratic, cubic, . . . or poly-
nomial derivational complexity. A similar convention applies to idcR(n).

For functions f, g : N → N we write f(n) ∈ O(g(n)) if there are constants
c,N ∈ N such that f(n) 6 c · g(n) for all n > N .

One popular method to prove polynomial upper bounds on the derivational com-
plexity is via triangular matrix interpretations [126], which are a special instance
of monotone algebras. For a signature F , an F-algebra A consists of a non-empty
carrier A and a set of interpretations fA for every f ∈ F . By [α]A(·) we denote
the usual evaluation function of A according to an assignment α which maps vari-
ables to values in A. An F -algebra A together with a well-founded order � on
A is called a monotone algebra if every fA is monotone with respect to �. Any
monotone algebra (A,�) induces a well-founded order on terms: s �A t if for any
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assignment α the condition [α]A(s) � [α]A(t) holds. A TRS R is compatible with
a monotone algebra (A,�A) if ` �A r for every `→ r ∈ R.

Matrix interpretations (M,�) (often just denoted M) are a special form of
monotone algebras. Here the carrier is Nd for some fixed dimension d ∈ N \ {0}.
The order � is defined on Nd as (u1, . . . , ud)

T � (v1, . . . , vd)
T if u1 >N v1 and

ui >N vi for all 2 6 i 6 d. If every f ∈ F of arity n is interpreted as

fM(−→x1, . . . ,
−→xn) = F1

−→x1 + · · ·+ Fn
−→xn +

−→
f

where Fi ∈ Nd×d for all 1 6 i 6 n and
−→
f ∈ Nd then monotonicity of � is

achieved by demanding that the top left entry of every matrix Fi is non-zero.
Such interpretations have been introduced in [44].

A square matrix A of dimension d is of upper triangular shape if A(i,i) 6 1 and
A(i,j) = 0 if i > j for all 1 6 i, j 6 d. A matrix interpretation where for every
f ∈ F all Fi (1 6 i 6 n where n is the arity of f) are upper triangular is called
triangular (abbreviated by TMI). The next theorem is from [126].

Theorem 8.1. If a TRS R is compatible with a TMI of dimension d then dcR(n) ∈
O(nd).

Recent generalizations of this result are reported in [122, 131, 187].

8.2.3. Dependency Pairs

Let R be a TRS over a signature F . The signature F is extended with dependency
pair symbols f ] for every symbol f ∈ {root(`) | `→ r ∈ R}, where f ] has the same
arity as f . If `→ r ∈ R and t is a subterm of r with a defined root symbol that is
not a proper subterm of ` then the rule `] → t] is a dependency pair of R. Here `]

and t] are the result of replacing the root symbols in ` and t by the corresponding
dependency pair symbols. The set of dependency pairs of R is denoted by DP(R).
A DP problem is a pair of TRSs (P ,R) such that the root symbols of the rules in
P do neither occur in R nor in proper subterms of the left- and right-hand sides
of rules in P . The problem is said to be finite if there is no infinite sequence

s1 →ε
P t1 →∗R s2 →ε

P t2 →∗R · · ·

such that all terms t1, t2, . . . are terminating with respect to R. Such an infinite
sequence is said to be minimal. The main result underlying the dependency pair
approach states that termination of a TRS R is equivalent to finiteness of the DP
problem (DP(R),R).

In order to prove a DP problem finite, a number of DP processors have been
developed. DP processors are functions that take a DP problem as input and return
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a set of DP problems as output. In order to be employed to prove termination they
need to be sound, that is, if all DP problems in a set returned by a DP processor
are finite then the initial DP problem is finite. In addition, to ensure that a DP
processor can be used to prove non-termination it must be complete which means
that if one of the DP problems returned by the DP processor is not finite then the
original DP problem is not finite.

A DP problem (P ,R) is called innermost finite if there is no infinite sequence

s1 →ε
P t1

i→!
R s2 →ε

P t2
i→!
R · · ·

such that the term s1 is in normal form with respect to R. Soundness and com-
pleteness of DP problems for innermost termination are based on this altered
notion of finiteness.

8.2.4. Currying

Definition 8.2. An applicative signature is a signature that consists of constants
and a single binary function symbol called application, denoted by the infix and
left-associative symbol ?. In examples we often use juxtaposition instead of ?.
Based on an applicative signature we define applicative terms (substitutions, con-
texts, TRSs). An applicative TRS is abbreviated by ATRS.

Every ordinary TRS can be transformed into an ATRS by currying.

Definition 8.3. Let F be a signature. The currying system C(F) consists of the
rewrite rules fi+1(x1, . . . , xi, y)→ fi(x1, . . . , xi)?y for every n-ary function symbol
f ∈ F and every 0 6 i < n. Here fn = f and, for every 0 6 i < n, fi is a fresh
function symbol of arity i.

The currying system C(F) is confluent and terminating. Hence every term t has
a unique normal form t↓C(F). For instance, f(a, b) is transformed into f0 a0 b0.

Definition 8.4. LetR be a TRS over the signature F . The curried systemR↓C(F)

is the ATRS consisting of the rules `↓C(F) → r↓C(F) for every `→ r ∈ R. The
signature of R↓C(F) contains the application symbol ? and a constant f0 for every
function symbol f ∈ F .

In the following we write R↓C for R↓C(F) whenever F can be inferred from the
context or is irrelevant. Moreover, we write f for f0.

Example 8.5. The TRS R

0 + y → y 0× y → 0

s(x) + y → s(x+ y) s(x)× y → (x× y) + y
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is transformed into the ATRS R↓C

+ 0 y → y × 0 y → 0

+ (s x) y → s (+ x y) × (s x) y → + (× x y) y

Every rewrite sequence in R can be transformed into a sequence in R↓C, but the
reverse does not hold. For instance, with respect to the above example, the rewrite
step + (s (+ 0)) 0 → s (+ (+ 0) 0) in R↓C does not correspond to a rewrite step
in R. Nevertheless, termination of R implies termination of R↓C.

Theorem 8.6 (Kennaway et al. [95]). A TRS R is terminating if and only if R↓C
is terminating.

A simple self-labeling proof can be found in [121]. As an immediate consequence
we get the following transformation method for proving termination of ATRSs.

Corollary 8.7. An ATRS R is terminating if and only if there exists a terminating
TRS S such that S↓C = R (modulo renaming).

In [59] this method is called transformation A. As can be seen from the following
example, the method does not handle partially applied terms and, more seriously,
head variables. Hence the method is of limited applicability as it cannot cope with
the higher-order aspects modeled by ATRSs.

Example 8.8. Consider the ATRS R (from [9])

1 : id x→ x 4: map f nil→ nil

2: add 0→ id 5: map f (: x y)→ : (f x) (map f y)

3 : add (s x) y → s (add x y)

Rules 1 and 4 are readily translated into functional form:

id1(x)→ x map2(f, nil)→ nil

However, we cannot find functional forms for rules 2 and 3 because the ‘arity’ of
add is 1 in rule 2 and 2 in rule 3. Because of the presence of the head variable f in
the subterm f x, there is no functional term t such that t↓C = : (f x) (map f y).
Hence also rule 5 cannot be transformed.

8.3. Full Termination

In this section we present an uncurrying transformation that can deal with ATRSs
like in Example 8.8. This transformation preserves and reflects termination.
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Throughout this section we assume that R is an ATRS over an applicative
signature F . In the sequel we restrict to TRSs where aa(f) (see next definition)
is defined for every f ∈ F . Note that aa(f) is defined if R is finite but may be
undefined for infinite R.

Definition 8.9. The applicative arity aa(f) of a constant f ∈ F is defined as the
maximum n such that f ? t1 ? · · · ? tn is a subterm in the left- or right-hand side
of a rule in R. This notion is extended to terms as follows:

aa(t) =

{
aa(f) if t is a constant f

aa(t1)− 1 if t = t1 ? t2

Note that aa(t) is undefined if the head symbol of t is a variable and aa(f) = 0
for a constant f ∈ F that does not appear in a rule in R.

Definition 8.10. For an ATRS R the uncurrying system U(R) consists of the
following rewrite rules fi(x1, . . . , xi) ? y → fi+1(x1, . . . , xi, y) for every constant
f ∈ F and every 0 6 i < aa(f). Here f0 = f and, for every i > 0, fi is a fresh
function symbol of arity i. We say that R is left head variable free if no subterm of
a left-hand side in R is of the form t1 ? t2 where t1 is a variable. We write `-ATRS
to denote a left head variable free ATRS.

The uncurrying system U(R), or simply U , is confluent and terminating. Hence
every term t has a unique normal form t↓U .

Definition 8.11. The uncurried system R↓U is the TRS consisting of the rules
`↓U → r↓U for every `→ r ∈ R.

Example 8.12. The ATRS R of Example 8.8 is transformed into R↓U :

id1(x)→ x map2(f, nil)→ nil

add1(0)→ id map2(f, :2(x, y))→ :2(f ? x,map2(f, y))

add2(s1(x), y)→ s1(add2(x, y))

The TRS R↓U is an obvious candidate of a TRS whose termination implies
termination of the original ATRS. However, as can be seen from the following
example, the rules ofR↓U are not enough to simulate an arbitrary rewrite sequence
in R.

Example 8.13. The ATRS R
f x→ x x

is non-terminating since f f →R f f →R · · · while the transformed TRS R↓U
f1(x)→ x ? x

is terminating.
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The natural solution is to add U(R). In the following we write U+(R) for
R↓U(R) ∪ U(R). As the following example shows, we do not yet have a sound
transformation.

Example 8.14. The non-terminating ATRS R

id x→ x f x→ id f x

is transformed into the terminating TRS R↓U

id1(x)→ x f1(x)→ id2(f, x)

Note that aa(id) = 2 and aa(f) = 1. The TRS U+(R) consists of the following
rules

id1(x)→ x id ? x→ id1(x) f ? x→ f1(x)

f1(x)→ id2(f, x) id1(x) ? y → id2(x, y)

and is easily shown to be terminating.

The ATRS R admits the cycle f x → id f x → f x. In U+(R) we have the rule
f1(x)→ id2(f, x) but the term id2(f, x) does not rewrite to f1(x). It would if the
rule id x y → x y were present in R. This inspires the following definition.

Definition 8.15. Let R be an ATRS. The η-saturated ATRS Rη is the smallest
extension of R such that ` ? x→ r ? x ∈ Rη whenever `→ r ∈ Rη and aa(`) > 0.
Here x is a variable that does not appear in `→ r.

The rules added during η-saturation do not affect the termination behavior ofR,
according to the following lemma. Moreover, Rη is an `-ATRS if and only if R is
an `-ATRS.

Lemma 8.16. If R is an `-ATRS then →R and →Rη coincide.

Proof. The inclusion →R ⊆ →Rη trivially follows from the inclusion R ⊆ Rη. For
the reverse inclusion we show that for every rewrite step s = C[`σ]→Rη C[rσ] = t
there exist a rule `′ → r′ ∈ R and a context C ′ such that s = C ′[`′σ] and
t = C ′[r′σ]. We use induction on the derivation of ` → r ∈ Rη. In the base
case `→ r ∈ R and we simply take `′ → r′ = `→ r and C ′ = C. In the induction
step we have ` → r = `′ ? x → r′ ? x for some `′ → r′ ∈ Rη with aa(`′) > 0.
Define C ′ = C[2 ? xσ]. Clearly s = C ′[`′σ] →Rη C ′[r′σ] = t. The induction
hypothesis yields a rule `′′ → r′′ ∈ R and a context C ′′ such that s = C ′′[`′′σ] and
t = C ′′[r′′σ].
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In the following we write U+
η (R) for Rη↓U(R)∪U(R). We can now state the first

major result of this article.

Theorem 8.17. An `-ATRS R is terminating if U+
η (R) is terminating.

Before we prepare for the proof of the theorem above we show another subtlety of
the uncurrying transformation. While η-saturation may change applicative arities,
the applicative arities used in the definition of U+

η (R) always refer to those of R
and not Rη.

Example 8.18. The non-terminating ATRS R

f → g a g→ f

is transformed into U+
η (R)

f → g1(a) g→ f g1(x)→ f ? x g ? x→ g1(x)

because aa(f) = 0. The resulting TRS is non-terminating. If the applicative arities
of Rη were employed, uncurrying would produce the terminating TRS

f → g1(a) g→ f g1(x)→ f1(x) g ? x→ g1(x) f ? x→ f1(x)

since aa(f) = 1 for Rη.

Before presenting the proof of Theorem 8.17, we revisit the running example.

Example 8.19. Consider again the ATRSR of Example 8.8. Proving termination
of the transformed TRS U+

η (R)

id1(x)→ x : ? x→ :1(x) id ? x→ id1(x)

add1(0)→ id :1(x) ? y → :2(x, y) add ? x→ add1(x)

add2(0, y)→ id1(y) add1(x) ? y → add2(x, y)

add2(s1(x), y)→ s1(add2(x, y)) s ? x→ s1(x)

map2(f, nil)→ nil map ? x→ map1(x)

map2(f, :2(x, y))→ :2(f ? x,map2(f, y)) map1(x) ? y → map2(x, y)

is possible using LPO with a quasi-precedence.

The next lemma states an easy result that is freely used in the sequel.

Lemma 8.20. Let s be an applicative term. If s = x ? s1 ? · · · ? sn then s↓U =
x ? s1↓U ? · · · ? sn↓U and if s = f ? s1 ? · · · ? sn then s↓U = fi(s1↓U , . . . , si↓U) ?
si+1↓U ? · · · ? sn↓U for i = min{aa(f), n}.
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Proof. We show the second claim by induction on n (the first one is similar). In
the base case n = 0 and f↓U = f concludes this case. In the inductive step

s→∗U s′ = fj(s1↓U , . . . , sj↓U) ? sj+1↓U ? · · · ? sn+1↓U

for j = min{aa(f), n} follows from the induction hypothesis and the definition
of (·)↓U . If i < n + 1 then j = i and s′ = s↓U . In the case where i = n + 1 then
j = n and the result follows from

fn(s1↓U , . . . , sn↓U) ? sn+1↓U →U fn+1(s1↓U , . . . , sn↓U , sn+1↓U) = s↓U .

