

Matrix Interpretations for Polynomial Derivational Complexity of Rewrite Systems

Aart Middeldorp

Institute of Computer Science University of Innsbruck

joint work with

Georg Moser F Johannes Waldmann

Friedrich Neurauter ann Harald Zankl

LPAR-18

Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
- Automata-Based Methods
- Concluding Remarks

```
let rec reverse =
function
| [] -> []
| x :: xs -> (reverse xs) @ (x :: []) ;;
let rec shuffle =
function
| [] -> []
| x :: xs -> x :: shuffle (reverse xs) ;;
```

```
let rec reverse =
function
| [] -> []
| x :: xs -> (reverse xs) @ (x :: []) ;;
let rec shuffle =
function
| [] -> []
| x :: xs -> x :: shuffle (reverse xs) ;;
```

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

```
let rec reverse = reverse(nil) = nil
function reverse(x :: xs) = append(reverse(xs), x :: nil)
| [] -> []
| x :: xs -> (reverse xs) @ (x :: []) ;;
let rec shuffle =
function
| [] -> []
| x :: xs -> x :: shuffle (reverse xs) ;;
```

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

```
let rec reverse = reverse(nil) = nil
function reverse(x :: xs) = append(reverse(xs), x :: nil)
| [] -> []
l x :: xs -> (reverse xs) @ (x :: []) ;;
let rec shuffle = shuffle(nil) = nil
function shuffle(x :: xs) = x :: shuffle(reverse(xs))
| [] -> []
| x :: xs -> x :: shuffle (reverse xs) ;;
```

shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]

```
let rec reverse =
                                   reverse(nil) = nil
function
                                reverse(x :: xs) = append(reverse(xs), x :: nil)
| [] -> []
| x :: xs -> (reverse xs) @ (x :: []) ::
                                   shuffle(nil) = nil
let rec shuffle =
function
                                shuffle(x :: xs) = x :: shuffle(reverse(xs))
| [] -> []
| x :: xs \rightarrow x :: shuffle (reverse xs) ;;
                               append(nil, ys) = ys
                            append(x :: xs, ys) = x :: append(xs, ys)
shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]
```

```
let rec reverse =
                                        reverse(nil) \rightarrow nil
function
                                     reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)
| [] -> []
| x :: xs -> (reverse xs) @ (x :: []) ::
                                        shuffle(nil) \rightarrow nil
let rec shuffle =
function
                                     shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))
| [] -> []
| x :: xs \rightarrow x :: shuffle (reverse xs) ;;
                                    append(nil, ys) \rightarrow ys
                                append(x :: xs, ys) \rightarrow x :: append(xs, ys)
shuffle([0,1,2,3,4]) evaluates to [0,4,1,3,2]
```

rewrite rules

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)

rewrite rules

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary) terms s(s(0))

rewrite rules

signature nil 0 (constants) reverse shuffle s (unary) append :: (binary)
terms s(s(0)) shuffle(0 :: nil)

rewrite rules

signature	nil 0 (cor	nstants)	reverse	e shuffle s (unary)	append :: (binary
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	
rewrite rules	rev sh appen	reverse(n verse(x :: > shuffle(n uffle(x :: > pend(nil, y d(x :: xs, y	$ (iii) \rightarrow n (s) \rightarrow a (iii) \rightarrow n (s) \rightarrow x (s) \rightarrow x (s) \rightarrow y (s) \rightarrow y (s) \rightarrow x (s) $	il ppend(reverse(<i>xs</i>), <i>x</i> il ::: shuffle(reverse(<i>xs</i> <i>s</i> ::: append(<i>xs</i> , <i>ys</i>)	x :: nil)

signature	nil 0 (cor	nstants)	reverse	e shuffle s (unary)	append :: (binary)
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	s(append(s(x), 0))
rewrite rules	rev sh apı appen	reverse(n verse(x :: > shuffle(n uffle(x :: > pend(nil, y d(x :: xs, y	$\begin{array}{l} \text{iil}) \rightarrow \text{ni}\\ \text{iss}) \rightarrow \text{ap}\\ \text{iil}) \rightarrow \text{ni}\\ \text{iss}) \rightarrow x\\ \text{iss}) \rightarrow y\\ \text{iss}) \rightarrow y\\ \text{iss}) \rightarrow x \end{array}$	il opend(reverse(<i>xs</i>) il :: shuffle(reverse(<i>x</i> s :: append(<i>xs</i> , <i>ys</i>)	, x :: nil) xs))

signature	nil 0 (cor	nstants)	reverse	e shuffle s (unary)	append :: (binary)
terms	s(s(0))	shuffle(0) :: nil)	reverse(x :: xs)	s(append(s(x), 0))
rewrite rules	re sh ap appen	reverse(r verse(x :: x shuffle(r nuffle(x :: x pend(nil, y nd(x :: xs, y	$\begin{array}{l} \text{nil}) \rightarrow n\\ xs) \rightarrow a\\ \text{nil}) \rightarrow n\\ xs) \rightarrow x\\ ys) \rightarrow y\\ ys) \rightarrow y\\ ys) \rightarrow x\end{array}$	il ppend(reverse(<i>xs</i>) il :: shuffle(reverse(. <i>s</i> :: append(<i>xs</i> , <i>ys</i>)	1, x :: nil) xs))
rewriting	shuffle(() :: s(0) :: s	s(s(0))::	s(s(s(0))) :: s(s(s(s(0)))) :: nil)

signature	nil 0 (cor	nstants)	reverse	e shuffle s (unary)	append :: (binary)
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	s(append(s(x), 0))
rewrite rules	rev sh apj appen	reverse(r verse(x :: x shuffle(r uuffle(x :: x pend(nil, y d(x :: xs, y	$\begin{array}{l} \text{nil}) \rightarrow n \\ \text{xs}) \rightarrow a \\ \text{nil}) \rightarrow n \\ \text{xs}) \rightarrow x \\ \text{ys}) \rightarrow y \\ \text{ys}) \rightarrow y \\ \text{ys}) \rightarrow x \end{array}$	il ppend(reverse(<i>xs</i>) il :: shuffle(reverse(<i>s</i> :: append(<i>xs</i> , <i>ys</i>)), x :: nil) xs))
rewriting	shuffle(0)::1::2::3	3 :: 4 :: n	il)	

signature	nil 0 (cor	istants)	reverse	shuffle s (unary)) append :: (binary)				
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	s(append(s(x), 0))				
rewrite rules	$reverse(nil) \to nil$								
	rev	/erse(<i>x</i> :: >	$\langle s angle o$ ap	pend(reverse(<i>xs</i>), <i>x</i> :: nil)				
		shuffle(r	iil) → ni	l i i					
	sh	uffle(x::>	$(s) \rightarrow x$::shuffle(reverse((xs))				
	ар	append(nil, ys) $\rightarrow ys$							
	appen	d(x::xs,y	$(s) \rightarrow x$::append(<i>xs</i> , <i>ys</i>)					
rewriting	shuffle(0	::1::2::3	3 :: 4 :: ni	I)					
	$\rightarrow 0::s$	shuffle(rev	verse(1::	2::3::4::nil))					

signature	nil 0 (cor	istants)	reverse	shuffle s (unary) append :: (binary)				
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	s(append(s(x), 0))				
rewrite rules	$reverse(nil) \to nil$								
	rev	/erse(<i>x</i> :: >	(s) ightarrow approx	ppend(reverse(<i>xs</i>	r), x :: nil)				
		shuffle(r	iil) \rightarrow ni	I					
	sh	$shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$							
	apı	append(nil, ys) $\rightarrow ys$							
	$append(x :: xs, ys) \to x :: append(xs, ys)$								
rewriting	shuffle(0	::1::2::3	3 :: 4 :: ni	I)					
	\rightarrow 0::9	shuffle(<mark>re</mark>	verse(1::	2::3::4::nil))					

signature	nil 0 (cor	nstants)	reverse	shuffle s (unary)) append :: (binary)			
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	s(append(s(x), 0))			
rewrite rules	$reverse(nil) \rightarrow nil$ $reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)$ $shuffle(nil) \rightarrow nil$ $shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$ $append(nil, ys) \rightarrow ys$ $append(x :: xs, ys) \rightarrow x :: append(xs, ys)$							
rewriting	shuffle($0 \rightarrow 0$:::: $\rightarrow 0$::::)::1::2::3 shuffle(rev shuffle(ap	3 :: 4 :: ni /erse(1 :: <mark>pend(re</mark> v	l) 2::3::4::nil)) verse(2::3::4::n	il), 1 :: nil))			

signature	nil 0 (cor	nstants)	reverse	shuffle s (unary	<pre> /) append :: (binary) </pre>				
terms	s(s(0))	shuffle(0	:: nil)	reverse(x :: xs)	s(append(s(x), 0))				
rewrite rules	$reverse(nil) \rightarrow nil$ $reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)$ $shuffle(nil) \rightarrow nil$ $shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$ $append(nil, ys) \rightarrow ys$ $append(x :: xs, ys) \rightarrow x :: append(xs, ys)$								
rewriting	shuffle($0 \rightarrow 0$:::: $\rightarrow 0$::::) :: 1 :: 2 :: shuffle(rev shuffle(ap	3 :: 4 :: ni verse(1 : pend(<mark>re</mark>	il) : 2 :: 3 :: 4 :: nil)) verse(2 :: 3 :: 4 :: 1	nil), 1 :: nil))				

signature	nil 0 (cor	istants)	reverse	e shuffle s (unary) append :: (binary)			
terms	s(s(0))	shuffle(0) :: nil)	reverse(x :: xs)	s(append(s(x), 0))			
rewrite rules	$reverse(nil) \rightarrow nil$ $reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)$ $shuffle(nil) \rightarrow nil$ $shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$ $append(nil, ys) \rightarrow ys$ $append(x :: xs, ys) \rightarrow x :: append(xs, ys)$							
rewriting	$\begin{aligned} & \text{shuffle}(0::1::2::3::4::nil) \\ & \rightarrow 0:: \text{shuffle}(\text{reverse}(1::2::3::4::nil)) \\ & \rightarrow 0:: \text{shuffle}(\text{append}(\text{reverse}(2::3::4::nil), 1::nil)) \\ & \rightarrow \cdots \rightarrow 0:: 4:: 1:: 3:: 2::nil \end{aligned}$							

• pair of terms $\ell \to r$ is rewrite rule if $\ell \notin \mathcal{V}$ and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$

- pair of terms $\ell \to r$ is rewrite rule if $\ell \notin \mathcal{V}$ and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$
- term rewrite system (TRS) is set \mathcal{R} of rewrite rules

- pair of terms $\ell \to r$ is rewrite rule if $\ell \notin \mathcal{V}$ and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$
- term rewrite system (TRS) is set \mathcal{R} of rewrite rules
- rewrite relation $\rightarrow_{\mathcal{R}}$

$$\frac{\ell \to r \in \mathcal{R}}{\ell \sigma \to_{\mathcal{R}} r \sigma}$$

- pair of terms $\ell \to r$ is rewrite rule if $\ell \notin \mathcal{V}$ and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$
- term rewrite system (TRS) is set \mathcal{R} of rewrite rules
- rewrite relation $\rightarrow_{\mathcal{R}}$

$$\frac{\ell \to r \in \mathcal{R}}{\ell \sigma \to_{\mathcal{R}} r \sigma} \qquad \qquad \frac{s \to_{\mathcal{R}} t}{f(\dots, s, \dots) \to_{\mathcal{R}} f(\dots, t, \dots)}$$

