The Sophomore's Dream

Manuel Eberl

May 9, 2022

Abstract

This article provides a brief formalisation of the two equations known as the Sophomore's Dream, first discovered by Johann Bernoulli [1] in 1697: $$
\int_{0}^{1} x^{-x} \mathrm{~d} x=\sum_{n=1}^{\infty} n^{-n} \quad \text { and } \quad \int_{0}^{1} x^{x} \mathrm{~d} x=-\sum_{n=1}^{\infty}(-n)^{-n}
$$

Contents

1 The Sophomore's Dream 1

1.1 Auxiliary material . 2
1.2 Continuity and bounds for $x \log x$. 3
1.3 Convergence, Summability, Integrability 5
1.4 An auxiliary integral . 6
1.5 Main proofs . 8

1 The Sophomore's Dream

theory Sophomores-Dream
imports HOL-Analysis.Analysis $H O L-$ Real-Asymp.Real-Asymp
begin

This formalisation mostly follows the very clear proof sketch from Wikipedia [3]. That article also provides an interesting historical perspective. A more detailed exploration of Bernoulli's historical proof can be found in the book by Dunham [2].
The name 'Sophomore's Dream' apparently comes from a book by Borwein et al., in analogy to the 'Freshman's Dream' equation $(x+y)^{n}=x^{n}+y^{n}$ (which is generally not true except in rings of characteristic n).

1.1 Auxiliary material

```
lemma integrable-cong:
    assumes \x. x 仵\Longrightarrowfx=gx
    shows f integrable-on }A\longleftrightarrowg\mathrm{ integrable-on A
    using has-integral-cong [OF assms] by fast
lemma has-integral-cmul-iff':
    assumes c\not=0
    shows }((\lambdax.c*\mp@subsup{*}{R}{}fx)\mathrm{ has-integral I) A}\longleftrightarrow(f has-integral I /R c) A
    using assms by (metis divideR-right has-integral-cmul-iff)
lemma has-integral-Icc-iff-Ioo:
    fixes f :: real # 'a :: banach
    shows (f has-integral I) {a..b}\longleftrightarrow(f has-integral I) {a<..<b}
proof (rule has-integral-spike-set-eq)
    show negligible {x\in{a..b} - {a<..<b}.fx\not=0}
    by (rule negligible-subset [of {a,b}]) auto
    show negligible {x\in{a<..<b} - {a..b}.fx\not=0}
    by (rule negligible-subset [of {}]) auto
qed
lemma integrable-on-Icc-iff-Ioo:
    fixes f :: real # ' }a\mathrm{ :: banach
    shows f integrable-on {a..b}\longleftrightarrowf integrable-on {a<..<b}
    using has-integral-Icc-iff-Ioo by blast
lemma norm-summable-imp-has-sum:
    fixes f :: nat => 'a :: banach
    assumes summable ( }\lambdan\mathrm{ n.norm ( }fn)\mathrm{ ) and f sums S
    shows has-sum f (UNIV :: nat set) S
    unfolding has-sum-def tendsto-iff eventually-finite-subsets-at-top
proof (safe, goal-cases)
    case (1 &)
    from assms(1) obtain S' where S':(\lambdan. norm (fn)) sums S'
    by (auto simp: summable-def)
    with 1 obtain N where N: \n. n\geqN\Longrightarrow \ S S - (\sumi<n.norm (fi))|<\varepsilon
    by (auto simp: tendsto-iff eventually-at-top-linorder sums-def dist-norm abs-minus-commute)
    show ?case
    proof (rule exI[of - {..<N}], safe, goal-cases)
    case (2 Y)
    from 2 have ( }\lambda\mathrm{ n. if }n\inY\mathrm{ then 0 else f n) sums (S - sum f Y)
        by (intro sums-If-finite-set'[OF <f sums S`]) (auto simp: sum-negf)
    hence S - sum fY=(\sumn. if n GY then 0 else f n)
        by (simp add: sums-iff)
    also have norm ... \leq (\sumn. norm (if n \inY then 0 else f n))
        by (rule summable-norm[OF summable-comparison-test'[OF assms(1)]]) auto
    also have ... \leq(\sumn. if n<N then 0 else norm (f n)}
        using 2 by (intro suminf-le summable-comparison-test'[OF assms(1)]) auto
```

```
also have \((\lambda n\). if \(n \in\{. .<N\}\) then 0 else norm \((f n))\) sums \(\left(S^{\prime}-\left(\sum i<N\right.\right.\). norm ( \(f i)\) ))
by (intro sums-If-finite-set \({ }^{\prime}[O F S]\) ) (auto simp: sum-negf)
hence ( \(\sum n\). if \(n<N\) then 0 else norm \(\left.(f n)\right)=S^{\prime}-\left(\sum i<N\right.\). norm \(\left.(f i)\right)\)
by (simp add: sums-iff)
also have \(S^{\prime}-\left(\sum i<N\right.\). norm \(\left.(f i)\right) \leq \mid S^{\prime}-\left(\sum i<N\right.\). norm \(\left.(f i)\right) \mid\) by simp
also have \(\ldots<\varepsilon\) by (rule \(N\) ) auto
finally show ?case by (simp add: dist-norm norm-minus-commute)
qed auto
qed
lemma norm-summable-imp-summable-on:
fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a\) :: banach
assumes summable ( \(\lambda n\). norm \((f n)\) )
shows \(f\) summable-on UNIV
using norm-summable-imp-has-sum[OF assms, of suminf f] assms
by (auto simp: sums-iff summable-on-def dest: summable-norm-cancel)
lemma summable-comparison-test-bigo:
fixes \(f::\) nat \(\Rightarrow\) real
assumes summable ( \(\lambda n\). norm \((g n)) f \in O(g)\)
shows summable \(f\)
proof -
from \(\langle f \in O(g)\rangle\) obtain \(C\) where \(C\) : eventually \((\lambda x\). norm \((f x) \leq C *\) norm ( \(g x)\) ) at-top
by (auto elim: landau-o.bigE)
thus ?thesis
by (rule summable-comparison-test-ev) (insert assms, auto intro: summable-mult) qed
```


