mputational
gic

Automatic Complexity Analysis for Rewrite Systems

Aart Middeldorp

Institute of Computer Science
University of Innsbruck

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/~ami

mputational
gic

Joint Spectral Radius Theory for Automated
Complexity Analysis of Rewrite Systems

Aart Middeldorp

Institute of Computer Science
University of Innsbruck

joint work with

Georg Moser Friedrich Neurauter
Johannes Waldmann Harald Zankl

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/~ami

Introduction

History

Matrix Interpretations

Algebraic Methods

@ Automata-Based Methods

Unifying Algebraic and Automata-Based Methods

Concluding Remarks

AM Automatic Complexity Analysis of Rewrite Systems 2/56

let rec reverse =

function
I 00 -> []
| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle =

function
[[0 -> [1
| x :: xs -> x :: shuffle (reverse xs) ;;

AM Automatic Complexity Analysis of Rewrite Systems 3/56

let rec reverse =

function
I 00 -> []
| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle =

function
[[0 -> [1
| x :: xs -> x :: shuffle (reverse xs) ;;

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

AM Automatic Complexity Analysis of Rewrite Systems 3/56

let rec reverse = reverse(nil) = nil

function reverse(x :: xs) = append(reverse(xs), x :: nil)
| 1 -> 11

| x :: xs -> (reverse xs) @ (x :: [1) ;;

let rec shuffle =

function
[[0 -> [1
| x :: xs -> x :: shuffle (reverse xs) ;;

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

AM Automatic Complexity Analysis of Rewrite Systems 3/56

let rec reverse = reverse(nil)
function reverse(x :: xs)
| 1 -> [1

| x :: xs —> (reverse xs) @ (x :: [1) ;;
let rec shuffle = shuffle(nil)
function shuffle(x :: xs)
[[0 -> [1

| x :: xs > x :: shuffle (reverse xs)

H

)

= nil

= append(reverse(xs), x :: nil)

= nil

= x::shuffle(reverse(xs))

>

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

AM Automatic Complexity Analysis of Rewrite Systems

3/56

let rec reverse = reverse(nil) = nil

function reverse(x :: xs) = append(reverse(xs), x :: nil)
| O ->10

| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle = shuffle(nil) = nil

function shuffle(x :: xs) = x::shuffle(reverse(xs))

| 00 -> 10

| x :: xs -> x :: shuffle (reverse xs) ;;

append(nil, ys) = ys
append(x :: xs,ys) = x: append(xs, ys)

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

AM Automatic Complexity Analysis of Rewrite Systems 3/56

let rec reverse = reverse(nil) — nil

function reverse(x :: xs) — append(reverse(xs), x :: nil)
| O ->10

| x :: xs —> (reverse xs) @ (x :: [1) ;;

let rec shuffle = shuffle(nil) — nil

function shuffle(x :: xs) — x :: shuffle(reverse(xs))

| 00 -> 10

| x :: xs -> x :: shuffle (reverse xs) ;;

append(nil, ys) — ys
append(x :: xs,ys) — x: append(xs, ys)

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

AM Automatic Complexity Analysis of Rewrite Systems 3/56

rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil
— x :: shuffle(reverse(xs))

append(nil, ys) — ys

~— — — — — ~—

append(x :: xs, ys) — x :: append(xs, ys)

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)

rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil
— x :: shuffle(reverse(xs))

append(nil, ys) — ys

~— — — — — ~—

append(x :: xs, ys) — x :: append(xs, ys)

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil
shuffle(x :: xs
append(nil, ys
append(x :: xs, ys

— nil

— x :: shuffle(reverse(xs))
— ys

— x ::append(xs, ys)

~— — — — — ~—

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0:: nil)
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil
shuffle(x :: xs
append(nil, ys
append(x :: xs, ys

— nil

— x :: shuffle(reverse(xs))
— ys

— x ::append(xs, ys)

~— — — — — ~—

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x :: xs)
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil
shuffle(x :: xs
append(nil, ys
append(x :: xs, ys

— nil

— x :: shuffle(reverse(xs))
— ys

— x ::append(xs, ys)

~— — — — — ~—

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil
shuffle(x :: xs
append(nil, ys
append(x :: xs, ys

— nil

— x :: shuffle(reverse(xs))
— ys

— x ::append(xs, ys)

~— — — — — ~—

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

)
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys
append(x :: xs, ys) — x:: append(xs, ys)
(

rewriting shuffle(0::s(0) ::s(s(0)) ::s(s(s(0))) :: s(s(s(s(0)))) :: nil)

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
— 0::shuffle(reverse(1::2::3:: 4 nil))

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
— 0::shuffle(reverse(1::2::3:: 4 nil))

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
— 0::shuffle(reverse(1::2::3:: 4 nil))
— 0::shuffle(append(reverse(2::3::4 ::nil), 1:: nil))

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
— 0::shuffle(reverse(1::2::3:: 4 nil))
— 0::shuffle(append(reverse(2::3:: 4 ::nil), 1:: nil))

AM Automatic Complexity Analysis of Rewrite Systems 4/56

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0::nil) reverse(x::xs) s(append(s(x),0))
rewrite rules reverse(nil) — nil

reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil

shuffle(x :: xs

— nil

— x :: shuffle(reverse(xs))
append(nil, ys

append(x :: xs, ys

= yS
— x ::append(xs, ys)

~— — — — — ~—

rewriting shuffle(0::1::2::3:: 4 nil)
— 0::shuffle(reverse(1::2::3:: 4 nil))
— 0::shuffle(append(reverse(2::3::4 ::nil), 1 :: nil))
— - — 0:24:1:3:2:0nil

AM Automatic Complexity Analysis of Rewrite Systems 4/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¥)

AM Automatic Complexity Analysis of Rewrite Systems 5/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)

e term rewrite system (TRS) is set R of rewrite rules

AM Automatic Complexity Analysis of Rewrite Systems 5/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)
e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR

lo —p ro

AM Automatic Complexity Analysis of Rewrite Systems 5/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)
e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
bo —x ro floooys,) =R (L.t .00)

AM Automatic Complexity Analysis of Rewrite Systems 5/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)
e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
lo —g ro f(...,S,...)HRf(...,l',...)

v

TRS is terminating if —% is well-founded

AM Automatic Complexity Analysis of Rewrite Systems 5/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)

e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
lo —g ro f(...,S,...)HRf(...,t,...)

