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let rec reverse =

function
I 00 -> []
| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle =

function
[ [0 -> [1
| x :: xs -> x :: shuffle (reverse xs) ;;
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let rec reverse = reverse(nil) = nil

function reverse(x :: xs) = append(reverse(xs), x :: nil)
| 1 -> 11
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let rec reverse = reverse(nil)
function reverse(x :: xs)
| 1 -> [1

| x :: xs —> (reverse xs) @ (x :: [1) ;;
let rec shuffle = shuffle(nil)
function shuffle(x :: xs)
[ [0 -> [1

| x :: xs > x :: shuffle (reverse xs)

H

)

= nil

= append(reverse(xs), x :: nil)

= nil

= x::shuffle(reverse(xs))

>

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]
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let rec reverse = reverse(nil) = nil

function reverse(x :: xs) = append(reverse(xs), x :: nil)
| O ->10

| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle = shuffle(nil) = nil

function shuffle(x :: xs) = x::shuffle(reverse(xs))

| 00 -> 10

| x :: xs -> x :: shuffle (reverse xs) ;;

append(nil, ys) = ys
append(x :: xs,ys) = x: append(xs, ys)

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

AM Automatic Complexity Analysis of Rewrite Systems 3/56



let rec reverse = reverse(nil) — nil

function reverse(x :: xs) — append(reverse(xs), x :: nil)
| O ->10

| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle = shuffle(nil) — nil

function shuffle(x :: xs) — x :: shuffle(reverse(xs))

| 00 -> 10

| x :: xs -> x :: shuffle (reverse xs) ;;

append(nil, ys) — ys
append(x :: xs,ys) — x: append(xs, ys)

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]
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rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil
— x :: shuffle(reverse(xs))

append(nil, ys) — ys

~— — — — — ~—

append(x :: xs, ys) — x :: append(xs, ys)
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signature nil 0 (constants)  reverse shuffle s (unary) append :: (binary)
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shuffle(nil

shuffle(x :: xs

— nil
— x :: shuffle(reverse(xs))

append(nil, ys) — ys

~— — — — — ~—

append(x :: xs, ys) — x :: append(xs, ys)
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signature nil 0 (constants)  reverse shuffle s (unary) append :: (binary)
terms s(s(0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil
shuffle(x :: xs
append(nil, ys
append(x :: xs, ys

— nil

— x :: shuffle(reverse(xs))
— ys

— x ::append(xs, ys)

~— — — — — ~—
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signature nil 0 (constants)  reverse shuffle s (unary) append :: (binary)
terms s(s(0))  shuffle(0::nil)  reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

)
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys
append(x :: xs, ys) — x:: append(xs, ys)
(

rewriting shuffle(0::s(0) ::s(s(0)) ::s(s(s(0))) :: s(s(s(s(0)))) :: nil)

AM Automatic Complexity Analysis of Rewrite Systems 4/56



signature nil 0 (constants)  reverse shuffle s (unary) append :: (binary)
terms s(s(0))  shuffle(0::nil)  reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil
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= yS
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~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
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signature nil 0 (constants)  reverse shuffle s (unary) append :: (binary)
terms s(s(0))  shuffle(0::nil)  reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
— 0::shuffle(reverse(1::2::3:: 4 nil))
— 0::shuffle(append(reverse(2::3::4 ::nil), 1 :: nil))
— - — 0:24:1:3:2:0nil
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e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¥)
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e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)
e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR

lo —p ro
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e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)
e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x
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bo —x ro floooys,) =R (L.t .00)
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e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)
e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
lo —g ro f(...,S,...)HRf(...,l',...)

v

TRS is terminating if —% is well-founded
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e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)

e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
lo —g ro f(...,S,...)HRf(...,t,...)

TRS is terminating if —% is well-founded

Definitions

e derivation height dhz(t) = max{n |t —% u for some term u }

v
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e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)

e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
lo —g ro f(...,S,...)HRf(...,t,...)