1.2 Continuity and bounds for $x \log x$

```
lemma \(x\)-log- \(x\)-continuous: continuous-on \(\{0 . .1\}(\lambda x::\) real. \(x * \ln x)\)
```

lemma x-log- x-continuous: continuous-on $\{0 . .1\}(\lambda x::$ real. $x * \ln x)$
proof -
proof -
have continuous (at x within $\{0 . .1\})(\lambda x::$ real. $x * \ln x)$ if $x \in\{0 . .1\}$ for x
have continuous (at x within $\{0 . .1\})(\lambda x::$ real. $x * \ln x)$ if $x \in\{0 . .1\}$ for x
proof (cases $x=0$)
proof (cases $x=0$)
case True
case True
have $((\lambda x::$ real. $x * \ln x) \longrightarrow 0)($ at-right 0$)$
have $((\lambda x::$ real. $x * \ln x) \longrightarrow 0)($ at-right 0$)$
by real-asymp
by real-asymp
thus ?thesis using True
thus ?thesis using True
by (simp add: continuous-def Lim-ident-at at-within-Icc-at-right)
by (simp add: continuous-def Lim-ident-at at-within-Icc-at-right)
qed (auto intro!: continuous-intros)
qed (auto intro!: continuous-intros)
thus ?thesis
thus ?thesis
using continuous-on-eq-continuous-within by blast
using continuous-on-eq-continuous-within by blast
qed
qed
lemma x-log-x-within-01-le:
lemma x-log-x-within-01-le:
assumes $x \in\{0 . .(1::$ real $)\}$
assumes $x \in\{0 . .(1::$ real $)\}$
shows $\quad x * \ln x \in\{-\exp (-1) . .0\}$

```
    shows \(\quad x * \ln x \in\{-\exp (-1) . .0\}\)
```

```
proof -
    have}x*\operatorname{ln}x\leq
        using assms by (cases x = 0) (auto simp: mult-nonneg-nonpos)
    let ?f = \lambdax::real. }x*\operatorname{ln}
    have diff: (?f has-field-derivative (ln x + 1)) (at x) if x>0 for x
        using that by (auto intro!: derivative-eq-intros)
    have diff': ?f differentiable at x if }x>0\mathrm{ for }
        using diff[OF that] real-differentiable-def by blast
    consider x = 0 | x=1 | x = exp(-1)| 0<x < < exp(-1)| exp(-1)<x ( 
    < 1
            using assms unfolding atLeastAtMost-iff by linarith
    hence }x*\operatorname{ln}x\geq-\operatorname{exp}(-1
    proof cases
        assume x: 0< x x < exp (-1)
        have \existslz. x<z\wedgez<exp(-1)^(?f has-real-derivative l) (at z)^
                        ?f}(\operatorname{exp}(-1))-?fx=(\operatorname{exp}(-1)-x)*
            using x by (intro MVT continuous-on-subset [OF x-log-x-continuous] diff')
auto
        then obtain lz where lz:
            x<zz<exp (-1) (?f has-real-derivative l) (at z)
            ?f }x=-\operatorname{exp}(-1)-(\operatorname{exp}(-1)-x)*
            by (auto simp: algebra-simps)
    have [simp]: l= ln z+1
            using DERIV-unique[OF diff[of z] lz(3)] lz(1) x by auto
    have ln z\leqln (exp (-1))
                using lz x by (subst ln-le-cancel-iff) auto
    hence (exp (-1) - x)*l\leq0
            using}x lz by (intro mult-nonneg-nonpos) aut
    with lz show ?thesis
                by linarith
    next
    assume x: exp (-1)<x < < 1
    have \existslz. exp (-1)<z\wedgez<x\wedge(?f has-real-derivative l) (atz)}
                        ?f }x-\mathrm{ ?f }(\operatorname{exp}(-1))=(x-\operatorname{exp}(-1))*
    proof (intro MVT continuous-on-subset [OF x-log-x-continuous] diff')
            fix t:: real assume t: exp (-1)<t
            show t>0
                by (rule less-trans [OF-t]) auto
    qed (use x in auto)
    then obtain lz}\mathrm{ where lz:
                exp (-1)<zz<x(?f has-real-derivative l) (at z)
                ?f }x=-\operatorname{exp}(-1)-(\operatorname{exp}(-1)-x)*
                by (auto simp: algebra-simps)
    have z>0
            by (rule less-trans [OF - lz(1)]) auto
    have [simp]: l= ln z+1
            using DERIV-unique[OF diff[of z] lz(3)]\langlez>0\rangle by auto
    have ln z\geqln}(\operatorname{exp}(-1)
```

