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To Jean-Pierre on this momentous occasion.

Abstract. Showing termination of the Battle of Hercules and Hydra is
a challenge. We present the battle both as a rewrite system and as an
arithmetic while program, provide proofs of their termination, and recall
why their termination cannot be proved within Peano arithmetic.

As a second labour he ordered him to kill the Lernaean hydra.
That creature, bred in the swamp of Lerna,

used to go forth into the plain
and ravage both the cattle and the country.

Now the hydra had a huge body, with nine heads,
eight mortal, but the middle one immortal. . . .

By pelting it with fiery shafts he forced it to come out,
and in the act of doing so he seized and held it fast.

But the hydra wound itself about one of his feet and clung to him.
Nor could he effect anything by smashing its heads with his club,

for as fast as one head was smashed there grew up two.

– Pausanias, Description of Greece, 2.37.4

1 Introduction

The Battle of Hydra and Hercules, as described in the above-quoted myth, and
depicted on the Etruscan hydra (water jar) in Fig. 1, inspired Laurie Kirby and
Jeff Paris [24] to formulate a process, the termination of which cannot be proved
by ordinary induction on the natural numbers. Instead, recourse must be made
to induction on the ordinals less than the ordinal number “epsilon naught”, in
the ordinal hierarchy created by Georg Cantor.

The alternating steps of Hercules and Hydra in the formal battle are quite
easy to understand (and are more appealing than the similar but older Goodstein
sequence [17], also treated in [24]). The battle itself is described in Sect. 2. Yet
! The first author’s research was supported in part by the Israel Science Foundation
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Fig. 1. Caeretan hydra, attributed to Eagle Painter, c. 525 b.c.e. See [19]. (Courtesy
of the J. Paul Getty Museum, Villa Collection, Malibu, CA)



the fact that Hercules is always the declared winner, as shown in Sect. 4, is
far from obvious. As such, it is arguably the simplest example of a terminating
process that is not amenable to argument by means of Peano’s famous axioms
of arithmetic. Termination is a conceptually clear notion. Thus, it is fair to
claim that the Hydra Battle is more intuitive, as an independence result, than
employing Ramsey-like theorems, for instance; cf. [30].

In the popular survey on rewriting [10]4 by Jean-Pierre Jouannaud and the
first author (and in several later publications, [11, Prob. 23], [7]), a rewrite system
for the battle was presented, but it was unfortunately fraught with lapsus calami.
Nevertheless, proving its termination has been a challenge for contestants in
termination competitions [28]. A repaired version was promulgated years later
[26].

In the sections that follow, we describe the vicissitudes of this formalization
of the battle in rewrite systems (Sect. 5), prove their termination (Sect. 8), and
also encode the battle as a while program (Sect. 9). This paper concentrates
on the interpretation of successive hydræ as decreasing ordinal numbers. But
there are alternative, less “highbrow” arguments (in Alan Turing’s words [35]);
see Martin Gardner’s column [15]. Some properties of ordinals and orders are
briefly reviewed in Sects. 3, 6 and 7.

For more on the problem and its extensions, see [13]. See also [27,21,34]. We
conclude with one such extension.

2 The Hydra Battle

In a landmark paper [24], Kirby and Paris showed that – for their version of the
battle – more than ordinary induction on the natural numbers is needed to show
that Hercules prevails.

2.1 The Formal Battle

In the mathematical battle, hydræ are represented as (unordered, rooted, finite)
trees, with each leaf corresponding to one head of the monster. Whereas Her-
cules decapitates Hydra, one head at a time, Hydra regenerates according to
the following rule: If the severed head has a grandparent node, then the branch
issuing from that node together with the mutilated subtree is multiplied by a
certain factor; otherwise, Hydra suffers the loss without any regrowth. Hercules
wins when (not if!) the beast is reduced to the empty tree.

(In the original formulation of this game, the multiplication factor is one
more than the stage of the game. We modify the definition slightly and set the
multiplication factor equal to the stage of the game, as otherwise the system D
below fails to encode the Hydra Battle. The results in [24] are unaffected by this
change.)
4 This survey is the most cited document for its year of publication (1990) in the

CiteSeer database [31], and has always been high in the overall list.



We write (H, n) to describe a single configuration in the game, where H
denotes Hydra and n the current stage of the game.

Example 1.

(H1, 1) (H2, 2) (H3, 3)

In the first stage, Hercules chops off the leftmost head. As this head has no
grandparent, Hydra shrinks. However, in Stage 2, Hercules chops off a head with
a grandparent (the triangular root). Consequently, Hydra grows two replacement
branches, as indicated. !"

More examples can be found in [24,34].

2.2 Functional Hydra

It is easy to express the Hydra Battle in a functional language with list opera-
tions, like Lisp. However, so as not to complicate matters unnecessarily, we do
not follow the original definition of Kirby and Paris, but rather restrict atten-
tion to ordered trees (with immediate subtrees ordered sequentially from left
to right). Let nil denote an empty list and cons(x, y) be the list obtained by
prepending an element x (the right-most subtree) to a list y (the remaining tree).
Thus, the first hydra in Example 1 would be represented as follows:

cons(!, cons(cons(cons(!, cons(!, nil)), nil), cons(!, cons(!, cons(!, nil))))) ,

where ! = cons(nil, nil) stands for a leaf of a Hydra and we have reordered
the immediate subtrees of the root of H1 such that the number of nodes is non-
increasing. In the rewrite system to be introduced below, a “cons-cell” is grafted
together by the function symbol g.

Let car(cons(x, y)) = x and cdr(cons(x, y)) = y extract the first item in a
nonempty list cons(x, y) and the remainder of the list, respectively. The battle
can be encoded by the following program, L:



h0(x)
where

hn(x) :=
{
nil x = nil
hn+1(dn(x)) otherwise

dn(x) :=






cdr(x) car(x) = nil
fn(cdr(car(x)), cdr(x)) car(car(x)) = nil
cons(dn(car(x)), cdr(x)) otherwise

fn(y, x) :=
{

x n = 0
cons(y, fn−1(y, x)) otherwise

Here, hn(x) plays the game with initial hydra x, starting at stage n, dn(x) plays
one round of the battle, by travelling along a leftmost branch until encountering
a branch z such that car(car(z)) is empty, and then using fn(y, x) to prepend
k copies of y = cdr(car(z)) to x.

Better yet, if we let ε symbolize nil and use a colon : for cons, then the
following pattern-directed program plays the battle h0(x) until its inevitable
end:

hn(ε) := ε

hn(x : y) := hn+1(dn(x : y))
dn(ε : y) := y

dn((ε : x) : y) := fn(x, y)
dn(((u : v) : x) : y) := dn((u : v) : x) : y

f0(y, x) := x

fn+1(y, x) := y : fn(y, x)

3 Orders and Ordinals

Termination proofs are often based on well-founded orderings. Our proofs are
no exception.