This concludes the proof.

The following two lemmata state factorization properties which are used in the
proof of Theorem 8.17.

Lemma 8.21. Let s1, . . . , sn be applicative terms. Then s1↓U ? · · · ? sn↓U →∗U
(s1 ? · · · ? sn)↓U . If aa(s1) 6 0 or if aa(s1) is undefined then s1↓U ? · · · ? sn↓U =
(s1 ? · · · ? sn)↓U .

Proof. Observe that s1↓U ? · · · ? sn↓U ∗U← s1 ? · · · ? sn →!
U (s1 ? · · · ? sn)↓U . The

first claim then follows from the confluence of U .
For the second claim observe that if aa(s1) 6 0 or if aa(s1) is undefined then

s1↓U ? · · · ? sn↓U ∈ NF (U) and the result follows from the confluence of U as in the
first case.

For an applicative substitution σ, we write σ↓U for the substitution {x 7→
σ(x)↓U | x ∈ V}.

Lemma 8.22. Let σ be an applicative substitution. For every applicative term t,
t↓Uσ↓U →∗U (tσ)↓U . If t is head variable free then t↓Uσ↓U = (tσ)↓U .

Proof. We prove the former claim by induction on the term t. The proof for the
head variable free case is similar. It suffices to consider the step case.

• Consider the step case with t = x ? t1 ? · · · ? tn. Then

t↓Uσ↓U = (x ? t1↓U ? · · · ? tn↓U)σ↓U
= σ(x)↓U ? t1↓Uσ↓U ? · · · ? tn↓Uσ↓U
→∗U σ(x)↓U ? (t1σ)↓U ? · · · ? (tnσ)↓U
→∗U (σ(x) ? t1σ ? · · · ? tnσ)↓U = (tσ)↓U

where Lemma 8.20 is applied in the first equality, the induction hypothesis
in the first →∗U step, and Lemma 8.21 in the second →∗U step.
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• Consider the step case with t = f ? t1 ? · · · ? tn. Let i = min{aa(f), n}. Then

t↓Uσ↓U = (fi(t1↓U , . . . , ti↓U) ? ti+1↓U ? · · · ? tn↓U)σ↓U
= fi(t1↓Uσ↓U , . . . , ti↓Uσ↓U) ? ti+1↓Uσ↓U ? · · · ? tn↓Uσ↓U
→∗U fi((t1σ)↓U , . . . , (tiσ)↓U) ? (ti+1σ)↓U ? · · · ? (tnσ)↓U
= fi(t1σ, . . . , tiσ)↓U ? (ti+1σ)↓U ? · · · ? (tnσ)↓U
= (f ? t1σ ? · · · ? tiσ)↓U ? (ti+1σ)↓U ? · · · ? (tnσ)↓U = (tσ)↓U

where Lemma 8.20 is applied in the first equality, the induction hypothesis
in the first →∗U step and Lemma 8.21 in the last equality.

Now we are ready to present the proof of Theorem 8.17.

Proof of Theorem 8.17. We show that s↓U →+

U+
η (R)

t↓U whenever s →Rη t for ap-

plicative terms s and t. This entails that any infinite Rη derivation is transformed
into an infinite U+

η (R) derivation. The theorem follows from this observation and
Lemma 8.16. Let s = C[`σ] and t = C[rσ] with `→ r ∈ Rη. We use induction on
the size of the context C.

• If C = 2 then s↓U = (`σ)↓U = `↓Uσ↓U and r↓Uσ↓U →∗U (rσ)↓U = t↓U by
Lemma 8.22. Hence s↓U →+

U+
η (R)

t↓U .

• Suppose C = 2 ? s1 ? · · · ? sn and n > 0. Since Rη is left head variable free,
aa(`) is defined. If aa(`) = 0 then

s↓U = (`σ ? s1 ? · · · ? sn)↓U = (`σ)↓U ? s1↓U ? · · · ? sn↓U
= `↓Uσ↓U ? s1↓U ? · · · ? sn↓U

and

r↓Uσ↓U ? s1↓U ? · · · ? sn↓U →∗U (rσ)↓U ? s1↓U ? · · · ? sn↓U
→∗U (rσ ? s1 ? · · · ? sn)↓U = t↓U

by applications of Lemmata 8.22 and 8.21. Hence s↓U →+

U+
η (R)

t↓U . If

aa(`) > 0 then ` ? x → r ? x ∈ Rη for some fresh variable x. We have
s = C ′[(` ? x)τ ] and t = C ′[(r ? x)τ ] for the context C ′ = 2 ? s2 ? · · · ? sn and
the substitution τ = σ ∪ {x 7→ s1}. Since C ′ is smaller than C, we can apply
the induction hypothesis which yields the desired result.
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• In the remaining case C = s1 ? C
′. The induction hypothesis yields

C ′[`σ]↓U →+

U+
η (R)

C ′[rσ]↓U

If aa(s1) 6 0 or if aa(s1) is undefined then s↓U = s1↓U ? C ′[`σ]↓U and
t↓U = s1↓U ? C ′[rσ]↓U by Lemma 8.21. If aa(s1) > 0 then s1↓U = fi(u1, . . . , ui)
for the head symbol f of s1 and some terms u1, . . . , ui. So

s↓U = fi+1(u1, . . . , ui, C
′[`σ]↓U)

and
t↓U = fi+1(u1, . . . , ui, C

′[rσ]↓U).

Hence in both cases we obtain s↓U →+

U+
η (R)

t↓U .

The next example shows that the left head variable freeness condition cannot
be weakened to the well-definedness of aa(`) for every left-hand side `.

Example 8.23. Consider the non-terminating ATRS R

f (x a)→ f (g b) g b→ h a

The transformed TRS U+
η (R) consists of the rules

f1(x ? a)→ f1(g1(b)) f ? x→ f1(x) h ? x→ h1(x)

g1(b)→ h1(a) g ? x→ g1(x)

and is terminating because its rules are oriented from left to right by the lexi-
cographic path order with precedence ? > g1 > f1 > h1 > a > b. Note that
aa(f (x a)) = 0.

The uncurrying transformation is not always useful.

Example 8.24. Consider the one-rule TRS R

C x y z u→ x z (x y z u)

from [38]. The termination of R is proved by the lexicographic path order with
empty precedence. The transformed TRS U+

η (R) consists of

C4(x, y, z, u)→ x ? z ? (x ? y ? z ? u)

C ? x→ C1(x) C2(x, y) ? z → C3(x, y, z)

C1(x) ? y → C2(x, y) C3(x, y, z) ? u→ C4(x, y, z, u)

None of the tools that participated in the termination competitions between 2005
and 2010 is able to prove the termination of this TRS.
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We show that the converse of Theorem 8.17 also holds. Hence the uncurrying
transformation does not only reflect but also preserve termination. (This does
not contradict the preceding example.) To show this result (Theorem 8.28) we
transform any infinite sequence in U+

η (R) into an infinite sequence of the original
`-ATRS R. Since U is terminating, any infinite sequence in U+

η (R) must have the
shape

→Rη↓U · →
∗
U · →Rη↓U · →

∗
U · · · (8.1)

with infinitely many Rη↓U steps. Below we write C ′ for the TRS that is obtained
from U by reversing all rules: {r → ` | ` → r ∈ U(R)} The TRS C ′ allows to
mimic a rewrite step →Rη↓U in the original `-ATRS R (Lemma 8.26) and equates
any two terms that are in the relation→∗U (Lemma 8.27). Then the sequence (8.1)
can be transformed into an infinite sequence in R.

Remark 8.1. Note that ↓C is not the inverse of ↓U since for the TRS R from
Example 8.14 we have R↓U↓C = {id1 x → x, f1 x → id2 f x} which is different
from R. But obviously R↓U↓C′ = R for any ATRS R.

Lemma 8.25. Let R be an `-ATRS. If t, C, and σ are a term, context, and
substitution over the signature of U+

η (R), then (C[tσ])↓C′ = C↓C′ [t↓C′σ↓C′ ].

Proof. We show (tσ)↓C′ = t↓C′σ↓C′ by induction on t. If t = x then the result
follows since (xσ)↓C′ = σ(x)↓C′ = x↓C′σ↓C′ . If t = fi(t1, . . . , ti) then

(tσ)↓C′ = fi(t1σ, . . . , tiσ)↓C′ = f ? (t1σ)↓C′ ? · · · ? (tiσ)↓C′
= f ? t1↓C′σ↓C′ ? · · · ? ti↓C′σ↓C′ = (f ? t1↓C′ ? · · · ? ti↓C′)σ↓C′
= fi(t1, . . . , ti)↓C′σ↓C′

by the induction hypothesis. If t = t1 ? t2 then

(tσ)↓C′ = (t1σ ? t2σ)↓C′ = (t1σ)↓C′ ? (t2σ)↓C′ = t1↓C′σ↓C′ ? t2↓C′σ↓C′
= (t1↓C′ ? t2↓C′)σ↓C′ = t↓C′σ↓C′

by the induction hypothesis.
The proof that (C[u])↓C′ = C↓C′ [u↓C′ ] is by induction on C and similar. The

lemma then follows from these two results.

Lemma 8.26. Let R be an `-ATRS. If s and t are terms over the signature of
U+
η (R) then s→Rη↓U t implies s↓C′ →Rη t↓C′.

Proof. From s →Rη↓U t we get s = C[`σ], t = C[rσ] for some ` → r ∈ Rη↓U . By
Lemma 8.25 we obtain s↓C′ = C↓C′ [`↓C′σ↓C′ ] and t↓C′ = C↓C′ [r↓C′σ↓C′ ]. The result
then follows in connection with the fact that Rη↓U↓C′ = Rη.
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Lemma 8.27. Let R be an `-ATRS. If s and t are terms over the signature of
U+
η (R) then s→U t implies s↓C′ = t↓C′.

Proof. From s →U t we get s = C[`σ], t = C[rσ] for some ` → r ∈ U . By
Lemma 8.25 we obtain s↓C′ = C↓C′ [`↓C′σ↓C′ ] and t↓C′ = C↓C′ [r↓C′σ↓C′ ]. The result
then follows in connection with the observation that all rules in U↓C′ have equal
left- and right-hand sides.

Theorem 8.28. If R is a terminating `-ATRS then U+
η (R) is terminating.

Proof. Assume that U+
η (R) is non-terminating. Since U is terminating, any infinite

rewrite sequence has the form

s1 →Rη↓U t1 →
∗
U s2 →Rη↓U t2 →

∗
U · · ·

Applications of Lemmata 8.26 and 8.27 transform this sequence into

s1↓C′ →Rη t1↓C′ = s2↓C′ →Rη t2↓C′ = · · ·
It follows that Rη is non-terminating. Since →R = →Rη by Lemma 8.16, we
conclude that R is non-terminating.

Next we describe a trivial mirroring technique for TRSs. This technique can be
used to eliminate some of the left head variables in an ATRS.

Definition 8.29. Let t be a term. The term tM is defined as follows:

tM =

{
t if t is a variable

f(tMn , . . . , t
M
1 ) if t = f(t1, . . . , tn)

Moreover, if R is a TRS then RM = {`M → rM | `→ r ∈ R}.
We obviously have s →R t if and only if sM →RM tM . This gives the following

result.

Theorem 8.30. A TRS R is terminating if and only if RM is terminating.

Example 8.31. Consider the one-rule ATRS R
x (a a a)→ a (a a) x

While R has a head variable in its left-hand side, the mirrored version RM

a (a a) x→ x (a a a)

is left head variable free. The transformed TRS U+
η (RM)

a2(a1(a), x)→ x ? a2(a, a) a ? x→ a1(x) a1(x) ? y → a2(x, y)

is easily proved terminating with dependency pairs and a matrix interpretation of
dimension one.
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8.4. Innermost Termination

Before we prove that our transformation reflects innermost termination we show
that it does not preserve innermost termination.

Example 8.32. Consider the ATRS R

f x→ f x f → g

In an innermost sequence the first rule is never applied and hence R is innermost
terminating. The TRS U+

η (R)

f1(x)→ f1(x) f → g f1(x)→ g ? x f ? x→ f1(x)

is not innermost terminating due to the rule f1(x)→ f1(x).

The overlap between the rules ofR in the above example is essential. This follows
from a result of Gramlich [65] stating that innermost termination and termination
coincide for locally confluent overlay systems. Hence for systems that satisfy the
above conditions preservation of innermost termination can be recovered.

Theorem 8.33. Let R be a locally confluent overlay `-ATRS. If R is innermost
terminating then U+

η (R) is innermost terminating.

Proof. Suppose R is innermost terminating. From [65] we know that R is ter-
minating. Since uncurrying preserves termination (Theorem 8.28) also U+

η (R) is
terminating. In particular, U+

η (R) is innermost terminating.

In the sequel we investigate if uncurrying reflects innermost termination. The
next example shows that even in the innermost setting, η-saturation cannot be
omitted. This is surprising since the η-rules are not innermost with respect to the
original TRS but by uncurrying they become applicable at innermost redexes.

Example 8.34. The ATRS R

h x→ f x f → h

is not innermost terminating while U+(R)

h1(x)→ f1(x) f → h h ? x→ h1(x) f ? x→ f1(x)

is (innermost) terminating. Note that U+
η (R) is not innermost terminating because

it also contains the rule f1(x)→ h1(x).
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The next example shows that s i→R t does not imply s↓U i→+

U+
η (R)

t↓U . This does

not contradict that uncurrying reflects innermost termination but shows that the
proof of Theorem 8.17 cannot be adopted for the innermost case without further
ado.

Example 8.35. Consider the ATRS R
f → g a→ b g x→ h

and the innermost step s = f a i→R g a = t. We have s↓U = f ? a and t↓U = g1(a).
In the TRS U+

η (R)

f → g a→ b g1(x)→ h g ? x→ g1(x)

we have s↓U i→U+
η (R) g ? a but the step from g ? a to t↓U is not innermost.

The problem in Example 8.35 is that uncurrying steps performed after the cor-
responding rewrite step need not be innermost. Moreover, not even an innermost
variant of Lemma 8.22 holds as the next example demonstrates.