TRS is terminating if —% is well-founded

Definitions

e derivation height dhz(t) = max{n |t —% u for some term u }

v

AM Automatic Complexity Analysis of Rewrite Systems 5/56

e pair of terms £ — r is rewrite rule if £ ¢ V and Var(r) C Var(¢)

e term rewrite system (TRS) is set R of rewrite rules

e rewrite relation —x

{—reR s ot
lo —g ro f(...,S,...)HRf(...,t,...)

TRS is terminating if —% is well-founded

Definitions

e derivation height dhz(t) = max{n|t —% u for some term v}

e derivational complexity dcg(k) = max{dh(¢) | |t| < k}

v

AM Automatic Complexity Analysis of Rewrite Systems 5/56

TRS R

O+y—y s(x)+y —s(x+y)

AM Automatic Complexity Analysis of Rewrite Systems 6/56

TRS R is terminating

O+y—y s(x) +y = s(x+y)
polynomial interpretation

ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1

AM Automatic Complexity Analysis of Rewrite Systems 6/56

TRS R is terminating
O+y—y s(x) +y —s(x+y)
polynomial interpretation
ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1

derivation height
dhz(s™(0) +s"(0)) =m+1

AM Automatic Complexity Analysis of Rewrite Systems 6/56

TRS R is terminating
O+y—y s(x) +y —s(x+y)
polynomial interpretation
ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1

derivation height
dhz(s™(0) +s"(0)) =m+1

derivational complexity

s(0) ifi=0
ti—1+s(0) ifi>0

AM Automatic Complexity Analysis of Rewrite Systems 6/56

TRS R is terminating
O+y—y s(x) +y —s(x+y)
polynomial interpretation
ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1

derivation height
dhz(s™(0) +s"(0)) =m+1

derivational complexity

s(0) ifi=0
ti—1+s(0) ifi>0

AM Automatic Complexity Analysis of Rewrite Systems 6/56

TRS R is terminating
O+y—y
polynomial interpretation
Oy=0 sy(x) =x+1

derivation height

dhz(s™(0) +s"(0)) =m+1

derivational complexity

s(0) if i =0
H=s(0)+ - +s(0) ti= "
$O) +---+5(0) {t,-_1+s(0) ifi>0
i+1
.
6] = 3i +2 dhre(t) =4 =0
dhg(ti—y)+i+1 ifi>0

s(x) +y —s(x+y)

(oY) =2x+y+1

AM

Automatic Complexity Analysis of Rewrite Systems

6/56

TRS R is terminating
O+y—y s(x) +y —s(x+y)
polynomial interpretation
ONn=0 sy(x) =x+1 +n(x,y)=2x+y+1

derivation height
dhz(s™(0) +s"(0)) =m+1

derivational complexity

s(0) ifi=0 5
ti=s(0)+--- 0 ti = dcr (k) € ©(k
—S() ,_/+s() {t,-_1+s(0) if i >0 cr (k) (k)
i+1
0 ifi=0
ti| = 3i +2 dhg(t;) =
] =37+ =(t) {dhn(t;_1)+i+1 if i >0

AM Automatic Complexity Analysis of Rewrite Systems 6/56

Outline

@ History

Automatic Complexity Analysis of Rewrite Systems

termination derivational complexity 1967

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1968

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1969

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1970

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1971

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity = 1972

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity = 1973

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1974

1967 Knuth-Bendix order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1975

1967 Knuth-Bendix order

1975 polynomial interpretations

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1976

1967 Knuth-Bendix order

1975 polynomial interpretations

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1977

1967 Knuth-Bendix order

1975 polynomial interpretations

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1978

1967 Knuth-Bendix order

1975 polynomial interpretations

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1979
1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1980

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity = 1981

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity = 1982

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1983

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1984

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1985

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1986

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1987

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity 1988

1967 Knuth-Bendix order

1975 polynomial interpretations

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

termination derivational complexity = 1989

1967 Knuth-Bendix order
1975 polynomial interpretations 1989 Hofbauer and Lautemann

1979 simple path order

1980 lexicographic path order
semantic path order

1981 recursive decomposition order
1982 multiset path order

1983 recursive path order

AM Automatic Complexity Analysis of Rewrite Systems 8/56

Theorem (Hofbauer and Lautemann 1989)

interpretation in N bound on derivational complexity

polynomial double-exponential

rewrite system

x+0—x d(0) —0 q(0) — 0
x+s(y) = sx+y) d(s(x)) = s(s(d(x))) als(x)) — alx) +s(d(x))

interpretations

ON=2 sn(x)=x+1 +n(x,y)=x+2y dn(x)=3x aun(x)=x>

AM Automatic Complexity Analysis of Rewrite Systems 9/56

Theorem (Hofbauer and Lautemann 1989)

interpretation in N bound on derivational complexity

polynomial double-exponential
aixi+ -+ apxp+ b linear exponential

X1+---+ Xxp+b strongly linear linear

rewrite system

x+0—x d(0) —0 q(0) — 0
x+s(y) = sx+y) d(s(x)) = s(s(d(x))) als(x)) — alx) +s(d(x))

interpretations

ON=2 sn(x)=x+1 +n(x,y)=x+2y dn(x)=3x aun(x)=x>

AM Automatic Complexity Analysis of Rewrite Systems

9/56

termination derivational complexity

1990

1967
1975
1979
1980

1981
1982
1983
1990

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order
multiset path order 1990 Hofbauer
recursive path order

transformation order

v

AM

Automatic Complexity Analysis of Rewrite Systems

10/56

Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound
on derivational complexity