3.1 Well-founded Orders

A partial order # is an irreflexive and transitive binary relation. Its converse is
written with a reflected symbol ≺. A quasi-order ! is a reflexive and transitive
relation. A quasi-order ! induces a (strict) partial order #, such that a # b if
a ! b %! a. A partial order # on a set A is well-founded (on A) if there exists no
infinite descending sequence a1 # a2 # · · · of elements of A. A partial order is
linear (or total) on A if for all a, b ∈ A, a different from b, a and b are comparable
by #. A linear well-founded order is called a well-order.



Let F be a signature. An F-algebra A is a set A, its domain, together with
operations fA : An → A for each function symbol f ∈ F of arity n. An F -
algebra (A,≺) is called monotone if A is associated with a partial order # and
every algebra operation fA is strictly monotone in all its arguments. A monotone
F -algebra (A,#) is called well-founded if # is well-founded.

Let (A,#) denote an F -algebra and let a : V → A denote an assignment. We
write [a]A to denote the homeomorphic extension of the assignment a and define
an ordering #A on terms T (F ,V) in the usual way: s #A t if [a]A(s) # [a]A(t)
for every assignment a.

3.2 Order Types

We assume some very basic knowledge of set theory and in particular of ordinals,
as in, for example, [22]. We write > to denote the well-order on ordinals. This
order can, of course, be employed for inductive arguments.

The ordinal ε0 (“epsilon naught”) is the smallest solution to ωx = x. Recall
that any ordinal α < ε0, α %= 0, can be uniquely represented in Cantor Normal
Form (CNF) as a sum

ωα1 + · · · + ωαn ,
where α1 " · · · " αn. The set of ordinals below ε0 in CNF will also be denoted
CNF. For α = ωα1 + · · · + ωαn and β = ωαn+1 + · · · + ωαn+m , the natural sum
α ⊕ β is defined as ωαπ(1) + · · ·+ωαπ(n+m) , where π denotes a permutation of the
indices [1, n + m] (= {1, . . . , n + m}) such that απ(1) " απ(2) " · · · " απ(n+m) is
guaranteed. We write α · n as an abbreviation for α + · · · + α (n times α), and
we identify the natural numbers (N) with the ordinals below ω. We denote the
set of limit ordinals by Lim.

To each well-founded order # on a set A, one can associate a (set-theoretic)
ordinal, its order type. First, we associate an ordinal to each element a of A by
setting

otype"(a) := sup{otype"(b) + 1 | b ∈ A and a # b} .
Then the order type of #, denoted otype(#), is defined as sup{otype"(a) + 1 |
a ∈ A}. For two partial orders # and #′ on A and A′, respectively, a mapping
o : A → A′ embeds # into #′ if, for all x, y ∈ A, we have that x # y implies
o(x) #′ o(y).
Lemma 1. If both # and #′ are well founded and if # can be embedded into
#′, then otype(#) # otype(#′).

Two linear partial orders (A,#) and (B,#′) are order-isomorphic (or equiv-
alent) if there exists a surjective mapping o : A → B such that (x # y ⇐⇒
o(x) #′ o(y)) for all x, y ∈ A.

4 Herculean Strength

The natural game-theoretic question is whether Hercules has a winning strategy.
A strategy is a mapping determining which head Hercules should chop off at each
stage.



4.1 Hercules Prevails

It turns out that whatever strategy Hercules fights by he eventually wins. It’s
only a question of time. In our proof, we follow Kirby and Paris [24] and associate
with each hydra an ordinal below ε0:

1. Assign 0 to each leaf.
2. Assign ωα1 ⊕ · · · ⊕ ωαn to each internal node, where αi are the ordinals

assigned to the children of the node.

The ordinal representing Hydra is the ordinal assigned to her root node.

Example 2. Consider hydræ H1–H3, above. These have the representations ω3 ⊕
ω2 ⊕ 1, ω3 ⊕ ω2, and ω2 · 3, respectively. !"

In the sequel, we confound the representation of a hydra as finite tree and
as ordinal. Let (H, n) denote a configuration of the game. Then (H)Sn denotes
the resulting Hydra if strategy S is applied to H at stage n. That is, the next
configuration is ((H)Sn, n + 1).

Lemma 2 (Kirby & Paris [24]). For any strategy S, Hydra H and natural
number n, we obtain H > (H)Sn.

Theorem 1 (Kirby & Paris [24]). Every strategy is a winning strategy.

Proof. The theorem follows from the lemma together with the fact that > is
well-founded. !"

One can readily see from the proof that Hercules also wins a seemingly more
challenging battle, wherein Hydra generates an arbitrary number of replacement
branches at any level of the tree, but the resulting Hydra is smaller (as an ordinal)
than the original. Again, any strategy is a winning strategy. Such a reformulation
of the Hydra Battle is depicted in Fig. 2, taken from a survey lecture on proofs
and computation by Jouannaud [23].5 Similar extensions of the Hydra Battle
have recently been considered by Rudolf Fleischer in [13].

Now we formally define a specific strategy for the Hydra Battle that has been
called standard in [34]. For n ∈ N, we associate an ordinal αn ∈ CNF with every
α ∈ CNF:

αn =






0 if α = 0
β if α = β + 1
β + ωγ · n if α = β + ωγ+1

β + ωγn if α = β + ωγ and γ ∈ Lim

Then we can define the standard Hydra Battle as follows:

Definition 1 (Hydra Battle). A hydra is an ordinal in CNF. The Hydra
Battle is a sequence of configurations. A configuration is a pair (α, n), where α
denotes a hydra and n " 1, the current step. Let (α, n) be a configuration, such
that α > 0. Then the next configuration in the standard strategy is (αn, n + 1).
5 “This is one of Nachum Dershowitz’s favorite examples” [23].



=⇒

Fig. 2. Evelyne Contejean’s rendition of the battle (from Jouannaud’s survey [23])

This definition implies that we force a one-to-one correspondence between finite
trees and ordinals. Hence, we again restrict ourselves to ordered trees.

This strategy conforms with the prior description of the battle, provided
Hydra’s immediate subtrees in the functional battle are arranged (at all levels)
from the largest on the left to the smallest on the right. Here, largeness or
smallness of subtrees is measured by the corresponding ordinal.

Remark 1. The sequence (αn)n∈N is usually referred to as a fundamental se-
quence of α. A fundamental sequence fulfills the property that for limit ordinal
λ ∈ Lim, the sequence (λn)n is strictly increasing and its limit is λ. For the
connection between rewriting and fundamental sequences, see, for example, [29].