- pair of terms $\ell \to r$ is rewrite rule if $\ell \notin \mathcal{V}$ and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(\ell)$
- term rewrite system (TRS) is set \mathcal{R} of rewrite rules
- rewrite relation $\rightarrow_{\mathcal{R}}$

$$\frac{\ell \to r \in \mathcal{R}}{\ell \sigma \to_{\mathcal{R}} r \sigma} \qquad \qquad \frac{s \to_{\mathcal{R}} t}{f(\dots, s, \dots) \to_{\mathcal{R}} f(\dots, t, \dots)}$$

Definition

TRS is terminating if $\rightarrow_{\mathcal{R}}^+$ is well-founded

well-founded monotone *F*-algebra (*A*, >) consists of nonempty algebra *A* = (*A*, {*f*_A}_{*f*∈*F*}) together with well-founded order > on *A* such that every *f*_A is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

well-founded monotone *F*-algebra (*A*, >) consists of nonempty algebra *A* = (*A*, {*f_A*}_{*f*∈*F*}) together with well-founded order > on *A* such that every *f_A* is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

well-founded monotone *F*-algebra (*A*, >) consists of nonempty algebra *A* = (*A*, {*f*_A}_{*f*∈*F*}) together with well-founded order > on *A* such that every *f*_A is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

Theorem

TRS \mathcal{R} is terminating $\iff \mathcal{R} \subseteq >_{\mathcal{A}}$ for well-founded monotone algebra $(\mathcal{A}, >)$

well-founded monotone *F*-algebra (*A*, >) consists of nonempty algebra *A* = (*A*, {*f_A*}_{*f*∈*F*}) together with well-founded order > on *A* such that every *f_A* is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

Theorem

TRS \mathcal{R} is terminating $\iff \mathcal{R} \subseteq >_{\mathcal{A}}$ for well-founded monotone algebra $(\mathcal{A}, >)$

Definitions

• derivation height $dh_{\mathcal{R}}(t) = \max\{n \mid t \to_{\mathcal{R}}^{n} u \text{ for some term } u\}$

well-founded monotone *F*-algebra (*A*, >) consists of nonempty algebra *A* = (*A*, {*f_A*}_{*f*∈*F*}) together with well-founded order > on *A* such that every *f_A* is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in \{1, \ldots, n\}$ with $a_i > b$

• relation $>_{\mathcal{A}}$ on terms: $s >_{\mathcal{A}} t$ if $[\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

Theorem

TRS \mathcal{R} is terminating $\iff \mathcal{R} \subseteq >_{\mathcal{A}}$ for well-founded monotone algebra $(\mathcal{A}, >)$

- derivation height
- derivational complexity

$$dh_{\mathcal{R}}(t) = \max \{ n \mid t \to_{\mathcal{R}}^{n} u \text{ for some term } u \}$$

$$\mathsf{dc}_{\mathcal{R}}(k) = \max \{ \mathsf{dh}(t) \mid |t| \leqslant k \}$$

TRS ${\cal R}$

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

TRS ${\mathcal R}$ is terminating

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

polynomial interpretation

$$0_{\mathbb{N}} = 0$$
 $s_{\mathbb{N}}(x) = x + 1$ $+_{\mathbb{N}}(x, y) = 2x + y + 1$

TRS ${\mathcal R}$ is terminating

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

polynomial interpretation

$$0_{\mathbb{N}} = 0$$
 $s_{\mathbb{N}}(x) = x+1$ $+_{\mathbb{N}}(x,y) = 2x+y+1$

derivation height

$$\mathsf{dh}_{\mathcal{R}}(\mathsf{s}^m(0) + \mathsf{s}^n(0)) = m + 1$$

TRS ${\mathcal R}$ is terminating

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

polynomial interpretation

$$0_{\mathbb{N}} = 0$$
 $s_{\mathbb{N}}(x) = x+1$ $+_{\mathbb{N}}(x,y) = 2x+y+1$

derivation height

$$\mathsf{dh}_{\mathcal{R}}(\mathsf{s}^m(0) + \mathsf{s}^n(0)) = m + 1$$

derivational complexity

$$t_{i} = \underbrace{s(0) + \dots + s(0)}_{i+1} \qquad t_{i} = \begin{cases} s(0) & \text{if } i = 0\\ t_{i-1} + s(0) & \text{if } i > 0 \end{cases}$$

TRS ${\mathcal R}$ is terminating

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

polynomial interpretation

$$0_{\mathbb{N}} = 0$$
 $s_{\mathbb{N}}(x) = x+1$ $+_{\mathbb{N}}(x,y) = 2x+y+1$

derivation height

$$\mathsf{dh}_{\mathcal{R}}(\mathsf{s}^m(0) + \mathsf{s}^n(0)) = m + 1$$

derivational complexity

$$t_{i} = \underbrace{s(0) + \dots + s(0)}_{i+1} \qquad t_{i} = \begin{cases} s(0) & \text{if } i = 0\\ t_{i-1} + s(0) & \text{if } i > 0 \end{cases}$$

 $|t_i| = 3i + 2$
TRS ${\mathcal R}$ is terminating

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

polynomial interpretation

$$0_{\mathbb{N}} = 0$$
 $s_{\mathbb{N}}(x) = x+1$ $+_{\mathbb{N}}(x,y) = 2x+y+1$

derivation height

$$\mathsf{dh}_{\mathcal{R}}(\mathsf{s}^m(0) + \mathsf{s}^n(0)) = m + 1$$

$$t_{i} = \underbrace{s(0) + \dots + s(0)}_{i+1} \qquad t_{i} = \begin{cases} s(0) & \text{if } i = 0\\ t_{i-1} + s(0) & \text{if } i > 0 \end{cases}$$
$$|t_{i}| = 3i + 2 \qquad dh_{\mathcal{R}}(t_{i}) = \begin{cases} 0 & \text{if } i = 0\\ dh_{\mathcal{R}}(t_{i-1}) + i + 1 & \text{if } i > 0 \end{cases}$$

TRS ${\mathcal R}$ is terminating

$$0 + y \rightarrow y$$
 $s(x) + y \rightarrow s(x + y)$

polynomial interpretation

$$0_{\mathbb{N}} = 0$$
 $s_{\mathbb{N}}(x) = x + 1$ $+_{\mathbb{N}}(x, y) = 2x + y + 1$

derivation height

$$\mathsf{dh}_{\mathcal{R}}(\mathsf{s}^m(0) + \mathsf{s}^n(0)) = m + 1$$

$$t_{i} = \underbrace{s(0) + \dots + s(0)}_{i+1} \qquad t_{i} = \begin{cases} s(0) & \text{if } i = 0\\ t_{i-1} + s(0) & \text{if } i > 0 \end{cases} \quad dc_{\mathcal{R}}(k) \in \Theta(k^{2})$$
$$|t_{i}| = 3i + 2 \qquad dh_{\mathcal{R}}(t_{i}) = \begin{cases} 0 & \text{if } i = 0\\ dh_{\mathcal{R}}(t_{i-1}) + i + 1 & \text{if } i > 0 \end{cases}$$

1 TRS \mathcal{R} $a(a(x)) \rightarrow a(b(a(x)))$

 $a^n = aaa \cdots a$

1 TRS \mathcal{R} aa \rightarrow aba

 $a^n = aaa \cdots a \rightarrow abaa \cdots a$

1 TRS \mathcal{R} aa \rightarrow aba

$$a^n = aaa \cdots a \rightarrow abaa \cdots a \xrightarrow{n-1} ab \cdots abaa$$

Examples **1** TRS \mathcal{R} aa \rightarrow aba $\operatorname{dc}_{\mathcal{R}}(k) \in \Omega(k)$ $a^n = aaa \cdots a \rightarrow abaa \cdots a \xrightarrow{n-1} ab \cdots aba$

1	TRS \mathcal{R}	$aa \to aba$	$dc_\mathcal{R}(k)\in \Theta(k)$		
$a^n = aaa \cdots a \rightarrow abaa \cdots a \xrightarrow{n-1} ab \cdots aba$					
2	TRS ${\cal R}$	$ab\toba$	$dc_\mathcal{R}(k)\in\Theta(k^2)$		
$a^nb^n\xrightarrow{n}ba^nb^{n-1}\xrightarrow{*}b^na^n$					
3	TRS ${\cal R}$	$ab \to bba$			

1	TRS \mathcal{R}	$aa \to aba$	$dc_\mathcal{R}(k)\in \Theta(k)$
		a ⁿ = aaa	\cdots a \rightarrow abaa \cdots a $\xrightarrow{n-1}$ ab \cdots aba
2	TRS ${\cal R}$	$ab \to ba$	$dc_\mathcal{R}(k)\in \Theta(k^2)$
		ā	$a^{n}b^{n} \xrightarrow{n} ba^{n}b^{n-1} \xrightarrow{*} b^{n}a^{n}$
3	TRS ${\cal R}$	$ab \to bba$	$dc_\mathcal{R}(k)\in \Theta(c^k)$ for some $c>1$

Inferring Complexity Bounds

how to (automatically) establish

• upper bounds on derivational complexity of TRSs ?

Inferring Complexity Bounds

how to (automatically) establish

- upper bounds on derivational complexity of TRSs ?
- polynomial (i.e., feasible) derivational complexity of TRSs ?

Inferring Complexity Bounds

how to (automatically) establish

- upper bounds on derivational complexity of TRSs ?
- polynomial (i.e., feasible) derivational complexity of TRSs ?

