Pólya's Proof of the Weighted Arithmetic-Geometric Mean Inequality

Manuel Eberl

July 11, 2022

Abstract

This article provides a formalisation of the Weighted ArithmeticGeometric Mean Inequality: given non-negative reals a_{1}, \ldots, a_{n} and non-negative weights w_{1}, \ldots, w_{n} such that $w_{1}+\ldots+w_{n}=1$, we have $$
\prod_{i=1}^{n} a_{i}^{w_{i}} \leq \sum_{i=1}^{n} w_{i} a_{i}
$$

If the weights are additionally all non-zero, equality holds if and only if $a_{1}=\ldots=a_{n}$.

As a corollary with $w_{1}=\ldots=w_{n}=\frac{1}{n}$, the regular arithmeticgeometric mean inequality follows, namely that $$
\sqrt[n]{a_{1} \ldots a_{n}} \leq \frac{1}{n}\left(a_{1}+\ldots+a_{n}\right)
$$

I follow Pólya's elegant proof, which uses the inequality $1+x \leq e^{x}$ as a starting point. Pólya claims that this proof came to him in a dream, and that it was 'the best mathematics he had ever dreamt." [1, pp. 22-26]

\section*{Contents} 1 The Weighted Arithmetic-Geometric Mean Inequality 2 1.1 Auxiliary Facts 2 1.2 The Inequality 3 1.3 The Equality Case 6 1.4 The Binary Version 10

1 The Weighted Arithmetic-Geometric Mean Inequality

theory Weighted-Arithmetic-Geometric-Mean imports Complex-Main
begin

1.1 Auxiliary Facts

lemma root-powr-inverse $: ~ 0<n \Longrightarrow 0 \leq x \Longrightarrow$ root $n x=x$ powr $(1 / n)$ by (cases $x=0$) (auto simp: root-powr-inverse)
lemma powr-sum-distrib-real-right:
assumes $a \neq 0$
shows $\quad\left(\prod x \in X\right.$. a powr e $x::$ real $)=$ a powr $\left(\sum x \in X\right.$. e $\left.x\right)$
using assms
by (induction X rule: infinite-finite-induct) (auto simp: powr-add)
lemma powr-sum-distrib-real-left:
assumes $\wedge x . x \in X \Longrightarrow a x \geq 0$
shows $\quad\left(\prod x \in X\right.$. a x powr e :: real $)=\left(\prod x \in X\right.$. a x) powr e
using assms
by (induction X rule: infinite-finite-induct)
(auto simp: powr-mult prod-nonneg)
lemma (in linordered-semidom) prod-mono-strict':
assumes $i \in A$
assumes finite A
assumes $\bigwedge i . i \in A \Longrightarrow 0 \leq f i \wedge f i \leq g i$
assumes $\bigwedge i . i \in A \Longrightarrow 0<g i$
assumes $f i<g i$
shows $\operatorname{prod} f A<\operatorname{prod} g A$
proof -
have $\operatorname{prod} f A=f i * \operatorname{prod} f(A-\{i\})$
using assms by (intro prod.remove)
also have $\ldots \leq f i * \operatorname{prod} g(A-\{i\})$
using assms by (intro mult-left-mono prod-mono) auto
also have $\ldots<g i * \operatorname{prod} g(A-\{i\})$
using assms by (intro mult-strict-right-mono prod-pos) auto
also have $\ldots=\operatorname{prod} g A$
using assms by (intro prod.remove [symmetric])
finally show ?thesis .
qed
lemma prod-ge-pointwise-le-imp-pointwise-eq:
fixes $f::^{\prime} a \Rightarrow$ real
assumes finite X
assumes ge: prod $f X \geq \operatorname{prod} g X$
assumes nonneg: $\bigwedge x . x \in X \Longrightarrow f x \geq 0$

```
    assumes pos: \bigwedgex. }x\inX\Longrightarrowgx>
    assumes le: \bigwedgex. }x\inX\Longrightarrowfx\leqgx\mathrm{ and }x:x\in
    shows fx=gx
proof (rule ccontr)
    assume f x}\not=g
    with le[of x] and x have fx<gx
        by auto
    hence prod fX< prod gX
        using }x\mathrm{ and le and nonneg and pos and <finite X>
        by (intro prod-mono-strict') auto
    with ge show False
        by simp
qed
lemma powr-right-real-eq-iff:
    assumes }a\geq(0:: real
    shows a powr x=a powr y \longleftrightarrowa=0 \ | a=1 \vee x=y
    using assms by (auto simp: powr-def)
lemma powr-left-real-eq-iff:
    assumes }a\geq(0:: real) b\geq0x\not=
    shows a powr }x=b\mathrm{ powr }x\longleftrightarrowa=
    using assms by (auto simp: powr-def)
lemma exp-real-eq-one-plus-iff:
    fixes }x\mathrm{ :: real
    shows exp x=1 +x u
proof (cases x=0)
    case False
    define f :: real => real where f=( }\lambda\mathrm{ x. exp x - 1-x)
    have deriv: (f has-field-derivative (exp x - 1)) (at x) for x
        by (auto simp: f-def intro!: derivative-eq-intros)
    have \existsz.z>min x 0 ^z< max x 0 ^f(max x 0) - f(min x 0) =
                (maxx 0 - min x 0) * (expz-1)
        using MVT2[of min x 0 max x 0f \lambdax. exp x - 1] deriv False
        by (auto simp: min-def max-def)
```



```
        f(max x 0) - f(minx 0) =(maxx 0- min x 0)*(expz-1)
    by (auto simp: f-def)
    thus ?thesis using False
    by (cases x 0 :: real rule: linorder-cases) (auto simp: f-def)
qed auto
```