4.2 Beyond Peano

In the remainder of this section, we show that Peano Arithmetic cannot prove
termination of the standard Hydra Battle, which is a special case of a more
general theorem stated in [24,13].

We define two ordinal-indexed hierarchies of number-theoretic functions.

Definition 2 (Hardy [36] and Hydra Functions). The Hardy functions
(Hα)α<ε0 are defined as follows:

H0(n) := n, and Hα(n) := Hαn(n + 1) (if α > 0) .

The related Hydra functions (Lα)α<ε0 , counting the length of the (standard)
Hydra Battle, starting stage n with hydra α, are:

L0(n) := 0, and Lα(n) := Lαn(n + 1) + 1 (if α > 0) .

The following lemma is an easy consequence of the definitions:



Lemma 3. The hierarchies (Hα)α<ε0 and (Lα)α<ε0 form a majorization hierar-
chy on ε0, in the sense that the functions are strictly increasing and each function
at level α eventually dominates the functions at level β for all β < α.

Next, we relate the functions Hα and Lα.

Lemma 4. For any α < ε0 and any n ∈ N we have

Hα(n) = HLα(n)(n) = n + Lα(n) .

Proof. The second equation is easily established by noting that, for finite m, we
have Hm(n) = m + n. The first equation is proved by induction on α. The case
α = 0 follows from L0(n) = 0. For α > 0, put γ := αn and note that

Hα(n) = Hγ(n + 1) = HLγ(n+1)(n + 1) = HLγ(n+1)+1(n) = HLα(n)(n) .

In the second equality, we employ the induction hypothesis. For the third let
m = Lγ(n + 1) and observe Hm+1(n) = Hm(n + 1). !"

A function f is provably recursive in Peano Arithmetic (PA) if there exists
a primitive recursive predicate P and a primitive recursive function g such that
PA + ∀y1 · · ·∀yk∃xP (y1, . . . , yk, x) and f satisfies

f(n1, . . . , nk) = g(µxP (n1, . . . , nk, x)) ,

where µx denotes the least number operator.
Let the Hardy class H be defined as the smallest class of functions (1)

containing 0, S (successor), all Hα, for α < ε0, and all projection functions
In,i(a1, . . . , an) := ai, and (2) closed under primitive recursion and composition.

Theorem 2. The Hardy class H is the class of all provably recursive functions
in PA.

For a proof see [32].

Theorem 3. PA cannot prove termination of the standard Hydra Battle.

Proof. Suppose termination of the standard Hydra Battle would be PA-provable.
This is equivalent to the fact that

PA + $∀ α, n ∃m Lα(n) = m% ,

for a suitable arithmetization $·%. Hence, for all α < ε0 and all n ∈ N: Lα(n) is
a provably recursive function in PA. In particular, L(ε0)n

(n + 1) + 1 is provably
recursive, and thus by definition Lε0(n) is provably recursive. (The same holds
for Lε0(n) + n.) By Lemma 4, we conclude Lε0(n) + n = Hε0(n), which would
imply that Hε0(n) is provably recursive, contradicting Theorem 2. !"

Remark 2. It bears mentioning that if Hydra is constrained to a bounded initial
height, or if there is a fixed bound on her growth factor [27], then termination
is provable in PA.



5 Rewriting Hydra

A (term-) rewriting system is a (finite) set of rewrite rules, each of which is an
ordered pair of terms. Let F denote a signature and V , a (countably infinite) set
of variables. The terms over F and V are denoted T (F ,V). A binary relation
on T (F ,V) is a rewrite relation if it is compatible with F -operations and closed
under substitutions. The smallest rewrite relation that contains R is denoted
→R. The reflexive-transitive closure of rewrite steps →R is denoted →∗

R; the
transitive closure, →+

R. For further details about rewriting, see the survey by
the first author and Jouannaud [10] or one of the books [2,33].

In [10], the following rewrite system H was introduced as an encoding of the
Hydra Battle:6

h(e(x), y) → h(d(x, y), S(y)) (1)
d(g(0, 0), y) → e(0) (2)
d(g(x, y), z) → g(e(x), d(y, z)) (3)

d(g(g(x, y), 0), S(z)) → g(d(g(x, y), S(z)), d(g(x, y), z)) (4)
g(e(x), e(y)) → e(g(x, y)) (5)

(To clarify the connection to the standard Hydra Battle, as presented in Sect. 2,
we have swapped the original arguments of the symbols d and h and make use
of the unary function symbol S instead of the original c.)

The idea was for h(x, n) to represent the nth stage of the battle, with Hydra
current being x, and with g serving as cons and 0 as nil. Then, d(n, x) marks the
position of Hercules’ search for a head to chop off (n is the replication factor);
d was also meant to perform the duplication (which is the rôle of f in the
functional program described in Section 2.2). The d in the first argument of g on
the right side of rule (4) forces that branch to get smaller, via rules (3) and (2),
assuming that branch has a head dangling at its right edge. The symbol e is used
to signal completion of the operation on a branch, and settles towards the root
after replication. The system was designed to allow various sterile derivations,
as well as the primary, battle one.

Unfortunately, rule (4) does not perform as advertised; the system does not
simulate the standard Hydra Battle, as defined in Sect. 2.7 To rectify this, the
first author proposed (on Pierre Lescanne’s rewriting list [26]) the following
6 Some (lost) version of this rewrite system had been presented by the first author

at the Interdisciplinary Conference on Axiomatic Systems, in Columbus, OH, on
December 16, 1988.

7 The originally intended system probably had g(d(g(x, y), S(z)),d(g(g(x, y), 0), z)) as
the right-hand side of rule (4). Some additional changes are needed for it to be able
to simulate the standard Hydra Battle. We do not discuss this version any further.



System D, comprising six rules:

h(e(x), y) → h(d(x, y), S(y)) (6)
d(g(0, x), y) → e(x) (7)
d(g(x, y), z) → g(d(x, z), e(y)) (8)

d(g(g(0, x), y), 0) → e(y) (9)
d(g(g(0, x), y), S(z)) → g(e(x), d(g(g(0, x), y), z)) (10)

g(e(x), e(y)) → e(g(x, y)) (11)

We will see below that the underlying semantics of the symbol g changed in
the transition from H to D. (Here again we have swapped the arguments of the
symbols d and h and make use of the unary function symbol S instead of the
original c.)