AM Automatic Complexity Analysis of Rewrite Systems 11/56

termination derivational complexity

1991

1967
1975
1979
1980

1981
1982
1983
1990

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order
multiset path order 1990 Hofbauer
recursive path order

transformation order

v

AM

Automatic Complexity Analysis of Rewrite Systems

12/56

termination derivational complexity

1992

1967
1975
1979
1980

1981
1982
1983
1990
1992

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order

multiset path order 1990 Hofbauer
recursive path order

transformation order

elementary interpretations
type introduction

AM

Automatic Complexity Analysis of Rewrite Systems

12/56

termination derivational complexity

1993

1967
1975
1979
1980

1981
1982
1983
1990
1992

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order

multiset path order 1990 Hofbauer
recursive path order

transformation order

elementary interpretations
type introduction

AM

Automatic Complexity Analysis of Rewrite Systems

12/56

termination derivational complexity

1994

1967
1975
1979
1980

1981
1982
1983
1990
1992

Knuth-Bendix order
polynomial interpretations 1989 Hofbauer and Lautemann
simple path order

lexicographic path order
semantic path order

recursive decomposition order

multiset path order 1990 Hofbauer
recursive path order

transformation order

elementary interpretations
type introduction

AM

Automatic Complexity Analysis of Rewrite Systems

12/56

termination derivational complexity 1995

1967 Knuth-Bendix order
1975 polynomial interpretations 1989 Hofbauer and Lautemann

1979 simple path order

1980 lexicographic path order 1995 Weiermann
semantic path order

1981 recursive decomposition order

1982 multiset path order 1990 Hofbauer
1983 recursive path order

1990 transformation order

1992 elementary interpretations
type introduction

1995 general path order
semantic labeling
dummy elimination

AM Automatic Complexity Analysis of Rewrite Systems 12/56

Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound
on derivational complexity

Theorem (Weiermann 1995)

termination proof by lexicographic path order implies multiple recursive upper
bound on derivational complexity

AM Automatic Complexity Analysis of Rewrite Systems 13/56

termination derivational complexity 1996

1967 Knuth-Bendix order
1975 polynomial interpretations 1989 Hofbauer and Lautemann

1979 simple path order

1980 lexicographic path order 1995 Weiermann
semantic path order

1981 recursive decomposition order

1982 multiset path order 1990 Hofbauer
1983 recursive path order

1990 transformation order

1992 elementary interpretations
type introduction

1995 general path order
semantic labeling
dummy elimination

AM Automatic Complexity Analysis of Rewrite Systems 14/56

Termination and Complexity Research

AM Automatic Complexity Analysis of Rewrite Systems 15/56

http://cime.lri.fr/
http://cl-informatik.uibk.ac.at/software/ttt2/
http://aprove.informatik.rwth-aachen.de/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://joerg.endrullis.de/
http://zenon.dsic.upv.es/muterm/
http://www.logic.at/vmtl/
http://cl-informatik.uibk.ac.at/software/tct/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://cl-informatik.uibk.ac.at/software/cat/

termination derivational complexity 1997

1997 dependency pairs

AM Automatic Complexity Analysis of Rewrite Systems 16/56

termination derivational complexity = 1998

1997 dependency pairs

AM Automatic Complexity Analysis of Rewrite Systems 16/56

termination derivational complexity = 1999

1997 dependency pairs

AM Automatic Complexity Analysis of Rewrite Systems 16/56

termination derivational complexity 2000

1997 dependency pairs

2000 monotonic semantic path order

AM Automatic Complexity Analysis of Rewrite Systems 16/56

termination

derivational complexity

2001

1967
1975
1979
1980

1981
1982
1983
1990
1992

1995

Knuth-Bendix order
polynomial interpretations
simple path order

lexicographic path order
semantic path order

recursive decomposition order
multiset path order

recursive path order
transformation order

elementary interpretations
type introduction

general path order
semantic labeling
dummy elimination

2001 Lepper
1989 Hofbauer and Lautemann

1995 Weiermann

1990 Hofbauer

AM

Automatic Complexity Analysis of Rewrite Systems

17/56

Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound
on derivational complexity

Theorem (Weiermann 1995)

termination proof by lexicographic path order implies multiple recursive upper
bound on derivational complexity

Theorem (Lepper 2001)

termination proof by Knuth-Bendix order implies multiple recursive upper bound
on derivational complexity

AM Automatic Complexity Analysis of Rewrite Systems 18/56

termination derivational complexity 2001

1997 dependency pairs
2000 monotonic semantic path order

2001 context-dependent interpretations 2001

AM Automatic Complexity Analysis of Rewrite Systems 19/56

termination derivational complexity 2002

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

AM Automatic Complexity Analysis of Rewrite Systems 19/56

Termination Research Complexity Research

Termination Tools

CiME, TtTo, AProVE, Termptation, Cariboo, Torpa, TPA, Matchbox, Jambox,
MuTerm, NTI, VMTL, ...