1.2 The Inequality

We first prove the equality under the assumption that all the a_{i} and w_{i} are positive.
lemma weighted-arithmetic-geometric-mean-pos:

```
    fixes \(a w::{ }^{\prime} a \Rightarrow\) real
    assumes finite \(X\)
    assumes pos1: \(\bigwedge x . x \in X \Longrightarrow a x>0\)
    assumes pos2: \(\bigwedge x . x \in X \Longrightarrow w x>0\)
    assumes sum-weights: \(\left(\sum x \in X . w x\right)=1\)
    shows \(\left(\prod x \in X . a x\right.\) powr \(\left.w x\right) \leq\left(\sum x \in X . w x * a x\right)\)
proof -
    note nonneg \(1=\) less-imp-le \([O F\) pos1 \(]\)
    note \(n o n n e g 2=\) less-imp-le[OF pos2]
    define \(A\) where \(A=\left(\sum x \in X . w x * a x\right)\)
    define \(r\) where \(r=(\lambda x\). \(a x / A-1)\)
    from sum-weights have \(X \neq\{ \}\) by auto
    hence \(A \neq 0\)
        unfolding \(A\)-def using nonneg1 nonneg2 pos1 pos2 〈finite \(X\) 〉
    by (subst sum-nonneg-eq-0-iff) force+
    moreover from nonneg1 nonneg2 have \(A \geq 0\)
    by (auto simp: A-def intro!: sum-nonneg)
    ultimately have \(A>0\) by simp
    have \(\left(\prod x \in X .(1+r x)\right.\) powr \(\left.w x\right)=\left(\prod x \in X .(a x / A)\right.\) powr \(\left.w x\right)\)
    by (simp add: r-def)
    also have \(\ldots=\left(\prod x \in X\right.\). a x powr \(\left.w x\right) /\left(\prod x \in X\right.\). A powr \(\left.w x\right)\)
    unfolding prod-dividef [symmetric]
        using assms pos2 \(\langle A>0\rangle\) by (intro prod.cong powr-divide) (auto intro:
less-imp-le)
    also have \(\left(\prod x \in X . A\right.\) powr \(\left.w x\right)=\exp \left(\left(\sum x \in X . w x\right) * \ln A\right)\)
    using \(\langle A>0\rangle\) and \(\langle\) finite \(X\rangle\) by (simp add: powr-def exp-sum sum-distrib-right)
    also have \(\left(\sum x \in X . w x\right)=1\) by fact
    also have \(\exp (1 * \ln A)=A\)
    using \(\langle A>0\rangle\) by simp
    finally have lhs: \(\left(\prod x \in X .(1+r x)\right.\) powr \(\left.w x\right)=\left(\prod x \in X\right.\). a x powr \(\left.w x\right) / A\).
    have \(\left(\prod x \in X . \exp (w x * r x)\right)=\exp \left(\sum x \in X . w x * r x\right)\)
    using 〈finite \(X\) 〉 by (simp add: exp-sum)
    also have \(\left(\sum x \in X . w x * r x\right)=\left(\sum x \in X . a x * w x\right) / A-1\)
    using \(\langle A>0\rangle\) by (simp add: r-def algebra-simps sum-subtractf sum-divide-distrib
sum-weights)
    also have ( \(\left.\sum x \in X . a x * w x\right) / A=1\)
    using \(\langle A>0\rangle\) by (simp add: A-def mult.commute)
    finally have rhs: \(\left(\prod x \in X . \exp (w x * r x)\right)=1\) by simp
    have \(\left(\prod x \in X . a x\right.\) powr \(\left.w x\right) / A=\left(\prod x \in X .(1+r x)\right.\) powr \(\left.w x\right)\)
    by (fact lhs [symmetric])
    also have \(\left(\prod x \in X .(1+r x)\right.\) powr \(\left.w x\right) \leq\left(\prod x \in X . \exp (w x * r x)\right)\)
    proof (intro prod-mono conjI)
        fix \(x\) assume \(x: x \in X\)
    have \(1+r x \leq \exp (r x)\)
        by (rule exp-ge-add-one-self)
    hence \((1+r x)\) powr \(w x \leq \exp (r x)\) powr \(w x\)
```

```
        using nonneg1[of x] nonneg2[of x] x <A>0>
        by (intro powr-mono2) (auto simp: r-def field-simps)
    also have ... = exp (wx*rx)
    by (simp add: powr-def)
    finally show (1+rx) powr wx \leqexp (wx*rx).
    qed auto
    also have (\prodx\inX. exp (wx*rx))=1 by (fact rhs)
    finally show ( }\prodx\inX.a x powr wx)\leq
    using }\langleA>0\rangle\mathrm{ by (simp add: field-simps)
qed
```