5.1 Faithfulness

It is not hard to see that, indeed, D faithfully represents the standard Hydra
Battle. We define a mapping O : CNF → T (F , ∅), where F is the set of function
symbols in D:

O(α) :=






0 if α = 0
g(O(γ), 0) if α = ωγ

g(O(γ),O(β)) if α = β + ωγ

Each configuration (α, n) of the game is encoded by a term h(e(O(α)), Sn(0)).

Lemma 5. Let α ∈ CNF , α > 0, n ∈ N \ {0}. Then h(e(O(α)), Sn(0)) →+
D

h(e(O(αn)), Sn+1(0)).

Proof. Due to the presence of the rule h(e(x), y) → h(d(x, y), S(y)) in D, it
suffices to verify that d(O(α), Sn(0)) →+

D e(O(αn)). We proceed by induction on
α.

1. Case α = β+1: By definition, αn = β and O(α) = g(0,O(β)). Let t = O(α)
and s = O(β). To establish d(O(α), Sn(0)) →+

D e(O(αn)), we only need one
rewrite step by rule (7):

d(g(0, s), Sn(0)) →D e(s) .

2. Case α = β + ωγ+1: By definition, αn = β + ωγ · n and t = O(α) =
g(g(0,O(γ)),O(β)). Let s = O(β), r = O(γ). Then

O(αn) = g(r, g(r, · · · g(r, s) · · · ))︸ ︷︷ ︸
n occurrences of r

,

and the following rewrite sequence suffices:

d(g(g(0, r), s), Sn(0)) →+
D g(e(r), g(e(r), · · · d(g(g(0, r), s), 0) · · · )) (10)n

→D g(e(r), g(e(r), · · · g(e(r), e(s)) · · · )) (9)

→+
D e(g(r, g(r, · · · g(r, s) · · · ))) . (11)n



3. Case α = β + ωγ , γ ∈ Lim: By definition, αn = β + ωγn and O(α) =
g(O(γ),O(β)). Let t = O(α), s = O(β), r = O(γ), and u = O(γn). By the
induction hypotheses (IH), d(r, Sn(0)) →+

D e(u) holds. Hence, the following
rewrite sequence suffices:

d(g(r, s), Sn(0)) →D g(d(r, Sn(0)), e(s)) (8)

→+
D g(e(u), e(s)) (IH)

→D e(g(u, s)) . (11)
!"

6 Termination

We will employ “reduction orders” to prove termination of the Hydra systems.

6.1 Reduction Orders

A rewrite system R and a partial order # are compatible if R ⊆ #. A rewrite
relation that is also a well-founded partial order is called a reduction order. It is
easy to see that an interpretation-based term order #A is a reduction order if the
algebra (A,#) is well-founded and monotone. We say that (A,#) is compatible
with a rewrite system R if #A is compatible with R.

A system R is terminating if no infinite sequence of rewrite steps exists. Thus,
R is terminating iff it is compatible with a reduction order #.

6.2 Termination Properties

The rules of System D are similar to the original proposed formalization of the
Hydra battle. While the rules of System H defining h and g have been kept, the
three rules defining d have been replaced by four rules.

As given, all but the first rule of H and D decrease in a simple recursive path
order [5], with precedence d > g > e. The difficulty is in arranging for the first
argument of h to show a decrease, as well.

A terminating rewrite system is simply terminating if its termination can
be proved by a reduction order, like the recursive path order, that enjoys the
subterm property (namely, that subterms are smaller in the order).

Theorem 4. System H is terminating, but not simply terminating.

Proof. For now, we only prove the easy fact that H is not simply terminating,
the termination proof is postponed to Sect. 8. To show that H is not simply
terminating, note that the rewrite step

h(e(x), e(x)) →H h(d(x, e(x)), S(e(x)))

leads to a term that has the initial term embedded (homeomorphically) within
it. !"



By the same token, D is not simply terminating.

Theorem 5. System D is terminating, but not simply terminating.

Again the proof of termination is deferred until Sect. 8.

6.3 Previous Problems

While termination of H, and implicitly of D, has been claimed a number of times
in the literature, to our best knowledge no (full, correct) termination proof has
been provided.

For example, consider the proof sketch in [7, p. 8]. The idea of the proof is
to use a general path order [9] that employs the following interpretations of the
function symbols in H into the ordinals:

[[g(x, y)]] := ω[[x]] + [[y]] [[h(x, z)]] := [[x]] + [[z]]
[[d(x, z)]] := pred[[z]]([[x]]) [[e(x)]] := [[x]]

[[S(x)]] := [[x]] + 1 [[0]] := 1 .

The operator predζ is conceived as a suitable extension of the operator αζ for
ζ < ω; that is, we can assume predn(α) = αn.

One prerequisite to employ a general path order successfully is that, for
all ground instances lσ → rσ of rules in H, [[lσ]] " [[rσ]] holds. However, by
definition, we have

[[d(0, 0)]] = [[d]](1, 1) = 11 = 0 ,

and therefore

[[d(g(d(0, 0), d(0, 0)), 0)]] = [[d]]([[g]]([[d(0, 0)]], [[d(0, 0)]]), 1)
= [[d]](1, 1)
= 0 < 1 = [[g(e(d(0, 0)), d(d(0, 0), 0))]] .

Unfortunately, d(g(d(0, 0), d(0, 0)), 0) → g(e(d(0, 0)), d(d(0, 0), 0)) is an instance
of rule (3).

Although this problem can be relatively easily rectified, there is a more serious
problem with the proposed interpretation [[·]]. This interpretation is employed as
one of the component functions of the general path order; to infer termination,
these component functions (and hence the interpretation [[·]]) should be weakly
monotone.

However, the interpretation function [[d]] is not weakly monotone in
its first argument: Consider two hydræ a = g(0, d(0, 0)) and b =
g(d(0, 0), g(d(0, 0), g(d(0, 0), 0))) with ordinal values [[a]] = ω and [[b]] = 4, re-
spectively. Clearly ω > 4 in the usual comparison of (set-theoretic) ordinals.
But,

[[d(a, 0)]] = [[d]](ω, 1) = pred1(ω) = 1 < 3 = pred1(4) = [[d]](4, 1) = [[d(b, 0)]] .



Strictly speaking, one only needs monotonicity for terms that can rewrite to
each other, that is, fA(. . . x . . .) > fA(. . . y . . .) when x > y and x →R y; cf. [9,
Thm. 2]. (Here A denotes an F -algebra.) But consider rule (4) instantiated as
follows:

x = d(g(g(0, d(0, 0)), 0), S(b)) → g(d(g(0, d(0, 0)), S(b)), d(g(0, d(0, 0)), b)) = y ,

where b is defined as above. Then [[g(g(0, d(0, 0)), 0)]] = [[g]](ω, 1) = ωω + 1
with [[g(0, d(0, 0))]] = ω. Hence [[x]] = [[d]](ωω + 1, 5) = ωω > ω5 + 4 =
[[g]](pred5(ω), pred4(ω)) = [[y]] and thus both assumptions are fulfilled with re-
spect to x and y; unfortunately pred1(ωω) = ω < ω5 + 3 = pred1(ω5 + 4).
Proceeding in the same way as above, we again derive a counterexample.