Hofbauer and Lautemann 1989

adapt termination techniques

proving termination with one of these specific techniques in general proves more than just the absence of infinite derivations. It turns out that in many cases such a proof implies an upper bound on the maximal length of derivations

Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
- Automata-Based Methods
- Concluding Remarks

derivational complexity 1975

1967 Knuth-Bendix order

1975 polynomial interpretations

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order
- 1982 multiset path order

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order
- 1982 multiset path order
- 1983 recursive path order

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order
- 1982 multiset path order
- 1983 recursive path order

derivational complexity 1989

1989 Hofbauer and Lautemann

Theorem (Hofbauer and Lautemann 1989)

interpretation in $\mathbb N$ $% (\mathbb R^{n})$ bound on derivational complexity

polynomial double exponential

Example

rewrite system

$$\begin{array}{ccc} x+0 \rightarrow x & \mathsf{d}(0) \rightarrow 0 & \mathsf{q}(0) \rightarrow 0 \\ x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) & \mathsf{d}(\mathsf{s}(x)) \rightarrow \mathsf{s}(\mathsf{s}(\mathsf{d}(x))) & \mathsf{q}(\mathsf{s}(x)) \rightarrow \mathsf{q}(x) + \mathsf{s}(\mathsf{d}(x)) \end{array}$$

Theorem (Hofbauer and Lautemann 1989)

interpretation in $\mathbb N$ $% (\mathbb R^{n})$ bound on derivational complexity

polynomial double exponential

Example

rewrite system

$$\begin{array}{ll} x+0 \rightarrow x & \mathsf{d}(0) \rightarrow 0 & \mathsf{q}(0) \rightarrow 0 \\ x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) & \mathsf{d}(\mathsf{s}(x)) \rightarrow \mathsf{s}(\mathsf{s}(\mathsf{d}(x))) & \mathsf{q}(\mathsf{s}(x)) \rightarrow \mathsf{q}(x) + \mathsf{s}(\mathsf{d}(x)) \end{array}$$

interpretations

$$0_{\mathbb{N}}=2$$
 $s_{\mathbb{N}}(x)=x+1$ $+_{\mathbb{N}}(x,y)=x+2y$ $d_{\mathbb{N}}(x)=3x$ $q_{\mathbb{N}}(x)=x^{3}$

Theorem (Hofbauer and Lautemann 1989)

interpretation in $\mathbb N$ $% (\mathbb R^{n})$ bound on derivational complexity

polynomial double exponential

Example

rewrite system

$$\begin{array}{ll} x+0 \rightarrow x & \mathsf{d}(0) \rightarrow 0 & \mathsf{q}(0) \rightarrow 0 \\ x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) & \mathsf{d}(\mathsf{s}(x)) \rightarrow \mathsf{s}(\mathsf{s}(\mathsf{d}(x))) & \mathsf{q}(\mathsf{s}(x)) \rightarrow \mathsf{q}(x) + \mathsf{s}(\mathsf{d}(x)) \end{array}$$

interpretations

$$\begin{array}{ll} 0_{\mathbb{N}} = 2 & s_{\mathbb{N}}(x) = x + 1 & +_{\mathbb{N}}(x, y) = x + 2y & d_{\mathbb{N}}(x) = 3x & q_{\mathbb{N}}(x) = x^{3} \\ q(s^{n}(0)) \to^{*} s^{n^{2}}(0) \end{array}$$
interpretation in $\mathbb N$ $% (\mathbb R^{n})$ bound on derivational complexity

polynomial double exponential

Example

rewrite system

$$\begin{array}{ccc} x+0 \rightarrow x & \mathsf{d}(0) \rightarrow 0 & \mathsf{q}(0) \rightarrow 0 \\ x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) & \mathsf{d}(\mathsf{s}(x)) \rightarrow \mathsf{s}(\mathsf{s}(\mathsf{d}(x))) & \mathsf{q}(\mathsf{s}(x)) \rightarrow \mathsf{q}(x) + \mathsf{s}(\mathsf{d}(x)) \end{array}$$

$$\begin{array}{ll} 0_{\mathbb{N}}=2 & s_{\mathbb{N}}(x)=x+1 & +_{\mathbb{N}}(x,y)=x+2y & d_{\mathbb{N}}(x)=3x & q_{\mathbb{N}}(x)=x^{3}\\ q(s^{n}(0)) \to^{*} s^{n^{2}}(0) & \Longrightarrow & q^{m+1}(s^{2}(0)) \to^{*} q(s^{2^{2^{m}}}(0)) \end{array}$$

interpretation in $\mathbb N$ $% (\mathbb R^{n})$ bound on derivational complexity

polynomial double exponential

Example

rewrite system

$$\begin{array}{ccc} x+0 \rightarrow x & \mathsf{d}(0) \rightarrow 0 & \mathsf{q}(0) \rightarrow 0 \\ x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) & \mathsf{d}(\mathsf{s}(x)) \rightarrow \mathsf{s}(\mathsf{s}(\mathsf{d}(x))) & \mathsf{q}(\mathsf{s}(x)) \rightarrow \mathsf{q}(x) + \mathsf{s}(\mathsf{d}(x)) \end{array}$$

$$\begin{array}{ll} 0_{\mathbb{N}}=2 \quad s_{\mathbb{N}}(x)=x+1 \quad +_{\mathbb{N}}(x,y)=x+2y \quad d_{\mathbb{N}}(x)=3x \quad q_{\mathbb{N}}(x)=x^{3}\\ q(s^{n}(0)) \rightarrow^{*} s^{n^{2}}(0) \implies \qquad q^{m+1}(s^{2}(0)) \rightarrow^{*} q(s^{2^{2^{m}}}(0)) \xrightarrow{\geqslant 2^{2^{m}}} s^{2^{2^{m+1}}}(0) \end{array}$$

i	interpretation in ${\mathbb N}$	bound on derivational complexity
	polynomial	double exponential
$a_1x_1+\cdots+a_nx_n+b_n$	o linear	exponential

Example

rewrite system

$$\begin{array}{ccc} x+0 \rightarrow x & \mathsf{d}(0) \rightarrow 0 & \mathsf{q}(0) \rightarrow 0 \\ x+\mathsf{s}(y) \rightarrow \mathsf{s}(x+y) & \mathsf{d}(\mathsf{s}(x)) \rightarrow \mathsf{s}(\mathsf{s}(\mathsf{d}(x))) & \mathsf{q}(\mathsf{s}(x)) \rightarrow \mathsf{q}(x) + \mathsf{s}(\mathsf{d}(x)) \end{array}$$

$$\begin{array}{ll} 0_{\mathbb{N}}=2 \quad s_{\mathbb{N}}(x)=x+1 \quad +_{\mathbb{N}}(x,y)=x+2y \quad d_{\mathbb{N}}(x)=3x \quad q_{\mathbb{N}}(x)=x^{3}\\ q(s^{n}(0)) \rightarrow^{*} s^{n^{2}}(0) \implies \qquad q^{m+1}(s^{2}(0)) \rightarrow^{*} q(s^{2^{2^{m}}}(0)) \xrightarrow{\geq 2^{2^{m}}} s^{2^{2^{m+1}}}(0) \end{array}$$

	interpretation in $\ensuremath{\mathbb{N}}$	bound on derivational complexity
	polynomial	double exponential
$a_1x_1+\cdots+a_nx_n+$	b linear	exponential
$x_1 + \cdots + x_n +$	b strongly linear	linear

Example

rewrite system

$$\begin{array}{ccc} x+0 \rightarrow x & d(0) \rightarrow 0 & q(0) \rightarrow 0 \\ x+s(y) \rightarrow s(x+y) & d(s(x)) \rightarrow s(s(d(x))) & q(s(x)) \rightarrow q(x)+s(d(x)) \end{array}$$

$$\begin{array}{ll} 0_{\mathbb{N}}=2 \quad s_{\mathbb{N}}(x)=x+1 \quad +_{\mathbb{N}}(x,y)=x+2y \quad d_{\mathbb{N}}(x)=3x \quad q_{\mathbb{N}}(x)=x^{3}\\ q(s^{n}(0)) \rightarrow^{*} s^{n^{2}}(0) \implies \qquad q^{m+1}(s^{2}(0)) \rightarrow^{*} q(s^{2^{2^{m}}}(0)) \xrightarrow{\geq 2^{2^{m}}} s^{2^{2^{m+1}}}(0) \end{array}$$

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order
- 1982 multiset path order
- 1983 recursive path order
- 1990 transformation order

derivational complexity 1990

1989 Hofbauer and Lautemann

1990 Hofbauer

Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound on derivational complexity

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order
- 1982 multiset path order
- 1983 recursive path order
- 1990 transformation order
- 1992 elementary interpretations type introduction

derivational complexity 1992

1989 Hofbauer and Lautemann

1990 Hofbauer

- 1967 Knuth-Bendix order
- 1975 polynomial interpretations
- 1979 simple path order
- 1980 lexicographic path order semantic path order
- 1981 recursive decomposition order
- 1982 multiset path order
- 1983 recursive path order
- 1990 transformation order
- 1992 elementary interpretations type introduction
- 1995 general path order semantic labeling dummy elimination

derivational complexity 1995

1989 Hofbauer and Lautemann

1995 Weiermann

1990 Hofbauer

Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound on derivational complexity

Theorem (Weiermann 1995)

termination proof by lexicographic path order implies multiple recursive upper bound on derivational complexity

Termination and Complexity Research

derivational complexity 1997

1997 dependency pairs

termination

derivational complexity 2000

1997 dependency pairs

2000 monotonic semantic path order

	termination		derivational complexity	2001
1967	Knuth-Bendix order	2001	Lepper	
1975	polynomial interpretations	1989	Hofbauer and Lautemann	
1979	simple path order			
1980	lexicographic path order semantic path order	1995	Weiermann	
1981	recursive decomposition order			
1982	multiset path order	1990	Hofbauer	
1983	recursive path order			
1990	transformation order			
1992	elementary interpretations type introduction			
1995	general path order semantic labeling dummy elimination			

Theorem (Hofbauer 1990)

termination proof by multiset path order implies primitive recursive upper bound on derivational complexity

Theorem (Weiermann 1995)

termination proof by lexicographic path order implies multiple recursive upper bound on derivational complexity

Theorem (Lepper 2001)

termination proof by Knuth-Bendix order implies multiple recursive upper bound on derivational complexity

derivational complexity 2003

- 1997 dependency pairs
- 2000 monotonic semantic path order
- 2001 context-dependent interpretations 2001
- 2003 match-bounds size-change principle

derivational complexity 2003

- 1997 dependency pairs
- 2000 monotonic semantic path order
- 2001 context-dependent interpretations 2001
- 2003 match-bounds size-change principle
- 2003 termination competition

Termination Research

Complexity Research

Termination Tools

CiME, $T_{T}T_{2},$ AProVE, Termptation, Cariboo, Torpa, TPA, Matchbox, Jambox, MuTerm, NTI, \ldots

derivational complexity 2004

- 1997 dependency pairs
- 2000 monotonic semantic path order
- 2001 context-dependent interpretations 2001
- 2003 match-bounds size-change principle
- 2003 termination competition

2004

derivational complexity 2006

- 1997 dependency pairs
- 2000 monotonic semantic path order
- 2001 context-dependent interpretations 2001
- 2003 match-bounds 2004 size-change principle
- 2003 termination competition
- 2006 matrix interpretations predictive labeling uncurrying

derivational complexity 2007

- 1997 dependency pairs
- 2000 monotonic semantic path order
- 2001 context-dependent interpretations 2001
- 2003 match-bounds 2004 size-change principle
- 2003 termination competition
- 2006 matrix interpretations predictive labeling uncurrying
- 2007 bounded increase quasi-periodic interpretations

Termination and Complexity Research

Termination Tools

CiME, T_TT₂, AProVE, Matchbox, Jambox, MuTerm, ...