We can now relax the positivity assumptions to non－negativity：if one of the a_{i} is zero，the theorem becomes trivial（note that $0^{0}=0$ by convention for the real－valued power operator（powr））．
Otherwise，we can simply remove all the indices that have weight 0 and apply the above auxiliary version of the theorem．

```
theorem weighted-arithmetic-geometric-mean:
    fixes \(a w::{ }^{\prime} a \Rightarrow\) real
    assumes finite \(X\)
    assumes nonneg1: \(\bigwedge x . x \in X \Longrightarrow a x \geq 0\)
    assumes nonneg2: \(\bigwedge x . x \in X \Longrightarrow w x \geq 0\)
    assumes sum-weights: \(\left(\sum x \in X . w x\right)=1\)
    shows \(\quad\left(\prod x \in X . a x\right.\) powr \(\left.w x\right) \leq\left(\sum x \in X . w x * a x\right)\)
proof (cases \(\exists x \in X\). \(a x=0\) )
    case True
    hence \(\left(\prod x \in X\right.\). a x powr \(\left.w x\right)=0\)
        using 〈finite \(X\) 〉 by simp
    also have \(\ldots \leq\left(\sum x \in X . w x * a x\right)\)
        by (intro sum-nonneg mult-nonneg-nonneg assms)
    finally show ?thesis.
next
    case False
    have \(\left(\sum x \in X-\{x . w x=0\} . w x\right)=\left(\sum x \in X . w x\right)\)
        by (intro sum.mono-neutral-left assms) auto
    also have \(\ldots=1\) by fact
    finally have sum-weights': \(\left(\sum x \in X-\{x . w x=0\} . w x\right)=1\).
    have \(\left(\prod x \in X\right.\). a x powr \(\left.w x\right)=\left(\prod x \in X-\{x . w x=0\}\right.\). a x powr \(\left.w x\right)\)
        using 〈finite \(X\rangle\) False by (intro prod.mono-neutral-right) auto
    also have \(\ldots \leq\left(\sum x \in X-\{x . w x=0\} . w x * a x\right)\) using assms False
        by (intro weighted-arithmetic-geometric-mean-pos sum-weights')
            (auto simp: order.strict-iff-order)
    also have \(\ldots=\left(\sum x \in X . w x * a x\right)\)
        using 〈finite \(X\rangle\) by (intro sum.mono-neutral-left) auto
    finally show ?thesis.
qed
```