Example 8.36. Consider the ATRS R consisting of the rules

h→ b h x→ c

the term t = x ? y and the substitution σ = {x 7→ h}. We have t↓Uσ↓U = h ? y
and (tσ)↓U = h1(y). The TRS U+

η (R) consists of the rules

h→ b h1(x)→ c h1(x)→ b ? x h ? x→ h1(x)

Like in the previous example, the step from t↓Uσ↓U to (tσ)↓U is not innermost.

The above problems can be solved if we consider terms that are not completely
uncurried. In our proof we follow a lazy approach and postpone uncurrying as
long as possible. We show that an innermost root step in an ATRS R can be
mimicked by an innermost sequence in U+

η (R) according to the following diagram
(Lemma 8.39):

`σ rσ

· `↓Uσ↓U r↓Uσ↓U

εi

R

∗i

U+
η (R)

i

U+
η (R)

∗U ∗U

To show this result we need that rewriting with →∗U preserves R-normal forms
(Lemma 8.37) and does not create innermost redexes (Lemma 8.38). By con-
sidering rightmost innermost rewriting (Lemma 8.41) we can then establish that
uncurrying reflects innermost termination (Theorem 8.42).
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Lemma 8.37. Let R be an `-ATRS. If s is a term over the signature of R,
s ∈ NF (R), and s→∗U t then t ∈ NF (Rη↓U).

Proof. From Lemma 8.27 we obtain s↓C′ = t↓C′ . Note that s↓C′ = s because s
is a term over the signature of R. If t /∈ NF (Rη↓U) then t →Rη↓U u for some
term u. Lemma 8.26 yields t↓C′ →Rη u↓C′ and Lemma 8.16 yields s →R u↓C′ .
Hence s /∈ NF (R), contradicting the assumption.

The following lemma states that uncurrying steps followed by taking a proper
subterm can be reordered into first taking a proper subterm and then perform
uncurrying steps.

Lemma 8.38. Let R be an `-ATRS. If s is a term over the signature of R then
s→∗U · B u implies s B · →∗U u.

Proof. Assume s →∗U t B u. We show that s B · →∗U u by induction on s. If s
is a variable or a constant then there is nothing to show. So let s = s1 ? s2. We
consider two cases.

• If the outermost ? has not been uncurried then t = t1 ? t2 with s1 →∗U t1 and
s2 →∗U t2. Without loss of generality assume that t1 D u. If t1 = u then
s B s1 →∗U t1. If t1 B u then the induction hypothesis yields s1 B · →∗U u
and hence also s B · →∗U u.

• If the outermost ? has been uncurried in the sequence from s to t then the
head symbol of s1 cannot be a variable and aa(s1) > 0. Hence we may write
s1 = f ? t1 ? · · · ? ti and t = fi+1(t′1, . . . , t

′
i, s
′
2) with tj →∗U t′j for all 1 6 j 6 i

and s2 →∗U s′2. Clearly, t′j D u for some 1 6 j 6 i or s′2 D t. In all cases the
result follows with the same reasoning as in the first case.

The next lemma states that innermost root steps in an ATRS can be simulated
by a (non-empty) sequence of innermost steps in U+

η (R). Note that i→U+
η (R) means

innermost reduction with respect to all rules in U+
η (R).

Lemma 8.39. Let R be an `-ATRS. If w is a term over the signature of R then
s ∗U← w i→ε

R t implies s i→+

U+
η (R)

· ∗U← t.

Proof. We prove that s i→+

U+
η (R)

r↓Uσ↓U ∗U← rσ whenever s ∗U← `σ i→ε
R rσ for

some rewrite rule `→ r in R. By Lemma 8.22 and the confluence of U ,

s i→∗U (`σ)↓U = `↓Uσ↓U →U+
η (R) r↓Uσ↓U

∗
U← rσ.

It remains to show that the sequence s i→∗U (`σ)↓U and the step `↓Uσ↓U →U+
η (R)

r↓Uσ↓U are innermost with respect to U+
η (R).
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• For the former, let s i→∗U C[u] i→U C[u′] i→∗U (`σ)↓U with u i→ε
U u′ and

let t be a proper subterm of u. Obviously `σ →∗U C[u] B t. According to
Lemma 8.38, `σ B v →∗U t for some term v. Since `σ i→ε

R rσ, the term v is a
normal form of R. Hence t ∈ NF (Rη↓U) by Lemma 8.37. Since u i→ε

U u
′, t

is also a normal form of U . Hence t ∈ NF (U+
η (R)) as desired.

• For the latter, let t be a proper subterm of (`σ)↓U . According to Lemma 8.38,
`σ B u →∗U t. The term u is a normal form of R. Hence t ∈ NF (Rη↓U) by
Lemma 8.37. Obviously, t ∈ NF (U) and thus also t ∈ NF (U+

η (R)).

The next example shows that it is not sound to replace i→ε
R by i→R in Lemma 8.39.

Example 8.40. Consider the ATRS R

f → g f x→ g x a→ b

Then f1(a) ∗U← f ? a i→R g ? a but f1(a) i→+

U+
η (R)

· ∗U← g ? a does not hold. To see

the latter, consider the two reducts g1(a) and g ? a of g ? a with respect to →∗U .
We have neither f1(a) i→+

U+
η (R)

g1(a) nor f1(a) i→+

U+
η (R)

g ? a.

In order to extend Lemma 8.38 to non-root positions, we have to use rightmost
innermost rewriting. This avoids the situation in the above example where parallel
redexes become nested by uncurrying.

Lemma 8.41. Let R be an `-ATRS and t a term over the signature of R. If
s ∗U← t ri→R u then s i→+

U+
η (R)

· ∗U← u.

Proof. Let s ∗U← t = C[`σ] ri→R C[rσ] = u with `σ i→ε
R rσ. We use induction on

the context C. If C = 2 then s ∗U← t i→ε
R u. Lemma 8.39 yields

s i→+

U+
η (R)

· ∗U← u.

For the induction step we consider two cases.

• Suppose C = 2 ? s1 ? · · · ? sn and n > 0. Since R is left head variable free,
aa(`) is defined. If aa(`) = 0 then

s = t′ ? s′1 ? · · · ? s′n ∗U← `σ ? s1 ? · · · ? sn i→R rσ ? s1 ? · · · ? sn

with t′ ∗U← `σ and s′j
∗
U← sj for 1 6 j 6 n. The claim follows using

Lemma 8.39 and the fact that innermost rewriting is closed under contexts.
If aa(`) > 0 then the head symbol of ` cannot be a variable. We have to
consider two cases. In the case where the leftmost ? symbol in C has not
been uncurried we proceed as when aa(`) = 0. If the leftmost ? symbol of C
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has been uncurried, we reason as follows. We may write `σ = f ? u1 ? · · · ? uk
where k < aa(f). We have t = f?u1?· · ·?uk?s1?· · ·?sn and u = rσ?s1?· · ·?sn.
There exists an i with 1 6 i 6 min{aa(f), k + n} such that

s = fi(u
′
1, . . . , u

′
k, s
′
1, . . . , s

′
i−k) ? s

′
i−k+1 ? · · · ? s′n

with u′j
∗
U← uj for 1 6 j 6 k and s′j

∗
U← sj for 1 6 j 6 n. Because of

rightmost innermost evaluation, the terms u1, . . . , uk, s1, . . . , sn are normal
forms of R. According to Lemma 8.37 the terms u′1, . . . , u

′
k, s
′
1, . . . , s

′
n are

normal forms of Rη↓U . Since i− k 6 aa(`), Rη contains the rule

` ? x1 ? · · · ? xi−k → r ? x1 ? · · · ? xi−k

where x1, . . . , xi−k are pairwise distinct variables not occurring in ` → r.
Hence the substitution τ = σ ∪ {x1 7→ s1, . . . , xi−k 7→ si−k} is well-defined.
We obtain

s i→∗U+
η (R)

fi(u1↓U , . . . , uk↓U , s1↓U , . . . , si−k↓U) ? s′i−k+1 ? · · · ? s′n
i→U+

η (R) (r ? x1 ? · · · ? xi−k)↓Uτ↓U ? s′i−k+1 ? · · · ? s′n
∗
U← (r ? x1 ? · · · ? xi−k)τ ? si−k+1 ? · · · ? sn
= rσ ? s1 ? · · · ? sn = u

where we use the confluence of U in the first sequence.

• In the second case we have C = s1 ? C
′. Clearly C ′[`σ] ri→R C ′[rσ]. If

aa(s1) 6 0 or if aa(s1) is undefined or if aa(s1) > 0 and the outermost ? has
not been uncurried in the sequence from t to s then

s = s′1 ? s
′ ∗
U← s1 ? C

′[`σ] ri→R s1 ? C
′[rσ] = u

with s′1
∗
U← s1 and s′ ∗U← C ′[`σ]. If aa(s1) > 0 and the outermost ? has been

uncurried in the sequence from t to s then we may write s1 = f ? u1 ? · · · ? uk
where k < aa(f). We have s = fk+1(u′1, . . . , u

′
k, s
′) for some term s′ with

s′ ∗U← C ′[`σ] and u′i
∗
U← ui for 1 6 i 6 k. In both cases the induction

hypothesis yields
s′ i→+

U+
η (R)

· ∗U← C ′[rσ]

and, since innermost rewriting is closed under contexts, we obtain

s i→+

U+
η (R)

· ∗U← u

as desired.
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We are now ready for the result that uncurrying reflects innermost termination.

Theorem 8.42. An `-ATRS R is innermost terminating if U+
η (R) is innermost

terminating.

Proof. For a proof by contradiction assume an infinite sequence

t1
ri→R t2 ri→R t3 ri→R · · ·

Using Lemma 8.41 this sequence can be transformed into

t1↓U
i→+

U+
η (R)

t′2
i→+

U+
η (R)

t′3
i→+

U+
η (R)

· · ·

for terms t′2, t′3, . . . such that ti →∗U t′i for i > 2. The proof concludes by the
fact that innermost termination is equivalent to rightmost innermost termination,
a result due to Krishna Rao [109].

8.5. Derivational Complexity

Next we investigate how the uncurrying transformation affects derivational com-
plexity for full (Section 8.5.1) and innermost rewriting (Section 8.5.2).

8.5.1. Full Rewriting

The next theorem explains why uncurrying can be used as a preprocessor for
proving upper bounds on the derivational complexity.

Theorem 8.43. If R is a terminating `-ATRS then dcR(n) ∈ O(dcU+
η (R)(n)).

Proof. Consider an arbitrary maximal rewrite sequence in R starting from t0

t0 →R t1 →R t2 →R · · · →R tm

Using the proof of Theorem 8.17, we can transform the sequence into

t0↓U →+

U+
η (R)

t1↓U →+

U+
η (R)

t2↓U →+

U+
η (R)

· · · →+

U+
η (R)

tm↓U

Moreover, t0 →∗U+
η (R)

t0↓U holds. Therefore, dh(t0,→R) 6 dh(t0,→U+
η (R)). Hence

dcR(n) 6 dcU+
η (R)(n) holds for all n ∈ N, showing the result.
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Next we show that uncurrying preserves polynomial complexity. Since any du-
plicating TRS has at least exponential derivational complexity (cf. [75]), we only
deal with non-duplicating TRSs. Furthermore we ignore pathological systems that
yield constant derivational complexity (note that any non-empty ATRS admits at
least derivations linear in the size of the starting term).

A TRS R is called length-reducing if R is non-duplicating and |`| > |r| for all
rules `→ r ∈ R. The following lemma is an easy consequence of [75, Theorem 23].
Below, →R/S denotes →∗S · →R · →∗S .

Lemma 8.44. Let R be a non-empty and non-duplicating TRS over a signature
containing a function symbol of arity at least two. If a TRS S is length-reducing,
dcR∪S(n) ∈ O(dcR/S(n)) holds whenever R∪ S is terminating.

Note that the above lemma does not hold if the TRS R is empty.

Theorem 8.45. Let R be a non-empty, non-duplicating, and terminating `-ATRS.
If dcR(n) is in O(nk) then dcRη↓U/U(n) and dcU+

η (R)(n) are in O(nk).

Proof. Suppose that dcR(n) is inO(nk). First consider a maximal rewrite sequence
of →Rη↓U/U starting from a term t0:

t0 →Rη↓U/U t1 →Rη↓U/U · · · →Rη↓U/U tm

By Lemmata 8.27 and 8.16 we obtain the sequence

t0↓C′ →R t1↓C′ →R · · · →R tm↓C′ .

Thus, dh(t0,→Rη↓U/U) 6 dh(t0↓C′ ,→R). Because |t0↓C′| 6 2|t0| holds, we obtain
dcRη↓U/U(n) 6 dcR(2n). From the assumption the right-hand side is in O(nk),
Therefore, dcRη↓U/U(n) is in O(nk). Because U is length-reducing, dcU+

η (R)(n) is

also in O(nk), by Lemma 8.44.

In practice it is recommendable to investigate dcRη↓U/U(n) instead of dcU+
η (R)(n),

see [206]. The next example shows that uncurrying might be useful to enable
criteria for polynomial complexity.

Example 8.46. Consider the ATRS R consisting of the rules

add x 0→ x add x (s y)→ s (add x y)

The system U+
η (R) consists of the rules

add2(x, 0)→ x add2(x, s1(y))→ s1(add2(x, y))

add1(x) ? y → add2(x, y) add ? x→ add1(x) s ? x→ s1(x)
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It is easy to see that the following TMI M of dimension 2 below orients all
rules in U+

η (R) strictly, inducing a quadratic bound on the derivational complexity
of U+

η (R) (according to Theorem 8.1):

add1M(x) = s1M(x) =

(
1 0
0 1

)
x+

(
0
1

)
add2M(x, y) = ?M(x, y) =

(
1 1
0 1

)
x+

(
1 1
0 1

)
y

sM = 0M = addM =

(
0
1

)
Theorem 8.43 then establishes a quadratic bound on the derivational complexity
of R. In contrast to U+

η (R), the ATRS R itself does not admit such an inter-
pretation of dimension 2. To see this, we encoded the required condition as a
satisfaction problem in non-linear arithmetic over the integers. MiniSmt [208] can
prove this problem unsatisfiable by simplifying it into a trivially unsatisfiable con-
straint. Details can be inferred from the website mentioned in Footnote 4 on
page 224.