To overcome this problem, we introduce (in the next section) a notation
system for ordinals and use it, instead, as the domain of our interpretation
functions.

7 In Preparation

Following an approach taken by Gaisi Takeuti [32], we introduce an alternate
notation for ordinals below ε0. This notation will enjoy the desired weak mono-
tonicity property. We define a subset OT of terms over the signature {ω, +}.
(The function symbol ω is unary; the symbol + is varyadic.) We write ωα for
ω(α). In the definition of OT, we make use of an auxiliary subset P ⊂ OT.

Definition 3. The definition of OT and P proceeds by mutual induction:

1. 0 ∈ OT
2. If α1, . . . ,αm ∈ P, then α1 + · · · + αm ∈ OT.
3. If α ∈ OT, then ωα ∈ P, and ωα ∈ OT.

The elements of OT are called ordinal terms and are denoted by lower-case Greek
letters. If no confusion can arise, we simply speak of ordinals.

To simplify reading, we abbreviate the term ω0 by 1. For the remainder of
this section, the expression “ordinal” will always refer to an element of OT,
unless stated otherwise.

It follows from the definition of the set OT that any object in OT different
from 0 can be written in the following form:

ωα1 + ωα2 + · · · + ωαn , (12)

where each of the α1, . . . ,αn has the same property.8 However, due to the above
definition, α + 0 is not an ordinal, as 0 %∈ P. To cure this, we introduce a binary
operation + on OT: Let α,β ∈ OT be of form ωα1+· · ·+ωαn , β = ωβ1+· · ·+ωβm .
Then α + β is defined as ωα1 + · · · + ωαn + ωβ1 + · · · + ωβm . Otherwise, we
define α + 0 = 0 + α = α. We will not distinguish between the binary operation
+ and its varyadic rendering.
8 This would not hold had we defined OT to be the set of terms over the signature
{ω, +}.



Definition 4 (Takeuti [32]). We inductively define an equivalence ∼ and a
partial order # so that they satisfy the following clauses:

1. 0 is the minimal element of #.
2. For α ∈ OT of form (12), assume α contains two consecutive terms ωαi and

ωαi+1 with αi+1 # αi. So, α has the form

· · · + ωαi + ωαi+1 + . . . .

Let β be obtained by removing the expression “ωαi + ” from α, so that β is
of the form

· · · + ωαi+1 + . . . .

Then α ∼ β.
3. Suppose α = ωα1 + · · · + ωαm , β = ωβ1 + · · · + ωβn, α1 ! α2 ! · · · ! αm,

and β1 ! β2 ! · · · ! βn, hold. (α ! β means α # β or α ∼ β.) Then, α # β
if either αi # βi for some i ∈ [1, m] and αj ∼ βj for all j ∈ [1, i − 1], or
m > n and αi ∼ βi holds for all i ∈ [1, n].

Remark 3. Note that ordinal addition + is not commutative, not even up to the
equivalence ∼, as we have 1 + ω ∼ ω %∼ ω + 1. !"

We can identify the natural numbers N with the ordinals less than ω, as the
usual comparison of natural numbers coincides with the above partial order #
on ordinal terms less than ω. So, we freely write 1 + 1 as 2, 1 + 1 + 1 as 3, and
so on. By definition, for any α > 0 in OT, there exists a unique β ∈ OT with
α ∼ β so that β can be written as

ωβ1 + ωβ2 + · · · + ωβn with β1 ! · · · ! βn , (13)

where β1 ! · · · ! βn. If β is written in this way, we say that it is in normal-form.
The set of all ordinal terms in normal-form together with 0 is denoted NF. The
unique normal-form of a given ordinal term α is denoted NF(α).

Remark 4. Note that our definition of the ordinal notation system OT is non-
standard. Usually one identifies α ∈ OT and its normal-form NF(α) and instead
of ∼ simply the equality = is written.

Any α ∈ NF uniquely represents a set-theoretic ordinals in CNF. The follow-
ing lemma is immediate:

Lemma 6.

1. The relation # is a linear partial order on NF.
2. The relation # is well-founded and otype(#) = ε0.

We extend the well-founded, linear order # on NF to a well-founded, partial
order # on OT. To simplify notation we denote the extended relation with the
same symbol, no confusion will arise from this. For α,β ∈ OT define: α # β, if
NF(α) # NF(β). It follows that # is a partial order and that α ! β # γ and
α # β ! γ each imply α # γ. The next lemma is a direct consequence of the
definitions; we essentially employ the fact that NF(α+β) = NF(NF(α)+NF(β)).



Lemma 7. Let α,β, γ ∈ OT.

1. α + β ! α,β.
2. ωα # α.
3. If α # β, then ωα # ωβ.
4. If α # β, then γ + α # γ + β and α + γ ! β + γ.
5. If α ∈ P and α # β, γ, then α # β + γ.

The central idea of the above notation system is the separation of the identity
of ordinal terms (denoted by =) and the identity of their set-theoretic counter-
parts (denoted by ∼). We will see in the next section that this pedantry is
essential for a successful definition of the interpretation functions.

Based on # and ∼, we define a partial order & and an equivalence relation
≡ on OT. We write N(α) to denote the number of occurrences of ω in α. Note
that N(n) = n for any natural number n, since 1 = ω0.

Definition 5. Let α,β ∈ OT. We set:

1. α & β if α # β, N(α) " N(β) or α ∼ β, N(α) > N(β) and
2. α ≡ β if α ∼ β, N(α) = N(β).

Define the quasi-order &≡: α &≡ β, if α (& ∪ ≡) β.

Example 3. Consider ω + ω2 and ω + 3. Then ω + ω2 & ω + 3, as NF(ω + ω2) =
ω2 # ω + 3 = NF(ω + 3) and N(ω + ω2) = 5 = N(ω + 3). On the other hand,
ω2 %& ω + 3 as N(ω + 3) = 5 > 3 = N(ω2). !"

This example shows that the relation ∼ is not compatible with the strict
order &.

Lemma 8. The binary relation & is a well-founded order and otype(&) ≤ ε0.
Furthermore, for all n, m ∈ N, n & m iff n > m.