Complexity Tools

T_CT, Matchbox, GT

- 1997 dependency pairs
- 2000 monotonic semantic path order
- 2001 context-dependent interpretations 2001
- 2003 match-bounds 2004 size-change principle
- 2003 termination competition
- 2006 matrix interpretations predictive labeling uncurrying
- 2007 bounded increase quasi-periodic interpretations
- 2008 arctic interpretations root-labeling

2008 complexity competition

2008

	termination		derivational complexity	2009
1997	dependency pairs	2009		
2000	monotonic semantic path order			
2001	context-dependent interpretations	2001		
2003	match-bounds size-change principle	2004		
2003	termination competition			
2006	matrix interpretations predictive labeling uncurrying	2008		
2007	bounded increase quasi-periodic interpretations			
2008	arctic interpretations root-labeling	2008	complexity competition	

	termination		derivational complexity	2010
1997	dependency pairs	2009		
2000	monotonic semantic path order			
2001	context-dependent interpretations	2001		
2003	match-bounds size-change principle	2004		
2003	termination competition			
2006	matrix interpretations predictive labeling uncurrying	2008,	2010	
2007	bounded increase quasi-periodic interpretations			
2008	arctic interpretations root-labeling	2008	complexity competition	

	•	
torm	ina	tion
LCIII		LIUII

1997	dependency pairs	2009, <mark>2011</mark>
2000	monotonic semantic path order	
2001	context-dependent interpretations	2001, 2008
2003	match-bounds size-change principle	2004
2003	termination competition	
2006	matrix interpretations predictive labeling uncurrying	2008, 2010, 2011
2007	bounded increase quasi-periodic interpretations	
2008	arctic interpretations root-labeling	2008 complexity competition

	termination		derivational complexity	2012
1997	dependency pairs	2009,	2011	
2000	monotonic semantic path order			
2001	context-dependent interpretations	2001,	2008	
2003	match-bounds size-change principle	2004		
2003	termination competition			
2006	matrix interpretations predictive labeling uncurrying	2008,	2010, 2011	
2007	bounded increase quasi-periodic interpretations			
2008	arctic interpretations root-labeling	2008	complexity competition	
2012	binomial interpretations ordinal interpretations			

	termination		derivational complexity	2012
1997	dependency pairs	2009,	2011	
2000	monotonic semantic path order			
2001	context-dependent interpretations	2001,	2008	
2003	match-bounds size-change principle	2004		
2003	termination competition			
2006	matrix interpretations predictive labeling uncurrying	2008,	2010, 2011	
2007	bounded increase quasi-periodic interpretations			
2008	arctic interpretations root-labeling	2008	complexity competition	
2012	binomial interpretations ordinal interpretations			

Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
- Automata-Based Methods
- Concluding Remarks

algebra ${\cal M}$ with well-founded order >

• carrier of \mathcal{M} is \mathbb{N}^d with d > 0

algebra ${\cal M}$ with well-founded order >

• carrier of \mathcal{M} is \mathbb{N}^d with d>0

•
$$(x_1,\ldots,x_d)^{\mathsf{T}} > (y_1,\ldots,y_d)^{\mathsf{T}} \iff x_1 > y_1 \land \bigwedge_{i=2}^d x_i \ge y_i$$

algebra ${\cal M}$ with well-founded order >

• carrier of \mathcal{M} is \mathbb{N}^d with d > 0

•
$$(x_1,\ldots,x_d)^{\mathsf{T}} > (y_1,\ldots,y_d)^{\mathsf{T}} \iff x_1 > y_1 \land \bigwedge_{i=2}^d x_i \ge y_i$$

• interpretations (for every *n*-ary *f*)

$$f_{\mathcal{M}}(\vec{x}_1,\ldots,\vec{x}_n) = F_1 \vec{x}_1 + \cdots + F_n \vec{x}_n + f$$

with

• matrices $F_1, \ldots, F_n \in \mathbb{N}^{d \times d}$ with $(F_i)_{1,1} \ge 1$ for all $1 \le i \le n$

algebra ${\cal M}$ with well-founded order >

• carrier of \mathcal{M} is \mathbb{N}^d with d>0

•
$$(x_1,\ldots,x_d)^{\mathsf{T}} > (y_1,\ldots,y_d)^{\mathsf{T}} \iff x_1 > y_1 \land \bigwedge_{i=2}^d x_i \ge y_i$$

• interpretations (for every *n*-ary *f*)

$$f_{\mathcal{M}}(\vec{x}_1,\ldots,\vec{x}_n)=F_1\,\vec{x}_1+\cdots+F_n\,\vec{x}_n+f$$

with

- matrices $F_1, \ldots, F_n \in \mathbb{N}^{d \times d}$ with $(F_i)_{1,1} \ge 1$ for all $1 \le i \le n$
- vector $\mathbf{f} \in \mathbb{N}^d$

algebra ${\cal M}$ with well-founded order >

• carrier of \mathcal{M} is \mathbb{N}^d with d > 0

•
$$(x_1,\ldots,x_d)^{\mathsf{T}} > (y_1,\ldots,y_d)^{\mathsf{T}} \iff x_1 > y_1 \land \bigwedge_{i=2}^d x_i \ge y_i$$

• interpretations (for every *n*-ary *f*)

$$f_{\mathcal{M}}(\vec{x}_1,\ldots,\vec{x}_n)=F_1\,\vec{x}_1+\cdots+F_n\,\vec{x}_n+f$$

with

• matrices
$$F_1,\ldots,F_n\in\mathbb{N}^{d imes d}$$
 with $(F_i)_{1,1}\geqslant 1$ for all $1\leqslant i\leqslant n$

• vector $f \in \mathbb{N}^d$

Lemma

 $(\mathcal{M},>)$ is well-founded monotone algebra

Theorem

termination proof by matrix interpretation implies exponential upper bound on derivational complexity

Example	
rewrite rule	
	ab o bba
)

Theorem

termination proof by matrix interpretation implies *exponential* upper bound on derivational complexity

Example

rewrite rule

 $\mathsf{ab} \to \mathsf{bba}$

matrix interpretation (linear polynomial interpretation)

$$\mathsf{a}_{\mathcal{M}}(x) = 3x$$
 $\mathsf{b}_{\mathcal{M}}(x) = x + 1$

Theorem

termination proof by matrix interpretation implies *exponential* upper bound on derivational complexity

Example

rewrite rule

 $\mathsf{ab} \to \mathsf{bba}$

matrix interpretation (linear polynomial interpretation)

$$a_{\mathcal{M}}(x) = 3x$$
 $b_{\mathcal{M}}(x) = x + 1$

derivational complexity is exponential

$$\mathsf{a}^2\mathsf{b} \ \to^3 \ \mathsf{b}^4\mathsf{a}^2 \qquad \mathsf{a}^3\mathsf{b} \ \to^7 \ \mathsf{b}^8\mathsf{a}^3 \qquad \mathsf{a}^4\mathsf{b} \ \to^{15} \ \mathsf{b}^{16}\mathsf{a}^4$$

. . .
Theorem

termination proof by matrix interpretation implies exponential upper bound on derivational complexity

Example

rewrite rule

 $\mathsf{ab} \to \mathsf{bba}$

matrix interpretation (linear polynomial interpretation)

$$\mathsf{a}_\mathcal{M}(x) = 3x$$
 $\mathsf{b}_\mathcal{M}(x) = x + 1$

derivational complexity is exponential

$$\mathsf{a}^2\mathsf{b} \ \rightarrow^3 \ \mathsf{b}^4\mathsf{a}^2 \qquad \mathsf{a}^3\mathsf{b} \ \rightarrow^7 \ \mathsf{b}^8\mathsf{a}^3 \qquad \mathsf{a}^4\mathsf{b} \ \rightarrow^{15} \ \mathsf{b}^{16}\mathsf{a}^4$$

Aim

restrict matrix interpretations to obtain polynomial derivational complexity

AM

Matrix Interpretations for Polynomial Derivational Complexity of Rewrite Systems

. . .

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

allow only special upper triangular matrices in interpretations

Definitions

 upper triangular matrix is square matrix M such that M_{ii} = 0 for all i > j

allow only special upper triangular matrices in interpretations

Definitions

- upper triangular matrix is square matrix M such that M_{ij} = 0 for all i > j
- upper triangular complexity matrix additionally satisfies $M_{ii} \leq 1$ for all *i*

allow only special upper triangular matrices in interpretations

Definitions

- upper triangular matrix is square matrix M such that M_{ij} = 0 for all i > j
- upper triangular complexity matrix additionally satisfies $M_{ii} \leq 1$ for all *i*

allow only special upper triangular matrices in interpretations

Definitions

- upper triangular matrix is square matrix M such that M_{ij} = 0 for all i > j
- upper triangular complexity matrix additionally satisfies $M_{ii} \leqslant 1$ for all i

(1)	*		*)
0	$\leqslant 1$		*
:	:	۰.	:
0	0		≤1 /

• triangular matrix interpretation is matrix interpretation using only upper triangular complexity matrices

allow only special upper triangular matrices in interpretations

Definitions

- upper triangular matrix is square matrix M such that M_{ij} = 0 for all i > j
- upper triangular complexity matrix additionally satisfies $M_{ii} \leq 1$ for all i

(1)	*		*)
0	≤1		*
÷	÷	۰.	÷
0/	0		≤ 1 /

• triangular matrix interpretation is matrix interpretation using only upper triangular complexity matrices

Theorem (Moser, Schnabl, Waldmann 2008)

if $\mathcal R$ has compatible triangular matrix interpretation of dimension d then ${
m dc}_{\mathcal R}(k)\in \mathcal O(k^d)$

rewrite system ${\mathcal R}$

 $\begin{array}{l} \mathsf{aba} \to \mathsf{abba} \\ \mathsf{bbb} \to \mathsf{bb} \end{array}$

compatible triangular matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

rewrite system ${\mathcal R}$

 $\begin{array}{l} \mathsf{aba} \to \mathsf{abba} \\ \mathsf{bbb} \to \mathsf{bb} \end{array}$

compatible triangular matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

• $\operatorname{dc}_{\mathcal{R}}(k) \in \mathcal{O}(k^3)$

rewrite system \mathcal{R}

 $aba \rightarrow abba$ $bbb \rightarrow bb$

compatible triangular matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

• $\mathsf{dc}_{\mathcal{R}}(k) \in \mathcal{O}(k^3)$ but $\mathsf{dc}_{\mathcal{R}}(k)$ is linear

rewrite system \mathcal{R}

 $aba \rightarrow abba$ $bbb \rightarrow bb$

compatible triangular matrix interpretation $\ensuremath{\mathcal{M}}$

$$\mathsf{a}_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad \mathsf{b}_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

• $\mathsf{dc}_{\mathcal{R}}(k) \in \mathcal{O}(k^3)$ but $\mathsf{dc}_{\mathcal{R}}(k)$ is linear

no compatible triangular matrix interpretation of dimension 1 or 2 exists

restrict matrix interpretations to obtain polynomial derivational complexity

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Extensions 1 using weighted automata techniques (Waldmann 2010) 2 using linear algebra techniques (Neurauter, Zankl, Middeldorp 2010)

restrict matrix interpretations to obtain polynomial derivational complexity

Original Approach (Moser, Schnabl, Waldmann 2008)

allow only special upper triangular matrices in interpretations

Extensions 1 using weighted automata techniques (Waldmann 2010) 2 using linear algebra techniques (Neurauter, Zankl, Middeldorp 2010) 3 joint spectral radius theory to unify and strengthen earlier extensions (Middeldorp, Moser, Neurauter, Waldmann, Zankl 2011)

TRS

 $\mathsf{aa} \to \mathsf{aba}$

TRS

$$aa \rightarrow aba$$

compatible matrix interpretation

$$\mathsf{a}_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad \mathsf{b}_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