8.5.2. Innermost Rewriting

Next we consider innermost derivational complexity. Let R be an innermost ter-
minating TRS. From a result by Krishna Rao [109, Section 5.1] which has been
generalized by van Oostrom [145, Theorems 2 and 3] we infer that

dh(t, i→R) = dh(t, ri→R)

holds for all terms t.

Theorem 8.47. Let R be an innermost terminating `-ATRS. Then idcR(n) ∈
O(idcU+

η (R)(n)).

Proof. Consider a maximal rightmost innermost rewrite sequence

t0
ri→R t1 ri→R t2 ri→R · · · ri→R tm.

Using Lemma 8.41 the sequence can be transformed into

t0
i→+

U+
η (R)

t′1
i→+

U+
η (R)

t′2
i→+

U+
η (R)

· · · i→+

U+
η (R)

t′m

for terms t′1, t
′
2, . . . , t

′
m such that ti →∗U t′i for all 1 6 i 6 m. Thus,

dh(t0,
i→R) = dh(t0,

ri→R) 6 dh(t0,
i→U+

η (R)).

Hence, we conclude idcR(n) ∈ O(idcU+
η (R)(n)).
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As Example 8.32 on page 205 showed, uncurrying does not preserve innermost
termination. Similarly, it does not preserve innermost polynomial complexity even
if the original ATRS has linear derivational complexity.

Example 8.48. Consider the non-duplicating ATRS R

f → s f (s x)→ s (s (f x))

Since the right rule is never used in innermost rewriting, idcR(n) ∈ O(n) is shown
by easy induction on n. We show that the innermost derivational complexity of
U+
η (R) is at least exponential. The TRS U+

η (R) consists of the five rules:

f → s f1(s1(x))→ s1(s1(f1(x))) f ? x→ f1(x)

f1(x)→ s1(x) s ? x→ s1(x)

One can verify

dh(

n︷ ︸︸ ︷
f1(· · · (f1(s1(x)))), i→U+

η (R)) > 2n

for all n > 1. Hence idcU+
η (R)(n+ 3) > 2n for all n > 0.

Similar to Theorem 8.33, the result can be recovered for locally confluent overlay
systems. In the sequel a substitution σ is called normalized (for a TRS R) if
xσ ∈ NF (R) for all x ∈ V . The next lemmata state useful properties that prepare
for the proof. The first of these states a trivial diamond-like property of innermost
rewriting. It is used in the proofs of the next lemmata to rearrange innermost
rewrite sequences such that the number of steps is preserved.

Lemma 8.49. Let R be a TRS. If s i→ t and s i→ u by rewriting innermost redexes
at parallel positions then t i→ v and u i→ v for some term v.

Lemma 8.50. If tσ i→n u ∈ NF (R) then tσ i→n1 tτ i→n2 u for some normalized
substitution τ and n1, n2 ∈ N with n1 + n2 = n.

Proof. We use induction on n. Since the base case is trivial, we consider the
inductive step. Suppose tσ i→n u ∈ NF (R). Without loss of generality we
assume Dom(σ) ⊆ Var(t). We proceed by a case distinction. If σ is normal-
ized then the claim follows with n1 = 0, n2 = n, and τ = σ. In the other
case, by Lemma 8.49 we can reorder the sequence such that the first rewrite step
takes place in the substitution part. Therefore, there exists a substitution σ′ with
xσ i→ xσ′ for some x ∈ Dom(σ) and yσ = yσ′ for all y ∈ Dom(σ) \ {x}. Writing
k for the number of occurrences of x in t, we have tσ i→k tσ′ i→n−k u. Since
k > 1, the induction hypothesis applied to tσ′ i→n−k u yields tσ′ i→m1 tτ i→m2 u
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with m1 + m2 = n − k and normalized τ . Combining this with tσ i→k tσ′,
tσ i→k+m1 tτ i→m2 u is obtained. By taking n1 = k + m1 and n2 = m2, we
obtain n1 + n2 = k +m1 +m2 = k + (n− k) = n which proves the claim.

Lemma 8.51. Let R be a non-duplicating overlay system. If t →m u ∈ NF (R)
then t i→n u for some n > m.

Proof. We use induction on m. Since the base case is trivial, we consider the
inductive step. Suppose

C[`σ]→ C[rσ]→m u ∈ NF (R)

with ` → r ∈ R. The induction hypothesis yields C[rσ] i→n u for some n > m.
By Lemma 8.49 this sequence can be written as C[rσ] i→n1 C[u′] i→n2 u with n =
n1 + n2 and u′ ∈ NF (R). From Lemma 8.50 we obtain a normalized τ and
m1,m2 ∈ N with m1 +m2 = n1 such that rσ i→m1 rτ i→m2 u′. Because innermost
rewriting is closed under contexts, C[rσ] i→m1 C[rτ ] i→m2+n2 u. Since R is non-
duplicating, C[`σ] i→m0 C[`τ ] for some m0 > m1. Because R is an overlay system
and τ is normalized `τ i→ rτ . Hence

C[`σ] i→m0 C[`τ ] i→ C[rτ ] i→m2+n2 u.

Here m0 + 1 +m2 + n2 > m1 + 1 +m2 + n2 = n1 + 1 + n2 = n+ 1 > m+ 1.

By the above lemma the next theorem is obtained.

Theorem 8.52. If R is a non-duplicating and terminating overlay system then
idcR(n) = dcR(n).

Proof. Since R is terminating, Lemma 8.51 yields dh(t, i→R) > dh(t,→R). Com-
bining this with the obvious dh(t, i→R) 6 dh(t,→R) concludes the proof.

Using Gramlich’s [65] result on the equivalence of termination and innermost
termination for locally confluent overlay systems we obtain the following corollary
from Theorems 8.45 and 8.52.

Corollary 8.53. Let R be a non-duplicating, innermost terminating, and locally
confluent overlay `-ATRS. If idcR(n) is in O(nk) then idcU+

η (R)(n) is in O(nk).
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8.6. Uncurrying with Dependency Pairs

In this section we incorporate the uncurrying transformation into the dependency
pair framework [13, 58, 60, 73, 174].

In the sequel we present two DP processors that uncurry applicative DP prob-
lems, which are DP problems over signatures containing constants and two appli-
cation symbols: ? and ?]. Properties for full termination of these processors are
studied in Section 8.6.1 while innermost termination is considered in Section 8.6.2.

First we define a suitable set of uncurrying rules for DP problems. Let (P ,R)
be an applicative DP problem. Here the applicative arities of function symbols
are computed with respect to ? and P ∪R. By U(P ,R) we denote the uncurrying
rules derived from U(P)∪U(R). In this section we assume that F is Fun(P ∪R),
write U(F) for U(P ,R) and let U+

η (R,F) denote Rη↓U(F) ∪U(F). If no confusion
can arise, F is dropped in U(F) and U+

η (R,F). An applicative DP problem (P ,R)
is said to be `-applicative if P ∪R is left head variable free.

Definition 8.54. Let (P ,R) be a DP problem. The DP processor U1 is defined
as

(P ,R) 7→

{
{(P↓U(F),U+

η (R,F))} if (P ,R) is `-applicative

{(P ,R)} otherwise

where F = Fun(P ∪R).

Example 8.55. Consider the `-applicative (note that it is left head variable free)
DP problem ({x ] (a a) → (a a a) ] x},∅). Processor U1 transforms it into the
problem ({x ?] (a1(a)) → a2(a, a) ?] x}, {a ? x → a1(x), a1(x) ? y → a2(x, y)})
because the applicative arity of a is two. The latter DP problem is easily shown
finite by a matrix interpretation of dimension one counting the symbols ? and a1.

A drawback of U1 is that dependency pair symbols are excluded from the uncur-
rying process. Typically, all pairs in P have the same root symbol ?]. The next
example shows that uncurrying root symbols of P can be beneficial.

Example 8.56. Consider the ATRS consisting of the single rule a x a→ a (a a) x.
After processing the only SCC in the dependency graph with U1, the rewrite rule
a1(x) ?] a→ a1(a1(a)) ?] x must be oriented. This cannot be done with a matrix
interpretation of dimension one nor with a reduction pair based on any other
simplification order. If we transform the rule into a]2(x, a) → a]2(a1(a), x) this
becomes trivial.

To this end we introduce a simple variant of freezing [196].
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8. Uncurrying for Termination and Complexity

Definition 8.57. A simple freeze is a partial mapping ^ that assigns to a function
symbol of arity n > 0 an argument position i ∈ {1, . . . , n}. Every simple freeze ^
induces the following partial mapping on non-variable terms t = f(t1, . . . , tn), also
denoted by ^:

• if ^(f) is undefined or n = 0 then ^(t) = t,

• if ^(f) = i and ti = g(u1, . . . , um) then

^(t) = ^fg(t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn)

where ^fg is a fresh function symbol of arity m+ n− 1,

• if ^(f) = i and ti is a variable then ^(t) is undefined.

We denote {^(`)→ ^(r) | `→ r ∈ R} by ^(R).

Now uncurrying for dependency pair symbols is formulated with the simple freeze
^(?]) = 1, transforming fn(t1, . . . , tn)?] tn+1 to ^?]fn(t1, . . . , tn, tn+1). Writing f ]n+1

for ^?]fn , we obtain the frozen term f ]n+1(t1, . . . , tn, tn+1). In Example 8.56 we have

^({a1(x) ?] a→ a1(a1(a)) ?] x}) = {a]2(x, a)→ a]2(a1(a), x)}
The next definition introduces a condition that remedies that freezing is not

sound in general (cf. Example 8.65).

Definition 8.58. A term t is strongly root stable with respect to a TRS R if
tσ →∗R · →ε

R u does not hold for any substitution σ and term u. Let ^ be a simple
freeze. A DP problem (P ,R) is ^-stable if ^(P) is well-defined and ti is strongly
root stable for R whenever s→ f(t1, . . . , tn) ∈ P and ^(f) = i.

Definition 8.59. Let (P ,R) be a DP problem and ^ a simple freeze. The DP
processor ^ is defined as

(P ,R) 7→

{
{(^(P),R)} if (P ,R) is ^-stable

{(P ,R)} otherwise

Furthermore, the DP processor U2 is defined as

(P ,R) 7→ {^((P ′,R′)) | (P ′,R′) ∈ U1((P ,R))}
where ^(?]) = 1.

The DP processor ^ exploits the fact that a root step in P gives rise to a root step
in ^(P) and vice versa. This follows from the root stability of the left argument
of left-hand sides rooted by ?], which is a consequence of the ^-stability of (P ,R).
Moreover, t→∗R u if and only if ^(t)→∗

^(R) ^
(u) because ?] does not occur in the

rules of R.
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8.6.1. Full Termination

Recently it has been observed by Sternagel and Thiemann [165] that the signature
influences whether a DP problem is finite or not. In particular, restricting the
signature of a non-finite DP problem (P ,R) to the function symbols that occur in
P ∪R may make it finite. This is in sharp contrast to (innermost) termination of
TRSs [120] (and innermost non-finiteness of DP problems, cf. Lemma 8.70).

We first show that for `-applicative DP problems this cannot happen.2

Lemma 8.60. Let (P ,R) be an `-applicative DP problem over the signature G. If
(P ,R) is finite over F and ? ∈ F then (P ,R) is finite over G.

Proof. Let V ′ = V ] {xf | f ∈ G \ F}. We define a mapping I from T (G,V) to
T (F ,V ′) as follows:

I(t) =


t if t ∈ V
f(I(t1), . . . , I(tn)) if t = f(t1, . . . , tn) and f ∈ F
xf ? I(t1) ? · · · ? I(tn) if t = f(t1, . . . , tn) and f ∈ G \ F

Note that I(u) = u for u ∈ T (F ,V). Obviously I(C[tσ]) = I(C)[I(t)I(σ)] and
hence we immediately obtain that s→ε

P t implies I(s)→ε
P I(t) and that s→R t

implies I(s)→R I(t) because ` = I(`) and r = I(r) for all `→ r ∈ P ∪R. To show
that any I(t) is terminating with respect toR whenever t ∈ T (G,V) is terminating
with respect to R, we show that if I(t)→R u for some term u ∈ T (F ,V ′) then
there exists a term s ∈ T (G,V) with t →R s and I(s) = u. Now let I(t) =
C[`σ] →R C[rσ] = u for some ` → r ∈ R. Clearly t = C ′[vσ′] for some C ′,
v, and σ′ with C = I(C ′), ` = I(v), and σ = I(σ′). By left head variable
freeness of R we obtain v = ` ∈ T (F ,V). Hence by injectivity of I we conclude
t = C ′[`σ′] →R C ′[rσ′] = s. These observations guarantee that any presupposed
minimal sequence using terms from T (G,V) is transformed by the mapping I into
a minimal sequence using terms from T (F ,V ′). It follows that (P ,R) is finite over
the signature G.

The next result prepares for the soundness proof of U1.

Lemma 8.61. Let (P ,R) be an `-applicative DP problem. If `σ →ε rσ with
`→ r ∈ P then (`σ)↓U(F) →ε

P↓U(F)
r↓U(F)σ↓U(F).

Proof. By Lemma 8.22 and the assumption that ` is head variable free.

Theorem 8.62. The DP processor U1 is sound and complete.

2An alternative proof has been independently obtained by Sternagel and Thiemann [164].
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Proof. Let (P ,R) be an `-applicative DP problem. If ? /∈ F then U1((P ,R)) =
{(P ,R)} and there is nothing to show. If ? ∈ F then according to the preceding
lemma we may assume that the signature of the DP problem (P ,R) is F .