AM Automatic Complexity Analysis of Rewrite Systems 20/56

http://cime.lri.fr/
http://cl-informatik.uibk.ac.at/software/ttt2/
http://aprove.informatik.rwth-aachen.de/
http://www-lsi.upc.es/~albert/term.html
http://cariboo.loria.fr/
http://www.win.tue.nl/~hzantema/torpa.html
http://www.win.tue.nl/tpa/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://joerg.endrullis.de/
http://zenon.dsic.upv.es/muterm/
http://www.logic.at/vmtl/
http://cl-informatik.uibk.ac.at/software/tct/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://cl-informatik.uibk.ac.at/software/cat/

termination derivational complexity 2003

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

2003 match-bounds
size-change principle

2003 termination competition

AM Automatic Complexity Analysis of Rewrite Systems 21/56

termination derivational complexity 2004

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

2003 match-bounds 2004
size-change principle

2003 termination competition

AM Automatic Complexity Analysis of Rewrite Systems 21/56

termination derivational complexity 2005

1997 dependency pairs
2000 monotonic semantic path order
2001 context-dependent interpretations 2001

2003 match-bounds 2004
size-change principle

2003 termination competition

AM Automatic Complexity Analysis of Rewrite Systems 21/56

termination derivational complexity

2006

1997
2000
2001
2003

2003
2006

dependency pairs
monotonic semantic path order
context-dependent interpretations 2001

match-bounds 2004
size-change principle
termination competition

matrix interpretations
predictive labeling
uncurrying

AM

Automatic Complexity Analysis of Rewrite Systems

21/56

termination derivational complexity

2007

1997
2000
2001
2003

2003
2006

2007

dependency pairs

monotonic semantic path order
context-dependent interpretations 2001
match-bounds 2004
size-change principle

termination competition

matrix interpretations
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

AM

Automatic Complexity Analysis of Rewrite Systems

21/56

Termination and Complexity Research

v
Termination Tools

CiME, T1Ty, AProVE, Matchbox, Jambox, MuTerm, VMTL, ...

Complexity Tools
TcT, Matchbox, GT

v

AM Automatic Complexity Analysis of Rewrite Systems 22/56

http://cime.lri.fr/
http://cl-informatik.uibk.ac.at/software/ttt2/
http://aprove.informatik.rwth-aachen.de/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://joerg.endrullis.de/
http://zenon.dsic.upv.es/muterm/
http://www.logic.at/vmtl/
http://cl-informatik.uibk.ac.at/software/tct/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://cl-informatik.uibk.ac.at/software/cat/

termination derivational complexity

2008

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs

monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM

Automatic Complexity Analysis of Rewrite Systems

23/56

termination derivational complexity

2009

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs 2009
monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM

Automatic Complexity Analysis of Rewrite Systems

23/56

termination derivational complexity

2010

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs 2009
monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008, 2010
predictive labeling
uncurrying

bounded increase
quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM

Automatic Complexity Analysis of Rewrite Systems

23/56

termination derivational complexity

2011

1997
2000
2001
2003

2003

2006

2007

2008

dependency pairs 2009, 2011
monotonic semantic path order
context-dependent interpretations 2001, 2008
match-bounds 2004
size-change principle

termination competition

matrix interpretations 2008, 2010, 2011
predictive labeling

uncurrying

bounded increase

quasi-periodic interpretations

arctic interpretations 2008 complexity competition
root-labeling

AM

Automatic Complexity Analysis of Rewrite Systems

23/56

Outline

@ Matrix Interpretations

Automatic Complexity Analysis of Rewrite Systems

algebra M with well-founded order >

e carrier of M is N9 with d > 0

d

° (X1,~--7Xd)T>()’1a~--7Yd)T = x1>y AN /\Xi>y,'
i=2

e interpretations (for every n-ary f)
fM(>'<’1,...,>'<’,,) = F1>'<’1+«--+F,,>?,,+f
with
e matrices Fy, ..., F, € N9 with (F;);1 > 1forall 1 <i<n
e vector f € N9

v
Lemma

(M, >) is well-founded monotone algebra

AM Automatic Complexity Analysis of Rewrite Systems 25/56

termination proof by matrix interpretation implies exponential upper bound on
derivational complexity

Example

rewrite rule

a(b(x)) — b(b(a(x)))
matrix interpretation (linear polynomial interpretation)
am(x) = 3x bm(x)=x+1

derivational complexity is exponential

a2b 4)3 b4a2 a3b *)7 b833 a4b *)15 blﬁa4

AM Automatic Complexity Analysis of Rewrite Systems

26/56

termination proof by matrix interpretation implies exponential upper bound on
derivational complexity

Example

rewrite rule

a(b(x)) — b(b(a(x)))
matrix interpretation (linear polynomial interpretation)
am(x) = 3x bm(x)=x+1

derivational complexity is exponential

a2b 4)3 b4a2 a3b *)7 b833 a4b *)15 b1634

Aim

restrict matrix interpretations to obtain polynomial derivational complexity

| \

AM Automatic Complexity Analysis of Rewrite Systems 26/56

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

AM Automatic Complexity Analysis of Rewrite Systems 27/56

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Two Extensions

using weighted automata techniques (Waldmann 2010)

AM Automatic Complexity Analysis of Rewrite Systems 27/56

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Two Extensions

using weighted automata techniques (Waldmann 2010)

using linear algebra techniques (Neurauter, Zankl, Middeldorp 2010)

AM Automatic Complexity Analysis of Rewrite Systems 27/56

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Two Extensions

using weighted automata techniques (Waldmann 2010)
using linear algebra techniques (Neurauter, Zankl, Middeldorp 2010)
joint spectral radius theory to unify and strengthen two extensions J

AM Automatic Complexity Analysis of Rewrite Systems 27/56

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Two Extensions

using weighted automata techniques (Waldmann 2010)
using linear algebra techniques (Neurauter, Zankl, Middeldorp 2010)
joint spectral radius theory to unify and strengthen two extensions J

are matrix interpretations complete for polynomial derivational complexity ?)

AM Automatic Complexity Analysis of Rewrite Systems 27/56

are matrix interpretations complete for polynomial derivational complexity ?)

given TRS R which has polynomial derivational complexity

given compatible matrix interpretation M

3 compatible matrix interpretation N that is polynomially bounded ?