using $l z\langle z>0\rangle$ by (subst ln-le-cancel-iff) auto
hence $(\exp (-1)-x) * l \leq 0$
using $x l z$ by (intro mult-nonpos-nonneg) auto
with $l z$ show ?thesis
by linarith
qed auto
with $\langle x * \ln x \leq 0\rangle$ show ?thesis
by auto
qed

1.3 Convergence, Summability, Integrability

As a first result we can show that the two sums that occur in the two different versions of the Sophomore's Dream are absolutely summable. This is achieved by a simple comparison test with the series $\sum_{k=1}^{\infty} k^{-2}$, as $k^{-k} \in$ $O\left(k^{-2}\right)$.
theorem abs-summable-sophomores-dream: summable $\left(\lambda k .1 / \operatorname{real}\left(k^{\wedge} k\right)\right)$
proof (rule summable-comparison-test-bigo)
show $\left(\lambda k .1 / \operatorname{real}\left(k^{\wedge} k\right)\right) \in O\left(\lambda k .1 / \operatorname{real} k^{\wedge} 2\right)$
by real-asymp
show summable (λ n. norm (1/real n^{\wedge} 2) $)$
using inverse-power-summable[of 2, where ?'a = real] by (simp add: field-simps) qed

The existence of the integral is also fairly easy to show since the integrand is continuous and the integration domain is compact. There is, however, one hiccup: The integrand is not actually continuous.
We have $\lim _{x \rightarrow 0} x^{x}=1$, but in Isabelle 0^{0} is defined as 0 (for real numbers). Thus, there is a discontinuity at $x=0$
However, this is a removable discontinuity since for any $x>0$ we have $x^{x}=e^{x \log x}$, and as we have just shown, $e^{x \log x}$ is continuous on $[0,1]$. Since the two integrands differ only for $x=0$ (which is negligible), the integral still exists.

```
theorem integrable-sophomores-dream:(\lambdax::real. x powr x) integrable-on {0..1}
proof -
    have ( }\lambdax::real. exp (x*\operatorname{ln}x)) integrable-on {0..1
        by (intro integrable-continuous-real continuous-on-exp x-log-x-continuous)
    also have ?this \longleftrightarrow(\lambdax::real. exp (x*\operatorname{ln}x)) integrable-on {0<..<1}
        by (simp add: integrable-on-Icc-iff-Ioo)
    also have }\ldots\longleftrightarrow(\lambdax::\mathrm{ real. x powr x) integrable-on {0<..<1}
        by (intro integrable-cong) (auto simp: powr-def)
    also have ... \longleftrightarrow ?thesis
        by (simp add: integrable-on-Icc-iff-Ioo)
    finally show ?thesis.
qed
```