TRS

$$aa \rightarrow aba$$

compatible matrix interpretation

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

derivation

 $aaaa(x) \rightarrow abaaa(x) \rightarrow ababaa(x) \rightarrow abababa(x)$

TRS

$$aa \rightarrow aba$$

compatible matrix interpretation

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

derivation

$$\begin{array}{l} \mathsf{aaaa}(x) \to \mathsf{abaaa}(x) \to \mathsf{ababaa}(x) \to \mathsf{abababa}(x) \\ \begin{pmatrix} 4 \\ 4 \end{pmatrix} > \begin{pmatrix} 2 \\ 3 \end{pmatrix} > \begin{pmatrix} 1 \\ 2 \end{pmatrix} > \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \mathsf{variable assignment } \alpha_0(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{array}$$

with

TRS

$$aa \rightarrow aba$$

compatible matrix interpretation

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

derivation

$$\begin{array}{rcl} \operatorname{aaaa}(x) \to \operatorname{abaaa}(x) \to \operatorname{ababaa}(x) \to \operatorname{abababa}(x) \\ \begin{pmatrix} 4 \\ 4 \end{pmatrix} & > & \begin{pmatrix} 2 \\ 3 \end{pmatrix} & > & \begin{pmatrix} 1 \\ 2 \end{pmatrix} & > & \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{array}$$
with variable assignment $\alpha_0(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

TRS

$$aa \rightarrow aba$$

compatible matrix interpretation

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

derivation

$$\begin{array}{l} \mathsf{aaaa}(x) \to \mathsf{abaaa}(x) \to \mathsf{ababaa}(x) \to \mathsf{abababa}(x) \\ \begin{pmatrix} 4 \\ 4 \end{pmatrix} & > & \begin{pmatrix} 2 \\ 3 \end{pmatrix} & > & \begin{pmatrix} 1 \\ 2 \end{pmatrix} & > & \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{array}$$
with variable assignment $\alpha_0(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

given TRS $\mathcal R$ and compatible matrix interpretation $\mathcal M$ over $\mathbb N$

every derivation

$$t
ightarrow t_1
ightarrow t_2
ightarrow t_3
ightarrow t_4
ightarrow \cdots$$

maps to decreasing sequence of vectors of natural numbers

$$[t] > [t_1] > [t_2] > [t_3] > [t_4] > \cdots$$

where $[t] = [lpha_0]_{\mathcal{M}}(t)$

given TRS $\mathcal R$ and compatible matrix interpretation $\mathcal M$ over $\mathbb N$

every derivation

$$t
ightarrow t_1
ightarrow t_2
ightarrow t_3
ightarrow t_4
ightarrow \cdots$$

maps to decreasing sequence of natural numbers

```
[t]_1 > [t_1]_1 > [t_2]_1 > [t_3]_1 > [t_4]_1 > \cdots
```

where $[t] = [\alpha_0]_{\mathcal{M}}(t)$

given TRS $\mathcal R$ and compatible matrix interpretation $\mathcal M$ over $\mathbb N$

every derivation

$$t
ightarrow t_1
ightarrow t_2
ightarrow t_3
ightarrow t_4
ightarrow \cdots$$

maps to decreasing sequence of natural numbers

```
[t]_1 > [t_1]_1 > [t_2]_1 > [t_3]_1 > [t_4]_1 > \cdots
```

```
where [t] = [\alpha_0]_{\mathcal{M}}(t)
```

• $\mathsf{dh}_{\mathcal{R}}(t) \leqslant [t]_1$

given TRS $\mathcal R$ and compatible matrix interpretation $\mathcal M$ over $\mathbb N$

every derivation

$$t
ightarrow t_1
ightarrow t_2
ightarrow t_3
ightarrow t_4
ightarrow \cdots$$

maps to decreasing sequence of natural numbers

```
[t]_1 > [t_1]_1 > [t_2]_1 > [t_3]_1 > [t_4]_1 > \cdots
```

```
where [t] = [\alpha_0]_{\mathcal{M}}(t)
```

• $\mathsf{dh}_{\mathcal{R}}(t) \leqslant [t]_1$

Definition

growth function of matrix interpretation $\ensuremath{\mathcal{M}}$

$$\operatorname{\mathsf{growth}}_{\mathcal{M}}(k) = \max\{ [t]_1 \mid |t| \leqslant k \}$$

given TRS $\mathcal R$ and compatible matrix interpretation $\mathcal M$ over $\mathbb N$

every derivation

$$t
ightarrow t_1
ightarrow t_2
ightarrow t_3
ightarrow t_4
ightarrow \cdots$$

maps to decreasing sequence of natural numbers

```
[t]_1 > [t_1]_1 > [t_2]_1 > [t_3]_1 > [t_4]_1 > \cdots
```

where $[t] = [\alpha_0]_{\mathcal{M}}(t)$

• $\mathsf{dh}_{\mathcal{R}}(t) \leqslant [t]_1 \implies \mathsf{dc}_{\mathcal{R}}(k) \leqslant \mathsf{growth}_{\mathcal{M}}(k)$

Definition

growth function of matrix interpretation $\ensuremath{\mathcal{M}}$

$$\mathsf{growth}_\mathcal{M}(k) = \max\left\{ \, [t]_1 \mid |t| \leqslant k \,
ight\}$$

term t = f(g(a, b), c)

term t = f(g(a, b), c)

matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}} = a \qquad b_{\mathcal{M}} = b \qquad c_{\mathcal{M}} = c$$
$$f_{\mathcal{M}}(\vec{x}, \vec{y}) = F_1 \vec{x} + F_2 \vec{y} + f$$
$$g_{\mathcal{M}}(\vec{x}, \vec{y}) = G_1 \vec{x} + G_2 \vec{y} + g$$

term t = f(g(a, b), c)

matrix interpretation ${\cal M}$

$$a_{\mathcal{M}} = a \qquad b_{\mathcal{M}} = b \qquad c_{\mathcal{M}} = c$$
$$f_{\mathcal{M}}(\vec{x}, \vec{y}) = F_1 \vec{x} + F_2 \vec{y} + f$$
$$g_{\mathcal{M}}(\vec{x}, \vec{y}) = G_1 \vec{x} + G_2 \vec{y} + g$$

interpretation of t

$$[t] = F_1 G_1 a + F_1 G_2 b + F_1 g + F_2 c + f$$

 F_1

G₁

 F_2

 G_2

h

term t = f(g(a, b), c)

matrix interpretation \mathcal{M}

$$a_{\mathcal{M}} = a \qquad b_{\mathcal{M}} = b \qquad c_{\mathcal{M}} = c$$
$$f_{\mathcal{M}}(\vec{x}, \vec{y}) = F_1 \vec{x} + F_2 \vec{y} + f$$
$$g_{\mathcal{M}}(\vec{x}, \vec{y}) = G_1 \vec{x} + G_2 \vec{y} + g$$

interpretation of t

$$[t] = F_1 G_1 a + F_1 G_2 b + F_1 g + F_2 c + f$$

 F_1

 G_1

 F_2

 G_2

h

term t = f(g(a, b), c)

matrix interpretation \mathcal{M}

$$a_{\mathcal{M}} = a \qquad b_{\mathcal{M}} = b \qquad c_{\mathcal{M}} = c$$
$$f_{\mathcal{M}}(\vec{x}, \vec{y}) = F_1 \vec{x} + F_2 \vec{y} + f$$
$$g_{\mathcal{M}}(\vec{x}, \vec{y}) = G_1 \vec{x} + G_2 \vec{y} + g$$

interpretation of t

$$[t] = F_1 G_1 a + F_1 G_2 b + F_1 g + F_2 c + f$$

Remark

term t of size at most k

- ... has at most k subterms
- ... each subterm corresponds to product of at most k matrices

 $S_{\mathcal{M}}$ is set of matrices occurring in matrix interpretation \mathcal{M} :

$$S_{\mathcal{M}} = \bigcup_{n-\operatorname{ary} f} \{ F_1, \dots, F_n \mid f_{\mathcal{M}}(\vec{x}_1, \dots, \vec{x}_n) = F_1 \vec{x}_1 + \dots + F_n \vec{x}_n + f \}$$

 $S_{\mathcal{M}}$ is set of matrices occurring in matrix interpretation \mathcal{M} :

$$S_{\mathcal{M}} = \bigcup_{n-\operatorname{ary} f} \{ F_1, \dots, F_n \mid f_{\mathcal{M}}(\vec{x}_1, \dots, \vec{x}_n) = F_1 \vec{x}_1 + \dots + F_n \vec{x}_n + f \}$$

Observation

if growth of entries of matrix products

$$A_1 \cdots A_k$$

with $A_1, \ldots, A_k \in S_M$ is bounded by a function f(k) then $[t]_1 \in \mathcal{O}(f(|t|) \cdot |t|)$

matrix interpretation \mathcal{M} is polynomially bounded (with degree d) if growth of entries of matrix products

$$A_1 \cdots A_k$$

with $A_1, \ldots, A_k \in S_M$ is polynomial (with degree d) in k

matrix interpretation \mathcal{M} is polynomially bounded (with degree d) if growth of entries of matrix products

$$A_1 \cdots A_k$$

with $A_1, \ldots, A_k \in S_M$ is polynomial (with degree d) in k, i.e.,

 $\max \{ M_{ij} \mid M \in S_{\mathcal{M}}^k \text{ and } 1 \leq i, j \leq n \} \in \mathcal{O}(k^d)$

matrix interpretation \mathcal{M} is polynomially bounded (with degree d) if growth of entries of matrix products

$$A_1 \cdots A_k$$

with $A_1, \ldots, A_k \in S_M$ is polynomial (with degree d) in k, i.e.,

 $\max \{ M_{ij} \mid M \in S^k_{\mathcal{M}} \text{ and } 1 \leq i, j \leq n \} \in \mathcal{O}(k^d)$

Corollary

if \mathcal{R} has compatible matrix interpretation \mathcal{M} that is polynomially bounded with degree d then growth_{\mathcal{M}}(k) $\in \mathcal{O}(k^{d+1})$

matrix interpretation \mathcal{M} is polynomially bounded (with degree d) if growth of entries of matrix products

$$A_1 \cdots A_k$$

with $A_1, \ldots, A_k \in S_M$ is polynomial (with degree d) in k, i.e.,

 $\max \{ M_{ij} \mid M \in S^k_{\mathcal{M}} \text{ and } 1 \leq i, j \leq n \} \in \mathcal{O}(k^d)$

Corollary

if \mathcal{R} has compatible matrix interpretation \mathcal{M} that is polynomially bounded with degree d then growth_{\mathcal{M}}(k) $\in \mathcal{O}(k^{d+1})$ and thus dc_{\mathcal{R}}(k) $\in \mathcal{O}(k^{d+1})$
Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
 - Spectral Radius
 - Joint Spectral Radius
- Automata-Based Methods
- Concluding Remarks

over-approximate growth of entries of matrix products

$$A_1\cdots A_k\in S^k_{\mathcal{M}}$$
 by M^k

where $M_{ij} = \max \{ A_{ij} \mid A \in S_M \}$

over-approximate growth of entries of matrix products

$$A_1\cdots A_k\in S^k_{\mathcal{M}}$$
 by M^k

where $M_{ij} = \max \{ A_{ij} \mid A \in S_M \}$

Definitions

square matrix $A \in \mathbb{R}^{n \times n}$ over ring \mathbb{R} (\mathbb{Z} , \mathbb{Q} , \mathbb{R})