AM Automatic Complexity Analysis of Rewrite Systems 28/56

@ Algebraic Methods
e Spectral Radius
o Joint Spectral Radius

AM Automatic Complexity Analysis of Rewrite Systems 29/56

Definition

Sp is set of matrices occurring in matrix interpretation M:

Smo= U (R Rl (i, R) = Af 4+ Fak+ £}
n-ary f

AM Automatic Complexity Analysis of Rewrite Systems 30/56

Definition

Sn is set of matrices occurring in matrix interpretation M:

Smo= U (R Rl (i, R) = Af 4+ Fak+ £}
n-ary f

Definition

matrix interpretation M is polynomially bounded® (with degree d) if growth of

entries of matrix products
Ap-oAx

with Ay, ..., Ax € Spq is polynomial (with degree d) in k

AM Automatic Complexity Analysis of Rewrite Systems 30/56

term t

f

f(g(a, b), <) £ / \5

matrix interpretation M g c

apm=a bp=b cCMm=C G1/\G2

fM()_(’,}_/’)ZFl)?-i-Fz}_/’-l-f R b
gm(X,y)=GX+ G y+g
interpretation of t

[timM=FAGa+FAGb+Fg+Fc+f

AM Automatic Complexity Analysis of Rewrite Systems 31/56

term t of size at most k

e ... has at most k subterms

® ... each subterm corresponds to product of at most k matrices

AM Automatic Complexity Analysis of Rewrite Systems 32/56

term t of size at most k

e ... has at most k subterms

® ... each subterm corresponds to product of at most k matrices

if R has compatible matrix interpretation M that is polynomially bounded® with
degree d then dcr (k) € O(k9*!)

AM Automatic Complexity Analysis of Rewrite Systems 32/56

Outline

@ Algebraic Methods
e Spectral Radius

AM Automatic Complexity Analysis of Rewrite Systems 33/56

over-approximate growth of entries of matrix products
Ay Ac €S by M-

where Mjj = max{Aj; | A€ Sy}

square matrix A € R"*" over ring R (Z, Q, R)

o spectral radius p(A) of A is maximum of absolute values of its eigenvalues

e minimal polynomial ma(x) of A is unique monic polynomial of minimum
degree that annihilates A

AM Automatic Complexity Analysis of Rewrite Systems 34/56

if R has compatible matrix interpretation M such that p(M) < 1 then
der (k) € O(kT)
where d = maxy (0, #mpy(A\) — 1) and
®)\ ranges over eigenvalues of A with absolute value exactly one

e #my () denotes multiplicity of A

AM Automatic Complexity Analysis of Rewrite Systems 35/56

rewrite system R

f(f(x)) — f(e(f(x)))

compatible matrix interpretation M

g(g(x)) — x

110 0 1
fm(F)=[000]|x+]|4 gm(X)=1[0

000 0 0

100 4
bpy(X)=[010|x+](4

001 0

b(x) — x

v

AM Automatic Complexity Analysis of Rewrite Systems

36/56

rewrite system R

f(f(x)) — f(&(f(x))) g(g(x)) — x b(x) — x
compatible matrix interpretation M
110 0 100 1
fu(x)={000]|x+1]4 gem)=[(001]|x+(0
000 0 010 3
100 4 110
bu(X)=[010|x+ |4 M=|011
001 0 011

v

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

compatible matrix interpretation M

110 0 100 1
fu)=[(000|x+|4 emF)=(001]x+{0
000 0 010 3
100 4 110
bu(F)=[010]|x+ |4 M=]011 p(M) =2
001 0 011

derivational complexity is linear but

gl gl
Mk =10 2k71 2k71
0 2k71 2k71

AM Automatic Complexity Analysis of Rewrite Systems 36/56

v

Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

AM Automatic Complexity Analysis of Rewrite Systems

36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

o Ff> FGf + Fg

AM Automatic Complexity Analysis of Rewrite Systems

36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf

AM Automatic Complexity Analysis of Rewrite Systems

36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I,

AM Automatic Complexity Analysis of Rewrite Systems

36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I, and thus G; < 1 for some index i

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I, and thus G; < 1 for some index i
o GG > I,

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G # I, and thus G; < 1 for some index i
* GG > I, and thus (GG)ii =3, G;Gji > 1

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

e Ff > FGf and thus G % I, and thus G;; < 1 for some index i
o GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g
e Ff > FGf and thus G % I, and thus G; < 1 for some index i

o GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0
e B>,

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:
bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g
e Ff > FGf and thus G % I, and thus G; < 1 for some index i

e GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0
e B> I, and thus M > max(/,, G)

AM Automatic Complexity Analysis of Rewrite Systems 36/56

Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fr(X) = FR+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > I, and thus (GG); = ZJ. GjiGji > 1 and Zj#,- GjiGji >0
B > I, and thus M > max(/,, G)

(MM);;

AM Automatic Complexity Analysis of Rewrite Systems 36/56

Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > Iy and thus (GG)ii = 3, G;iGj > 1and 3, ; G;Gji >0
B > I, and thus M > max(/,, G)

(MM)i = (M;)? + 35, My M;;

AM Automatic Complexity Analysis of Rewrite Systems 36/56

Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > Iy and thus (GG)ii = 3, G;iGj > 1and 3, ; G;Gji >0
B > I, and thus M > max(/,, G)

(MM)ii = (M) + 3, MM > 1+ 32, G5 Gj

AM Automatic Complexity Analysis of Rewrite Systems 36/56

Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > Iy and thus (GG)ii = 3, G;iGj > 1and 3, ; G;Gji >0
B > I, and thus M > max(/,, G)

(MM)ii = (M) + 32, MM > 1+ 35, G Gji > 1

AM Automatic Complexity Analysis of Rewrite Systems 36/56

Example

rewrite system R

f(f(x)) — f(e(f(x))) g(g(x)) — x b(x) — x

no component-wise maximum matrix of compatible matrix interpretation is
polynomially bounded®:

e compatible matrix interpretation M of dimension n:

bam(X) = BX+ b fm(X) = FX+f gm(X) =GR +g

Ff > FGf and thus G # I, and thus G; < 1 for some index i
GG > I, and thus (GG),, = Zj G,JGJ, > 1 and Zj;éi G,JGJ, >0
B > I, and thus M > max(/,, G)