Proof. That & is a partial order is immediate from the definition. To verify
that & is well-founded with otype(&) ≤ ε0, it suffices to define an embedding
o : OT → CNF: o(α) := ωNF(α) + N(α). By case analysis on the definition of &,
one verifies that for all α,β ∈ OT, α & β implies o(α) > o(β). Assume first that
α # β and N(α) " N(β). Then, ωNF(α) + N(α) > ωNF(β) + N(β) is immediate
from the definition of the comparison > of set-theoretic ordinals. Now assume
α ∼ β and N(α) > N(β). Then, ωNF(α) +N(α) > ωNF(β) +N(β) follows similarly.

The second half of the lemma is a direct result of the definition of & and the
definition of N. !"

The following is again a direct consequence of the definitions:

Lemma 9. Let α,β, γ ∈ OT.

1. If α & β, then ωα & ωβ.
2. If α & β, then γ + α & γ + β and α + γ &≡ β + γ.
3. α + β &≡ α, γ.



4. ωα & α.

Let p : N × N → N denote a fixed polynomial, strictly monotone in each
argument.

Definition 6 (Predecessor). We define the set of n-predecessors of α induced
by p. Let α ∈ OT. Then

α[n] := {β | α # β and p(N(α), n) " N(β)} .

The notion of an n-predecessor stems from [12]. However, we follow the idea of
norm-based fundamental sequences; cf. [4].

Lemma 10. Let α ∈ OT and let δ denote a &-maximal element of α[n].

1. The set α[n] is finite.
2. For each β ∈ α[n]: δ &≡ β.

Proof. The first assertion is trivial. For the second, observe that it follows from
the definition of δ that for all β ∈ α[n], either δ & β, β ≡ δ, or β and δ are
incomparable with respect to &. We prove that the last case can never happen.
We assume α > 0, as otherwise the assertion follows trivially. Let β ∈ α[n] be
arbitrary but fixed, so that β, δ are incomparable.

The ordinals β and δ can only be incomparable if either of the following cases
holds: (i) δ ≺ β and N(β) < N(δ), or (ii) δ # β and N(β) > N(δ). As the cases
are dual, it suffices to consider the first one. Assume β ∈ N, then δ ∈ N and
N(β) = β # δ = N(δ), which contradicts the assumption N(δ) > N(β). Hence,
we can assume β ! ω.

We define an ordinal term β∗ as follows: β∗ := (N(δ)−N(β)) + β. As β ! ω,
β∗ ∼ β holds. Furthermore, N(β∗) = N(δ) > N(β), as N(β∗) = (N(δ)− N(β)) +
N(β) = N(δ). So, β∗ & β. We show that β∗ ∈ α[n]: α # β ∼ β∗ implies
α # β∗. And p(N(α), n) " N(δ) = N(β∗) implies p(N(α), n) " N(β∗). We derive
a contradiction to the assumption that δ is &-maximal. !"

By the above lemma a &-maximal element of α[n] is, up to the equivalence
≡, unique. In the following, for each α ∈ OT and each n ∈ N, we fix an arbitrary
&-maximal element and denote it with Pn(α).

Lemma 11. Let α ∈ OT and suppose α ! ω. Then N(Pn(α)) = p(N(α), n).

Proof. The proof follows the pattern of the proof of the previous lemma. !"

The following lemma explains why the pedantry in the definition of the set
of ordinal terms OT and the given definition of the partial order & is necessary:

Lemma 12. Let α,β ∈ OT, n ∈ N.

1. If α,β > 0 and α & β, then Pn(α) & Pn(β).
2. If α ≡ β, then Pn(α) ≡ Pn(β).
3. Suppose m > n. Then Pm(α) &≡ Pn(α).



We want to emphasize that the first property fails for the specific fundamental
sequence (αn)n∈N employed in the definition of the standard Hydra Battle;
cf. Definition 1: We have ω > m, but ωn = n %> m− 1 = (m)n for any m > n.

Proof (of the lemma). We only show the first point; the arguments for the other
points are similar, but simpler. Assume α & β. First, we show the lemma for
the special-case, where α ∈ N. This assumption implies β ∈ N. Hence, Pn(α) =
α−1 & β−1 = Pn(β). Consider the case α ! ω. We proceed by cases, according
to the definition of &:

1. Subcase α # β and N(α) " N(β): Then monotonicity of p implies that
p(N(α), n) " N(β) holds. Thus, β ∈ α[n]. By Lemma 10(2), we conclude
Pn(α) ! β # Pn(β), which implies Pn(α) # Pn(β). By Lemma 11, we
get: N(Pn(α)) = p(N(α), n) " p(N(β), n) " N(Pn(β)). In summary, we see
Pn(α) & Pn(β).

2. Subcase α ∼ β and N(α) > N(β): From the assumptions we conclude
Pn(β) ∈ α[n], as α ∼ β # Pn(β) and p(N(α), n) > p(N(β), n) " N(Pn(β)).
Hence, Lemma 10 implies Pn(α) & Pn(β) or Pn(α) ≡ Pn(β). If the for-
mer case holds, the lemma is established. Assume the latter. By definition
of ≡, we see that N(Pn(α)) = N(Pn(β)). On the other hand, we obtain:
N(Pn(α)) = p(N(α), n) > p(N(β), n) " N(Pn(β)). We have derived a contra-
diction.

!"

8 Termination

The purpose of this section is to prove Theorem 5. Based on the construction
given below, it is easy to see how to also prove Theorem 4; hence, we leave that
one to the reader.

8.1 Interpretation

Using the ordinal notation of the previous section, the termination proof is rela-
tively simple. Let F denote the signature of System D. We define the F -algebra
(A, ·') and provide a proof that A is well-founded, which is easy, but – more
significantly – A is weakly monotone. The domain of A is the set

{(α, 1) | α ∈ OT} ∪ {(0, 0)} .

We define the quasi-order ·! on the pairs as follows:

(α, a) ·! (β, b) iff (α &≡ β ∧ a = b = 1) or (α &≡ β ∧ a > b) .



The following operations interpret the elements of F :

dA : (α, a), (β, b) 7→ (PN(β)(α), 1) α %= 0
(0, a), (β, b) 7→ (0, 0)

hA : (α, a), (β, b) 7→ (0, 0)

gA : (α, 1), (β, b) 7→ (β + ωα, 1)
(0, 0), (β, b) 7→ (0, 0)

eA : (α, a) 7→ (α, 1)

SA : (α, a) 7→ (α + 1, 1)

0A : (0, 1)

Define the strict order ( by replacing &≡ by # in the above definition. The
orders ·! and ( naturally extend to terms, denoted ·!A and (A, respectively.
Fix the parameter in the definition of n-predecessors:

p(m, n) := (m + 1) · (n + 1) .