• characteristic polynomial $\chi_A(\lambda)$ of A is det $(\lambda I_n - A)$

over-approximate growth of entries of matrix products

$$A_1\cdots A_k\in S^k_{\mathcal{M}}$$
 by M^k

where $M_{ij} = \max \{ A_{ij} \mid A \in S_M \}$

Definitions

square matrix $A \in \mathbb{R}^{n \times n}$ over ring \mathbb{R} (\mathbb{Z} , \mathbb{Q} , \mathbb{R})

- characteristic polynomial $\chi_A(\lambda)$ of A is det $(\lambda I_n A)$
- eigenvalue of A is solution of characteristic equation $\chi_A(\lambda) = 0$

over-approximate growth of entries of matrix products

$$A_1\cdots A_k\in S^k_{\mathcal{M}}$$
 by M^k

where $M_{ij} = \max \{ A_{ij} \mid A \in S_M \}$

Definitions

square matrix $A \in R^{n \times n}$ over ring R (\mathbb{Z} , \mathbb{Q} , \mathbb{R})

- characteristic polynomial $\chi_A(\lambda)$ of A is det $(\lambda I_n A)$
- eigenvalue of A is solution of characteristic equation $\chi_A(\lambda) = 0$
- spectral radius $\rho(A)$ of A is maximum of absolute values of its eigenvalues

over-approximate growth of entries of matrix products

$$A_1\cdots A_k\in S^k_{\mathcal{M}}$$
 by M^k

where $M_{ij} = \max \{ A_{ij} \mid A \in S_M \}$

Definitions

square matrix $A \in \mathbb{R}^{n \times n}$ over ring \mathbb{R} (\mathbb{Z} , \mathbb{Q} , \mathbb{R})

- characteristic polynomial $\chi_A(\lambda)$ of A is det $(\lambda I_n A)$
- eigenvalue of A is solution of characteristic equation $\chi_A(\lambda) = 0$
- spectral radius $\rho(A)$ of A is maximum of absolute values of its eigenvalues
- polynomial $p \in R[x]$ annihilates A if p(A) = 0

Theorem (Cayley-Hamilton)

characteristic polynomial χ_A annihilates A

Theorem (Cayley-Hamilton)

characteristic polynomial χ_A annihilates A

Example

matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

characteristic polynomial

$$\chi_A(\lambda) = \lambda^4 - 3\lambda^3 + 3\lambda^2 - \lambda$$

Theorem (Cayley-Hamilton)

characteristic polynomial χ_A annihilates A

Example

matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

characteristic polynomial

$$\chi_A(\lambda) = \lambda^4 - 3\lambda^3 + 3\lambda^2 - \lambda$$

annihilation

Definition

minimal polynomial $m_A(\lambda)$ of square matrix $A \in \mathbb{R}^{n \times n}$ is unique monic polynomial of minimum degree that annihilates A

Definition

minimal polynomial $m_A(\lambda)$ of square matrix $A \in \mathbb{R}^{n \times n}$ is unique monic polynomial of minimum degree that annihilates A

Example

matrix A

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

characteristic polynomial

$$\chi_A(\lambda) = \lambda^4 - 3\lambda^3 + 3\lambda^2 - \lambda$$

minimal polynomial

$$\mathsf{m}_{\mathcal{A}}(\lambda) = \lambda^3 - 2\lambda^2 + \lambda$$

Definition

minimal polynomial $m_A(\lambda)$ of square matrix $A \in \mathbb{R}^{n \times n}$ is unique monic polynomial of minimum degree that annihilates A

Example

matrix A

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

characteristic polynomial

$$\chi_A(\lambda) = \lambda^4 - 3\lambda^3 + 3\lambda^2 - \lambda = \lambda(\lambda - 1)^3$$

minimal polynomial

$$\mathsf{m}_{\mathcal{A}}(\lambda) = \lambda^3 - 2\lambda^2 + \lambda = \lambda(\lambda - 1)^2$$

given matrix $A \in \mathbb{R}_0^{n \times n}$

 $\rho(A) \leqslant 1 \quad \iff$

entries of A^k are asymptotically bounded by polynomial in k

given matrix $A \in \mathbb{R}_0^{n \times n}$ and monic polynomial $p \in \mathbb{R}[x]$ that annihilates A $\rho(A) \leq 1 \qquad \Longleftrightarrow$ entries of A^k are asymptotically bounded by polynomial in k of degree

 $\max_{\lambda} (0, \# p(\lambda) - 1)$

given matrix $A \in \mathbb{R}_0^{n \times n}$ and monic polynomial $p \in \mathbb{R}[x]$ that annihilates A $\rho(A) \leq 1 \qquad \Longleftrightarrow$ entries of A^k are asymptotically bounded by polynomial in k of degree

 $\max_{\lambda} (0, \#p(\lambda) - 1)$

• λ ranges over roots of p with absolute value exactly one

given matrix $A \in \mathbb{R}_0^{n \times n}$ and monic polynomial $p \in \mathbb{R}[x]$ that annihilates A $\rho(A) \leq 1 \qquad \Longleftrightarrow$ entries of A^k are asymptotically bounded by polynomial in k of degree

 $\max_{\lambda} \left(0, \# p(\lambda) - 1\right)$

- λ ranges over roots of p with absolute value exactly one
- $\#p(\lambda)$ denotes multiplicity of λ

given matrix $A \in \mathbb{R}_0^{n \times n}$ and monic polynomial $p \in \mathbb{R}[x]$ that annihilates A $\rho(A) \leq 1 \qquad \Longleftrightarrow$ entries of A^k are asymptotically bounded by polynomial in k of degree

 $\max_{\lambda} (0, \# p(\lambda) - 1)$

- λ ranges over roots of p with absolute value exactly one
- $\#p(\lambda)$ denotes multiplicity of λ

Corollary

if $\mathcal R$ has compatible matrix interpretation $\mathcal M$ such that $ho(\mathcal M)\leqslant 1$ then

$$\mathsf{dc}_\mathcal{R}(k)\in\mathcal{O}(k^{d+1})$$

where $d = \max_{\lambda}(0, \#m_M(\lambda) - 1)$

TRS

 $\mathsf{aa} \to \mathsf{aba}$

triangular matrix interpretation

$$\mathsf{a}_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad \mathsf{b}_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

component-wise maximum matrix

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad \qquad \rho(M) = 1$$

TRS

 $\mathsf{aa} \to \mathsf{aba}$

triangular matrix interpretation

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}$$

component-wise maximum matrix

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad \qquad \rho(M) = 1$$

 $\chi_M(\lambda) = \mathsf{m}_M(\lambda) = \lambda(\lambda - 1) \implies \mathsf{dc}_\mathcal{R}(k) \in \mathcal{O}(k)$

Theorem (Moser, Schnabl, Waldmann 2008)

if $\mathcal R$ has compatible triangular matrix interpretation of dimension n then ${
m dc}_{\mathcal R}(k)\in \mathcal O(k^n)$

Lemma

ho(M) = 1 for every upper triangular complexity matrix M

Theorem (Moser, Schnabl, Waldmann 2008)

if $\mathcal R$ has compatible triangular matrix interpretation of dimension n then ${
m dc}_{\mathcal R}(k)\in \mathcal O(k^n)$

Lemma

ho(M) = 1 for every upper triangular complexity matrix M

Corollary

if ${\mathcal R}$ has compatible triangular matrix interpretation ${\mathcal M}$ then

$$\mathsf{dc}_{\mathcal{R}}(k) \in \mathcal{O}(k^d)$$

where d is number of ones in diagonal of component-wise maximum matrix

TRS

$$\mathsf{aa} \to \mathsf{aba} \qquad \mathsf{bb} \to \epsilon$$

matrix interpretation

$$\mathsf{a}_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} ec{x} + egin{pmatrix} 0 \ 4 \ 0 \end{pmatrix} \quad \mathsf{b}_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} ec{x} + egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix}$$

component-wise maximum matrix

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \rho(M) = 1$$

TRS

$$\mathsf{aa} \to \mathsf{aba} \qquad \mathsf{bb} \to \epsilon$$

matrix interpretation

$$\mathsf{a}_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} ec{x} + egin{pmatrix} 0 \ 4 \ 0 \end{pmatrix} \quad \mathsf{b}_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} ec{x} + egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix}$$

component-wise maximum matrix

$$M = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} \qquad \qquad
ho(M) = 1$$

 $\chi_M(\lambda) = \mathsf{m}_M(\lambda) = (\lambda+1)(\lambda-1)^2 \implies \mathsf{dc}_\mathcal{R}(k) \in \mathcal{O}(k^2)$

TRS

$$\mathsf{aa} \to \mathsf{aba} \qquad \mathsf{bb} \to \epsilon$$

matrix interpretation

$$\mathsf{a}_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} ec{x} + egin{pmatrix} 0 \ 4 \ 0 \end{pmatrix} \quad \mathsf{b}_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} ec{x} + egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix}$$

component-wise maximum matrix

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad \rho(M) = 1$$

 $\chi_M(\lambda) = \mathsf{m}_M(\lambda) = (\lambda + 1)(\lambda - 1)^2 \implies \mathsf{dc}_\mathcal{R}(k) \in \mathcal{O}(k^2)$

no compatible triangular matrix interpretations

TRS \mathcal{R}

$$\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} c_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}$$

TRS \mathcal{R}

$$\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
$$c_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

TRS \mathcal{R}

$$\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
$$c_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \rho(M) = 2$$

derivational complexity is linear but

$$M^{k} = \begin{pmatrix} 1 & 2^{k-1} & 2^{k-1} - 1 \\ 0 & 2^{k-1} & 2^{k-1} \\ 0 & 2^{k-1} & 2^{k-1} \end{pmatrix}$$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to \epsilon$ $\mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$\mathsf{a}_{\mathcal{M}}(\vec{x}) = A \vec{x} + a$$
 $\mathsf{b}_{\mathcal{M}}(\vec{x}) = B \vec{x} + b$ $\mathsf{c}_{\mathcal{M}}(\vec{x}) = C \vec{x} + c$

TRS \mathcal{R}

 $aa \rightarrow aba$ $bb \rightarrow \epsilon$ $c \rightarrow \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

• compatible matrix interpretation \mathcal{M} of dimension n:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

• Aa > ABa + Ab

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

• compatible matrix interpretation \mathcal{M} of dimension n:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

• Aa > ABa

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to \epsilon$ $\mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

• compatible matrix interpretation \mathcal{M} of dimension n:

 $a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$ $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

• Aa > ABa and thus $B \not\ge I_n$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to \epsilon$ $\mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

• compatible matrix interpretation \mathcal{M} of dimension n:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

• Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i

TRS \mathcal{R}

 $aa \rightarrow aba$ $bb \rightarrow \epsilon$ $c \rightarrow \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \ge I_n$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to \epsilon$ $\mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j
 eq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$ and thus $M \ge \max(I_n, B)$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$ and thus $M \ge \max(I_n, B)$
- (MM)_{ii}

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$ and thus $M \ge \max(I_n, B)$