TRS is terminating if —% is well-founded

Definitions

e derivation height dhz(t) = max{n|t —% u for some term v}

e derivational complexity  dcg(k) = max{dh(¢) | |t| < k}

v
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TRS R

O+y—y s(x)+y —s(x+y)
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TRS R is terminating

O+y—y s(x) +y = s(x+y)
polynomial interpretation

ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1
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TRS R is terminating
O+y—y s(x) +y —s(x+y)
polynomial interpretation
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derivation height
dhz(s™(0) +s"(0)) =m+1
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TRS R is terminating
O+y—y
polynomial interpretation
Oy=0 sy(x) =x+1

derivation height

dhz(s™(0) +s"(0)) =m+1

derivational complexity

s(0) if i =0
H=s(0)+ - +s(0)  ti= "
$O) +---+5(0) {t,-_1+s(0) ifi>0
i+1
.
6] = 3i +2 dhre(t) =4 =0
dhg(ti—y)+i+1 ifi>0

s(x) +y —s(x+y)

(oY) =2x+y+1

AM

Automatic Complexity Analysis of Rewrite Systems

6/56



TRS R is terminating
O+y—y s(x) +y —s(x+y)
polynomial interpretation
ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1

derivation height
dhz(s™(0) +s"(0)) =m+1

derivational complexity

s(0) ifi=0 5
ti=s(0)+--- 0 ti = dcr (k) € ©(k
—S( ) ,_/+s() {t,-_1+s(0) if i >0 cr (k) (k)
i+1
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Outline

@ History

Automatic Complexity Analysis of Rewrite Systems



termination derivational complexity 1967

1967 Knuth-Bendix order
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termination derivational complexity 1970
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termination derivational complexity 1971
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termination derivational complexity 1974
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termination derivational complexity 1975

1967 Knuth-Bendix order

1975 polynomial interpretations
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termination derivational complexity 1979
1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order
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termination derivational complexity 1980

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order
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termination derivational complexity = 1981

1967 Knuth-Bendix order

1975 polynomial interpretations
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termination derivational complexity 1988

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order
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1983 recursive path order
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termination derivational complexity = 1989

1967 Knuth-Bendix order
1975 polynomial interpretations 1989 Hofbauer and Lautemann

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order
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Theorem (Hofbauer and Lautemann 1989)

interpretation in N bound on derivational complexity

polynomial  double-exponential

rewrite system

x+0—x d(0) —0 q(0) — 0
x+s(y) = sx+y) d(s(x)) = s(s(d(x))) als(x)) — alx) +s(d(x))

interpretations

ON=2 sn(x)=x+1 +n(x,y)=x+2y dn(x)=3x aun(x)=x>
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Theorem (Hofbauer and Lautemann 1989)

interpretation in N bound on derivational complexity

polynomial  double-exponential
aixi+ -+ apxp+ b linear exponential

X1+---+ Xxp+b strongly linear linear

rewrite system

x+0—x d(0) —0 q(0) — 0
x+s(y) = sx+y) d(s(x)) = s(s(d(x))) als(x)) — alx) +s(d(x))
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termination derivational complexity

1990

1967
1975
1979
1980

1981
1982
1983
1990

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order
multiset path order 1990 Hofbauer
recursive path order

transformation order

v
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Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound
on derivational complexity
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1967
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1980

1981
1982
1983
1990

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order
multiset path order 1990 Hofbauer
recursive path order

transformation order

v

AM

Automatic Complexity Analysis of Rewrite Systems

12/56



termination derivational complexity

1992
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1990
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Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order

multiset path order 1990 Hofbauer
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elementary interpretations
type introduction
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termination derivational complexity 1995

1967 Knuth-Bendix order
1975 polynomial interpretations 1989 Hofbauer and Lautemann

1979 simple path order

1980 lexicographic path order 1995 Weiermann
semantic path order

1981 recursive decomposition order

1982 multiset path order 1990 Hofbauer
1983 recursive path order

1990 transformation order

1992 elementary interpretations
type introduction

1995 general path order
semantic labeling
dummy elimination
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Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound
on derivational complexity

Theorem (Weiermann 1995)

termination proof by lexicographic path order implies multiple recursive upper
bound on derivational complexity
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termination derivational complexity 1996