We first show soundness. Suppose the DP problem (P↓U ,U+
η (R)) is finite. We

have to show that (P ,R) is finite. Suppose to the contrary that (P ,R) is not
finite. So there exists a minimal rewrite sequence

s1 →ε
P t1 →∗R s2 →ε

P t2 →∗R · · · (8.2)

By Lemmata 8.61 and 8.22 together with the claim in the proof of Theorem 8.17,
this sequence can be transformed into

s1↓U →ε
P↓U u1 →∗U t1↓U →∗U+

η (R)
s2↓U →ε

P↓U u2 →∗U t2↓U →∗U+
η (R)

· · ·

It remains to show that all terms u1, u2, . . . are terminating with respect to U+
η (R).

Fix i. We have ui↓C′ = ti↓U↓C′ = ti. Due to the minimality of (8.2), ti is termi-
nating with respect to R and, according to Lemma 8.16, also with respect to Rη.
Hence, due to the proof of Theorem 8.28, ui is terminating with respect to U+

η (R).
Next we show completeness of the DP processor U1. Suppose that the DP

problem (P↓U ,U+
η (R)) is not finite. So there exists a minimal rewrite sequence

s1 →ε
P↓U t1 →

∗
U+
η (R)

s2 →ε
P↓U t2 →

∗
U+
η (R)

· · ·

Using Lemmata 8.26 and 8.27 this sequence can be transformed into

s1↓C′ →ε
P t1↓C′ →∗Rη s2↓C′ →ε

P t2↓C′ →∗Rη · · ·

In order to conclude that the DP problem (P ,R) is not finite, it remains to
show that the terms t1↓C′ , t2↓C′ , . . . are terminating with respect to Rη. This
follows from the assumption that the terms t1, t2, . . . are terminating with re-
spect to U+

η (R) in connection with the proof of Theorem 8.17. An application of
Lemma 8.16 concludes the proof.

Theorem 8.63. The DP processor ^ is sound and complete.

Proof. Let (P ,R) be a ^-stable DP problem. We show that every minimal rewrite
sequence

s1 →ε
P t1 →∗R s2 →ε

P t2 →∗R · · ·
can be transformed into the minimal sequence

^(s1)→ε
^(P) ^(t1)→∗R ^(s2)→ε

^(P) ^(t2)→∗R · · ·

and vice versa. This follows from the following three observations.
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si →ε
P ti if and only if ^(si)→ε

^(P) ^
(ti)

We have si →ε
P ti if and only if si = `σ and ti = rσ with ` → r ∈ P . Since

^(P) is well-defined and ^ is injective on terms, the latter is equivalent to

^(si) = ^(`σ) = ^(`)σ →ε
^(P) ^(r)σ = ^(rσ) = ^(ti)

ti →∗R si+1 if and only if ^(ti)→∗R ^(si+1)

Since ti and si+1 have the same root symbol we can write ti = f(u1, . . . , un)
and si+1 = f(u′1, . . . , u

′
n). If ^(f) is undefined or n = 0 then ^(si) = si,

si →∗R ti, and ti = ^(ti). Suppose ^(f) = k. Since ti is an instance of a right-
hand side of a pair in P and ^(P) is well-defined, uk cannot be a variable.
Write uk = g(v1, . . . , vm). According to ^-stability, uk is root stable and thus
u′k = g(v′1, . . . , v

′
m). Hence

ti = f(u1, . . . , uk−1, g(v1, . . . , vm), uk+1, . . . , un)

si+1 = f(u′1, . . . , u
′
k−1, g(v′1, . . . , v

′
m), u′k+1, . . . , u

′
n)

and

^(ti) = ^fg(u1, . . . , uk−1, v1, . . . , vm, uk+1, . . . , un)

^(si+1) = ^fg(u
′
1, . . . , u

′
k−1, v

′
1, . . . , v

′
m, u

′
k+1, . . . , u

′
n).

Consequently, ti →∗R si+1 if and only if uj →∗R u′j for 1 6 j 6 n with j 6= k
and vj →∗R v′j for 1 6 j 6 m if and only if ^(ti)→∗R ^(si+1).

ti terminates with respect to R if and only if ^(ti) terminates with respect to R
This follows immediately from the observation above that all reductions in ti
take place in the arguments uj or vj.

Corollary 8.64. The DP processor U2 is sound and complete.

Proof. Immediate from Theorems 8.62 and 8.63 together with the fact that the
composition of sound and complete DP processors yields a sound and complete
DP processor.

The next example shows that ^-stability is essential for soundness.

Example 8.65. Consider the non-terminating ATRSR consisting of the two rules

f a→ g a g→ f

219



8. Uncurrying for Termination and Complexity

which induces the infinite DP problem (P ,R) with P consisting of the rules

f ] a→ g ] a f ] a→ g]

Since P↓U = P and U1 is sound, the DP problem (P ,U+
η (R)) is also infinite. The

set ^(P↓U) consists of the rules

f]1(a)→ g]1(a) f]1(a)→ g]

Clearly, the DP problem (^(P),U+
η (R)) is finite. Note that (P ,U+

η (R)) is not
^-stable as g→ε

U+
η (R)

f.

Since ^-stability is undecidable in general, for automation we need to approxi-
mate strong root stability. We present a simple criterion which is based on the term
approximation TCAP from [59], where it was used to give a better approximation
of dependency graphs.

Definition 8.66 ([59]). Let R be a TRS and t a term. The term TCAPR(t) is
inductively defined as follows. If t is a variable, TCAPR(t) is a fresh variable.
If t = f(t1, . . . , tn) then we let u = f(TCAPR(t1), . . . ,TCAPR(tn)) and define
TCAPR(t) to be u if u does not unify with the left-hand side of a rule in R, and
a fresh variable otherwise.

Lemma 8.67. A term t is strongly root stable for a TRS R if TCAPR(t) /∈ V.

Proof. The only possibility for TCAPR(t) /∈ V is when t = f(t1, . . . , tn) and
u = f(TCAPR(t1), . . . ,TCAPR(tn)) does not unify with a left-hand side of a rule
in R. Assume to the contrary that t is not strongly root stable. Then there are
a substitution σ and a left-hand side ` of a rule in R such that tσ →∗R `τ . Write
` = f(l1, . . . , ln). We have tσ = f(t1σ, . . . , tnσ) with tiσ →∗R liτ for 1 6 i 6 n.
Hence TCAPR(ti)δi = liτ for some substitution δi ([59, proof of Theorem 13]).
Since the terms TCAPR(t1), . . . ,TCAPR(tn) are linear and do not share variables,
it follows that u unifies with `, contradicting the assumption.

Example 8.68. Consider the DP problem (P↓U ,U+
η (R)) of Example 8.56 with

P↓U consisting of the rule

a1(x) ?] a→ a1(a1(a)) ?] x

and U+
η (R) consisting of the rules

a2(x, a)→ a2(a1(a), x) a ? x→ a1(x) a1(x) ? y → a2(x, y)

Since TCAPU+
η (R)(a1(a1(a))) = a1(a1(a)) is not a variable, a1(a1(a)) is strongly root

stable. Hence (P↓U ,U+
η (R)) is ^-stable.
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8.6.2. Innermost Termination

We start this section with a motivating example (which is related to Example 8.55).

Example 8.69. Consider the ATRS R consisting of the rule x (a a)→ (a a a) x.
The only SCC in the dependency graph is P := {x ] (a a) → (a a a) ] x}. Since
P ∪ R is not left head variable free the processor U1 cannot be applied. For
proving innermost termination the usable rules processor [59] transforms (P ,R)
into (P ,∅) since the rule in R is not usable. Because U1 is sound for innermost
termination (cf. Theorem 8.71), Example 8.55 finishes the innermost termination
proof of R.

In the following we deal with applicative DP problems (P ,R) for innermost
termination. The following is the counterpart of Lemma 8.60 for innermost ter-
mination. Note that in contrast to Lemma 8.60, the result holds for arbitrary DP
problems.

Lemma 8.70. Let (P ,R) be a DP problem over the signature G. If (P ,R) is
innermost finite over F then (P ,R) is innermost finite over G.

Proof. Let V ′ = V ] {xt | t ∈ T (G,V)}. Similar to the proof of Lemma 8.60 we
define a mapping I from T (G,V) to T (F ,V ′) as follows:

I(t) =


t if t ∈ V
f(I(t1), . . . , I(tn)) if t = f(t1, . . . , tn) and f ∈ F
xt if t = f(t1, . . . , tn) and f ∈ G \ F

Note that I(t) = t for t ∈ T (F ,V). First we show that s→ε
P t implies I(s)→ε

P I(t).
From s→ε

P t we get s = `σ and t = rσ for some `→ r ∈ P . Since `, r ∈ T (F ,V)
we get ` = I(`) and r = I(r) and consequently I(s) = `I(σ) →ε

P rI(σ) = I(t).
Since t→R s need not imply I(t)→R I(s) in general, we restrict ourselves to terms
satisfying a special property. Let T be the set of all terms in T (G,V) whose G \F -
rooted subterms are normal forms. Note that if C[`σ] ∈ T for some ` → r ∈ R
then I(C) = C since C cannot contain a symbol from G \ F . Hence t→R s with
t ∈ T implies I(t) = C[`I(σ)]→R C[rI(σ)] = I(s) and I(s) ∈ T (since→R cannot
introduce function symbols from G\F). Together with the fact that I(s) ∈ NF (R)
whenever s ∈ NF (R) this ensures that I(t) i→!

R I(s) whenever t i→!
R s and t ∈ T .

Hence any presupposed sequence

s1 →ε
P t1

i→!
R s2 →ε

P t2
i→!
R · · ·
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with s1 ∈ NF (R) (and hence si, ti ∈ T for all i > 1) using terms from T (G,V) is
transformed into a sequence

I(s1)→ε
P I(t1) i→!

R I(s2)→ε
P I(t2) i→!

R · · ·

with I(s1) ∈ NF (R) using terms from T (F ,V ′). It follows that (P ,R) is innermost
finite over G.

Theorem 8.71. The DP processor U1 is sound for innermost termination.

Proof. Let (P ,R) be an `-applicative DP problem. By the preceding lemma we
may assume without loss of generality that the signature of (P ,R) is F . Assume
(P ,R) is not innermost finite. According to Krishna Rao [109] there exists an
infinite sequence

s1 →ε
P t1

ri→!
R s2 →ε

P t2
ri→!
R · · ·

with s1 ∈ NF (R). We show that there is a sequence

s1↓U →ε
P↓U t

′
1

i→!
U+
η (R)

s2↓U →ε
P↓U t

′
2

i→!
U+
η (R)

· · ·

with terms t′1, t′2, . . . such that ti →∗U t′i for i > 1. Fix i and let ` → r be
the rule from P that is used in si →ε

P ti. So ti = rσ for some substitution σ.
Lemma 8.61 yields si↓U →ε

P↓U t′i for the term t′i = r↓Uσ↓U . Clearly ti →∗U t′i.
Repeated application of Lemma 8.41 yields

t′i
i→∗U+

η (R)
s′i+1

∗
U← si+1

for some term s′i+1 that is a normal form of Rη↓U due to Lemma 8.37 and the
fact that si+1 is a normal form of R. It follows that s′i+1

i→∗U+
η (R)

si+1↓U by

repeated applications of Lemma 8.37 and innermost normalizing s′i+1 with respect
to U . (Note that U is terminating and confluent.) Since si+1↓U is a normal
form of U+

η (R), we obtain t′i
i→!
U+
η (R)

si+1↓U . Since s1↓U ∈ NF (U+
η (R)) whenever

s1 ∈ NF (R) (Lemma 8.37) we conclude that the DP problem (P↓U ,U+
η (R)) is not

innermost finite, as desired.

Theorem 8.72. The DP processor ^ is sound and complete for innermost termi-
nation.

Proof. Let (P ,R) be ^-stable. Every infinite sequence

s1 →ε
P t1

i→!
R s2 →ε

P t2
i→!
R · · ·
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can be transformed into the sequence

^(s1)→ε
^(P) ^(t1) i→!

R ^(s2)→ε
^(P) ^(t2) i→!

R · · ·

and vice versa. This is obvious from the first observation in the proof of Theo-
rem 8.63 and the following two facts: (1) ti

i→∗R si+1 if and only if ^(ti)
i→∗R ^(si+1)

and (2) si ∈ NF (R) if and only if ^(si) ∈ NF (R) for all i > 1 (which follow from
the proof of the second observation in the proof of Theorem 8.63).

Corollary 8.73. The DP processor U2 is sound for innermost termination.

Proof. Immediate from Theorems 8.71 and 8.72 together with the fact that the
composition of sound DP processors yields a sound processor.

The next example shows that U1 is not complete for innermost DP problems.
(Note that Example 8.32 on page 205 does not provide a counterexample.)

Example 8.74. Consider the ATRS R

f x→ g a x g x→ f g→ h

which is innermost terminating because the rule g x → f cannot be used in an
innermost sequence and without this ruleR is easily seen to be terminating. Hence
also the DP problem (P ,R) with P consisting of

f ] x→ g a ] x f ] x→ g ] a g ] x→ f

is innermost terminating. However, after applying the DP processor U1 there is
an infinite innermost sequence:

f ] x→ε
P↓U g1(a) ] x i→U+

η (R) f
] x→ε

P↓U · · ·

Note that f ] x ∈ NF (U+
η (R)).

Because of the completeness of ^, U2 inherits incompleteness for innermost ter-
mination from U1.

8.7. Experiments

The transformations presented in this paper are implemented in the termination
prover TTT2 [107]. For experimentation version 7.0.2 of the termination problem
data base (TPDB)3 has been considered which contains 195 ATRSs for full and

3http://termination-portal.org/wiki/TPDB
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8. Uncurrying for Termination and Complexity

direct as processor

8.17
8.17 8.30

8.7 8.17 8.30 none A A′ U1 U2 U2
∑

subterm criterion 1 47 48 41 – – 41 58 61 61

matrix (1) 4 90 101 66 68 86 95 101 109 110

matrix (2) 7 108 131 108 111 128 133 134 138 138

matrix (3) 9 109 132 110 114 133 136 138 140 142

Table 8.1.: Full termination for 195 ATRSs.