Next, we have to show the absolute convergence of the two auxiliary sums that will occur in our proofs so that we can exchange the order of integration and summation. This is done with a straightforward application of the Weierstraß M test.
lemma uniform-limit-sophomores-dream1:
uniform-limit $\{0$..(1::real) $\}$
$\left(\lambda n x . \sum k<n .(x * \ln x)^{\wedge} k /\right.$ fact $\left.k\right)$
$\left(\lambda x . \sum k .(x * \ln x)^{\wedge} k / f a c t k\right)$
sequentially
proof (rule Weierstrass-m-test)
show summable $\left(\lambda k . \exp (-1)^{\wedge} k /\right.$ fact $k::$ real $)$
using summable-exp[of exp (-1)] by (simp add: field-simps)
next
fix $k::$ nat and $x::$ real
assume $x: x \in\{0 . .1\}$
have norm $\left((x * \ln x)^{\wedge} k /\right.$ fact $\left.k\right)=\operatorname{norm}(x * \ln x)^{\wedge} k /$ fact k
by (simp add: power-abs)
also have $\ldots \leq \exp (-1)^{\wedge} k /$ fact k
by (intro divide-right-mono power-mono) (use x-log-x-within-01-le [of x] x in auto)
finally show norm $((x * \ln x) \wedge k /$ fact $k) \leq \exp (-1) \wedge k / f a c t k$.
qed
lemma uniform-limit-sophomores-dream2:
uniform-limit $\{0 . .(1::$ real $)\}$
$\left(\lambda n x . \sum k<n .(-(x * \ln x))^{\wedge} k /\right.$ fact $\left.k\right)$
$\left(\lambda x \cdot \sum k \cdot(-(x * \ln x))^{\wedge} k /\right.$ fact $\left.k\right)$
sequentially
proof (rule Weierstrass-m-test)
show summable $(\lambda k$. exp $(-1) \uparrow k /$ fact $k::$ real $)$
using summable-exp[of exp (-1)] by (simp add: field-simps)
next
fix $k::$ nat and $x::$ real
assume $x: x \in\{0 . .1\}$
have norm $\left((-x * \ln x)^{\wedge} k /\right.$ fact $\left.k\right)=\operatorname{norm}(x * \ln x)^{\wedge} k /$ fact k
by (simp add: power-abs)
also have $\ldots \leq \exp (-1)^{\wedge} k /$ fact k
by (intro divide-right-mono power-mono) (use x-log-x-within-01-le [of x] x in auto)
finally show norm $\left((-(x * \ln x))^{\wedge} k /\right.$ fact $\left.k\right) \leq \exp (-1)^{\wedge} k /$ fact k by simp
qed

1.4 An auxiliary integral

Next we compute the integral

$$
\int_{0}^{1}(x \log x)^{n} \mathrm{~d} x=\frac{(-1)^{n} n!}{(n+1)^{n+1}}
$$

which is a key ingredient in our proof.
lemma sophomores-dream-aux-integral:

```
    \(\left(\left(\lambda x .(x * \ln x)^{\wedge} n\right)\right.\) has-integral \((-1){ }^{\wedge} n *\) fact \(\left.n / \operatorname{real}\left((n+1)^{\wedge}(n+1)\right)\right)\)
\(\{0<. .<1\}\)
proof -
    have (( \(\lambda t\). t powr real \(n / \exp t)\) has-integral fact \(n)\{0 .\).
    using Gamma-integral-real \([\) of \(n+1]\) by (auto simp: Gamma-fact powr-realpow)
    also have ?this \(\longleftrightarrow((\lambda t\). t powr real \(n / \exp t)\) has-integral fact \(n)\{0<.\).
    proof (rule has-integral-spike-set-eq)
    have eq: \(\{x \in\{0<.\}-.\{0 .\).\(\} . x powr real n / \exp x \neq 0\}=\{ \}\)
        by auto
    thus negligible \(\{x \in\{0<.\}-.\{0 .\).\(\} . x powr real n / \exp x \neq 0\}\)
        by (subst eq) auto
    have \(\{x \in\{0 .\}-.\{0<.\).\(\} . x powr real n / \exp x \neq 0\} \subseteq\{0\}\)
        by auto
    moreover have negligible \(\{0::\) real \(\}\)
        by \(\operatorname{simp}\)
    ultimately show negligible \(\{x \in\{0 .\}-.\{0<.\).\(\} . x powr real n / \exp x \neq 0\}\)
        by (meson negligible-subset)
    qed
    also have \(\ldots \longleftrightarrow\left(\left(\lambda t::\right.\right.\) real. \(\left.t^{\wedge} n / \exp t\right)\) has-integral fact \(\left.n\right)\{0<.\).
    by (intro has-integral-spike-eq) (auto simp: powr-realpow)
    finally have \(1:\left(\left(\lambda t::\right.\right.\) real. \(\left.t^{\wedge} n / \exp t\right)\) has-integral fact \(\left.n\right)\{0<.\).\(\} .\)
```