We can derive the regular arithmetic／geometric mean inequality from this by simply setting all the weights to $\frac{1}{n}$ ：

```
corollary arithmetic-geometric-mean:
    fixes \(a::{ }^{\prime} a \Rightarrow\) real
    assumes finite \(X\)
    defines \(n \equiv\) card \(X\)
    assumes nonneg: \(\bigwedge x . x \in X \Longrightarrow a x \geq 0\)
    shows root \(n\left(\prod x \in X . a x\right) \leq\left(\sum x \in X . a x\right) / n\)
proof (cases \(X=\{ \}\) )
    case False
    with assms have \(n: n>0\)
        by auto
    have \(\left(\prod x \in X . a x \operatorname{powr}(1 / n)\right) \leq\left(\sum x \in X .(1 / n) * a x\right)\)
        using \(n\) assms by (intro weighted-arithmetic-geometric-mean) auto
    also have \(\left(\prod x \in X\right.\). a x powr \(\left.(1 / n)\right)=\left(\prod x \in X\right.\). a x) powr \((1 / n)\)
        using nonneg by (subst powr-sum-distrib-real-left) auto
    also have \(\ldots=\) root \(n\left(\prod x \in X . a x\right)\)
        using \(\langle n>0\rangle\) nonneg by (subst root-powr-inverse') (auto simp: prod-nonneg)
    also have \(\left(\sum x \in X .(1 / n) * a x\right)=\left(\sum x \in X\right.\). \(\left.a x\right) / n\)
        by (subst sum-distrib-left [symmetric]) auto
    finally show ?thesis .
qed (auto simp: \(n\)-def)
```


1.3 The Equality Case

Next, we show that weighted arithmetic and geometric mean are equal if and only if all the a_{i} are equal.
We first prove the more difficult direction as a lemmas and again first assume positivity of all a_{i} and w_{i} and will relax this somewhat later.

```
lemma weighted-arithmetic-geometric-mean-eq-iff-pos:
    fixes \(a w::{ }^{\prime} a \Rightarrow\) real
    assumes finite \(X\)
    assumes pos1: \(\bigwedge x . x \in X \Longrightarrow a x>0\)
    assumes pos2: \(\bigwedge x . x \in X \Longrightarrow w x>0\)
    assumes sum-weights: \(\left(\sum x \in X . w x\right)=1\)
    assumes eq: \(\left(\prod x \in X . a x\right.\) powr \(\left.w x\right)=\left(\sum x \in X . w x * a x\right)\)
    shows \(\forall x \in X . \forall y \in X\). a \(x=a y\)
proof -
    note nonneg1 \(=\) less-imp-le \([\) OF pos1]
    note \(n o n n e g 2=\) less-imp-le[OF pos2]
    define \(A\) where \(A=\left(\sum x \in X . w x * a x\right)\)
    define \(r\) where \(r=(\lambda x\). \(a x / A-1)\)
    from sum-weights have \(X \neq\{ \}\) by auto
    hence \(A \neq 0\)
        unfolding \(A\)-def using nonneg1 nonneg2 pos1 pos2〈finite \(X\) 〉
        by (subst sum-nonneg-eq-0-iff) force+
    moreover from nonneg1 nonneg2 have \(A \geq 0\)
    by (auto simp: A-def intro!: sum-nonneg)
    ultimately have \(A>0\) by simp
```