1967 Knuth-Bendix order
1975 polynomial interpretations 1989 Hofbauer and Lautemann

1979 simple path order

1980 lexicographic path order 1995 Weiermann
semantic path order

1981 recursive decomposition order

1982 multiset path order 1990 Hofbauer
1983 recursive path order

1990 transformation order

1992 elementary interpretations
type introduction

1995 general path order
semantic labeling
dummy elimination
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Termination and Complexity Research
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http://cime.lri.fr/
http://cl-informatik.uibk.ac.at/software/ttt2/
http://aprove.informatik.rwth-aachen.de/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://joerg.endrullis.de/
http://zenon.dsic.upv.es/muterm/
http://www.logic.at/vmtl/
http://cl-informatik.uibk.ac.at/software/tct/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://cl-informatik.uibk.ac.at/software/cat/

termination derivational complexity 1997

1997 dependency pairs
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termination derivational complexity = 1998

1997 dependency pairs
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termination derivational complexity = 1999

1997 dependency pairs
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termination derivational complexity 2000

1997 dependency pairs

2000 monotonic semantic path order
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termination

derivational complexity

2001

1967
1975
1979
1980

1981
1982
1983
1990
1992

1995

Knuth-Bendix order
polynomial interpretations
simple path order

lexicographic path order
semantic path order

recursive decomposition order
multiset path order

recursive path order
transformation order

elementary interpretations
type introduction

general path order
semantic labeling
dummy elimination

2001 Lepper
1989 Hofbauer and Lautemann

1995 Weiermann

1990 Hofbauer
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Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound
on derivational complexity

Theorem (Weiermann 1995)

termination proof by lexicographic path order implies multiple recursive upper
bound on derivational complexity

Theorem (Lepper 2001)

termination proof by Knuth-Bendix order implies multiple recursive upper bound
on derivational complexity
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termination derivational complexity 2001

1997 dependency pairs
2000 monotonic semantic path order

2001 context-dependent interpretations 2001

AM Automatic Complexity Analysis of Rewrite Systems 19/56



termination derivational complexity 2002

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001
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Termination Research Complexity Research

Termination Tools

CiME, TtTo, AProVE, Termptation, Cariboo, Torpa, TPA, Matchbox, Jambox,
MuTerm, NTI, VMTL, ...

AM Automatic Complexity Analysis of Rewrite Systems 20/56


http://cime.lri.fr/
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http://www-lsi.upc.es/~albert/term.html
http://cariboo.loria.fr/
http://www.win.tue.nl/~hzantema/torpa.html
http://www.win.tue.nl/tpa/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://joerg.endrullis.de/
http://zenon.dsic.upv.es/muterm/
http://www.logic.at/vmtl/
http://cl-informatik.uibk.ac.at/software/tct/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://cl-informatik.uibk.ac.at/software/cat/

termination derivational complexity 2003

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

2003 match-bounds
size-change principle

2003 termination competition
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termination derivational complexity 2004

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

2003 match-bounds 2004
size-change principle

2003 termination competition

AM Automatic Complexity Analysis of Rewrite Systems 21/56



termination derivational complexity 2005

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

2003 match-bounds 2004
size-change principle

2003 termination competition

AM Automatic Complexity Analysis of Rewrite Systems 21/56



termination derivational complexity

2006

1997
2000
2001
2003

2003
2006

dependency pairs
monotonic semantic path order
context-dependent interpretations 2001

match-bounds 2004
size-change principle
termination competition

matrix interpretations
predictive labeling
uncurrying

AM
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termination derivational complexity

2007

1997
2000
2001
2003

2003
2006

2007

dependency pairs

monotonic semantic path order
context-dependent interpretations 2001
match-bounds 2004
size-change principle

termination competition

matrix interpretations
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations
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Termination and Complexity Research

v
Termination Tools

CiME, T1Ty, AProVE, Matchbox, Jambox, MuTerm, VMTL, ...

