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Abstract

This article provides a formalisation of the Weighted Arithmetic–
Geometric Mean Inequality: given non-negative reals a1, . . . , an and
non-negative weights w1, . . . , wn such that w1 + . . . + wn = 1, we have

n∏
i=1

awi
i ≤

n∑
i=1

wiai .

If the weights are additionally all non-zero, equality holds if and only
if a1 = . . . = an.

As a corollary with w1 = . . . = wn = 1
n , the regular arithmetic–

geometric mean inequality follows, namely that

n
√

a1 . . . an ≤
1
n

(a1 + . . . + an) .

I follow Pólya’s elegant proof, which uses the inequality 1 + x ≤ ex

as a starting point. Pólya claims that this proof came to him in a
dream, and that it was ‘the best mathematics he had ever dreamt.” [1,
pp. 22–26]
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1 The Weighted Arithmetic–Geometric Mean In-
equality

theory Weighted-Arithmetic-Geometric-Mean
imports Complex-Main

begin

1.1 Auxiliary Facts
lemma root-powr-inverse ′: 0 < n =⇒ 0 ≤ x =⇒ root n x = x powr (1/n)

by (cases x = 0 ) (auto simp: root-powr-inverse)

lemma powr-sum-distrib-real-right:
assumes a 6= 0
shows (

∏
x∈X . a powr e x :: real) = a powr (

∑
x∈X . e x)

using assms
by (induction X rule: infinite-finite-induct) (auto simp: powr-add)

lemma powr-sum-distrib-real-left:
assumes

∧
x. x ∈ X =⇒ a x ≥ 0

shows (
∏

x∈X . a x powr e :: real) = (
∏

x∈X . a x) powr e
using assms
by (induction X rule: infinite-finite-induct)

(auto simp: powr-mult prod-nonneg)

lemma (in linordered-semidom) prod-mono-strict ′:
assumes i ∈ A
assumes finite A
assumes

∧
i. i ∈ A =⇒ 0 ≤ f i ∧ f i ≤ g i

assumes
∧

i. i ∈ A =⇒ 0 < g i
assumes f i < g i
shows prod f A < prod g A

proof −
have prod f A = f i ∗ prod f (A − {i})

using assms by (intro prod.remove)
also have . . . ≤ f i ∗ prod g (A − {i})

using assms by (intro mult-left-mono prod-mono) auto
also have . . . < g i ∗ prod g (A − {i})

using assms by (intro mult-strict-right-mono prod-pos) auto
also have . . . = prod g A

using assms by (intro prod.remove [symmetric])
finally show ?thesis .

qed

lemma prod-ge-pointwise-le-imp-pointwise-eq:
fixes f :: ′a ⇒ real
assumes finite X
assumes ge: prod f X ≥ prod g X
assumes nonneg:

∧
x. x ∈ X =⇒ f x ≥ 0
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assumes pos:
∧

x. x ∈ X =⇒ g x > 0
assumes le:

∧
x. x ∈ X =⇒ f x ≤ g x and x: x ∈ X

shows f x = g x
proof (rule ccontr)

assume f x 6= g x
with le[of x] and x have f x < g x

by auto
hence prod f X < prod g X

using x and le and nonneg and pos and ‹finite X›
by (intro prod-mono-strict ′) auto

with ge show False
by simp

qed

lemma powr-right-real-eq-iff :
assumes a ≥ (0 :: real)
shows a powr x = a powr y ←→ a = 0 ∨ a = 1 ∨ x = y
using assms by (auto simp: powr-def )

lemma powr-left-real-eq-iff :
assumes a ≥ (0 :: real) b ≥ 0 x 6= 0
shows a powr x = b powr x ←→ a = b
using assms by (auto simp: powr-def )

lemma exp-real-eq-one-plus-iff :
fixes x :: real
shows exp x = 1 + x ←→ x = 0

proof (cases x = 0 )
case False
define f :: real ⇒ real where f = (λx. exp x − 1 − x)
have deriv: (f has-field-derivative (exp x − 1 )) (at x) for x