•
$$(MM)_{ii} = (M_{ii})^2 + \sum_{j \neq i} M_{ij} M_{ji}$$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$ and thus $M \ge \max(I_n, B)$
- $(MM)_{ii} = (M_{ii})^2 + \sum_{j \neq i} M_{ij} M_{ji} \ge 1 + \sum_{j \neq i} B_{ij} B_{ji}$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$ and thus $M \ge \max(I_n, B)$
- $(MM)_{ii} = (M_{ii})^2 + \sum_{j \neq i} M_{ij} M_{ji} \ge 1 + \sum_{j \neq i} B_{ij} B_{ji} > 1$

TRS \mathcal{R}

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to \epsilon$ $\mathsf{c} \to \epsilon$

no component-wise maximum matrix of compatible matrix interpretation is polynomially bounded:

$$a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$$
 $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

- Aa > ABa and thus $B \not\ge I_n$ and thus $B_{ii} < 1$ for some index i
- $BB \geqslant I_n$ and thus $(BB)_{ii} = \sum_j B_{ij}B_{ji} \geqslant 1$ and $\sum_{j \neq i} B_{ij}B_{ji} > 0$
- $C \ge I_n$ and thus $M \ge \max(I_n, B)$
- $(MM)_{ii} = (M_{ii})^2 + \sum_{j \neq i} M_{ij}M_{ji} \ge 1 + \sum_{j \neq i} B_{ij}B_{ji} > 1$ hence $(M^k)_{ii}$ grows exponentially

TRS \mathcal{R}

$$\mathsf{aa} \to \mathsf{aba} \qquad \qquad \mathsf{bb} \to \epsilon \qquad \qquad \mathsf{c} \to \epsilon$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
$$c_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} \qquad M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \rho(M) = 2$$

derivational complexity is linear: joint spectral radius

$$\rho\left(\left\{\begin{pmatrix}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}, \begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{pmatrix}, \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\right\}\right) = \mathbf{1}$$

Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
 - Spectral Radius
 - Joint Spectral Radius
- Automata-Based Methods
- Concluding Remarks

matrix norm is function $\|\cdot\| \colon \mathbb{R}^{n \times n} \to \mathbb{R}$ such that for all $A, B \in \mathbb{R}^{n \times n}$

$$||cA|| = |c| \cdot ||A|| \text{ for all } c \in \mathbb{R}$$

- **3** $||A + B|| \leq ||A|| + ||B||$
- $||AB|| \leq ||A|| \cdot ||B||$

matrix norm is function $\|\cdot\| \colon \mathbb{R}^{n \times n} \to \mathbb{R}$ such that for all $A, B \in \mathbb{R}^{n \times n}$

2
$$\|cA\| = |c| \cdot \|A\|$$
 for all $c \in \mathbb{R}$

3
$$||A + B|| \leq ||A|| + ||B||$$

$$4 \quad \|AB\| \leqslant \|A\| \cdot \|B\|$$

Example

 $\ell_1 \text{ norm } \| \cdot \|_1$

$$\|A\|_1 = \sum_{1 \leqslant i, j \leqslant n} |A_{ij}|$$

Definitions 1 -

finite set $S \subseteq \mathbb{R}^{n imes n}$ of real square matrices and matrix norm $\| \cdot \|$

• growth function

$$\mathsf{growth}_{\mathcal{S}}(k, \left\|\cdot\right\|) = \max\left\{ \left\| A_1 \cdots A_k \right\| \mid A_1, \ldots, A_k \in \mathcal{S}
ight\}$$

finite set $S \subseteq \mathbb{R}^{n imes n}$ of real square matrices and matrix norm $\|\cdot\|$

growth function

$$\mathsf{growth}_{\mathcal{S}}(k, \left\|\cdot\right\|) = \max\left\{\left\|A_{1}\cdots A_{k}\right\| \mid A_{1}, \ldots, A_{k} \in \mathcal{S}
ight\}$$

• joint spectral radius

$$\rho(S) = \lim_{k \to \infty} \max \left\{ \|A_1 \cdots A_k\|^{1/k} \mid A_1, \dots, A_k \in S \right\}$$

finite set $S \subseteq \mathbb{R}^{n imes n}$ of real square matrices and matrix norm $\|\cdot\|$

growth function

$$\mathsf{growth}_{\mathcal{S}}(k, \left\|\cdot\right\|) = \max\left\{ \left\| A_1 \cdots A_k \right\| \mid A_1, \ldots, A_k \in \mathcal{S}
ight\}$$

• joint spectral radius

$$\rho(S) = \lim_{k \to \infty} \max \left\{ \|A_1 \cdots A_k\|^{1/k} \mid A_1, \dots, A_k \in S \right\}$$

always exists and does not depend on chosen matrix norm $\left\|\cdot\right\|$

finite set $S \subseteq \mathbb{R}^{n \times n}$ of real square matrices and matrix norm $\|\cdot\|$

growth function

$$\mathsf{growth}_{S}(k) = \max \left\{ \left\| A_{1} \cdots A_{k} \right\| \mid A_{1}, \dots, A_{k} \in S \right\}$$

• joint spectral radius

$$\rho(S) = \lim_{k \to \infty} \max \left\{ \|A_1 \cdots A_k\|^{1/k} \mid A_1, \dots, A_k \in S \right\}$$

always exists and does not depend on chosen matrix norm $\|\cdot\|$

Lemma

if $S = \{A\}$ then

$$\rho(S) = \lim_{k \to \infty} \|A^k\|^{1/k} = \max\{ |\lambda| \mid \lambda \text{ is eigenvalue of } A \} = \rho(A)$$

problem

instance: finite set $S \subseteq \mathbb{R}^{n \times n}$ question: $\rho(S) \leq 1$?

is undecidable in general

problem

```
instance: finite set S \subseteq \mathbb{R}^{n \times n}
question: \rho(S) \leq 1?
```

is undecidable in general and decidable (in polynomial time) if $S \subseteq \mathbb{N}^{n \times n}$

problem

instance: finite set
$$S \subseteq \mathbb{R}^{n \times n}$$

question: $ho(S) \leqslant 1$?

is undecidable in general and decidable (in polynomial time) if $S \subseteq \mathbb{N}^{n \times n}$

Theorem (based on Jungers, Protasov, Blondel 2008)

if $\rho(S) \leqslant 1$ for finite set $S \subseteq \mathbb{N}^{n \times n}$ then

$$growth_{S}(k) \in \begin{cases} \Theta(k^{d}) & \text{if } d \ge 1\\ \mathcal{O}(k^{d}) & \text{if } d = 1 \end{cases}$$

where d is largest integer such that \exists d different pairs of indices $(i_1, j_1), \ldots, (i_d, j_d)$

- $\forall \ 1 \leqslant s \leqslant d$ $i_s \neq j_s$ and \exists product $A \in S^*$ such that $A_{i_s i_s}, A_{i_s j_s}, A_{j_s j_s} \geqslant 1$
- $\forall 1 \leq s < d \exists \text{ product } B \in S^* \text{ such that } B_{i_s, i_{s+1}} \ge 1$

$growth_{S}(k) \in \mathcal{O}(k^{d})$ for some $d \in \mathbb{N}$ if and only if $\rho(S) \leq 1$

$$growth_{\mathcal{S}}(k) \in \mathcal{O}(k^d)$$
 for some $d \in \mathbb{N}$ if and only if $\rho(\mathcal{S}) \leqslant 1$

Corollary

if ${\mathcal R}$ has compatible matrix interpretation ${\mathcal M}$ such that

 $\rho(S_{\mathcal{M}}) \leqslant 1$

then $dc_{\mathcal{R}}(k) \in \mathcal{O}(k^{d+1})$ where d is largest integer such that ...

$$growth_{\mathcal{S}}(k) \in \mathcal{O}(k^d)$$
 for some $d \in \mathbb{N}$ if and only if $\rho(\mathcal{S}) \leqslant 1$

Corollary

if ${\mathcal R}$ has compatible matrix interpretation ${\mathcal M}$ such that

 $\rho(S_{\mathcal{M}}) \leqslant 1$

then $dc_{\mathcal{R}}(k) \in \mathcal{O}(k^{d+1})$ where d is largest integer such that ...

Remark

degree d + 1 can be computed in polynomial time

Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
- Automata-Based Methods
- Concluding Remarks

matrix interpretation ${\cal M}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

weighted automaton \mathcal{A}

2

3

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

a: 1

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

2

weighted automaton ${\cal A}$

3

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

weighted automaton ${\cal A}$

3

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

matrix interpretation $\ensuremath{\mathcal{M}}$ of dimension 3

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

matrix interpretation $\,\mathcal{M}$ of dimension 3 $\,$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

matrix interpretation $\,\mathcal{M}$ of dimension 3 $\,$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} \qquad f_{\mathcal{M}}(\vec{x}, \vec{y}) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

weighted automaton is quintuple $\mathcal{A} = (Q, \Sigma, \lambda, \mu, \gamma)$ with

1	Q :	finite set of states
2	Σ:	finite alphabet
3	$\lambda \in \mathcal{Q}$	initial state
4	$\mu\colon \mathbf{\Sigma} \to \mathbb{N}^{ \mathbf{Q} \times \mathbf{Q} }$	transition matrix
5	$\gamma \subseteq \pmb{Q}$	final states

 $\mu(a)_{pq}$ denotes weight of transition $p \xrightarrow{a} q$

weighted automaton is quintuple $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$ with

1	Q :	finite set of states
2	Σ:	finite alphabet
3	$\lambda \in \mathcal{Q}$	initial state
4	$\mu\colon \mathbf{\Sigma} \to \mathbb{N}^{ \mathbf{Q} \times \mathbf{Q} }$	transition matrix
5	$\gamma\subseteq Q$	final states

 $\mu(a)_{pq}$ denotes weight of transition $p \xrightarrow{a} q$

Definition

weight of string $x \in \Sigma^*$

$$\operatorname{weight}_{\mathcal{A}}(x) = \sum_{q \in \gamma} \mu(x)_{\lambda q}$$

growth function of weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

$$\mathsf{growth}_\mathcal{A}(k) = \mathsf{max}\, \{\, \mathsf{weight}_\mathcal{A}(x) \mid x \in \Sigma^k \, \}$$

► skip

growth function of weighted automaton $\mathcal{A} = (Q, \Sigma, \lambda, \mu, \gamma)$

$$\mathsf{growth}_\mathcal{A}(k) = \mathsf{max}\, \{\, \mathsf{weight}_\mathcal{A}(x) \mid x \in \Sigma^k \, \}$$

Definition

given matrix interpretation \mathcal{M} of dimension n for signature \mathcal{F} define weighted automaton $\mathcal{A} = (Q, \Sigma, \lambda, \mu, \gamma)$ as follows:

- $Q = \{1, ..., n\}$
- $\Sigma = \{ f_i \mid f \in \mathcal{F} \text{ has arity } m \text{ and } 1 \leqslant i \leqslant m \}$
- λ = 1
- $\mu(f_i) = F_i$ where F_i denotes *i*-th matrix of f_M
- $\gamma = \{i \mid c_i > 0 \text{ for some vector } c \text{ in } \mathcal{M}\}$

skip
weighted automaton
$$\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$$