Complexity Tools
TcT, Matchbox, GT

v
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http://cime.lri.fr/
http://cl-informatik.uibk.ac.at/software/ttt2/
http://aprove.informatik.rwth-aachen.de/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://joerg.endrullis.de/
http://zenon.dsic.upv.es/muterm/
http://www.logic.at/vmtl/
http://cl-informatik.uibk.ac.at/software/tct/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://cl-informatik.uibk.ac.at/software/cat/

termination derivational complexity

2008

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs

monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM
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termination derivational complexity

2009

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs 2009
monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM
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termination derivational complexity

2010

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs 2009
monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008, 2010
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM
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termination derivational complexity

2011

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs 2009, 2011
monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008, 2010, 2011
predictive labeling

uncurrying

bounded increase

quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM

Automatic Complexity Analysis of Rewrite Systems
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Outline

@ Matrix Interpretations

Automatic Complexity Analysis of Rewrite Systems




algebra M with well-founded order >

e carrier of M is N9 with d > 0

d

° (X1,~--7Xd)T>()’1a~--7Yd)T = x1>y AN /\Xi>y,'
i=2

e interpretations (for every n-ary f)
fM(>'<’1,...,>'<’,,) = F1>'<’1+«--+F,,>?,,+f
with
e matrices Fy, ..., F, € N9 with (F;);1 > 1forall 1 <i<n
e vector f € N9

v
Lemma

(M, >) is well-founded monotone algebra
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termination proof by matrix interpretation implies exponential upper bound on
derivational complexity

Example

rewrite rule

a(b(x)) — b(b(a(x)))
matrix interpretation (linear polynomial interpretation)
am(x) = 3x bm(x)=x+1

derivational complexity is exponential

a2b 4)3 b4a2 a3b *)7 b833 a4b *)15 blﬁa4
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termination proof by matrix interpretation implies exponential upper bound on
derivational complexity

Example

rewrite rule

a(b(x)) — b(b(a(x)))
matrix interpretation (linear polynomial interpretation)
am(x) = 3x bm(x)=x+1

derivational complexity is exponential

a2b 4)3 b4a2 a3b *)7 b833 a4b *)15 b1634

Aim

restrict matrix interpretations to obtain polynomial derivational complexity

| \
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restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

AM Automatic Complexity Analysis of Rewrite Systems 27/56



restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Two Extensions

using weighted automata techniques (Waldmann 2010)
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restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Two Extensions

using weighted automata techniques (Waldmann 2010)
using linear algebra techniques (Neurauter, Zankl, Middeldorp 2010)
joint spectral radius theory to unify and strengthen two extensions J

are matrix interpretations complete for polynomial derivational complexity ? )
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are matrix interpretations complete for polynomial derivational complexity ? )

given TRS R which has polynomial derivational complexity

given compatible matrix interpretation M

3 compatible matrix interpretation N that is polynomially bounded ?
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@ Algebraic Methods
e Spectral Radius
o Joint Spectral Radius
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Definition

Sp is set of matrices occurring in matrix interpretation M:

Smo= U (R Rl (i, R) = Af 4+ Fak+ £}
n-ary f
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Definition

Sn is set of matrices occurring in matrix interpretation M:

Smo= U (R Rl (i, R) = Af 4+ Fak+ £}
n-ary f

Definition

matrix interpretation M is polynomially bounded® (with degree d) if growth of

entries of matrix products
Ap-oAx

with Ay, ..., Ax € Spq is polynomial (with degree d) in k
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term t

f

f(g(a, b), <) £ / \5

matrix interpretation M g c

apm=a bp=b cCMm=C G1/\G2

fM()_(’,}_/’)ZFl)?-i-Fz}_/’-l-f R b
gm(X,y)=GX+ G y+g
interpretation of t

[timM=FAGa+FAGb+Fg+Fc+f
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term t of size at most k

e ... has at most k subterms

® ... each subterm corresponds to product of at most k matrices
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term t of size at most k

e ... has at most k subterms

® ... each subterm corresponds to product of at most k matrices

if R has compatible matrix interpretation M that is polynomially bounded® with
degree d then dcr (k) € O(k9*!)
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Outline