have r-ge: $r x \geq-1$ if $x: x \in X$ for x
using $\langle A>0\rangle \operatorname{pos} 1[O F x]$ by (auto simp: r-def field-simps)
have $\left(\prod x \in X .(1+r x)\right.$ powr $\left.w x\right)=\left(\prod x \in X .(a x / A)\right.$ powr $\left.w x\right)$
by (simp add: r-def)
also have $\ldots=\left(\prod x \in X\right.$. a x powr $\left.w x\right) /\left(\prod x \in X\right.$. A powr $\left.w x\right)$
unfolding prod-dividef [symmetric]
using assms pos2 $\langle A>0\rangle$ by (intro prod.cong powr-divide) (auto intro: less-imp-le)
also have $\left(\prod x \in X . A\right.$ powr $\left.w x\right)=\exp \left(\left(\sum x \in X . w x\right) * \ln A\right)$
using $\langle A>0\rangle$ and \langle finite $X\rangle$ by (simp add: powr-def exp-sum sum-distrib-right)
also have $\left(\sum x \in X . w x\right)=1$ by fact
also have $\exp (1 * \ln A)=A$
using $\langle A>0\rangle$ by simp
finally have lhs: $\left(\prod x \in X .(1+r x)\right.$ powr $\left.w x\right)=\left(\prod x \in X\right.$. a x powr $\left.w x\right) / A$.
have $\left(\prod x \in X . \exp (w x * r x)\right)=\exp \left(\sum x \in X . w x * r x\right)$
using 〈finite X 〉 by (simp add: exp-sum)
also have $\left(\sum x \in X . w x * r x\right)=\left(\sum x \in X . a x * w x\right) / A-1$
using $\langle A>0\rangle$ by (simp add: r-def algebra-simps sum-subtractf sum-divide-distrib sum-weights)
also have ($\left.\sum x \in X . a x * w x\right) / A=1$
using $\langle A>0\rangle$ by (simp add: A-def mult.commute)
finally have rhs: $\left(\prod x \in X . \exp (w x * r x)\right)=1$ by simp
have $a x=A$ if $x: x \in X$ for x
proof -
have $(1+r x)$ powr $w x=\exp (w x * r x)$
proof (rule prod-ge-pointwise-le-imp-pointwise-eq
[where $f=\lambda x$. $(1+r x)$ powr $w x$ and $g=\lambda x$. exp $(w x * r x)])$
show $(1+r x)$ powr $w x \leq \exp (w x * r x)$ if $x: x \in X$ for x
proof -
have $1+r x \leq \exp (r x)$
by (rule exp-ge-add-one-self)
hence $(1+r x)$ powr $w x \leq \exp (r x)$ powr $w x$
using nonneg1[of x] nonneg2[of x] $x\langle A>0\rangle$
by (intro powr-mono2) (auto simp: r-def field-simps)
also have $\ldots=\exp (w x * r x)$
by (simp add: powr-def)
finally show $(1+r x)$ powr $w x \leq \exp (w x * r x)$.
qed
next
show $\left(\prod x \in X .(1+r x)\right.$ powr $\left.w x\right) \geq\left(\prod x \in X . \exp (w x * r x)\right)$
proof -
have $\left(\prod x \in X .(1+r x)\right.$ powr $\left.w x\right)=\left(\prod x \in X\right.$. a x powr $\left.w x\right) / A$ by (fact lhs)
also have $\ldots=1$
using $\langle A \neq 0\rangle$ by (simp add: eq A-def)
also have $\ldots=\left(\prod x \in X . \exp (w x * r x)\right)$

```
                by (simp add: rhs)
            finally show?thesis by simp
    qed
    qed (use \(x\) 〈finite \(X\) 〉in auto)
    also have \(\exp (w x * r x)=\exp (r x)\) powr \(w x\)
        by (simp add: powr-def)
    finally have \(1+r x=\exp (r x)\)
    using \(x\) pos2 \([\) of \(x] r\)-ge \([\) of \(x]\) by (subst (asm) powr-left-real-eq-iff) auto
    hence \(r x=0\)
    using exp-real-eq-one-plus-iff [of r x] by auto
    hence \(a x=A\)
    using \(\langle A>0\rangle\) by (simp add: r-def field-simps)
    thus ?thesis
    by ( \(\operatorname{simp}\) add: )
qed
thus \(\forall x \in X . \forall y \in X . a x=a y\)
    by auto
qed
We can now show the full theorem and relax the positivity condition on the \(a_{i}\) to non-negativity. This is possible because if some \(a_{i}\) is zero and the two means coincide, then the product is obviously 0 , but the sum can only be 0 if all the \(a_{i}\) are 0 .
```

```
theorem weighted-arithmetic-geometric-mean-eq-iff:
```