by (auto simp: f-def intro!: derivative-eq-intros)

have ∃ z. z>min x 0 ∧ z < max x 0 ∧ f (max x 0 ) − f (min x 0 ) =
(max x 0 − min x 0 ) ∗ (exp z − 1 )

using MVT2 [of min x 0 max x 0 f λx. exp x − 1 ] deriv False
by (auto simp: min-def max-def )

then obtain z where z ∈ {min x 0<..<max x 0}
f (max x 0 ) − f (min x 0 ) = (max x 0 − min x 0 ) ∗ (exp z − 1 )

by (auto simp: f-def )
thus ?thesis using False

by (cases x 0 :: real rule: linorder-cases) (auto simp: f-def )
qed auto

1.2 The Inequality

We first prove the equality under the assumption that all the ai and wi are
positive.
lemma weighted-arithmetic-geometric-mean-pos:
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fixes a w :: ′a ⇒ real
assumes finite X
assumes pos1 :

∧
x. x ∈ X =⇒ a x > 0

assumes pos2 :
∧

x. x ∈ X =⇒ w x > 0
assumes sum-weights: (

∑
x∈X . w x) = 1

shows (
∏

x∈X . a x powr w x) ≤ (
∑

x∈X . w x ∗ a x)
proof −

note nonneg1 = less-imp-le[OF pos1 ]
note nonneg2 = less-imp-le[OF pos2 ]
define A where A = (

∑
x∈X . w x ∗ a x)

define r where r = (λx. a x / A − 1 )
from sum-weights have X 6= {} by auto
hence A 6= 0

unfolding A-def using nonneg1 nonneg2 pos1 pos2 ‹finite X›
by (subst sum-nonneg-eq-0-iff ) force+

moreover from nonneg1 nonneg2 have A ≥ 0
by (auto simp: A-def intro!: sum-nonneg)

ultimately have A > 0 by simp

have (
∏

x∈X . (1 + r x) powr w x) = (
∏

x∈X . (a x / A) powr w x)
by (simp add: r-def )

also have . . . = (
∏

x∈X . a x powr w x) / (
∏

x∈X . A powr w x)
unfolding prod-dividef [symmetric]

using assms pos2 ‹A > 0 › by (intro prod.cong powr-divide) (auto intro:
less-imp-le)

also have (
∏

x∈X . A powr w x) = exp ((
∑

x∈X . w x) ∗ ln A)
using ‹A > 0 › and ‹finite X› by (simp add: powr-def exp-sum sum-distrib-right)

also have (
∑

x∈X . w x) = 1 by fact
also have exp (1 ∗ ln A) = A

using ‹A > 0 › by simp
finally have lhs: (

∏
x∈X . (1 + r x) powr w x) = (

∏
x∈X . a x powr w x) / A .

have (
∏

x∈X . exp (w x ∗ r x)) = exp (
∑

x∈X . w x ∗ r x)
using ‹finite X› by (simp add: exp-sum)

also have (
∑

x∈X . w x ∗ r x) = (
∑

x∈X . a x ∗ w x) / A − 1
using ‹A > 0 › by (simp add: r-def algebra-simps sum-subtractf sum-divide-distrib

sum-weights)
also have (

∑
x∈X . a x ∗ w x) / A = 1

using ‹A > 0 › by (simp add: A-def mult.commute)
finally have rhs: (

∏
x∈X . exp (w x ∗ r x)) = 1 by simp

have (
∏

x∈X . a x powr w x) / A = (
∏

x∈X . (1 + r x) powr w x)
by (fact lhs [symmetric])

also have (
∏

x∈X . (1 + r x) powr w x) ≤ (
∏

x∈X . exp (w x ∗ r x))
proof (intro prod-mono conjI )

fix x assume x: x ∈ X
have 1 + r x ≤ exp (r x)