@ Algebraic Methods
e Spectral Radius
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over-approximate growth of entries of matrix products
Ay Ac €S by M-

where Mjj = max{Aj; | A€ Sy}

square matrix A € R"*" over ring R (Z, Q, R)

o spectral radius p(A) of A is maximum of absolute values of its eigenvalues

e minimal polynomial ma(x) of A is unique monic polynomial of minimum
degree that annihilates A

AM Automatic Complexity Analysis of Rewrite Systems 34/56



if R has compatible matrix interpretation M such that p(M) < 1 then
der (k) € O(kT)
where d = maxy (0, #mpy(A\) — 1) and
® )\ ranges over eigenvalues of A with absolute value exactly one

e #my () denotes multiplicity of A

AM Automatic Complexity Analysis of Rewrite Systems 35/56



rewrite system R

f(f(x)) — f(e(f(x)))

compatible matrix interpretation M

g(g(x)) — x

110 0 1
fm(F)=[000]|x+]|4 gm(X)=1[0

000 0 0

100 4
bpy(X)=[010|x+](4

001 0

b(x) — x

v
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rewrite system R

f(f(x)) — f(&(f(x))) g(g(x)) — x b(x) — x
compatible matrix interpretation M
110 0 100 1
fu(x)={000]|x+1]4 gem)=[(001]|x+(0
000 0 010 3
100 4 110
bu(X)=[010|x+ |4 M=|011
001 0 011

v
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rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

compatible matrix interpretation M

110 0 100 1
fu)=[(000|x+|4 emF)=(001]x+{0
000 0 010 3
100 4 110
bu(F)=[010]|x+ |4 M=]011 p(M) =2
001 0 011

derivational complexity is linear but

gl gl
Mk =10 2k71 2k71
0 2k71 2k71

AM Automatic Complexity Analysis of Rewrite Systems 36/56

v




Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®
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rewrite system R
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no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g
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rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

o Ff> FGf + Fg
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f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I,
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rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I, and thus G; < 1 for some index i
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rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G # I, and thus G; < 1 for some index i
* GG > I, and thus (GG)ii =3, G;Gji > 1
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rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I, and thus G;; < 1 for some index i
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rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g
e Ff > FGf and thus G % I, and thus G; < 1 for some index i

o GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0
e B>,

AM Automatic Complexity Analysis of Rewrite Systems 36/56



rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g
e Ff > FGf and thus G % I, and thus G; < 1 for some index i

e GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0
e B> I, and thus M > max(/,, G)
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Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fr(X) = FR+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > I, and thus (GG); = ZJ. GjiGji > 1 and Zj#,- GjiGji >0
B > I, and thus M > max(/,, G)

(MM);;
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Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > Iy and thus (GG)ii = 3, G;iGj > 1and 3, ; G;Gji >0
B > I, and thus M > max(/,, G)

(MM)i = (M;)? + 35, My M;;
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Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > Iy and thus (GG)ii = 3, G;iGj > 1and 3, ; G;Gji >0
B > I, and thus M > max(/,, G)

(MM)ii = (M) + 3, MM > 1+ 32, G5 Gj
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Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > Iy and thus (GG)ii = 3, G;iGj > 1and 3, ; G;Gji >0
B > I, and thus M > max(/,, G)

(MM)ii = (M) + 32, MM > 1+ 35, G Gji > 1
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Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0
B > I, and thus M > max(/,, G)

(MM)i; = (Mii)? + 30, MMy > 1+ 35, GG > 1
hence (M*);; grows exponentially
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rewrite system R
f(f(x)) — f(&(f(x))) g(g(x)) — x b(x) — x
compatible matrix interpretation M
110 0 100 1
fu)={000]|x+]4 gem)=[(001]|x+|0
000 0 010 3
100 4 110
bm(X)=1010|Xx+ |4 M=1011 p(M) =2
001 0 011
derivational complexity is linear: joint spectral radius
110 100 100
p 000)],{001],{010 =1l
000 010 001

AM

Automatic Complexity Analysis of Rewrite Systems
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Outline