Let ·' denote the partial order induced by the quasi-order ·!. With the help
of Lemma 12, the following is not difficult to prove.

Lemma 13. The F-algebra (A, ·') is weakly monotone and well-founded.

Lemma 14. For each rule l → r in D, we have l ·!A r, that is, A is a quasi-
model of D.

Proof. We consider only the rules (8) and (10), as it is easy to check the prop-
erties for the other rules.

1. Case d(g(x, y), z) → g(d(x, z), e(y)): We have to show

dA(gA((α, a), (β, b)), (γ, c)) ·! gA(dA((α, a), (γ, c)), eA((β, b))) .

One of the following subcases holds (i) α > 0 (ii) α = 0. We may assume
subcase (i) holds. Assume otherwise; then it is not hard to see that the
right-hand side of the above equation rewrites to (0, 0). From this the claim
follows easily.
Accordingly, we obtain

dA(gA((α, 1), (β, b)), (γ, c)) = (Pn(β + ωα), 1) ·!
·! (β + ωPn(α), 1) = gA(dA((α, 1), (γ, c)), eA((β, b))) ,



for n = N(γ). We have to show that Pn(β+ωα) &≡ β+ωPn(α). By Lemma 7,
we obtain β + ωα # β + ωPn(α). By definition of the polynomial p and the
norm-function N, and Lemma 12 it suffices to observe:

(N(β + ωα) + 1)(n + 1) = (N(β) + N(α) + 2)(n + 1) "
" N(β) + 1 + (N(α) + 1)(n + 1) " N(β + ωPn(α)) .

2. Case d(g(g(0, x), y), S(z)) → g(e(x), d(g(g(0, x), y), z)): We show

dA(gA(gA(0A, (α, a)), (β, b)), SA((γ, c))) ·!
·! gA(eA((α, a)), dA(gA(gA(0A, (α, a)), (β, b)), (γ, c))) ,

for all (α, a), (β, b), (γ, c) ∈ A. By definition, the left-hand side rewrites to

(PN(γ+1)(β + ωα+1), 1) ,

while the right side becomes

(PN(γ)(β + ωα+1) + ωα, 1) ,

and we have to show PN(γ)+1(β + ωα+1) &≡ PN(γ)(β + ωα+1) + ωα. By
Definition 6 and Lemma 7(5) we obtain:

β + ωα+1 # PN(γ)(β + ωα+1) + ωα .

Therefore, it suffices to show

(N(β + ωα+1) + 1)(N(γ) + 2) " N(PN(γ)(β + ωα+1) + ωα) ,

which follows by a simply calculation:

(N(β + ωα+1) + 1)(n + 2) " (N(β + ωα+1) + 1)(n + 1) + N(ωα+1) "
" N(Pn(β + ωα+1) + ωα) ,

with n = N(γ).
!"

8.2 Dependencies

Finally, we are in position to prove Theorem 5, and employ a specific variant
of the dependency-pair method of [1]. (This choice of method is not critical;
equivalently, a proof by induction upto ε0 could be given, or some other method
employed.)

To keep this paper more-or-less self-contained, we first recall some basic defi-
nitions and lemmas. We write ! to denote the proper subterm relation and " for
(not necessarily proper) superterm. Let R be some rewrite system and denote
the set of all minimal non-terminating terms by T∞ (minimal in the sense of the
subterm relation).



Lemma 15. For every term t ∈ T∞ there exist a rewrite rule l → r ∈ R, a
substitution σ, and a non-variable subterm u of r, such that t

not top−−−−−→∗
R lσ

top−−→R
rσ " uσ and uσ ∈ T∞.

By the lemma, it is not difficult to see that any term in T∞ has a defined root
symbol. This, we exploit in the next definition.

Let R be a rewriting system over a signature F . Let f̂ denote a fresh function
symbol with the same arity as f ∈ F and let t̂ denote f̂(t1, . . . , tn), for term
t = f(t1, . . . , tn). The set DP(R) of dependency pairs is defined as follows:

DP(R) := {l̂ → û | l → r ∈ R, r " u " l, root of u defined} .

The nodes of the dependency graph DG(R), for rewrite system R, are the
dependency pairs of R and there is an arrow from s → t to u → v if and only if
there exist substitutions σ and ρ such that tσ →R uρ . A dp-cycle is a nonempty
subset C of dependency pairs of DP(R) if for every two (not necessarily distinct)
pairs s → t and u → v in C there exists a nonempty path in C between them. By
the above lemma and employing the notion of dependency graph, nontermination
of R implies the existence of an infinite sequence of the following form:

t1 →∗
R t2 →C t3 →∗

R t4 →C t5 · · · ,

where ti ∈ {t̂ | t ∈ T∞}, C ⊆ DG(R) and the rules in C are applied infinitely
often. Such a sequence is called C-minimal. Thus, to prove termination it suffices
to verify that no such sequences can exist.

Theorem 6 (Arts & Giesl [1]). A finite term-rewriting system R is termi-
nating if no C-minimal sequence exists for any dp-cycle in DG(R).

An argument filtering is a mapping ρ that associates with every function
symbol either an argument position or a list of argument positions. The signature
Fρ contains m-ary function symbols fρ for any f ∈ F with ρ(f) = [i1, . . . , im].
The mapping ρ naturally gives rise to a function ρ : T (F ,V) → T (Fρ,V).

Theorem 7 (Arts, Giesl & Ohlebusch [16]). Let R be a term-rewriting
system and C be a dp-cycle in DG(R). If there exists an argument filtering and
a reduction pair (), >) such that ρ(R) ⊆ ), ρ(C) ⊆ ) ∪ >, and ρ(C) ∩ > %= ∅,
then there are no C-minimal rewrite sequences.

8.3 Reduction

The proof depends on the following:

Lemma 16. The pair ( ·!A, (A) forms a reduction pair.

Proof. One has to show that ·!A is a quasi-order that is closed under F -
operations and substitutions, that (A is well-founded and closed under sub-
stitutions, and – finally – that ·!A ◦ (A ⊆ (A. The first two items follow



directly from the definitions. Therefore, we only have to verify that, for all
(α, a), (β, b), (γ, c) ∈ A, if (α, a) ·! (β, b) ( (γ, c), then also (α, a) ( (γ, c).

Without loss of generality, assume a = b = c = 1: Assume otherwise, then
a = b = c = 0 is impossible, as (β, 0) ( (γ, 0) cannot hold. Hence, the only
possibility is a = b = 1 and c = 0. But, by definition of A, this implies γ = 0
and clearly (α, 1) ( (0, 0).