18 for innermost rewriting. All tests have been performed on a single core of a
server equipped with eight dual-core AMD Opteron R© processors 885 running at
a clock rate of 2.6 GHz and 64 GB of main memory. Comprehensive details of
the experiments4 give evidence that the proposed transformations ease proving
termination and upper bounds on the derivational complexity.

For proving (innermost) termination we considered two popular termination
methods, namely the subterm criterion [73] and matrix interpretations [44] of di-
mensions one to three. For a matrix of dimension d the coefficients are represented
by 5 − d bits, one additional bit is allowed for intermediate results. Both meth-
ods are integrated within the dependency pair framework using dependency graph
reasoning and usable rules as proposed in [59, 60, 68].

Table 8.1 differentiates between applying the transformations as a preprocessing
step (direct) or within the dependency pair framework (as processor). For rows
labeled “matrix”, the numbers in parentheses refer to the dimension of the in-
terpretations. The direct method of Corollary 8.7 (Theorem 8.17, Theorems 8.17
and 8.30) applies to 10 (141, 170) systems. If used directly, the numbers in the
table refer to the systems that could be proved terminating in case of a successful
transformation. Mirroring (when the original system is not left head variable free)
does increase applicability of our (direct) transformation significantly.

The middle part of Table 8.1 states the number of successful termination proofs
for transformation A ([59, 174]) and the processors U1 (Definition 8.54) and U2

(Definition 8.59). Since transformation A does not preserve minimality (Exam-
ple 8.75 in Section 8.8) one cannot use it together with the subterm criterion.
In [174] it is shown that minimality is preserved when the transformation A is
fused with the reduction pair and usable rules processors. Our implementation

4http://cl-informatik.uibk.ac.at/software/ttt2/11jar/
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direct as processor

8.42
8.42 8.30

8.7 8.42 8.30 none A U1 U2 U2
∑

subterm criterion 2 60 62 52 – 53 79 83 83

matrix (1) 4 101 112 76 97 114 120 126 126

matrix (2) 7 120 143 120 140 145 146 151 151

matrix (3) 9 121 144 122 144 149 150 153 154

Table 8.2.: Innermost termination for 213 ATRSs.

is based on the processor presented in [174, Theorem 6.17(D)]. In the column la-
beled A the transformation is fused with the reduction pair processor based on
matrix interpretations while for column A′ in addition the usable rules are com-
puted based on TCAP. The first version is more suitable for a comparison with our
processors (since U1 and U2 do also not incorporate usable rules) while the second
version shows that transformation A can be combined with other termination cri-
teria to obtain more advanced processors. Nevertheless the processors U1 and U2

admit more successful termination proofs. (In [174] further non-trivial extensions
of the transformation A are considered.)

It is a trivial exercise to extend mirroring to DP problems. Our experiments
revealed that (a) mirroring works better for the direct approach (hence we did not
incorporate it into the middle block of the table) and (b) the uncurrying processors
should be applied before other termination processors. Although Theorem 8.17
and the processor U2 are incomparable in power we recommend the usage of the
processor. One reason is the increased strength and another one the modularity
which allows to prevent pitfalls like Example 8.24. Last but not least, the proces-
sors U1 and U2 are not only sound but also complete (for full termination) which
makes them suitable for non-termination analysis in principle. At least with TTT2
we could not detect that this makes proving non-termination easier.

The right block of Table 8.1 gives the accumulated score for our transformations.
As reference the total number of systems is given (labeled

∑
) that any method

in the corresponding row could prove terminating, showing that the cost for the
auxiliary uncurrying rules is negligible compared to the gains in power. To see how
the uncurrying transformation improves the power of a “full” termination prover
we dropped it from the 2010 competition version of TTT2. Then the number of
successful termination proofs for applicative TRSs drops from 157 to 131.
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TMI (1) TMI (2) TMI (3) TMI (4)

8.43 8.43 8.43 8.43
− 8.7 8.47 − 8.7 8.47 − 8.7 8.47 − 8.7 8.47

dc/idc 3 3 4 10 10 14 12 14 26 12 16 28

Table 8.3.: (Innermost) derivational complexity for 195 (213) ATRSs.

Table 8.2 shows the results for innermost termination and admits similar conclu-
sions. In contrast to the experiments reported in [202], for this table TTT2 uses an
approximation for the innermost dependency graph [59, 68] and drops non-usable
rules [59]. Due to the latter, the results for columns A and A′ coincide.

Table 8.3 reports the performance of TTT2 for derivational complexity. Since
TTT2 has no special methods for proving innermost derivational complexity, the
numbers for dc and idc coincide. In this table columns labeled “–” do not use
any preprocessing transformation whereas 8.7, 8.43/8.47 indicate applications of
Corollary 8.7 and Theorems 8.43/8.47, respectively. We remark that Corollary 8.7
preserves derivational complexity. This is straightforward from [95, Lemma 2.1(3)].
Here TMIs of dimension one to four as presented in Theorem 8.1 are considered.
Coefficients of TMIs are represented with max{2, 5− d} bits; again an additional
bit is allowed for intermediate results. If Theorem 8.43 is used as preprocessing
transformation, TMIs can, e.g., show 26 systems to have at most cubic derivational
complexity while without uncurrying (with Theorem 8.7) the method only applies
to 12 (14) systems. Especially for larger dimensions in Table 8.3 our transforma-
tion admits significant gains in power. We only tested the direct transformations,
because proofs with dependency pairs give upper bounds on the derivational com-
plexity much beyond exponential [124]. Since many of the ATRSs in this testbed
contain partially applied terms or head variables in the right-hand sides this ham-
pers applicability of Corollary 8.7.

8.8. Related Work

The transformation A of Giesl et al. [59] requires proper applicative DP problems,
which are DP problems with the property that all occurrences of each constant have
the same number of arguments. No uncurrying rules are added to the processed
DP problems. This destroys minimality which means that not all DP processors
(i.e., only those not relying on minimality) may be applied after transformation A.
The following example is from [174].
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Example 8.75. Consider the `-applicative DP problem (P ,R) with P consisting
of the rewrite rule (g x) (h y) ] z → z z ] z and R consisting of the rules

c x y → x c (g x) y → c (g x) y

c x y → y c x (g y)→ c x (g y)

The DP problem (P ,R) is not finite because of the minimal rewrite sequence:

(g x) (h x) ] (c g h x)→ε
P (c g h x) (c g h x) ] (c g h x)

→R (g x) (c g h x) ] (c g h x)

→R (g x) (h x) ] (c g h x)

Applying the DP processor U1 produces (P↓U ,U+
η (R)) with P↓U consisting of the

rewrite rule g1(x) ? h1(y) ?] z → z ? z ?] z and U+
η (R) consisting of the rules

c2(x, y)→ x c2(g1(x), y)→ c2(g1(x), y) g ? x→ g1(x)

c2(x, y)→ y c2(x, g1(y))→ c2(x, g1(y)) h ? x→ h1(x)

c ? x→ c1(x) c1(x) ? y → c2(x, y)

This DP problem is not finite:

g1(x) ? h1(x) ?] (c2(g, h) ? x)→ε
P↓U (c2(g, h) ? x) ? (c2(g, h) ? x) ?] (c2(g, h) ? x)

→∗U+
η (R)

(g ? x) ? (h ? x) ?] (c2(g, h) ? x)

→∗U+
η (R)

g1(x) ? h1(x) ?] (c2(g, h) ? x)

Note that c2(g, h) ? x is terminating with respect to U+
η (R).

The uncurrying rules are essential in this example, even though in the original
DP problem all occurrences of each constant have the same number of arguments.
Indeed, transformation A leaves out the uncurrying rules, resulting in a DP prob-
lem that admits infinite rewrite sequences but no minimal ones since one has to
instantiate the variable z in g1(x)?h1(y)?]z → z?z?]z by a term that contains a sub-
term of the form c2(g1(s), t) or c2(s, g1(t)) and the rules c2(g1(x), y)→ c2(g1(x), y)
and c2(x, g1(y))→ c2(x, g1(y)) ensure that these terms are non-terminating.

Thiemann [174, Sections 6.2 and 6.3] addresses the loss of minimality by incor-
porating reduction pairs, usable rules, and argument filterings into the transfor-
mation A. (The first two refinements were considered in the column labeled A′ in
Table 8.1.) In [174] it is further remarked that transformation A works better for
innermost termination than for termination. This also holds for our processors U1

and U2 (cf. Section 8.7).
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Recently Sternagel and Thiemann have generalized uncurrying to relative rewrit-
ing and non-applicative signatures and formalized it in the theorem prover Is-
abelle/HOL [164]. In particular their work comprises the certification of Theo-
rem 8.17 (see [164, Corollary 11]) and the soundness direction of Theorem 8.62
(see [164, Theorem 15]) and Corollary 8.64 (see [164, Theorem 20]), respectively.

Aoto and Yamada [9, 10] present transformation techniques for proving termi-
nation of simply typed ATRSs. After performing η-saturation, head variables are
eliminated by instantiating them with ‘template’ terms of the appropriate type.
In a final step, the resulting ATRS is translated into functional form.

Example 8.76. Consider again the ATRS R of Example 8.8. Suppose we adopt
the following type declarations: 0 : int, s : int→ int, nil : list, (:) : int→ list→ list,
id : int → int, add : int → int → int, and map : (int → int) → list → list. The head
variable f in the right-hand side : (f x) (map f y) has type int → int. There are
three template terms of this type: s, id, and add z. Instantiating f by these three
terms in Rη produces the ATRS R′:

id x→ x map f nil→ nil

add 0→ id map s (: x y)→ : (s x) (map s y)

add 0 y → id y map id (: x y)→ : (id x) (map id y)

add (s x) y → s (add x y) map (add z) (: x y)→ : (add z x) (map (add z) y)

The TRS R′↓U is terminating because its rules are oriented from left to right by
the lexicographic path order. According to the main result of [9], the simply typed
ATRS R is terminating, too.

The advantage of the simply typed approach is that no uncurrying rules are
necessary because the application symbol has been eliminated from R′↓U . This
typically results in simpler termination proofs. It is worthwhile to investigate
whether a version of head variable instantiation can be developed for the untyped
case. We would like to stress that with the simply typed approach one obtains
termination only for those terms which are simply typed. Our approach, when
it works, provides termination for all terms, irrespective of any typing discipline.
In [8] the dependency pair method is adapted to deal with simply typed ATRSs.
Again, head variable instantiation plays a key role.

Applicative term rewriting is not the only model for capturing higher-order as-
pects. The S-expression rewrite systems of Toyama [182] have a richer structure
than applicative systems, which makes proving termination often easier. The no-
tion of strong computability is often employed for proving termination of typed
lambda calculi and variations like typed rewriting calculi [32]. Recent methods
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(e.g. [23, 89]) use types to exploit strong computability, leading to powerful ter-
mination methods which are directly applicable to higher-order systems. In [111]
strong computability is used to analyze the termination of simply typed ATRSs
with the dependency pair method, and recently this approach was extended to
higher-order rewrite systems [110]. Finally, in [101] many concepts from the de-
pendency pair framework have been lifted to algebraic functional systems, a higher-
order concept based on simple types and explicit β-reduction.

While in this article we used termination techniques for ordinary TRSs to show
termination of uncurried TRSs, it is worth noting that there is a specialized tech-
nique for uncurried TRSs. Van Bakel and Fernández [20] introduced the class of
curryfied TRSs and its type system for normalization. This class contains almost
all uncurried TRSs. Notable exceptions are `-ATRSs that contain a rule ` → r
with aa(`) > 0. In [20] it is shown that a typable curryfied TRS is terminating if
it satisfies the general scheme of [88].

We are not aware of other investigations dedicated to (derivational) complexity
analysis of ATRSs.
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Abstract

This paper describes a new confluence tool for term rewrite systems. Due to its
modular design, the few techniques implemented so far can be combined flexibly.
Methods developed for termination analysis are adapted to prove and disprove
confluence. Preliminary experimental results show the potential of our tool.

9.1. Introduction

We describe a new automatic tool for (dis)proving confluence of first-order rewrite
systems (TRSs for short). Our tool is developed in Innsbruck, the city at the
confluence of the two rivers Sill and Inn, and abbreviated CSI. It is available from

http://cl-informatik.uibk.ac.at/software/csi

and supports two new techniques for disproving confluence and very few but recent
techniques for establishing confluence. CSI is open-source, equipped with a strategy
language, and accessible via a simple web interface.

We assume familiarity with term rewriting and confluence [17, 172]. The re-
mainder of this paper is organized as follows. In Section 9.2 the main techniques
supported by CSI are summarized. Implementation issues are addressed in Sec-
tion 9.3 and Section 9.4 concludes with preliminary experimental results.
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9.2. Techniques

Besides Knuth and Bendix’ criterion [100] (joinability of critical pairs for termi-
nating systems), CSI supports the techniques described below.

Non-Confluence

To disprove confluence of a TRS R we consider peaks

t 6m← t1 ← s→ u1 →6n u (9.1)

such that t1 = s[r1σ]p ← s[`1σ]p = s = s[`2σ]q → s[r2σ]q = u1 with `1 → r1,
`2 → r2 ∈ R, q 6 p, and p ∈ Pos(s[`2]q). This includes critical overlaps and some
variable overlaps. In order to test non-joinability of t and u we consider ground
instances of t and u. Let cx be a fresh constant for every variable x and let t̂ denote
the result of replacing every variable in a term t by the corresponding constant.
Since for terms s and w we have s →R w if and only if ŝ →R ŵ, it follows that
terms t and u are joinable if and only if t̂ and û are joinable. In order to test
non-joinability of t̂ and û we overapproximate the sets of reducts for t̂ and û and
check if the intersection is empty.

The first approach is based on TCAP, which was introduced to obtain a better
approximation of dependency graphs [59]. Let t be a term. The term TCAP(t)
is inductively defined as follows. If t is a variable, TCAP(t) is a fresh variable. If
t = f(t1, . . . , tn) then we let u = f(TCAP(t1), . . . ,TCAP(tn)) and define TCAP(t)
to be u if u does not unify with the left-hand side of a rule inR, and a fresh variable
otherwise.

Lemma 9.1. If t̂ and û are joinable then TCAP(t̂ ) and TCAP(û) unify.