@ Algebraic Methods

o Joint Spectral Radius
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finite set S C R"*" of real square matrices

e growth function
growthg(k) = max { ||Ay - Akl | A1,..., Ak €S}

for some matrix norm ||-||
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finite set S C R"*" of real square matrices

e growth function
growthg(k) = max { ||Ay - Akl | A1,..., Ak €S}

for some matrix norm ||-||

e joint spectral radius

p(S) = lim max{ AL - Al | Ar,...,Ace S}
— 00
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finite set S C R"*" of real square matrices

e growth function
growthg(k) = max { ||Ay - Akl | A1,..., Ak €S}

for some matrix norm ||-||

e joint spectral radius

p(S) = lim max{ AL - Al | Ar,...,Ace S}
— 00

v
Theorem

growthg (k) € O(k9) for some d € N if and only if p(S) < 1

AM Automatic Complexity Analysis of Rewrite Systems
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problem

instance: finite set S C R"™*"
question:  p(S) <17

is undecidable in general
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problem
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question:  p(S) <17
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problem

instance: finite set S C R"™*"
question:  p(S) <17

is undecidable in general and decidable (in polynomial time) if S C N"*"

Theorem (based on Jungers, Protasov, Blondel 2008)

if p(S) < 1 for finite set S C N"*" then
growthg(k) € ©(k?)

where d is largest integer such that 3 d different pairs of indices (i1, /1), - - -, (id, ja)
e V1< n<d ip#jn and 3 product A € S* such that A; i, Ai, j.» Aj,j» = 1
e V1< n<d 3product B € S* such that B ;. > 1
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if R has compatible matrix interpretation M such that

p(Sm) <1

then der (k) € O(k?*1) where d is largest integer such that . ..

degree d + 1 can be computed in polynomial time
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Outline

@ Automata-Based Methods

AM Automatic Complexity Analysis of Rewrite Systems 41/56



Definition
matrix interpretation M

e growth function of M
growth v (k) = max{[t]: | |t| < k}

where [t]; is first component of interpretation of t when all variables in t are
assigned zero vector
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matrix interpretation M

e growth function of M
growth v (k) = max{[t]: | |t| < k}

where [t]; is first component of interpretation of t when all variables in t are
assigned zero vector

if R has compatible matrix interpretation M then

t—Rr U — [t]l > [U]I
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matrix interpretation M

e growth function of M
growth v (k) = max{[t]: | |t| < k}

where [t]; is first component of interpretation of t when all variables in t are
assigned zero vector

e M is polynomially bounded® with degree d if growth (k) € O(k9)

if R has compatible matrix interpretation M then

t—Rr U — [t]l > [U]I
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matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

—Q ©) ®
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matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A
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matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

fi:1l,a:1 a1

Oz
&)
)
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matrix interpretation M of dimension 3

110 100 102 0
av(@)=[010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

fi:La:l fi:1 a: 1
rﬂ\/a_—l\ﬂ
@ ©) ®
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matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

fi:l,a:1 -1

/\/al\r\ fu: 1
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matrix interpretation M of dimension 3

110 100 102 0
av@)=[010]%x fuEy=[101]x+{001]|y+[1
000 001 001 1
weighted automaton A
fi: 1a 1 -1 fi: 1

/\/al\r\ fu: 1 .
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matrix interpretation M of dimension 3

110 100 102 0
av@)=[010]%x fuEy=[(101]x+{001]|y+[1
000 001 001 1
weighted automaton A
f 1a 1f2 1 fl -1 flll,fgll

/\/31\/-\ fi:1,fp: 1 Q

\_/

f212
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matrix interpretation M of dimension 3

110 100 102 0
av@)=[010])%x fuEy=[101]x+|001]|y+[1
000 001 001 1
weighted automaton A
fi:La:r1,f:1 .1 a1 fi:1,f: 1

QA . :
@ a: 1 A f1.1,f2.1 é)
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weighted automaton is quintuple A = (Q, X, A, p,y) with

Q: finite set of states
3 finite alphabet
AE QR initial state

p: X — NIRIXI®L transition matrix

v CQ final states

11(a)pq denotes weight of transition p % g
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weighted automaton is quintuple A = (Q, X, A, ,y) with