(MM)i; = (Mii)? + 30, MMy > 1+ 35, GG > 1
hence (M*);; grows exponentially

AM Automatic Complexity Analysis of Rewrite Systems 36/56

rewrite system R
f(f(x)) — f(&(f(x))) g(g(x)) — x b(x) — x
compatible matrix interpretation M
110 0 100 1
fu)={000]|x+]4 gem)=[(001]|x+|0
000 0 010 3
100 4 110
bm(X)=1010|Xx+ |4 M=1011 p(M) =2
001 0 011
derivational complexity is linear: joint spectral radius
110 100 100
p 000)],{001],{010 =1l
000 010 001

AM

Automatic Complexity Analysis of Rewrite Systems

36/56

Outline

@ Algebraic Methods

o Joint Spectral Radius

AM Automatic Complexity Analysis of Rewrite Systems 37/56

finite set S C R"*" of real square matrices

e growth function
growthg(k) = max { ||Ay - Akl | A1,..., Ak €S}

for some matrix norm ||-||

AM Automatic Complexity Analysis of Rewrite Systems 38/56

finite set S C R"*" of real square matrices

e growth function
growthg(k) = max { ||Ay - Akl | A1,..., Ak €S}

for some matrix norm ||-||

e joint spectral radius

p(S) = lim max{ AL - Al | Ar,...,Ace S}
— 00

AM Automatic Complexity Analysis of Rewrite Systems 38/56

finite set S C R"*" of real square matrices

e growth function
growthg(k) = max { ||Ay - Akl | A1,..., Ak €S}

for some matrix norm ||-||

e joint spectral radius

p(S) = lim max{ AL - Al | Ar,...,Ace S}
— 00

v
Theorem

growthg (k) € O(k9) for some d € N if and only if p(S) < 1

AM Automatic Complexity Analysis of Rewrite Systems

38/56

problem

instance: finite set S C R"™*"
question: p(S) <17

is undecidable in general

AM Automatic Complexity Analysis of Rewrite Systems 39/56

problem

instance: finite set S C R"™*"
question: p(S) <17

is undecidable in general and decidable (in polynomial time) if S C N"*"

AM Automatic Complexity Analysis of Rewrite Systems 39/56

problem

instance: finite set S C R"™*"
question: p(S) <17

is undecidable in general and decidable (in polynomial time) if S C N"*"

Theorem (based on Jungers, Protasov, Blondel 2008)

if p(S) < 1 for finite set S C N"*" then
growthg(k) € ©(k?)

where d is largest integer such that 3 d different pairs of indices (i1, /1), - - -, (id, ja)
e V1< n<d ip#jn and 3 product A € S* such that A; i, Ai, j.» Aj,j» = 1
e V1< n<d 3product B € S* such that B ;. > 1

AM Automatic Complexity Analysis of Rewrite Systems 39/56

if R has compatible matrix interpretation M such that

p(Sm) <1

then der (k) € O(k?*1) where d is largest integer such that . ..

degree d + 1 can be computed in polynomial time

AM Automatic Complexity Analysis of Rewrite Systems 40/56

Outline

@ Automata-Based Methods

AM Automatic Complexity Analysis of Rewrite Systems 41/56

Definition
matrix interpretation M

e growth function of M
growth v (k) = max{[t]: | |t| < k}

where [t]; is first component of interpretation of t when all variables in t are
assigned zero vector

AM Automatic Complexity Analysis of Rewrite Systems 42/56

matrix interpretation M

e growth function of M
growth v (k) = max{[t]: | |t| < k}

where [t]; is first component of interpretation of t when all variables in t are
assigned zero vector

if R has compatible matrix interpretation M then

t—Rr U — [t]l > [U]I

AM Automatic Complexity Analysis of Rewrite Systems 42/56

matrix interpretation M

e growth function of M
growth v (k) = max{[t]: | |t| < k}

where [t]; is first component of interpretation of t when all variables in t are
assigned zero vector

e M is polynomially bounded® with degree d if growth (k) € O(k9)

if R has compatible matrix interpretation M then

t—Rr U — [t]l > [U]I

AM Automatic Complexity Analysis of Rewrite Systems 42/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

—Q ©) ®

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

—Q ©) ®

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

fi:1l,a:1 a1

Oz
&)
)

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)=[010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

fi:La:l fi:1 a: 1
rﬂ\/a_—l\ﬂ
@ ©) ®

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av(@)={010]|% fuEy=[(101]x+|001]y+][1
000 001 001 1

weighted automaton A

fi:l,a:1 -1

/\/al\r\ fu: 1

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av@)=[010]%x fuEy=[101]x+{001]|y+[1
000 001 001 1
weighted automaton A
fi: 1a 1 -1 fi: 1

/\/al\r\ fu: 1 .

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av@)=[010]%x fuEy=[(101]x+{001]|y+[1
000 001 001 1
weighted automaton A
f 1a 1f2 1 fl -1 flll,fgll

/\/31\/-\ fi:1,fp: 1 Q

_/

f212

AM Automatic Complexity Analysis of Rewrite Systems 43/56

matrix interpretation M of dimension 3

110 100 102 0
av@)=[010])%x fuEy=[101]x+|001]|y+[1
000 001 001 1
weighted automaton A
fi:La:r1,f:1 .1 a1 fi:1,f: 1

QA . :
@ a: 1 A f1.1,f2.1 é)