by (rule exp-ge-add-one-self )
hence (1 + r x) powr w x ≤ exp (r x) powr w x
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using nonneg1 [of x] nonneg2 [of x] x ‹A > 0 ›
by (intro powr-mono2 ) (auto simp: r-def field-simps)

also have . . . = exp (w x ∗ r x)
by (simp add: powr-def )

finally show (1 + r x) powr w x ≤ exp (w x ∗ r x) .
qed auto
also have (

∏
x∈X . exp (w x ∗ r x)) = 1 by (fact rhs)

finally show (
∏

x∈X . a x powr w x) ≤ A
using ‹A > 0 › by (simp add: field-simps)

qed

We can now relax the positivity assumptions to non-negativity: if one of the
ai is zero, the theorem becomes trivial (note that 00 = 0 by convention for
the real-valued power operator (powr)).
Otherwise, we can simply remove all the indices that have weight 0 and
apply the above auxiliary version of the theorem.
theorem weighted-arithmetic-geometric-mean:

fixes a w :: ′a ⇒ real
assumes finite X
assumes nonneg1 :

∧
x. x ∈ X =⇒ a x ≥ 0

assumes nonneg2 :
∧

x. x ∈ X =⇒ w x ≥ 0
assumes sum-weights: (

∑
x∈X . w x) = 1

shows (
∏

x∈X . a x powr w x) ≤ (
∑

x∈X . w x ∗ a x)
proof (cases ∃ x∈X . a x = 0 )

case True
hence (

∏
x∈X . a x powr w x) = 0

using ‹finite X› by simp
also have . . . ≤ (

∑
x∈X . w x ∗ a x)

by (intro sum-nonneg mult-nonneg-nonneg assms)
finally show ?thesis .

next
case False
have (

∑
x∈X−{x. w x = 0}. w x) = (

∑
x∈X . w x)

by (intro sum.mono-neutral-left assms) auto
also have . . . = 1 by fact
finally have sum-weights ′: (

∑
x∈X−{x. w x = 0}. w x) = 1 .

have (
∏

x∈X . a x powr w x) = (
∏

x∈X−{x. w x = 0}. a x powr w x)
using ‹finite X› False by (intro prod.mono-neutral-right) auto

also have . . . ≤ (
∑

x∈X−{x. w x = 0}. w x ∗ a x) using assms False
by (intro weighted-arithmetic-geometric-mean-pos sum-weights ′)

(auto simp: order .strict-iff-order)
also have . . . = (

∑
x∈X . w x ∗ a x)

using ‹finite X› by (intro sum.mono-neutral-left) auto
finally show ?thesis .

qed

We can derive the regular arithmetic/geometric mean inequality from this
by simply setting all the weights to 1

n :
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corollary arithmetic-geometric-mean:
fixes a :: ′a ⇒ real
assumes finite X
defines n ≡ card X
assumes nonneg:

∧
x. x ∈ X =⇒ a x ≥ 0

shows root n (
∏

x∈X . a x) ≤ (
∑

x∈X . a x) / n
proof (cases X = {})

case False
with assms have n: n > 0

by auto
have (

∏
x∈X . a x powr (1 / n)) ≤ (

∑
x∈X . (1 / n) ∗ a x)

using n assms by (intro weighted-arithmetic-geometric-mean) auto
also have (

∏
x∈X . a x powr (1 / n)) = (

∏
x∈X . a x) powr (1 / n)

using nonneg by (subst powr-sum-distrib-real-left) auto
also have . . . = root n (

∏
x∈X . a x)

using ‹n > 0 › nonneg by (subst root-powr-inverse ′) (auto simp: prod-nonneg)
also have (

∑
x∈X . (1 / n) ∗ a x) = (

∑
x∈X . a x) / n

by (subst sum-distrib-left [symmetric]) auto
finally show ?thesis .

qed (auto simp: n-def )