theorem weighted-arithmetic-geometric-mean-eq-iff:
fixes $a w:^{\prime}{ }^{\prime} a \Rightarrow$ real
fixes $a w:^{\prime}{ }^{\prime} a \Rightarrow$ real
assumes finite X
assumes finite X
assumes nonneg1: $\bigwedge x . x \in X \Longrightarrow a x \geq 0$
assumes nonneg1: $\bigwedge x . x \in X \Longrightarrow a x \geq 0$
assumes pos2: $\quad \bigwedge x . x \in X \Longrightarrow w x>0$
assumes pos2: $\quad \bigwedge x . x \in X \Longrightarrow w x>0$
assumes sum-weights: $\left(\sum x \in X . w x\right)=1$
assumes sum-weights: $\left(\sum x \in X . w x\right)=1$
shows $\quad\left(\prod x \in X . a x\right.$ powr $\left.w x\right)=\left(\sum x \in X . w x * a x\right) \longleftrightarrow X \neq\{ \} \wedge(\forall x \in X$.
shows $\quad\left(\prod x \in X . a x\right.$ powr $\left.w x\right)=\left(\sum x \in X . w x * a x\right) \longleftrightarrow X \neq\{ \} \wedge(\forall x \in X$.
$\forall y \in X$. $a x=a y$)
$\forall y \in X$. $a x=a y$)
proof
proof
assume $*: X \neq\{ \} \wedge(\forall x \in X . \forall y \in X . a x=a y)$
assume $*: X \neq\{ \} \wedge(\forall x \in X . \forall y \in X . a x=a y)$
from $*$ have $X \neq\{ \}$
from $*$ have $X \neq\{ \}$
by blast
by blast
from $*$ obtain c where $c: \bigwedge x . x \in X \Longrightarrow a x=c c \geq 0$
from $*$ obtain c where $c: \bigwedge x . x \in X \Longrightarrow a x=c c \geq 0$
proof (cases $X=\{ \}$)
proof (cases $X=\{ \}$)
case False
case False
then obtain x where $x \in X$ by blast
then obtain x where $x \in X$ by blast
thus ?thesis using * that [of a x] nonneg1 [of x] by metis
thus ?thesis using * that [of a x] nonneg1 [of x] by metis
next
next
case True
case True
thus ?thesis
thus ?thesis
using that[of 1] by auto
using that[of 1] by auto
qed
qed
have $\left(\prod x \in X\right.$. a x powr $\left.w x\right)=\left(\prod x \in X . c\right.$ powr $\left.w x\right)$

```
have \(\left(\prod x \in X\right.\). a x powr \(\left.w x\right)=\left(\prod x \in X . c\right.\) powr \(\left.w x\right)\)
```

```
    by (simp add: c)
    also have ... = c
    using assms c <X # {}> by (cases c=0) (auto simp: powr-sum-distrib-real-right)
    also have ... = (\sumx\inX.wx*ax)
    using sum-weights by (simp add: c(1) flip: sum-distrib-left sum-distrib-right)
    finally show (\prodx\inX.a x powr wx) = (\sumx\inX.wx*ax).
next
    assume *: (\prodx\inX. a x powr wx) = (\sumx\inX.wx*ax)
    have X \not={}
        using * by auto
    moreover have ( }\forallx\inX.\forally\inX.ax=a y
    proof (cases \existsx\inX. a x = 0)
        case False
    with nonneg1 have pos1: }\forallx\inX.ax>
        by force
    thus ?thesis
        using weighted-arithmetic-geometric-mean-eq-iff-pos[of X a w] assms *
        by blast
    next
    case True
    hence (\prodx\inX. a x powr w x)=0
        using assms by auto
    with * have (\sumx\inX.wx*ax)=0
        by auto
    also have?this \longleftrightarrow(}\forallx\inX.wx*ax=0
        using assms by (intro sum-nonneg-eq-0-iff mult-nonneg-nonneg) (auto intro:
less-imp-le)
    finally have ( }\forallx\inX.ax=0
        using pos2 by force
    thus ?thesis
        by auto
    qed
    ultimately show }X\not={}\wedge(\forallx\inX.\forally\inX.ax=a y
        by blast
qed
Again, we derive a version for the unweighted arithmetic/geometric mean.
corollary arithmetic-geometric-mean-eq-iff:
fixes \(a::{ }^{\prime} a \Rightarrow\) real
assumes finite \(X\)
defines \(n \equiv \operatorname{card} X\)
assumes nonneg: \(\bigwedge x . x \in X \Longrightarrow a x \geq 0\)
shows root \(n\left(\prod x \in X . a x\right)=\left(\sum x \in X . a x\right) / n \longleftrightarrow(\forall x \in X . \forall y \in X . a x=a\) y)
proof (cases \(X=\{ \}\) )
case False
with assms have \(n>0\)
by auto
have \(\left(\prod x \in X . a x\right.\) powr \(\left.(1 / n)\right)=\left(\sum x \in X .(1 / n) * a x\right) \longleftrightarrow\)
```