 have \(\left(\lambda x::\right.\) real. \(\left.|x|^{\wedge} n / \exp x\right)\) integrable-on \(\{0<..\} \longleftrightarrow\)
 (\(\lambda x\) ::real. \(\left.x^{\wedge} n / \exp x\right)\) integrable-on \(\{0<.\).
 by (intro integrable-cong) auto
 hence 2: \(\left(\lambda t:\right.\) :real. \(t^{\wedge} n /\) exp \(\left.t\right)\) absolutely-integrable-on \(\{0<.\).
 using 1 by (simp add: absolutely-integrable-on-def power-abs has-integral-iff)
 define \(g::\) real \(\Rightarrow\) real where \(g=(\lambda x .-\ln x *(n+1))\)
 define \(g^{\prime}::\) real \(\Rightarrow\) real where \(g^{\prime}=(\lambda x .-(n+1) / x)\)
 define \(h::\) real \(\Rightarrow\) real where \(h=(\lambda u . \exp (-u /(n+1)))\)
 have bij: bij-betw \(g\{0<. .<1\}\{0<.\).
 by (rule bij-betwI[of - - h]) (auto simp: g-def h-def mult-neg-pos)
 have deriv: (\(g\) has-real-derivative \(g^{\prime} x\)) (at \(x\) within \(\{0<. .<1\}\))
 if \(x \in\{0<. .<1\}\) for \(x\)
 unfolding \(g\)-def \(g^{\prime}\)-def using that by (auto intro!: derivative-eq-intros simp:
 field-simps)
have (λt :: real. $\left.t^{\wedge} n / \exp t\right)$ absolutely-integrable-on g ‘ $\{0<. .<1\} \wedge$
integral $(g ‘\{0<. .<1\})\left(\lambda t::\right.$ real. $\left.t^{\wedge} n / \exp t\right)=$ fact n
using 12 bij by (simp add: bij-betw-def has-integral-iff)
also have ?this $\longleftrightarrow\left(\left(\lambda x .\left|g^{\prime} x\right| *_{R}\left(g x^{\wedge} n / \exp (g x)\right)\right)\right.$ absolutely-integrable-on
$\{0<. .<1\} \wedge$
integral $\{0<. .<1\}\left(\lambda x .\left|g^{\prime} x\right| *_{R}\left(g x{ }^{\wedge} n / \exp (g x)\right)\right)=$ fact $\left.n\right)$
by (intro has-absolute-integral-change-of-variables- $1^{\prime}[$ symmetric $]$ deriv)
(auto simp: inj-on-def g-def)
finally have $\left(\left(\lambda x .\left|g^{\prime} x\right| *_{R}\left(g x^{\wedge} n / \exp (g x)\right)\right)\right.$ has-integral fact $\left.n\right)\{0<. .<1\}$
using eq-integralD set-lebesgue-integral-eq-integral(1) by blast
also have ?this \longleftrightarrow
$\left(\left(\lambda x::\right.\right.$ real. $\left.((-1) \wedge n *(n+1) \wedge(n+1)) *_{R}\left(\ln x^{\wedge} n * x^{\wedge} n\right)\right)$ has-integral fact $\left.n\right)$ $\{0<. .<1\}$
proof (rule has-integral-cong)
fix $x::$ real assume $x: x \in\{0<. .<1\}$
have $\left|g^{\prime} x\right| *_{R}\left(g x^{\wedge} n / \exp (g x)\right)=$

$$
(-1) \wedge n *(\text { real } n+1) \wedge(n+1) * \ln x^{\wedge} n *(\exp (\ln x *(n+1)) /
$$

x)
using x by (simp add: g-def g^{\prime}-def exp-minus power-minus ${ }^{\prime}$ divide-simps add-ac)
also have $\exp (\ln x *(n+1))=x$ powr real $(n+1)$
using x by (simp add: powr-def)
also have ... / $x=x^{\wedge} n$
using x by (subst powr-realpow) auto
finally show $\left|g^{\prime} x\right| *_{R}\left(g x^{\wedge} n / \exp (g x)\right)=$

$$
((-1) \widehat{ } n *(n+1) \uparrow(n+1)) *_{R}\left(\ln x^{\wedge} n * x \wedge n\right)
$$

by (simp add: algebra-simps)
qed
also have $\ldots \longleftrightarrow\left(\left(\lambda x::\right.\right.$ real. $\left.\ln x^{\wedge} n * x^{\wedge} n\right)$ has-integral fact n / R real-of-int $((-1) \wedge n * \operatorname{int}((n+1) \wedge(n+1))))$
$\{0<. .<1\}$
by (intro has-integral-cmul-iff ') (auto simp del: power-Suc)
also have fact n / R real-of-int $\left((-1)^{\wedge} n * \operatorname{int}\left((n+1)^{\wedge}(n+1)\right)\right)=$ $(-1){ }^{\wedge} n$ fact $n /(n+1)^{\wedge}(n+1)$
by (auto simp: divide-simps)
finally show ?thesis
by (simp add: power-mult-distrib mult-ac)
qed

1.5 Main proofs

We can now show the first formula: $\int_{0}^{1} x^{-x} \mathrm{~d} x=\sum_{n=1}^{\infty} n^{-n}$
lemma sophomores-dream-aux1:

```
    summable \((\lambda k .1 / \operatorname{real}((k+1) \uparrow(k+1)))\)
    integral \(\{0 . .1\}(\lambda x . x\) powr \((-x))=\left(\sum n .1 /(n+1) \uparrow(n+1)\right)\)
proof -
    define \(S\) where \(S=\left(\lambda x::\right.\) real. \(\sum k .(-(x * \ln x))^{\wedge} k /\) fact \(\left.k\right)\)
    have \(S\)-eq: \(S x=x\) powr \((-x)\) if \(x>0\) for \(x\)
    proof -
        have \(S x=\exp (-x * \ln x)\)
            by (simp add: \(S\)-def exp-def field-simps)
        also have \(\ldots=x\) powr \((-x)\)
            using \(\langle x>0\rangle\) by (simp add: powr-def)
            finally show?thesis .
    qed
```