Q: finite set of states
3 finite alphabet
AE QR initial state

p: X — NIRIXI®L transition matrix
v CQ final states

11(a)pq denotes weight of transition p % g

v

weight of string x € ¥*

weight 4 (x) = 3 u(x)xq

qey
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Definition

growth function of weighted automaton A = (Q, X, A\, i, 7)

growth , (k) = max { weight 4(x) | x € Z¥}
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Definition

growth function of weighted automaton A = (Q, X, A\, i, 7)

growth 4 (k) = max { weight 4(x) | x € Z¥}

Definition

given matrix interpretation M of dimension n for signature F
define weighted automaton A = (Q, X, \, p1,7) as follows:

e Q={1,...,n}
e Y ={f|feFhasaritymandl<i<m}
e =1

u(f;) = F; where F; denotes i-th matrix of f

~v={i| ¢ > 0 for some vector ¢ in M}

v
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Definition

weighted automaton A = (Q, X, A\, i, )

e state g is useful if A contains path from initial to final state containing g
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Definition

weighted automaton A = (Q, X, A\, i, )
e state g is useful if A contains path from initial to final state containing g

e A is trim if all states are useful

V weighted automaton A 3 trim automaton B such that

growth 4 (k) = growthg(k)
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Definition

weighted automaton A = (Q, X, A\, i, )
e state g is useful if A contains path from initial to final state containing g

e A is trim if all states are useful

Lemma

V weighted automaton A 3 trim automaton B such that
growth 4 (k) = growthg(k)

weighted automaton A is not trim: state 2 is not useful

32
rﬂxbl
1
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Definition

weighted automaton A = (Q, X, A\, i, )
e state g is useful if A contains path from initial to final state containing g

e A is trim if all states are useful

Lemma

V weighted automaton A 3 trim automaton B such that
growth 4 (k) = growthg(k)

weighted automaton A4 is not trim weighted automaton B

a: 2

a: 1 : a: 1
. N
Oe  —O
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matrix interpretation M and corresponding weighted automaton A

growth (k) € O(k?) <= growth,(k) € O(k9*t)
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matrix interpretation M and corresponding weighted automaton A

growth (k) € O(k?) <= growth,(k) € O(k9*t)

Definitions (based on Weber and Seidl 1991)

weighted automaton A = (Q, X, A, i, )
EDA  Jg e Q Ix € X* such that g is useful and p(x)qq > 2

IDAy  3p1,91,---,Pd,9q € Q@ vy, U, Vo, ..., U4, Vg € L* such that
Vi>1 p; and g; are useful, p; # g; and p; -5 pi - q; — q;
Vi>2qgi1 N pi

Vi Vi

NN
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matrix interpretation M and corresponding weighted automaton A
growth (k) € O(k%t1) <= A EDA, AW IDA41
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matrix interpretation M and corresponding weighted automaton A
growth (k) € ©(k9t1) <= A EDA, AW IDA41, A= DAy
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matrix interpretation M and corresponding weighted automaton A
growth (k) € ©(k9*1) <= A EDA, AW IDA41, A= DAy

conditions are decidable in time O(|Q|® - |Z|) for A = (Q, X, \, 11, 7)

if R has compatible matrix interpretation M such that corresponding weighted
automaton does not comply with EDA nor with IDA11 then decr (k) € O(k9+1)
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@ Unifying Algebraic and Automata-Based Methods
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rewrite rule

f(x) — x

compatible matrix interpretation M

wan- (- ()
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rewrite rule

f(x) — x

compatible matrix interpretation M

= (3 (2

e M is not polynomially bounded® because p(M) = 2

AM Automatic Complexity Analysis of Rewrite Systems 50/56



rewrite rule

f(x) — x

compatible matrix interpretation M

= (3 (2

e M is not polynomially bounded® because p(M) = 2

e M is polynomially bounded® because [t]; < |t| for any term t
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rewrite rule
f(x) — x

compatible matrix interpretation M

=3 (1)

e M is not polynomially bounded® because p(M) = 2

e M is polynomially bounded® because [t]; < |t| for any term t

for every TRS R
Y compatible matrix interpretation M 3 compatible matrix interpretation N