$$
X \neq\{ \} \wedge(\forall x \in X . \forall y \in X . a x=a y)
$$

using assms False by (intro weighted-arithmetic-geometric-mean-eq-iff) auto also have $\left(\prod x \in X\right.$. a x powr $\left.(1 / n)\right)=\left(\prod x \in X\right.$. a x) powr $(1 / n)$
using nonneg by (subst powr-sum-distrib-real-left) auto
also have $\ldots=\operatorname{root} n\left(\prod x \in X\right.$. a $\left.x\right)$
using $\langle n>0\rangle$ nonneg by (subst root-powr-inverse') (auto simp: prod-nonneg)
also have $\left(\sum x \in X .(1 / n) * a x\right)=\left(\sum x \in X . a x\right) / n$
by (subst sum-distrib-left [symmetric]) auto
finally show ?thesis using False by auto
qed (auto simp: n-def)

1.4 The Binary Version

For convenience, we also derive versions for only two numbers:

```
corollary weighted-arithmetic-geometric-mean-binary:
    fixes w1 w2 x1 x2 :: real
    assumes x1 \geq0 x2 \geq0w1 \geq0w2 \geq0w1 + w2 = 1
    shows x1 powr w1 * x2 powr w2 \leqw1 * x1 + w2 * x2
proof -
    let ?a = \lambdab. if b then x1 else x2
    let ?}w=\lambdab. if b then w1 else w2
    from assms have (\prodx\inUNIV. ?a x powr ?w x) \leq (\sumx\inUNIV. ?w x * ?a x)
            by (intro weighted-arithmetic-geometric-mean) (auto simp add: UNIV-bool)
    thus ?thesis by (simp add: UNIV-bool add-ac mult-ac)
qed
corollary weighted-arithmetic-geometric-mean-eq-iff-binary:
    fixes w1 w2 x1 x2 :: real
    assumes x1 \geq0 x2 \geq0 w1 > 0 w2 > 0 w1 + w2 = 1
    shows x1 powr w1 * x2 powr w2 = w1 * x1 + w2 * x2 \longleftrightarrow w x1 = x2
proof -
    let ?a = \lambdab. if b then x1 else x2
    let ? w = \lambdab. if b then w1 else w2
    from assms have (\prodx\inUNIV. ?a x powr ?w x) = (\sumx\inUNIV. ?w x * ?a x)
                                    \longrightarrow ( U N I V ~ : : ~ b o o l ~ s e t ) ~ \neq \{ \} \wedge ( \forall x \in U N I V . \forall y \in U N I V ~ . ~ ? a ~ x =
?a y)
    by (intro weighted-arithmetic-geometric-mean-eq-iff) (auto simp add: UNIV-bool)
    thus ?thesis by (auto simp: UNIV-bool add-ac mult-ac)
qed
corollary arithmetic-geometric-mean-binary:
    fixes x1 x2 :: real
    assumes x1 \geq0 x2 \geq0
    shows sqrt (x1*x2) \leq (x1 + x2) / 2
    using weighted-arithmetic-geometric-mean-binary[of x1 x2 1/2 1/2] assms
    by (simp add: powr-half-sqrt field-simps real-sqrt-mult)
corollary arithmetic-geometric-mean-eq-iff-binary:
    fixes x1 x2 :: real
```

assumes $x 1 \geq 0 x 2 \geq 0$
shows $\operatorname{sqrt}(x 1 * x 2)=(x 1+x 2) / 2 \longleftrightarrow x 1=x 2$
using weighted-arithmetic-geometric-mean-eq-iff-binary[of x1 x2 1/2 1/2] assms by (simp add: powr-half-sqrt field-simps real-sqrt-mult)
end

References

[1] J. M. Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, 2004.