 have cont: continuous-on \(\{0 . .1\}\left(\lambda x::\right.\) real. \(\sum k<n .(-(x * \ln x))^{\wedge} k /\) fact \(\left.k\right)\)
 for n
by (intro continuous-on-sum continuous-on-divide x-log-x-continuous continu-ous-on-power
continuous-on-const continuous-on-minus) auto
obtain $I J$ where $I J: \bigwedge n .\left(\left(\lambda x . \sum k<n .(-(x * \ln x))^{\wedge} k /\right.\right.$ fact $\left.k\right)$ has-integral In) $\{0 . .1\}$
$(S$ has-integral $J)\{0 . .1\} I \longrightarrow J$
using uniform-limit-integral [OF uniform-limit-sophomores-dream2 cont] by (auto simp: S-def)
note 〈(S has-integral $J)\{0 . .1\}>$
also have $(S$ has-integral $J)\{0 . .1\} \longleftrightarrow(S$ has-integral $J)\{0<. .<1\}$
by (simp add: has-integral-Icc-iff-Ioo)
also have $\ldots \longleftrightarrow((\lambda x . x$ powr $(-x))$ has-integral $J)\{0<. .<1\}$
by (intro has-integral-cong) (use S-eq in auto)
also have $\ldots \longleftrightarrow((\lambda x$. x powr $(-x))$ has-integral $J)\{0 . .1\}$
by (simp add: has-integral-Icc-iff-Ioo)
finally have integral: $((\lambda x$. x powr $(-x))$ has-integral $J)\{0 . .1\}$.
have I-eq: $I=\left(\lambda n . \sum k<n .1 / \operatorname{real}\left((k+1)^{\wedge}(k+1)\right)\right)$
proof
fix n :: nat
have $\left(\left(\lambda x::\right.\right.$ real. $\sum k<n .(-1)^{\wedge} k *\left((x * \ln x) \wedge^{\wedge} k /\right.$ fact $\left.\left.k\right)\right)$ has-integral

$$
\left(\sum k<n .(-1) \wedge k *((-1) \wedge k * \text { fact } k / \text { real }((k+1) \wedge(k+1)) / \text { fact }\right.
$$

k))) $\{0<. .<1\}$
by (intro has-integral-sum[OF - has-integral-mult-right] has-integral-divide sophomores-dream-aux-integral) auto
also have $\left(\lambda x::\right.$ real. $\sum k<n .(-1)^{\wedge} k *\left((x * \ln x)^{\wedge} k /\right.$ fact $\left.\left.k\right)\right)=$ $\left(\lambda x::\right.$ real. $\sum k<n .(-(x * \ln x))^{\wedge} k /$ fact $\left.k\right)$
by (simp add: power-minus')
also have $\left(\sum k<n .(-1) \uparrow k *((-1) \wedge k *\right.$ fact $k / \operatorname{real}((k+1) \wedge(k+1)) /$ fact $k)$) $=$