such that corresponding automaton is trim and growth (k) = growth,,(k)
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rewrite rule
f(x) — x

compatible matrix interpretation M

o= (3 ) 2

corresponding weighted automaton

flll f1:2
N N
N fi: 1

O—O

is not trim because state 2 is not useful
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rewrite rule
f(x) — x

compatible matrix interpretation M

=)o)

corresponding weighted automaton

A
—Q@

is trim and M is polynomially bounded®
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Corollary

for every TRS R

3 compatible matrix interpretation M that is polynomially bounded®
<~
3 compatible matrix interpretation N that is polynomially bounded®

growthy,(k) € O(k9*1) if and only if growth of entries of products A; - - - A of
matrices in M is polynomial with degree d in k
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Corollary

for every TRS R

3 compatible matrix interpretation M that is polynomially bounded®
<~

3 compatible matrix interpretation N that is polynomially bounded®

growthy,(k) € O(k9*1) if and only if growth of entries of products A; - - - A of
matrices in M is polynomial with degree d in k

v
Theorem

for every TRS R

der (k) € O(k?) can be shown using automata-based approach
—

der (k) € O(k?) can be shown using algebraic approach
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Outline

@ Concluding Remarks
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matrix interpretations are incomplete for polynomial derivational complexity
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Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x)))  &le(x)) = x  b(x) = x

compatible matrix interpretation M

0
gm(X) =

<
—
x|
N—
I

O O =

<
—
x|
N—r
Il
O =

p({---}) =1

o = O o O =
w s~ o b~ O

0
0
0
0
1

o

o O =
= O O
o = O
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Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x)))  &le(x)) = x  b(x) = x

compatible matrix interpretation M

0
gm(X) =

<
—
x|
N—
I

O O =

<
—
x|
N—r
Il
O =

p({---}) =2

= = O o O =
w > D o b~ O

0
0
0
1
1

o

b(x) — g(x)
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Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x)))  e(e(x)) =x  bx)=x  b(x) — g(x)

no polynomially bounded compatible matrix interpretation
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Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x)))  e(e(x)) =x  b(x) =x  b(x) — g(x)

no polynomially bounded compatible matrix interpretation

e compatible matrix interpretation M of dimension n:

bam(X) = BR+ b frm(R) = FR+f gm(X) =GR +g

e B> max(l,, G)
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Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x)))  e(e(x)) =x  bx)=x  b(x) — g(x)

no polynomially bounded compatible matrix interpretation

e compatible matrix interpretation M of dimension n:

bam(X) = BR+ b frm(R) = FR+f gm(X) =GR +g

e B> max(/,, G ... hence entries in B¥ grows ex onentially
) g p
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e automation by mapping to finite-domain constraint systems (. ..)
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o algebraic approach applies also to matrix interpretations over Q and R

o results extend to runtime complexity

e runtime complexity rcg (k) = max { dh(t) | t is basic term and |t| < k }

AM Automatic Complexity Analysis of Rewrite Systems 55/56



e automation by mapping to finite-domain constraint systems (. ..)

o algebraic approach applies also to matrix interpretations over Q and R

o results extend to runtime complexity

e runtime complexity rcg (k) = max { dh(t) | t is basic term and |t| < k }
e term f(t1,...,t,) is basic if

f is defined symbol
ti,...,t, are constructor terms

AM Automatic Complexity Analysis of Rewrite Systems 55/56



rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)

shuffle(nil) — nil
shuffle(x :: xs

)

)

append(nil, ys)
append(x :: xs, ys) — x::append(xs, ys)

— x :: shuffle(reverse(xs))
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rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil

)
)
)
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys

)

append(x :: xs, ys) — x :: append(xs, ys)

derivational complexity
dcr (k) € O(k*)
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)
)
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shuffle(x :: xs) — x :: shuffle(reverse(xs))
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rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil

)
)
)
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys

)

append(x :: xs, ys) — x :: append(xs, ys)

derivational complexity
dcr (k) € O(k*)

runtime complexity
FCR(k) S O(k3)

... beyond reach of complexity tools
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