1.3 The Equality Case

Next, we show that weighted arithmetic and geometric mean are equal if
and only if all the ai are equal.
We first prove the more difficult direction as a lemmas and again first assume
positivity of all ai and wi and will relax this somewhat later.
lemma weighted-arithmetic-geometric-mean-eq-iff-pos:

fixes a w :: ′a ⇒ real
assumes finite X
assumes pos1 :

∧
x. x ∈ X =⇒ a x > 0

assumes pos2 :
∧

x. x ∈ X =⇒ w x > 0
assumes sum-weights: (

∑
x∈X . w x) = 1

assumes eq: (
∏

x∈X . a x powr w x) = (
∑

x∈X . w x ∗ a x)
shows ∀ x∈X . ∀ y∈X . a x = a y

proof −
note nonneg1 = less-imp-le[OF pos1 ]
note nonneg2 = less-imp-le[OF pos2 ]
define A where A = (

∑
x∈X . w x ∗ a x)

define r where r = (λx. a x / A − 1 )
from sum-weights have X 6= {} by auto
hence A 6= 0

unfolding A-def using nonneg1 nonneg2 pos1 pos2 ‹finite X›
by (subst sum-nonneg-eq-0-iff ) force+

moreover from nonneg1 nonneg2 have A ≥ 0
by (auto simp: A-def intro!: sum-nonneg)

ultimately have A > 0 by simp
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have r-ge: r x ≥ −1 if x: x ∈ X for x
using ‹A > 0 › pos1 [OF x] by (auto simp: r-def field-simps)

have (
∏

x∈X . (1 + r x) powr w x) = (
∏

x∈X . (a x / A) powr w x)
by (simp add: r-def )

also have . . . = (
∏

x∈X . a x powr w x) / (
∏

x∈X . A powr w x)
unfolding prod-dividef [symmetric]

using assms pos2 ‹A > 0 › by (intro prod.cong powr-divide) (auto intro:
less-imp-le)

also have (
∏

x∈X . A powr w x) = exp ((
∑

x∈X . w x) ∗ ln A)
using ‹A > 0 › and ‹finite X› by (simp add: powr-def exp-sum sum-distrib-right)

also have (
∑

x∈X . w x) = 1 by fact
also have exp (1 ∗ ln A) = A

using ‹A > 0 › by simp
finally have lhs: (

∏
x∈X . (1 + r x) powr w x) = (

∏
x∈X . a x powr w x) / A .

have (
∏

x∈X . exp (w x ∗ r x)) = exp (
∑

x∈X . w x ∗ r x)
using ‹finite X› by (simp add: exp-sum)

also have (
∑

x∈X . w x ∗ r x) = (
∑

x∈X . a x ∗ w x) / A − 1
using ‹A > 0 › by (simp add: r-def algebra-simps sum-subtractf sum-divide-distrib

sum-weights)
also have (

∑
x∈X . a x ∗ w x) / A = 1

using ‹A > 0 › by (simp add: A-def mult.commute)
finally have rhs: (

∏
x∈X . exp (w x ∗ r x)) = 1 by simp

have a x = A if x: x ∈ X for x
proof −

have (1 + r x) powr w x = exp (w x ∗ r x)
proof (rule prod-ge-pointwise-le-imp-pointwise-eq

[where f = λx. (1 + r x) powr w x and g = λx. exp (w x ∗ r x)])
show (1 + r x) powr w x ≤ exp (w x ∗ r x) if x: x ∈ X for x
proof −

have 1 + r x ≤ exp (r x)
by (rule exp-ge-add-one-self )

hence (1 + r x) powr w x ≤ exp (r x) powr w x
using nonneg1 [of x] nonneg2 [of x] x ‹A > 0 ›
by (intro powr-mono2 ) (auto simp: r-def field-simps)

also have . . . = exp (w x ∗ r x)
by (simp add: powr-def )

finally show (1 + r x) powr w x ≤ exp (w x ∗ r x) .
qed

next
show (

∏
x∈X . (1 + r x) powr w x) ≥ (

∏
x∈X . exp (w x ∗ r x))