$$
\left(\sum k<n .1 / \operatorname{real}((k+1) \wedge(k+1))\right)
$$

by simp
also note has-integral-Icc-iff-Ioo [symmetric]
finally show $I n=\left(\sum k<n .1 / \operatorname{real}((k+1) \uparrow(k+1))\right)$
by (rule has-integral-unique [OF IJ (1)[of n]])
qed
hence sums: $(\lambda k$. $1 / \operatorname{real}((k+1) \wedge(k+1)))$ sums J
using $I J(3) I-e q$ by (simp add: sums-def)
from sums show summable $(\lambda k .1 / \operatorname{real}((k+1) \uparrow(k+1)))$
by (simp add: sums-iff)
from integral sums show integral $\{0 . .1\}(\lambda x . x$ powr $(-x))=\left(\sum n .1 /(n+1)^{\wedge}(n+1)\right)$
by (simp add: sums-iff has-integral-iff)
qed
theorem sophomores-dream1:
(λk ::nat. norm (k powi $(-k)$)) summable-on $\{1 .$.

```
    integral \(\{0 . .1\}(\lambda x\). x powr \((-x))=\left(\sum_{\infty} k \in\{(1::\right.\) nat \() ..\}\). \(k\) powi \(\left.(-k)\right)\)
proof -
    let ? \(I=\) integral \(\{0 . .1\}(\lambda x\). x powr \((-x))\)
    have \((\lambda k:: n a t\). norm ( \(k\) powi \((-k))\) ) summable-on UNIV
        using abs-summable-sophomores-dream
    by (intro norm-summable-imp-summable-on) (auto simp: power-int-minus field-simps)
    thus \((\lambda k:\) :nat. norm \((k\) powi \((-k)))\) summable-on \(\{1 .\).
    by (rule summable-on-subset-banach) auto
    have ( \(\lambda n .1 /(n+1) \uparrow(n+1))\) sums ?I
    using sophomores-dream-aux1 by (simp add: sums-iff)
    moreover have summable ( \(\lambda\) n. norm ( 1 / real (Suc \(n \wedge\) Suc n)) )
        by (subst summable-Suc-iff) (use abs-summable-sophomores-dream in «auto
simp: field-simps〉)
    ultimately have has-sum ( \(\lambda n\) ::nat. \(1 /(n+1) \uparrow(n+1))\) UNIV ?I
    by (intro norm-summable-imp-has-sum) auto
    also have ?this \(\longleftrightarrow\) has-sum \(((\lambda n:: n a t .1 / n \widehat{n}) \circ\) Suc \()\) UNIV ?I
    by (simp add: o-def field-simps)
    also have \(\ldots \longleftrightarrow\) has-sum ( \(\lambda n::\) nat. \(1 / n^{\wedge} n\) ) (Suc‘UNIV) ?I
    by (intro has-sum-reindex [symmetric]) auto
    also have Suc' \(U N I V=\{1 .\).
    using greaterThan-0 by auto
    also have has-sum ( \(\lambda n\) :: nat. \(\left(1 / \operatorname{real}\left(n^{\wedge} n\right)\right)\) ) \(\{1 ..\} ?!\longleftrightarrow\)
                has-sum ( \(\lambda n\) ::nat. n powi \((-n))\{1 .\).\(\} ?I\)
    by (intro has-sum-cong) (auto simp: power-int-minus field-simps power-minus')
    finally show integral \(\{0 . .1\}(\lambda x\). x powr \((-x))=\left(\sum_{\infty} k \in\{(1:: n a t) .\right.\).\(\} . k\) powi
\((-k))\)
    by (auto dest!: infsumI simp: algebra-simps)
qed
Next, we show the second formula: \(\int_{0}^{1} x^{x} \mathrm{~d} x=-\sum_{n=1}^{\infty}(-n)^{-n}\)
lemma sophomores-dream-aux2:
summable \((\lambda k .(-1) \wedge k / \operatorname{real}((k+1) \uparrow(k+1)))\)
    integral \(\{0 . .1\}(\lambda x . x\) powr \(x)=\left(\sum n .(-1)^{\wedge} n /(n+1) \uparrow(n+1)\right)\)
proof -
    define \(S\) where \(S=\left(\lambda x::\right.\) real. \(\sum k .(x * \ln x)^{\wedge} k /\) fact \(\left.k\right)\)
    have \(S\)-eq: \(S x=x\) powr \(x\) if \(x>0\) for \(x\)
    proof -
        have \(S x=\exp (x * \ln x)\)
        by (simp add: S-def exp-def field-simps)
    also have \(\ldots=x\) powr \(x\)
        using \(\langle x\rangle 0\rangle\) by (simp add: powr-def)
    finally show? thesis .
    qed
    have cont: continuous-on \(\{0 . .1\}\) ( \(\lambda x:\) :real. \(\sum k<n .(x * \ln x){ }^{\wedge} k /\) fact \(\left.k\right)\) for \(n\)
        by (intro continuous-on-sum continuous-on-divide \(x\)-log-x-continuous continu-
ous-on-power
        continuous-on-const) auto
```

obtain $I J$ where $I J: \bigwedge n .\left(\left(\lambda x . \sum k<n .(x * \ln x)^{\wedge} k /\right.\right.$ fact $\left.k\right)$ has-integral I n) $\{0 . .1\}$