In the sequel we use the result in its contrapositive form, i.e., whenever TCAP(̂t )
and TCAP(û) are not unifiable then t̂ and û are not joinable.

The following example motivates why replacing variables by constants is bene-
ficial.

Example 9.2. Consider the TRS R consisting of the rules f(x, y) → g(x) and
f(x, y) → g(y). Note that TCAP(g(x)) = g(x′) and TCAP(g(y)) = g(y′) are
unifiable but since x and y are different normal forms it is beneficial to replace
them by fresh constants such that unification fails. We have TCAP(g(cx)) = g(cx)
is not unifiable with g(cy) = TCAP(g(cy)).

The next example illustrates Lemma 9.1.
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Example 9.3. Consider the TRS R = {a → f(a, b), f(a, b) → f(b, a)} from [177]
and the peak t̂ = f(f(b, a), b) 2← f(a, b) → f(b, a) = û. Since TCAP(̂t ) =
f(f(b, x), b) and TCAP(û) = f(b, y) are not unifiable R is not confluent.

We remark that Lemma 9.1 subsumes the case that t and u are different normal
forms or that t and u have different root symbols which do not occur at the root of
any left-hand side in R. The latter amounts to t(ε) 6= u(ε) and t(ε) 6= `(ε) 6= u(ε)
for all `→ r ∈ R, which is the test performed in [11].

Our second approach is based on tree automata. Let R be a left-linear TRS and
L a set of ground terms. A tree automaton A = (F , Q,Qf ,∆) is compatible [53]
with R and L if L ⊆ L(A) and for each ` → r ∈ R and state substitution
σ : Var(`) → Q, rσ →∗∆ q whenever `σ →∗∆ q. The extension to arbitrary TRSs
that we use in our implementation is described in [105]. Here L(A) is the language
accepted by a tree automaton A. In the following →∗R(L) denotes the set {t |
s→∗R t for some s ∈ L}.

Theorem 9.4. Let R be a TRS, A a tree automaton, and L a set of ground terms.
If A is compatible with R and L then →∗R(L) ⊆ L(A).

We overapproximate the sets of terms reachable from t̂ and û using tree au-
tomata, i.e., we construct tree automata A1 and A2 (by tree automata completion
[105]) such that →∗R({t̂ }) ⊆ L(A1) and →∗R({û}) ⊆ L(A2) and conclude non-
joinability of t̂ and û if L(A1) ∩ L(A2) = ∅, which is decidable.

Example 9.5. Consider Lévy’s TRS R from [84]

f(a, a)→ g(b, b) a→ a′ f(a′, x)→ f(x, x) f(x, a′)→ f(x, x)

g(b, b)→ f(a, a) b→ b′ g(b′, x)→ g(x, x) g(x, b′)→ g(x, x)

and t̂ = f(a′, a′) ∗← f(a, a) →∗ g(b′, b′) = û. We have →∗R({t̂ }) = {t̂ } and
→∗R({û}) = {û}. Consequently →∗R({t̂ }) ∩ →∗R({û}) = ∅ and hence we con-
clude non-joinability of t̂ and û which yields the non-confluence of R. Note that
TCAP(̂t ) = x and TCAP(û) = y unify.

Order-Sorted Decomposition

Next we focus on a criterion that allows to decompose a TRS R into TRSs
R1 ∪ · · · ∪ Rn where R is confluent whenever all Ri are confluent. Order-sorted
decomposition is a generalization of persistent decomposition [11, Definition 2] to
ordered sorts. It is based on a result in [47].

Theorem 9.6. Let R be a TRS and 〈F ,V〉 an order-sorted signature with sorts S
equipped with a strict order �. Assume that the following conditions hold:

235



9. CSI – A Confluence Tool

1. R is compatible with S, i.e., rules `→ r ∈ R are well-sorted, with variables
bound strictly in ` and the sort of ` is � that of r.

2. If R is non-left-linear and duplicating then for `→ r ∈ R, variables in r are
bound strictly as well. Furthermore, if r ∈ V the sort of r must be maximal.

If R is confluent on well-sorted terms then R is confluent on all terms.

Each sort attachment satisfying the conditions of Theorem 9.6 gives rise to
a decomposition of R into max {R ∩ TEα(F ,V) × TEα(F ,V) | α ∈ S}, where
TEα(F ,V) denotes the subterms of terms of sort � α. Note that we can replace
proper subterms t|p : β by any other terms with sort � β. Hence TEα(F ,V) is
closed under adding terms of sort � that of any terms in TEα(F ,V). As in the
many-sorted persistence case, we can find a most general ordered sort attachment
consistent with any given TRS efficiently. Start by assigning sort variables to the
argument and result types of all function symbols and to the variables occurring
in the rules, after renaming them to ensure that no two rules share any variables.
The consistency conditions, except for the maximality condition for collapsing
rules, translate to inequalities α � β between these type variables. To solve a
system of such constraints, consider the graph with sort variables as nodes and
edges from α to β whenever there is a constraint α � β. Then assign a distinct
sort to the variables of each strongly connected component of the graph, ordered
strictly by the edges between the components. A maximality constraint on β can
be enforced in a second pass that equates α and β whenever α � β. This process
is demonstrated in the example below.

Example 9.7. Consider the TRS

1: f(x,A)→ G(x) 2 : f(x,G(x))→ B 3: G(C)→ C 4: F(x)→ F(G(x))

We start by assigning variables to the various sorts. Let xi be the sort of x in
rule i. Furthermore let A : A, B : B, C : C, f : f1 × f2 → f , F : F1 → F and
G : G1 → G. By well-sortedness we get constraints f1 � x1, f2 � A from the
left-hand side of the first rule. By strictness of left-hand sides, we require that
x1 � f1. We get similar constraints from the other rules, noting that since the
TRS is non-duplicating, we do not have strictness constraints on the right-hand
sides. By relating the sorts of left-hand sides and right-hand sides, we obtain
further constraints, namely f � G, f � B, G � C and F � F . Denoting α � β
by an edge α→ β, we obtain the following graph:

236



9.3. Implementation

x2 f2 A

f1 G1 x4 F1 G C F

x1 f B

The strongly connected components are 8 = {f2}, 7 = {A}, 6 = {f}, 5 = {B},
4 = {G1, x1, f1, x2}, 3 = {F1, x4}, 2 = {G}, 1 = {C}, and 0 = {F}, ordered by
8 � 7, 2, 6 � 5, 2, and 4 � 3 � 2 � 1. The resulting signature is A : 7, B : 5,
C : 1, f : 4× 8→ 6, F : 3→ 0, and G : 4→ 2 giving rise to the decomposition into
the TRSs {(1), (2), (3)} and {(3), (4)}.

If we required maximality of the sort 2 = {G}, then we would equate 2 and 3
(since 3 � 2), and further with 4 (as 4 � 3), 6 (as 6 � 2) and 8 (as 8 � 2), obtaining
8′ = {G,F1, x4, G1, x1, f1, x2, f, f2}, ordered by 8′ � 7, 5, 1. The resulting signature
is A : 7, B : 5, C : 1, f : 8′ × 8′ → 8′, F : 8′ → 0, and G : 8′ → 8′. Note that here no
(non-trivial) decomposition is possible.

Decreasing Diagrams

The decreasing diagrams technique [138, 139] is a complete method for confluence
on countable abstract rewrite systems. The next result employs decreasing dia-
grams for TRSs and follows immediately from [201, Corollary 3.16]. It also serves
to demonstrate the design of our tool which typically implements one criterion by
combining smaller pieces via a strategy language (cf. Section 9.3). Here Rd (Rnd)
denotes the (non)duplicating rules in a TRS R.

Theorem 9.8. A left-linear TRS R is confluent if Rd is terminating relative
to Rnd and all critical peaks of R are decreasing with respect to the rule
labeling.

To exploit this theorem we need to solve relative termination problems. In [201]
we show that relative termination techniques can additionally be used for labeling
diagrams (also in combination with the rule labeling).

9.3. Implementation

CSI is implemented based on the open source termination tool TTT2 [107] and
written in OCaml. As explained in the preceding section, several criteria from
termination analysis are useful for confluence. Our tool is based on few techniques,
but a strategy language (akin to the one to control TTT2) allows one to combine
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9. CSI – A Confluence Tool

different criteria flexibly and to obtain a powerful tool. For a grammar of this
strategy language, consult [107] or pass the option -h to the tool.

Automatic Mode

In its automatic mode CSI executes the strategy

(KB || NOTCR || (((CLOSED || DD) | add)2*)! || sorted -order)*

Here identifiers in capital letters abbreviate combinations of techniques. We skip
details for brevity. The command KB refers to Knuth and Bendix’ criterion [100],
NOTCR is a test for non-confluence as described in Section 9.2, and sorted -order

aims for an order-sorted decomposition (cf. Section 9.2 and [47]). The opera-
tor || executes all those criteria in parallel—to make use of modern multi-core
architectures—and the first substrategy that succeeds is used to make progress
on the given problem. Since a successful call to sorted -order returns a list of
problems, the trailing * ensures that the above strategy is iterated on all sub-
problems until no further progress can be achieved. Finally we describe the part
that is still missing. CLOSED tests whether the critical pairs of a left-linear system
are development closed [143] and DD implements decreasing diagrams (Section 9.2
and [201]). If these methods do not succeed the alternative | executes add, which
adds new rules that might enable the other criteria to succeed ([201, Lemma 4.3
and Example 4.4]) while the postfix 2* executes the strategy inside parentheses at
most two times, i.e., CLOSED || DD is run again, if some rules have been added.
The outermost ! ensures that the strategy inside only succeeds if confluence could
be (dis)proved.

Strategy Language

We elaborate on the strategy language to show the flexibility and modularity of
our tool. In the strategy nonconfluence -steps 2 -tcap the flag -tcap tests
non-joinability of terms with TCAP, as outlined in Section 9.2. With -steps

values for m and n in the peak (9.1) on page 234 are set.
The criterion from Theorem 9.8 allows one to use the decreasing diagrams tech-

nique, provided some precondition is satisfied. To this end the composition op-
erator ; is employed, where A; B executes B only if A succeeds. Given an input
TRS R, in the strategy

cr -dup; matrix -dim 2*; rule labeling; decreasing

the expression cr -dup generates the relative TRSRd/Rnd, termination of which is
attempted with matrix interpretations of dimension 2. If this succeeds the critical
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CSI ACP
∑

CR 61 64 67
not CR 20 18 21

(a) 106 TRSs.

CSI ACP
∑

CR 43 42 43
not CR 47 47 47

(b) 99 TRSs.

CSI ACP
∑

CR 6 2 6
not CR 2 2 2

(c) 9 TRSs.

Table 9.1.: Experiments.

diagrams are labeled with the rule labeling [138], before a test for decreasingness
is performed. We note that the strategy language allows to label incrementally
combining different (relative termination) criteria [201]. Here a critical diagram
is a critical peak t ← s → u together with joining sequences t →∗ v ∗← u.
In the implementation for every critical peak we consider all joining sequences
t→6n · 6n← u for which there is no smaller n that admits a common reduct.

9.4. Evaluation

For experiments1 we used the collection from [4] which consists of 106 TRSs from
the rewriting literature dealing with confluence (Table 9.1(a)), the 99 TRSs from
the 2010 edition of the termination competition which are non-terminating or
not known to be terminating (Table 9.1(b)), and the TRSs from [47, 201] (Ta-
ble 9.1(c)). The time limit of 60 seconds was hardly ever reached.

In Table 9.1 we compare the automatic mode of our tool with ACP [11], a
confluence prover that implements various techniques from the literature. On the
testbench in Table 9.1(a) ACP can show more systems confluent than CSI but our
tool is superior for non-confluence. The last column shows that on this testbench
no tool subsumes the other one which is not the case for Tables 9.1(b)(c).

Table 9.2 elaborates on the differences of the tools’ performance. Here a ×
indicates that the corresponding tool failed to analyze the status of the given TRS
while a X means that confluence (or non-confluence) could be determined. The
numbers in parentheses refer to the time spent on this problem in seconds. The
different blocks in Table 9.2 correspond to the different testbeds employed.

The rewriting toolkit CiME3 [37] also supports confluence analysis as one of
its many features. This tool exploits Newman’s Lemma, i.e., for a terminating
TRS confluence coincides with local confluence (the latter can then effectively be
checked [100]). While this test is also contained in ACP and CSI, the novel feature
of CiME3 is that it can (automatically) certify such confluence proofs in the proof
assistant Coq.

1Details are available from the CSI website.
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system CSI ACP status

BN98/ex6.5f ×(∞) X(0.4) ¬CR
Der97/p204 ×(6.6) X(0.1) CR
GL06/ex3 X(0.6) ×(0.2) CR
GOO96/R2p ×(6.3) X(0.1) CR
Gra96caap/ex2 ×(3.0) X(0.1) CR
OO03/ex1 X(4.0) ×(7.0) CR
OO03/ex2 ×(6.3) X(0.1) CR
Ohl94caap/ex5.12 X(0.4) ×(0.1) ¬CR
TO01/ex6 ×(6.3) X(0.1) CR

system CSI ACP status

Tiw02/ex1 X(0.3) ×(0.1) ¬CR
Toy98/ex1 ×(6.1) X(0.1) CR
standards/AC X(2.7) ×(0.1) CR
standards/add C X(4.0) ×(0.1) CR
Transformed CSa X(4.6) ×(∞) CR
ZFM11/ex1.1 X(4.9) ×(7.0) CR
ZFM11/ex3.18 X(1.0) ×(0.1) CR
ZFM11/ex3.20 X(2.1) ×(0.5) CR
ZFM11/ex4.1 X(0.9) ×(0.1) CR

aTransformed CSR 04 PALINDROME nokinds-noand L

Table 9.2.: Performance difference on the three testbenches.