AM Automatic Complexity Analysis of Rewrite Systems 43/56

weighted automaton is quintuple A = (Q, X, A, p,y) with

Q: finite set of states
3 finite alphabet
AE QR initial state

p: X — NIRIXI®L transition matrix

v CQ final states

11(a)pq denotes weight of transition p % g

AM Automatic Complexity Analysis of Rewrite Systems 44/56

weighted automaton is quintuple A = (Q, X, A, ,y) with

Q: finite set of states
3 finite alphabet
AE QR initial state

p: X — NIRIXI®L transition matrix
v CQ final states

11(a)pq denotes weight of transition p % g

v

weight of string x € ¥*

weight 4 (x) = 3 u(x)xq

qey

AM Automatic Complexity Analysis of Rewrite Systems 44/56

Definition

growth function of weighted automaton A = (Q, X, A\, i, 7)

growth , (k) = max { weight 4(x) | x € Z¥}

AM Automatic Complexity Analysis of Rewrite Systems 45/56

Definition

growth function of weighted automaton A = (Q, X, A\, i, 7)

growth 4 (k) = max { weight 4(x) | x € Z¥}

Definition

given matrix interpretation M of dimension n for signature F
define weighted automaton A = (Q, X, \, p1,7) as follows:

e Q={1,...,n}
e Y ={f|feFhasaritymandl<i<m}
e =1

u(f;) = F; where F; denotes i-th matrix of f

~v={i| ¢ > 0 for some vector ¢ in M}

v

AM Automatic Complexity Analysis of Rewrite Systems 45/56

Definition

weighted automaton A = (Q, X, A\, i,)

e state g is useful if A contains path from initial to final state containing g

AM Automatic Complexity Analysis of Rewrite Systems 46/56

Definition

weighted automaton A = (Q, X, A\, i,)
e state g is useful if A contains path from initial to final state containing g

e Ais trim if all states are useful

AM Automatic Complexity Analysis of Rewrite Systems 46/56

Definition

weighted automaton A = (Q, X, A\, i,)
e state g is useful if A contains path from initial to final state containing g

e A is trim if all states are useful

V weighted automaton A 3 trim automaton B such that

growth 4 (k) = growthg(k)

AM Automatic Complexity Analysis of Rewrite Systems 46/56

Definition

weighted automaton A = (Q, X, A\, i,)
e state g is useful if A contains path from initial to final state containing g

e A is trim if all states are useful

Lemma

V weighted automaton A 3 trim automaton B such that
growth 4 (k) = growthg(k)

weighted automaton A is not trim: state 2 is not useful

32
rﬂxbl
1

AM Automatic Complexity Analysis of Rewrite Systems

46/56

Definition

weighted automaton A = (Q, X, A\, i,)
e state g is useful if A contains path from initial to final state containing g

e A is trim if all states are useful

Lemma

V weighted automaton A 3 trim automaton B such that
growth 4 (k) = growthg(k)

weighted automaton A4 is not trim weighted automaton B

a: 2

a: 1 : a: 1
. N
Oe —O

AM Automatic Complexity Analysis of Rewrite Systems

46/56

matrix interpretation M and corresponding weighted automaton A

growth (k) € O(k?) <= growth,(k) € O(k9*t)

AM Automatic Complexity Analysis of Rewrite Systems 47/56

matrix interpretation M and corresponding weighted automaton A

growth (k) € O(k?) <= growth,(k) € O(k9*t)

Definitions (based on Weber and Seidl 1991)

weighted automaton A = (Q, X, A, i,)
EDA Jg e Q Ix € X* such that g is useful and p(x)qq > 2

IDAy 3p1,91,---,Pd,9q € Q@ vy, U, Vo, ..., U4, Vg € L* such that
Vi>1 p; and g; are useful, p; # g; and p; -5 pi - q; — q;
Vi>2qgi1 N pi

Vi Vi

NN

Automatic Complexity Analysis of Rewrite Systems

47/56

matrix interpretation M and corresponding weighted automaton A
growth (k) € O(k%t1) <= A EDA, AW IDA41

AM Automatic Complexity Analysis of Rewrite Systems 48/56

matrix interpretation M and corresponding weighted automaton A
growth (k) € ©(k9t1) <= A EDA, AW IDA41, A= DAy

AM Automatic Complexity Analysis of Rewrite Systems 48/56

matrix interpretation M and corresponding weighted automaton A
growth (k) € ©(k9*1) <= A EDA, AW IDA41, A= DAy

conditions are decidable in time O(|Q|® - |Z|) for A = (Q, X, \, 11, 7)

if R has compatible matrix interpretation M such that corresponding weighted
automaton does not comply with EDA nor with IDA11 then decr (k) € O(k9+1)

AM Automatic Complexity Analysis of Rewrite Systems 48/56

@ Unifying Algebraic and Automata-Based Methods

AM Automatic Complexity Analysis of Rewrite Systems 49/56

rewrite rule

f(x) — x

compatible matrix interpretation M

wan- (- ()

Automatic Complexity Analysis of Rewrite Systems

rewrite rule

f(x) — x

compatible matrix interpretation M

= (3 (2

e M is not polynomially bounded® because p(M) = 2

AM Automatic Complexity Analysis of Rewrite Systems 50/56

rewrite rule

f(x) — x

compatible matrix interpretation M

= (3 (2

e M is not polynomially bounded® because p(M) = 2

e M is polynomially bounded® because [t]; < |t| for any term t

AM Automatic Complexity Analysis of Rewrite Systems 50/56

rewrite rule
f(x) — x

compatible matrix interpretation M

=3 (1)

e M is not polynomially bounded® because p(M) = 2

e M is polynomially bounded® because [t]; < |t| for any term t

for every TRS R
Y compatible matrix interpretation M 3 compatible matrix interpretation N

such that corresponding automaton is trim and growth (k) = growth,,(k)

AM Automatic Complexity Analysis of Rewrite Systems 50/56

rewrite rule
f(x) — x

compatible matrix interpretation M

o= (3) 2

corresponding weighted automaton

flll f1:2
N N
N fi: 1

O—O

is not trim because state 2 is not useful

Automatic Complexity Analysis of Rewrite Systems

rewrite rule
f(x) — x

compatible matrix interpretation M

=)o)

corresponding weighted automaton

A
—Q@

is trim and M is polynomially bounded®

Automatic Complexity Analysis of Rewrite Systems

Corollary

for every TRS R

3 compatible matrix interpretation M that is polynomially bounded®
<~
3 compatible matrix interpretation N that is polynomially bounded®

growthy,(k) € O(k9*1) if and only if growth of entries of products A; - - - A of
matrices in M is polynomial with degree d in k