$$
(S \text { has-integral } J)\{0 . .1\} I \longrightarrow J
$$

using uniform-limit-integral [OF uniform-limit-sophomores-dream1 cont] by (auto simp: S-def)
note 〈(S has-integral J) $\{0 . .1\}\rangle$
also have $(S$ has-integral $J)\{0 . .1\} \longleftrightarrow(S$ has-integral $J)\{0<. .<1\}$
by (simp add: has-integral-Icc-iff-Ioo)
also have $\ldots \longleftrightarrow((\lambda$ x. x powr $x)$ has-integral $J)\{0<. .<1\}$
by (intro has-integral-cong) (use S-eq in auto)
also have $\ldots \longleftrightarrow((\lambda x . x$ powr $x)$ has-integral $J)\{0 . .1\}$
by (simp add: has-integral-Icc-iff-Ioo)
finally have integral: $((\lambda x . x$ powr $x)$ has-integral $J)\{0 . .1\}$.

```
have \(I\)-eq: \(I=\left(\lambda n . \sum k<n .(-1)^{\wedge} k / \operatorname{real}\left((k+1)^{\wedge}(k+1)\right)\right)\)
proof
    fix \(n\) :: nat
    have \(\left(\left(\lambda x::\right.\right.\) real. \(\sum k<n .(x * \ln x)^{\wedge} k /\) fact \(\left.k\right)\) has-integral
                                    \(\left(\sum k<n .(-1) \wedge k *\right.\) fact \(k / \operatorname{real}((k+1) \wedge(k+1)) /\) fact \(\left.\left.k\right)\right)\{0<. .<1\}\)
            by (intro has-integral-sum has-integral-divide sophomores-dream-aux-integral)
auto
    also have \(\left(\sum k<n .(-1)^{\wedge} k *\right.\) fact \(k / \operatorname{real}((k+1) \wedge(k+1)) /\) fact \(\left.k\right)=\)
                        \(\left(\sum k<n .(-1)^{\wedge} k / \operatorname{real}((k+1) \wedge(k+1))\right)\)
        by \(\operatorname{simp}\)
    also note has-integral-Icc-iff-Ioo [symmetric]
    finally show \(I n=\left(\sum k<n .(-1)^{\wedge} k / \operatorname{real}\left((k+1)^{\wedge}(k+1)\right)\right)\)
        by (rule has-integral-unique [OF IJ (1)[of n]])
    qed
    hence sums: \((\lambda k .(-1) \wedge k / \operatorname{real}((k+1) \wedge(k+1)))\) sums \(J\)
    using \(I J(3)\) I-eq by (simp add: sums-def)
    from sums show summable \((\lambda k .(-1) \wedge k / \operatorname{real}((k+1) \uparrow(k+1)))\)
    by (simp add: sums-iff)
    from integral sums show integral \(\{0 . .1\}(\lambda x\). x powr \(x)=\left(\sum n .(-1){ }^{\wedge} n /\right.\)
\(\left.(n+1)^{\wedge}(n+1)\right)\)
    by (simp add: sums-iff has-integral-iff)
qed
```

theorem sophomores-dream2:
($\lambda k::$ nat. norm $((-k)$ powi $(-k)))$ summable-on $\{1 .$.
integral $\{0 . .1\}(\lambda x . x$ powr $x)=-\left(\sum_{\infty} k \in\{(1:: n a t) .\} ..(-k)\right.$ powi $\left.(-k)\right)$
proof -
let $? I=$ integral $\{0 . .1\}(\lambda x$. x powr $x)$
have (λk ::nat. norm $((-k)$ powi $(-k))$) summable-on UNIV
using abs-summable-sophomores-dream
by (intro norm-summable-imp-summable-on) (auto simp: power-int-minus field-simps)
thus ($\lambda k::$ nat. norm $((-k)$ powi $(-k))$) summable-on $\{1 .$.

```
    by (rule summable-on-subset-banach) auto
    have (\lambdan. (-1)^n / (n+1)`(n+1)) sums ?I
    using sophomores-dream-aux2 by (simp add: sums-iff)
    moreover have summable (\lambdan. 1 / real (Suc n^ Suc n))
        by (subst summable-Suc-iff) (use abs-summable-sophomores-dream in <auto
simp: field-simps>)
    hence summable (\lambdan.norm ((-1)^n/real (Suc n^ Suc n)))
        by simp
    ultimately have has-sum (\lambdan::nat. (-1)`n / (n+1)`(n+1)) UNIV ?I
        by (intro norm-summable-imp-has-sum) auto
    also have ?this \longleftrightarrow has-sum ((\lambdan::nat. - ((-1)\widehat{n / n`n)) ○Suc) UNIV ?I}
        by (simp add: o-def field-simps)
    also have ...\longleftrightarrow has-sum (\lambdan::nat. - ((-1)^n/n^n)) (Suc`UNIV)?I
    by (intro has-sum-reindex [symmetric]) auto
    also have Suc'UNIV = {1..}
    using greaterThan-0 by auto
    also have has-sum (\lambdan::nat. - ((- 1)^ n / real ( }n^~~))){1..} ?I \longleftrightarrow <
                has-sum (\lambdan::nat. -((-n) powi (-n))) {1..} ?I
    by (intro has-sum-cong) (auto simp: power-int-minus field-simps power-minus')
    also have ... \longleftrightarrow has-sum (\lambdan::nat. (-n) powi (-n)) {1..} (-?I)
    by (simp add: has-sum-uminus)
    finally show integral {0..1} (\lambdax.x powr x) = - (\sum\infty
(-k))
    by (auto dest!: infsumI simp: algebra-simps)
qed
end
```


References

[1] J. Bernoulli. Opera omnia, volume 3. 1697.
[2] W. Dunham. The Calculus Gallery: Masterpieces from Newton to Lebesgue. Princeton University Press, 2004.
[3] Wikipedia contributors. Sophomore's dream - Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Sophomore\% 27s_dream\&oldid $=1053905038$, 2021. [Online; accessed 10-April-2022].