To conclude we stress the main attractions of CSI: To the best of our knowledge
it is the only tool that implements order-sorted decomposition of rewrite systems,
it employs powerful criteria for disproving confluence, and due to the modular
design it allows to combine different labeling functions for the decreasing diagrams
technique.
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10. KBCV – Knuth-Bendix Completion
Visualizer

Publication Details

Thomas Sternagel and Harald Zankl, KBCV – Knuth-Bendix Completion Visu-
alizer, In Proceedings of the 6th International Joint Conference on Automated
Reasoning (IJCAR 2012), Lecture Notes in Computer Science (Lecture Notes in
Artificial Intelligence) 7364, pp. 530–536, Springer, 2012.
doi: 10.1007/978-3-642-31365-3_41

Abstract

This paper describes a tool for Knuth-Bendix completion. In its interactive mode
the user only has to select the orientation of equations into rewrite rules; all other
computations (including necessary termination checks) are performed internally.
Apart from the interactive mode, the tool also provides a fully automatic mode.
Moreover, the generation of (dis)proofs in equational logic is supported. Finally,
the tool outputs proofs in a certifiable format.

10.1. Introduction

The Knuth-Bendix Completion Visualizer (KBCV) is an interactive/automatic tool
for Knuth-Bendix completion and equational logic proofs. This paper describes
KBCV version 1.7, which features a command-line and a graphical user interface as
well as a Java-applet version. The tool is available under the GNU Lesser General
Public License 3 at

http://cl-informatik.uibk.ac.at/software/kbcv

Completion is a procedure which takes as input a finite set of equations E (and
nowadays optionally a reduction order >) and attempts to construct a terminat-
ing and confluent term rewrite system (TRS) R which is equivalent to E, i.e.,
their equational theories coincide. In case the completion procedure succeeds, R
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DEDUCE
(E,R)

(E ∪ {s ≈ t}, R)
if s R← u→R t

COMPOSE
(E,R ∪ {s→ t})
(E,R ∪ {s→ u}) if t→R u

COLLAPSE
(E,R ∪ {s→ t})
(E ∪ {u = t}, R)

if s
A→R u

ORIENT
(E ∪ {s

.
≈ t}, R)

(E,R ∪ {s→ t}) if s > t

DELETE
(E ∪ {s ≈ s}, R)

(E,R)

SIMPLIFY
(E ∪ {s

.
≈ t}, R)

(E ∪ {u
.
≈ t}, R)

if s→R u

Figure 10.1.: Inference rules for completion with a fixed reduction order (C).

represents a decision procedure for the word problem of E. Now two terms are
equivalent with respect to E if and only if they reduce to the same normal form
with respect to R.

The computation is done by generating a finite sequence of intermediate TRSs
which constitute approximations of the equational theory of E. Following Bach-
mair and Dershowitz [18] the completion procedure can be modeled as an inference
system like system C in Figure 10.1. The inference rules work on pairs (E,R) where
E is a finite set of equations and R is a finite set of rewrite rules. The goal is to
transform an initial pair (E,∅) into a pair (∅, R) such that R is terminating, con-
fluent and equivalent to E. In our setting a completion procedure based on these
rules may succeed (find R after finitely many steps), loop, or fail. In Figure 10.1

a reduction order > is provided as part of the input. We use s
A→R u to express

that s is reduced by a rule ` → r ∈ R such that ` cannot be reduced by another
rule s→ t ∈ R. The notation s

·
≈ t denotes either of s ≈ t and t ≈ s.

Writing (E,R) `C (E ′, R′) to indicate that (E ′, R′) is obtained from (E,R) by
one of the inference rules of system C we define a completion procedure:

Definition 10.1. A completion procedure is a program that accepts as input a
finite set of equations E0 (together with a reduction order >) and uses the inference
rules of Figure 10.1 to construct a sequence

(E0,∅) `C (E1, R1) `C (E2, R2) `C (E3, R3) `C · · ·

Such a sequence is called a run of the completion procedure on input E0 and >.
A finite run (E0,∅) `nC (∅, Rn) is successful if Rn is locally confluent.

The following result follows from [17, Theorem 7.2.8] specialized to finite runs.

Lemma 10.2. Let (E0,∅) `nC (∅, Rn) be a successful run of completion. Then Rn

is terminating, confluent, and equivalent to E0.
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In the sequel we assume familiarity with term rewriting, equational logic, and
completion [17]. The remainder of this paper is organized as follows. In the next
section the main features of KBCV are presented before Section 10.3 addresses
implementation issues and experimental results. Section 10.4 concludes.

10.2. Features

KBCV offers two modes for completion, namely the Normal Mode (Section 10.2.1)
and the Expert Mode (Section 10.2.2). In the GUI the user can change the mode
via the menu entry View at any time. Irregardless of the chosen mode, termination
checks are performed automatically, following the recent approach from [189]. By
default, an incremental LPO is constructed and maintained by the tool but also
external termination tools are supported (this option is not available in the applet
version). For convenience KBCV stores a history that allows to step backwards (and
forwards again) in interactive completion proofs. Apart from completion proofs,
the tool can generate proofs in equational logic (Section 10.2.3) and produces
output in a certifiable format.

10.2.1. Normal Mode

In normal mode the user can switch between efficient and simple completion. The
efficient procedure executes all inference rules from Figure 10.1 in a fixed order,
while the simple procedure considers a subset only.

Efficient Completion

The efficient completion procedure (following Huet [87], see Figure 10.2) takes a
set of equations E as input and has three possible outcomes: It may terminate
successfully, it may loop indefinitely, or it may fail because an equation could not
be oriented into a rewrite rule.

While E 6= ∅ the user chooses an equation s ≈ t from E. The terms in this
equation are simplified to normal form by using SIMPLIFY exhaustively. In the
next step the equation is deleted if it was trivial and if so the next iteration of
the loop starts. Otherwise (following the transition labeled NO) the user suggests
the orientation of the equation into a rule and ORIENT performs the necessary
termination check. Here the procedure might fail if the equation cannot be oriented
(in either direction) with the used termination technique. But if the orientation
succeeds the inferred rule is used to reduce the right-hand sides of (other) rules to
normal form (COMPOSE) while COLLAPSE rewrites the left-hand sides of rules,
which transforms rules into equations that go back to E. In this way the set of
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SIMPLIFY

DELETE ORIENT

COMPOSE

COLLAPSEDEDUCEE = ∅

complete failureto NF

new CPs

NO

YES

choose
s ≈ t

to NF

to NF

failed

Figure 10.2.: Flow chart for the efficient completion procedure.

rules in R is kept as small as possible at all times. Afterwards DEDUCE is used to
compute (all) critical pairs (between the new rule and the old rules and between
the new rule and itself). If still E 6= ∅ the next iteration of the loop begins
and otherwise the procedure terminates successfully yielding the terminating and
confluent (complete) TRS R equivalent to the input system E.

Simple Completion

The simple procedure (following the basic completion procedure [17, Figure 7.1])
makes no use of COMPOSE and COLLAPSE, which means that the inference rule
DEDUCE immediately follows ORIENT. Hence although correct, this procedure is
not particularly efficient.

10.2.2. Expert Mode

Inference System

In the expert mode the user can select the equations and rewrite rules on which the
desired inference rules from Figure 10.1 should be applied on. If no equations/rules
are selected explicitly then all equations/rules are considered. For efficiency rea-
sons DEDUCE does only add critical pairs emerging from overlaps that have not
yet been considered. KBCV notifies the user if a complete R equivalent to the
input E is obtained.
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SIMPLIFY

DELETE E = ∅

complete

ORIENT

COMPOSE

COLLAPSEDEDUCE

to NF

new CPs

YES

choose
s ≈ t

to NF

to NF

Figure 10.3.: Flow chart for the automatic mode.

Automatic Mode

At any stage of the process the user can press the button Completion which
triggers the automatic mode of KBCV where it applies the inference rules according
to the loop in Figure 10.3. Pressing the button again (during the completion
attempt) stops the automatic mode and shows the current state (of the selected
thread, see below). It is also possible to specify an upper limit on the loops
performed in Figure 10.3 (Settings → Automatic Completion). This is especially
useful to step through a completion proof with limit 1.

In Figure 10.3 the rules SIMPLIFY and DELETE operate on all equations and
are applied exhaustively. If E = ∅ then R is locally confluent (since the previous
DEDUCE considered all remaining critical pairs) and the procedure successfully
terminates. Note that in contrast to the completion procedure from Figure 10.2
the automatic mode postpones the choice of the equation s ≈ t. Hence KBCV
can choose an equation of minimal length after simplification (which is typically
beneficial for the course of completion) for the rule ORIENT. To maximize power,
KBCV executes two threads in parallel which have different behavior for ORIENT.
The first thread prefers to orient equations from left-to-right and if this is not
possible it tries a right-to-left orientation (the second thread behaves dually). If
this also fails another equation is selected in the next turn. (Note that it is possible
that some later equation can be oriented which then simplifies the problematic
equation such that it can be oriented or deleted.) A thread fails if no equation
in E can be oriented in the ORIENT step.
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10.2.3. Equational Logic and Certification

Since KBCV stores how rules have been deduced from equations [167], in command-
line mode the command showh lists how rules/equations have been derived and
allows to trace back the completion steps that gave rise to a rule/equation. The
same mechanism facilitates KBCV to automatically transform a join s→∗R · ∗R← t
with respect to the current system R (which need not be complete yet) into a
conversion with respect to the input system E, i.e., s↔∗E t, and further into equa-
tional proofs with respect to E (File → Equational Proof ).

If E could be completed into a TRS R, the recent work in [167] allows KBCV
to export proof certificates (File → Export Equational Proof and File → Export
Completion Proof ) in CPF, a certification proof format for rewriting.1 These proof
certificates can be certified by CeTA [176], i.e., checked by a trustable program
generated from the theorem prover Isabelle. Apart from the input system E and
the completed TRS R such a certificate must also contain a proof that E and R
are equivalent, e.g., by giving an explicit conversion `↔∗E r for each `→ r ∈ R.

10.3. Implementation and Experiments

KBCV is implemented in Scala,2 an object-functional programming language which
compiles to Java Byte Code. For this reason KBCV is portable and runs on Win-
dows and Linux machines. We developed a term library in Scala (scala-termlib,
available from KBCV’s homepage) of approximately 1700 lines of code. KBCV
builds upon this library and has an additional 4500 lines of code.

Besides the stand-alone version of KBCV there also is a Java-Applet version
available online. The stand-alone version has three different modes: The text
mode where one can interact with KBCV via the console, the graphic mode using a
graphical user interface implemented in java.swing, and the hybrid mode where
the text mode and the graphic mode are combined. In text mode typing help

yields a list of all available commands, whereas in graphic (hybrid) mode or the
Java-Applet you can select Help → User Manual to get a description of the user
interface.

The stand-alone version of KBCV is able to call third party termination checkers
whereas the Java-Applet version is limited to the internal LPO for termination
proofs.

As input KBCV supports the XML-format for TRSs3 and also a subset of the

1http://cl-informatik.uibk.ac.at/software/cpf
2http://www.scala-lang.org/
3http://www.termination-portal.org/wiki/XTC_Format_Specification
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older TRS-format.4 (Only one VAR and one RULES section are allowed in this
order. No theory or strategy annotations are supported.) In both cases rules are
interpreted as equations.

In addition KBCV supports another file format for the export and import of
command logs to save and load user specific settings of KBCV. This format lists
all executed commands within KBCV in a human readable form, like:

load ../examples/gene.trs

orient > 1

simplify

...

Saving the current command log is done via (File → Export Command Log) and
loading works alike (File → Load Command Log). Command logs saved in the file
.kbcvinit are loaded automatically on program startup.

Although the major attraction of KBCV clearly is its interactive mode, in the
sequel experimental results demonstrate that its automatic mode can compete with
state-of-the-art completion tools. To this end we extend [98, Table 1] with data
for KBCV (considering 115 problems from the distribution of MKBTT).5 Hence
Table 10.16 compares KBCV with MKBTT [154], Maxcomp [98], and Slothrop [189].
Within a time limit of 300 seconds, KBCV completes 85 systems using its internal
LPO and succeeds on an additional system when calling the external termination
tool TTT2 [107]. Slothrop [189] was the first tool to construct reduction orders
on the fly using external termination tools and obtains 71 completed systems.
MKBTT [154] adopts this approach, but additionally features multi-completion, i.e.,
considering multiple reduction orderings at the same time. Finally, the strategy of
Maxcomp [98] is to handle all suitable candidate TRSs (terminating and maximal)
at once. Maxcomp can complete 86 systems with LPO but since the search for
maximal TRSs is coupled with the search for the reduction order this approach
does not support external termination tools. All tools together can complete 95
systems. The lower part of Table 10.1 shows those systems which only one tool
could complete within the given time limit. Here KBCV completed two systems
where all other tools failed.

All 86 completion proofs found by KBCV (Table 10.1) could be certified by
CeTA [176] (see Section 10.2.3). Since recently, MKBTT can also provide proof
certificates but currently neither Maxcomp nor Slothrop support them.

4http://www.lri.fr/~marche/tpdb/format.html
5http://cl-informatik.uibk.ac.at/software/mkbtt
6KBCV data available at http://cl-informatik.uibk.ac.at/software/kbcv/experiments/12ijcar.
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LPO termination tool
KBCV MKBTT Maxcomp KBCV MKBTT Slothrop

completed 85 70 86 86 81 71

LS94 P1 X X
SK90 3.26 X X
Slothrop cge X
Slothrop equiv proof or X
WS06 proofreduction X

Table 10.1.: Experimental results on 115 systems.

10.4. Conclusion

In this paper we have presented KBCV, a tool that supports interactive completion
proofs. Hence it is of particular interest for students and users that are exposed to
the area of completion for the first time or want to follow a completion proof step
by step. Its automatic mode can compete with modern completion tools (Slothrop,
MKBTT, Maxcomp) that use more advanced techniques for completion (completion
with external termination tools, multi-completion, maximal-completion) but lack
an interactive mode. Since KBCV records how rules have been derived, it can
produce certifiable output of completion proofs and can construct (dis)proofs in
equational logic.

Unfailing completion [19] is a variant of Knuth-Bendix completion, which sac-
rifices confluence for ground confluence. One possible direction for future work
would be to integrate unfailing completion into KBCV. Another issue is to gain
further efficiency by a smart design of the employed data structure [116].
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