AM Automatic Complexity Analysis of Rewrite Systems 52/56

Corollary

for every TRS R

3 compatible matrix interpretation M that is polynomially bounded®
<~

3 compatible matrix interpretation N that is polynomially bounded®

growthy,(k) € O(k9*1) if and only if growth of entries of products A; - - - A of
matrices in M is polynomial with degree d in k

v
Theorem

for every TRS R

der (k) € O(k?) can be shown using automata-based approach
—

der (k) € O(k?) can be shown using algebraic approach

Automatic Complexity Analysis of Rewrite Systems 52/56

Outline

@ Concluding Remarks

Automatic Complexity Analysis of Rewrite Systems

matrix interpretations are incomplete for polynomial derivational complexity

AM Automatic Complexity Analysis of Rewrite Systems 54/56

Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x))) &le(x)) = x b(x) = x

compatible matrix interpretation M

0
gm(X) =

<
—
x|
N—
I

O O =

<
—
x|
N—r
Il
O =

p({---}) =1

o = O o O =
w s~ o b~ O

0
0
0
0
1

o

o O =
= O O
o = O

AM Automatic Complexity Analysis of Rewrite Systems

54/56

Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x))) &le(x)) = x b(x) = x

compatible matrix interpretation M

0
gm(X) =

<
—
x|
N—
I

O O =

<
—
x|
N—r
Il
O =

p({---}) =2

= = O o O =
w > D o b~ O

0
0
0
1
1

o

b(x) — g(x)

AM Automatic Complexity Analysis of Rewrite Systems

54/56

Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x))) e(e(x)) =x bx)=x b(x) — g(x)

no polynomially bounded compatible matrix interpretation

AM Automatic Complexity Analysis of Rewrite Systems 54/56

Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x))) e(e(x)) =x bx)=x b(x) — g(x)

no polynomially bounded compatible matrix interpretation

e compatible matrix interpretation M of dimension n:

bam(X) = BR+ b frm(R) = FR+f gm(X) =GR +g

AM Automatic Complexity Analysis of Rewrite Systems 54/56

Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x))) e(e(x)) =x b(x) =x b(x) — g(x)

no polynomially bounded compatible matrix interpretation

e compatible matrix interpretation M of dimension n:

bam(X) = BR+ b frm(R) = FR+f gm(X) =GR +g

e B> max(l,, G)

AM Automatic Complexity Analysis of Rewrite Systems 54/56

Lemma

matrix interpretations are incomplete for polynomial derivational complexity

rewrite system R with linear derivational complexity

f(f(x)) — fe(f(x))) e(e(x)) =x bx)=x b(x) — g(x)

no polynomially bounded compatible matrix interpretation

e compatible matrix interpretation M of dimension n:

bam(X) = BR+ b frm(R) = FR+f gm(X) =GR +g

e B> max(/,, G ... hence entries in B¥ grows ex onentially
) g p

AM Automatic Complexity Analysis of Rewrite Systems 54/56

e automation by mapping to finite-domain constraint systems (. ..)

AM Automatic Complexity Analysis of Rewrite Systems 55/56

e automation by mapping to finite-domain constraint systems (. ..)

o algebraic approach applies also to matrix interpretations over QQ and R

AM Automatic Complexity Analysis of Rewrite Systems 55/56

e automation by mapping to finite-domain constraint systems (. ..)

o algebraic approach applies also to matrix interpretations over Q and R

o results extend to runtime complexity

AM Automatic Complexity Analysis of Rewrite Systems 55/56

e automation by mapping to finite-domain constraint systems (. ..)

o algebraic approach applies also to matrix interpretations over Q and R

o results extend to runtime complexity

e runtime complexity rcg (k) = max { dh(t) | t is basic term and |t| < k }

AM Automatic Complexity Analysis of Rewrite Systems 55/56

e automation by mapping to finite-domain constraint systems (. ..)

o algebraic approach applies also to matrix interpretations over Q and R

o results extend to runtime complexity

e runtime complexity rcg (k) = max { dh(t) | t is basic term and |t| < k }
e term f(t1,...,t,) is basic if

f is defined symbol
ti,...,t, are constructor terms

AM Automatic Complexity Analysis of Rewrite Systems 55/56

rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)

shuffle(nil) — nil
shuffle(x :: xs

)

)

append(nil, ys)
append(x :: xs, ys) — x::append(xs, ys)

— x :: shuffle(reverse(xs))

AM Automatic Complexity Analysis of Rewrite Systems 56/56

rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil

)
)
)
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys

)

append(x :: xs, ys) — x :: append(xs, ys)

derivational complexity
dcr (k) € O(k*)

AM Automatic Complexity Analysis of Rewrite Systems 56/56

rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil

)
)
)
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys

)

append(x :: xs, ys) — x :: append(xs, ys)

derivational complexity
dcr (k) € O(k*)

runtime complexity
FCR(k) S O(k3)

AM Automatic Complexity Analysis of Rewrite Systems 56/56

rewrite system R

reverse(nil) — nil
reverse(x :: xs) — append(reverse(xs), x :: nil)
shuffle(nil) — nil

)
)
)
shuffle(x :: xs) — x :: shuffle(reverse(xs))
append(nil, ys) — ys

)

append(x :: xs, ys) — x :: append(xs, ys)

derivational complexity
dcr (k) € O(k*)

runtime complexity
FCR(k) S O(k3)

... beyond reach of complexity tools

AM Automatic Complexity Analysis of Rewrite Systems 56/56

	Introduction
	History
	Matrix Interpretations
	Algebraic Methods
	Spectral Radius
	Joint Spectral Radius

	Automata-Based Methods
	Unifying Algebraic and Automata-Based Methods
	Concluding Remarks