Given that a = b = c = 1 holds, the assumption specializes to α &≡ β # γ.
We proceed by case analysis on α &≡ β. Either α # β and N(α) " N(β) or
α ∼ β and N(α) " N(β). In both cases, α ! β holds. Hence, by transitivity of
#, α # γ follows. !"

Proof (of Theorem 5). Consider the dependency pairs of D:

ĥ(e(x), y) → ĥ(d(x, y), S(y)) (14)

ĥ(e(x), y) → d̂(x, y) (15)

d̂(g(g(0, x), y), S(z)) → ĝ(e(x), d(g(g(0, x), y), z)) (16)

d̂(g(g(0, x), y), S(z)) → d̂(g(g(0, x), y), z) (17)

d̂(g(x, y), z) → ĝ(d(x, z), e(y)) (18)

d̂(g(x, y), z) → d̂(x, z) (19)
ĝ(e(x), e(y)) → ĝ(x, y) (20)

We construct the dependency graph DG(D):

(14) (15)

(16)

(17)

(18)
(19)

(20)

The above interpretation extends to the extra dependency-pair functions f̂
as follows: We set f̂A equal to fA, with the exception of ĥ, which we define via

ĥA((α, a), (β, b)) = (α, a) .

Due to Theorems 6 and 7, it suffices to define suitable combinations of argu-
ment filterings and reduction pairs for cycles in DP(D). First, we consider the
cycle {14} and reduction pair ( ·!A, (A). Due to Lemma 14, it remains to show
that

ĥ(e(x), y) ( ĥ(d(x, y), S(y)) . (21)



Let a : V → A denote an arbitrary assignment with [a]A(x) = (α, a), [a]A(y) =
(β, b). If α > 0, then (21) becomes (α, 1) ( (Pn(α), 1), where n = N(β) and
we have to show α # Pn(α), which is a consequence of Definition 6. Assume
otherwise α = 0. Then (21) becomes (0, 1) ·' (0, 0), which follows from the
definition of the relation (.

With respect to the remaining dp-cycles, it is easy to see how a suitable
combination of argument filterings and reduction pairs should be defined. In
particular, note that these cycles can also be handled by applying the subterm
criterion iteratively; cf. [20]. !"

9 While Hydra Do

In this section, we convert the functional Hydra program L into an imperative,
while program in stages. First, we replace each function with a similarly named
procedure call, and the tail-recursive calls with iteration:

procedure H(x):
n := 0
while x %= nil do

n := n + 1
D(n, x)

procedure F (n, y, x):
for i := 1 to n do

x := cons(y, x)

procedure D(n, x):
u := car(x)
if u = nil
then x := cdr(x)
else if car(u) = nil

then F (n, cdr(u), cdr(x))
else D(n, u)

x := cons(u, cdr(x))

Using a stack s, implemented as a list (pushing via cons, popping via car),
for the recursive calls to G, and combining all the procedures (x is the input
hydra), we get:

n := 0
while x %= nil do

n := n + 1
u := car(x)
if u = nil
then x := cdr(x)
else s := nil

while car(u) %= nil do
s := cons(s, cdr(x))
x := u
u := car(x)

for i := 1 to n do
x := cons(cdr(u), x)

while s %= nil do
x := cons(x, cdr(s))
s := car(s)



It is easy to see that the inner loops all terminate. To show that the outer one
does, one would need to show that x, qua ordinal, decreases with each outer
iteration.

The list operations can be arithmetized by using a pairing function, such as
cons(x, y) := (x+y+1)2+x. Then nil := 0, car(z) := z−:

√
z<2, and cdr(z) :=

:
√

z<2+:
√

z<−z−1. (Any other set of pairing and projection functions would do
just as well.) With this in mind, and with a tiny bit of algebraic manipulation, our
final, wholly arithmetic, hard-to-prove-terminating while program is as follows:

n := 0
while x > 0 do

n := n + 1
u := x− :

√
x<2

if u = 0
then x := :

√
x< − 1

else s := 0
while u > :

√
u<2 do

s := s + (s + :
√

x<2 + :
√

x< − x)2
x := u
u := x− :

√
x<2

for i := 1 to n do
x := (:

√
u<+ x)2 + :

√
u< − 1

while s > 0 do
x := x + (x + :

√
s<2 + :

√
s< − s)2

s := s− :
√

s<2

Finally, the (integer-valued) truncated square-root :
√

z< can be computed
each time by a simple loop, searching for the largest integer whose square is no
more than z:

n := 0
while x > 0 do

n := n + 1
y := 0; while y2 + 2y ≤ x do y := y + 1
if x = y2

then x := y − 1
else s := 0

r := 0; while r2 + 2r ≤ x− y2 do r := r + 1
while x > y2 + r2 do

y := 0; while y2 + 2y ≤ x do y := y + 1
s := s + (s + y2 + y − x)2
x := x− y2

r := 0; while r2 + 2r ≤ x− y2 do r := r + 1
for i := 1 to n do x := r2 + r − 1
while s > 0 do

r := 0; while r2 + 2r ≤ s do r := r + 1
x := x + (x + r2 + r − s)2
s := s− r2



Further simplifications are possible.

10 The Sky’s the Limit

David Gries [18] has averred that for deterministic (or bounded nondetermin-
istic) programs, since the number of steps of any terminating program is just
some integer-valued function t(x̄) that depends only on the program inputs x̄, it
is preferable to prove termination by showing “that each execution of the loop
body decreases t by at least 1”, than to use complicated well-founded orderings.
This begs the issue, however, since the proof such a t exists for a program like
Hydra requires transfinite induction up to ε0, as we have seen above.

It is not hard to conjure up bigger battles, for example ones in which trees
also grow in height. The following one – meant to require Γ0 – is from [6]:

Gn(x) → Gn+1(pnx)
pn〈x, y, z〉 → 〈x, y, pnz〉

pn+1〈A, y, z〉 → 〈A, pn+1y, rn〈B, 〈A, y, z〉, z〉〉
pn〈x, y, z〉 → y

pn〈B, y, z〉 → rn〈B, y, z〉
rn+1〈B, y, z〉 → 〈B, pn+1y, rn〈B, y, z〉〉

rn〈x, y, z〉 → z

〈x, y, z〉 → 〈x, y, z〉

The A nodes are meant to act lexicographically; the B nodes, more like multisets.
The bar acts like e of the Hydra system. Regarding the relevance to computer
science of the (least) impredicative ordinal Γ0, see [14].

Moreover, Γ0 is by no means the end of the games. See [25] for rewrite systems
that formalize the Hydra Battle up to the small Veblen ordinal, the maximal
order type of the lexicographic path order [8]. Even larger hydras (so called
Buchholz Hydræ) have been considered by Wilfried Buchholz [3].
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