proof −
have (

∏
x∈X . (1 + r x) powr w x) = (

∏
x∈X . a x powr w x) / A

by (fact lhs)
also have . . . = 1

using ‹A 6= 0 › by (simp add: eq A-def )
also have . . . = (

∏
x∈X . exp (w x ∗ r x))
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by (simp add: rhs)
finally show ?thesis by simp

qed
qed (use x ‹finite X› in auto)

also have exp (w x ∗ r x) = exp (r x) powr w x
by (simp add: powr-def )

finally have 1 + r x = exp (r x)
using x pos2 [of x] r-ge[of x] by (subst (asm) powr-left-real-eq-iff ) auto

hence r x = 0
using exp-real-eq-one-plus-iff [of r x] by auto

hence a x = A
using ‹A > 0 › by (simp add: r-def field-simps)

thus ?thesis
by (simp add: )

qed
thus ∀ x∈X . ∀ y∈X . a x = a y

by auto
qed

We can now show the full theorem and relax the positivity condition on the
ai to non-negativity. This is possible because if some ai is zero and the two
means coincide, then the product is obviously 0, but the sum can only be 0
if all the ai are 0.
theorem weighted-arithmetic-geometric-mean-eq-iff :

fixes a w :: ′a ⇒ real
assumes finite X
assumes nonneg1 :

∧
x. x ∈ X =⇒ a x ≥ 0

assumes pos2 :
∧

x. x ∈ X =⇒ w x > 0
assumes sum-weights: (

∑
x∈X . w x) = 1

shows (
∏

x∈X . a x powr w x) = (
∑

x∈X . w x ∗ a x) ←→ X 6= {} ∧ (∀ x∈X .
∀ y∈X . a x = a y)
proof

assume ∗: X 6= {} ∧ (∀ x∈X . ∀ y∈X . a x = a y)
from ∗ have X 6= {}

by blast

from ∗ obtain c where c:
∧

x. x ∈ X =⇒ a x = c c ≥ 0
proof (cases X = {})

case False
then obtain x where x ∈ X by blast
thus ?thesis using ∗ that[of a x] nonneg1 [of x] by metis

next
case True
thus ?thesis

using that[of 1 ] by auto
qed

have (
∏

x∈X . a x powr w x) = (
∏

x∈X . c powr w x)
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by (simp add: c)
also have . . . = c
using assms c ‹X 6= {}› by (cases c = 0 ) (auto simp: powr-sum-distrib-real-right)

also have . . . = (
∑

x∈X . w x ∗ a x)
using sum-weights by (simp add: c(1 ) flip: sum-distrib-left sum-distrib-right)

finally show (
∏

x∈X . a x powr w x) = (
∑

x∈X . w x ∗ a x) .
next

assume ∗: (
∏

x∈X . a x powr w x) = (
∑

x∈X . w x ∗ a x)
have X 6= {}

using ∗ by auto
moreover have (∀ x∈X . ∀ y∈X . a x = a y)
proof (cases ∃ x∈X . a x = 0 )

case False
with nonneg1 have pos1 : ∀ x∈X . a x > 0

by force
thus ?thesis

using weighted-arithmetic-geometric-mean-eq-iff-pos[of X a w] assms ∗
by blast

next
case True
hence (

∏
x∈X . a x powr w x) = 0

using assms by auto
with ∗ have (

∑
x∈X . w x ∗ a x) = 0

by auto
also have ?this ←→ (∀ x∈X . w x ∗ a x = 0 )

using assms by (intro sum-nonneg-eq-0-iff mult-nonneg-nonneg) (auto intro:
less-imp-le)

finally have (∀ x∈X . a x = 0 )
using pos2 by force

thus ?thesis
by auto

qed
ultimately show X 6= {} ∧ (∀ x∈X . ∀ y∈X . a x = a y)

by blast
qed

Again, we derive a version for the unweighted arithmetic/geometric mean.
corollary arithmetic-geometric-mean-eq-iff :

fixes a :: ′a ⇒ real
assumes finite X
defines n ≡ card X
assumes nonneg:

∧
x. x ∈ X =⇒ a x ≥ 0

shows root n (
∏

x∈X . a x) = (
∑

x∈X . a x) / n ←→ (∀ x∈X . ∀ y∈X . a x = a
y)
proof (cases X = {})

case False
with assms have n > 0

by auto
have (

∏
x∈X . a x powr (1 / n)) = (

∑
x∈X . (1 / n) ∗ a x) ←→
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X 6= {} ∧ (∀ x∈X . ∀ y∈X . a x = a y)
using assms False by (intro weighted-arithmetic-geometric-mean-eq-iff ) auto

also have (
∏

x∈X . a x powr (1 / n)) = (
∏

x∈X . a x) powr (1 / n)
using nonneg by (subst powr-sum-distrib-real-left) auto

also have . . . = root n (
∏

x∈X . a x)
using ‹n > 0 › nonneg by (subst root-powr-inverse ′) (auto simp: prod-nonneg)

also have (
∑

x∈X . (1 / n) ∗ a x) = (
∑

x∈X . a x) / n
by (subst sum-distrib-left [symmetric]) auto

finally show ?thesis using False by auto
qed (auto simp: n-def )

1.4 The Binary Version

For convenience, we also derive versions for only two numbers:
corollary weighted-arithmetic-geometric-mean-binary:

fixes w1 w2 x1 x2 :: real
assumes x1 ≥ 0 x2 ≥ 0 w1 ≥ 0 w2 ≥ 0 w1 + w2 = 1
shows x1 powr w1 ∗ x2 powr w2 ≤ w1 ∗ x1 + w2 ∗ x2

proof −
let ?a = λb. if b then x1 else x2
let ?w = λb. if b then w1 else w2
from assms have (

∏
x∈UNIV . ?a x powr ?w x) ≤ (

∑
x∈UNIV . ?w x ∗ ?a x)

by (intro weighted-arithmetic-geometric-mean) (auto simp add: UNIV-bool)
thus ?thesis by (simp add: UNIV-bool add-ac mult-ac)

qed

corollary weighted-arithmetic-geometric-mean-eq-iff-binary:
fixes w1 w2 x1 x2 :: real
assumes x1 ≥ 0 x2 ≥ 0 w1 > 0 w2 > 0 w1 + w2 = 1
shows x1 powr w1 ∗ x2 powr w2 = w1 ∗ x1 + w2 ∗ x2 ←→ x1 = x2

proof −
let ?a = λb. if b then x1 else x2
let ?w = λb. if b then w1 else w2
from assms have (

∏
x∈UNIV . ?a x powr ?w x) = (

∑
x∈UNIV . ?w x ∗ ?a x)

←→ (UNIV :: bool set) 6= {} ∧ (∀ x∈UNIV . ∀ y∈UNIV . ?a x =
?a y)

by (intro weighted-arithmetic-geometric-mean-eq-iff ) (auto simp add: UNIV-bool)
thus ?thesis by (auto simp: UNIV-bool add-ac mult-ac)

qed

corollary arithmetic-geometric-mean-binary:
fixes x1 x2 :: real
assumes x1 ≥ 0 x2 ≥ 0
shows sqrt (x1 ∗ x2 ) ≤ (x1 + x2 ) / 2
using weighted-arithmetic-geometric-mean-binary[of x1 x2 1/2 1/2 ] assms
by (simp add: powr-half-sqrt field-simps real-sqrt-mult)

corollary arithmetic-geometric-mean-eq-iff-binary:
fixes x1 x2 :: real
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assumes x1 ≥ 0 x2 ≥ 0
shows sqrt (x1 ∗ x2 ) = (x1 + x2 ) / 2 ←→ x1 = x2
using weighted-arithmetic-geometric-mean-eq-iff-binary[of x1 x2 1/2 1/2 ] assms
by (simp add: powr-half-sqrt field-simps real-sqrt-mult)

end
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