• state q is useful if \mathcal{A} contains path from initial to final state containing q

weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

- state q is useful if $\mathcal A$ contains path from initial to final state containing q
- A is trim if all states are useful

weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

- state q is useful if $\mathcal A$ contains path from initial to final state containing q
- \mathcal{A} is trim if all states are useful

Lemma

 \forall weighted automaton $A \exists$ trim automaton B such that growth_A(k) = growth_B(k)

weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

- state q is useful if $\mathcal A$ contains path from initial to final state containing q
- \mathcal{A} is trim if all states are useful

Lemma

 \forall weighted automaton $A \exists$ trim automaton B such that growth_A(k) = growth_B(k)

Example

weighted automaton ${\mathcal A}$ is not trim: state 2 is not useful

weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

- state q is useful if $\mathcal A$ contains path from initial to final state containing q
- \mathcal{A} is trim if all states are useful

Lemma

 \forall weighted automaton $A \exists$ trim automaton B such that growth_A(k) = growth_B(k)

Example

matrix interpretation ${\mathcal M}$ and corresponding weighted automaton ${\mathcal A}$

 $growth_{\mathcal{A}}(k)\in\mathcal{O}(k^d) \implies growth_{\mathcal{M}}(k)\in\mathcal{O}(k^{d+1})$

matrix interpretation ${\mathcal M}$ and corresponding weighted automaton ${\mathcal A}$

 $growth_{\mathcal{A}}(k)\in\mathcal{O}(k^d) \implies growth_{\mathcal{M}}(k)\in\mathcal{O}(k^{d+1})$

Definitions (based on Weber and Seidl 1991)

weighted automaton $\mathcal{A} = (Q, \Sigma, \lambda, \mu, \gamma)$

EDA $\exists q \in Q \ \exists x \in \Sigma^*$ such that q is useful and $\mu(x)_{qq} \ge 2$

matrix interpretation ${\mathcal M}$ and corresponding weighted automaton ${\mathcal A}$

 $growth_{\mathcal{A}}(k)\in\mathcal{O}(k^d) \implies growth_{\mathcal{M}}(k)\in\mathcal{O}(k^{d+1})$

Definitions (based on Weber and Seidl 1991)

weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

EDA $\exists q \in Q \ \exists x \in \Sigma^*$ such that q is useful and $\mu(x)_{qq} \ge 2$

 $\begin{aligned} \mathsf{IDA}_d & \exists p_1, q_1, \dots, p_d, q_d \in Q \ \exists v_1, u_2, v_2, \dots, u_d, v_d \in \Sigma^* \text{ such that} \\ & \forall i \ge 1 \ p_i \text{ and } q_i \text{ are useful, } p_i \neq q_i \text{ and } p_i \xrightarrow{v_i} p_i \xrightarrow{v_i} q_i \xrightarrow{v_i} q_i \\ & \forall i \ge 2 \ q_{i-1} \xrightarrow{u_i} p_i \end{aligned}$

matrix interpretation ${\mathcal M}$ and corresponding weighted automaton ${\mathcal A}$

 $growth_{\mathcal{A}}(k)\in\mathcal{O}(k^d) \implies growth_{\mathcal{M}}(k)\in\mathcal{O}(k^{d+1})$

Definitions (based on Weber and Seidl 1991)

weighted automaton $\mathcal{A} = (\mathcal{Q}, \Sigma, \lambda, \mu, \gamma)$

EDA $\exists q \in Q \ \exists x \in \Sigma^*$ such that q is useful and $\mu(x)_{qq} \ge 2$

 $\begin{aligned} \mathsf{IDA}_d & \exists p_1, q_1, \dots, p_d, q_d \in Q \ \exists v_1, u_2, v_2, \dots, u_d, v_d \in \Sigma^* \text{ such that} \\ & \forall i \ge 1 \ p_i \text{ and } q_i \text{ are useful, } p_i \neq q_i \text{ and } p_i \xrightarrow{v_i} p_i \xrightarrow{v_i} q_i \xrightarrow{v_i} q_i \\ & \forall i \ge 2 \ q_{i-1} \xrightarrow{u_i} p_i \end{aligned}$

weighted automaton ${\mathcal A}$

 $growth_{\mathcal{A}}(k) \in \mathcal{O}(k^{d+1}) \quad \Longleftrightarrow \quad \mathcal{A} \not\models \mathsf{EDA}, \ \mathcal{A} \not\models \mathsf{IDA}_{d+1}$

weighted automaton ${\mathcal A}$

$$\textit{growth}_{\mathcal{A}}(k) \in \Theta(k^{d+1}) \quad \Longleftrightarrow \quad \mathcal{A} \not\models \mathsf{EDA}, \; \mathcal{A} \not\models \mathsf{IDA}_{d+1}, \; \mathcal{A} \models \mathsf{IDA}_{d}$$

weighted automaton \mathcal{A}

$$\textit{growth}_{\mathcal{A}}(k) \in \Theta(k^{d+1}) \quad \Longleftrightarrow \quad \mathcal{A} \not\models \mathsf{EDA}, \; \mathcal{A} \not\models \mathsf{IDA}_{d+1}, \; \mathcal{A} \models \mathsf{IDA}_{d}$$

Remark

conditions are decidable in time $\mathcal{O}(|Q|^6 \cdot |\Sigma|)$ for $\mathcal{A} = (Q, \Sigma, \lambda, \mu, \gamma)$

rewrite rule

$$f(x) \rightarrow x$$

compatible matrix interpretation ${\cal M}$

$$f_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

rewrite rule

$$f(x) \rightarrow x$$

compatible matrix interpretation \mathcal{M}

$$f_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• \mathcal{M} is not polynomially bounded because $\rho(M) = 2$

rewrite rule

$$f(x) \rightarrow x$$

compatible matrix interpretation \mathcal{M}

$$f_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- \mathcal{M} is not polynomially bounded because $\rho(\mathcal{M}) = 2$
- growth $_{\mathcal{M}}$ is polynomially bounded because $[t]_1 < |t|$ for any term t

rewrite rule

$$f(x) \rightarrow x$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$f_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- \mathcal{M} is not polynomially bounded because $\rho(\mathcal{M}) = 2$
- growth_{\mathcal{M}} is polynomially bounded because $[t]_1 < |t|$ for any term t

Lemma

for every TRS $\ensuremath{\mathcal{R}}$

 \forall compatible matrix interpretation $\mathcal{M} \exists$ compatible matrix interpretation \mathcal{N} such that corresponding automaton is trim and growth_{\mathcal{M}}(k) = growth_{\mathcal{N}}(k)

rewrite rule

$$f(x) \rightarrow x$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$f_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

corresponding weighted automaton

is not trim because state 2 is not useful

rewrite rule

$$f(x) \rightarrow x$$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$f_{\mathcal{M}}(ec{x}) = egin{pmatrix} 1 & \ \end{pmatrix} ec{x} + egin{pmatrix} 1 \end{pmatrix}$$

corresponding weighted automaton

is trim and ${\mathcal{M}}$ is polynomially bounded

for every TRS $\ensuremath{\mathcal{R}}$

 ${
m dc}_{\mathcal R}(k)\in \mathcal O(k^d)$ can be shown using automata-based approach \Longleftrightarrow ${
m dc}_{\mathcal R}(k)\in \mathcal O(k^d)$ can be shown using algebraic approach

Outline

- Introduction
- History
- Matrix Interpretations
- Algebraic Methods
- Automata-Based Methods
- Concluding Remarks

matrix interpretations are incomplete for polynomial derivational complexity

matrix interpretations are incomplete for polynomial derivational complexity

Example

rewrite system ${\mathcal R}$ with linear derivational complexity

 $aa \rightarrow aba$ $bb \rightarrow x$ $c \rightarrow \epsilon$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
$$c_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix} \qquad \rho(\{\dots\}) = 1$$

matrix interpretations are incomplete for polynomial derivational complexity

Example

rewrite system ${\mathcal R}$ with linear derivational complexity

 $aa \rightarrow aba$ $bb \rightarrow x$ $c \rightarrow \epsilon$ $c \rightarrow b$

compatible matrix interpretation $\ensuremath{\mathcal{M}}$

$$a_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \qquad b_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \vec{x} + \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
$$c_{\mathcal{M}}(\vec{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \vec{x} + \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix} \qquad \rho(\{\dots\}) = 2$$

matrix interpretations are incomplete for polynomial derivational complexity

matrix interpretations are incomplete for polynomial derivational complexity

Example

rewrite system ${\mathcal R}$ with linear derivational complexity

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to x$ $\mathsf{c} \to \epsilon$ $\mathsf{c} \to \mathsf{b}$

no polynomially bounded compatible matrix interpretation

compatible matrix interpretation *M* of dimension *n*:

 $a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$ $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

matrix interpretations are incomplete for polynomial derivational complexity

Example rewrite system \mathcal{R} with linear derivational complexity aa \rightarrow aba $bb \rightarrow x$ $c \rightarrow \epsilon$ $c \rightarrow b$ no polynomially bounded compatible matrix interpretation compatible matrix interpretation \mathcal{M} of dimension *n*: $a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$ $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$ • $C \ge \max(I_n, B)$

matrix interpretations are incomplete for polynomial derivational complexity

Example

rewrite system ${\mathcal R}$ with linear derivational complexity

 $\mathsf{aa} \to \mathsf{aba}$ $\mathsf{bb} \to x$ $\mathsf{c} \to \epsilon$ $\mathsf{c} \to \mathsf{b}$

no polynomially bounded compatible matrix interpretation

compatible matrix interpretation *M* of dimension *n*:

 $a_{\mathcal{M}}(\vec{x}) = A\vec{x} + a$ $b_{\mathcal{M}}(\vec{x}) = B\vec{x} + b$ $c_{\mathcal{M}}(\vec{x}) = C\vec{x} + c$

• $C \ge \max(I_n, B)$... hence entries in C^k grows exponentially

• automation by mapping to finite-domain constraint systems (...)

- automation by mapping to finite-domain constraint systems (...)
- algebraic approach applies also to matrix interpretations over ${\mathbb Q}$ and ${\mathbb R}$

- automation by mapping to finite-domain constraint systems (...)
- algebraic approach applies also to matrix interpretations over ${\mathbb Q}$ and ${\mathbb R}$
- results extend to runtime complexity

- automation by mapping to finite-domain constraint systems (...)
- algebraic approach applies also to matrix interpretations over ${\mathbb Q}$ and ${\mathbb R}$
- results extend to runtime complexity

Definitions (Hirokawa and Moser 2008)

• runtime complexity $\operatorname{rc}_{\mathcal{R}}(k) = \max \{ \operatorname{dh}(t) \mid t \text{ is basic term and } |t| \leq k \}$

- automation by mapping to finite-domain constraint systems (...)
- algebraic approach applies also to matrix interpretations over ${\mathbb Q}$ and ${\mathbb R}$
- results extend to runtime complexity

Definitions (Hirokawa and Moser 2008)

- runtime complexity $rc_{\mathcal{R}}(k) = max \{ dh(t) \mid t \text{ is basic term and } |t| \leq k \}$
- term $f(t_1, \ldots, t_n)$ is basic if
 - 1 f is defined symbol
 - 2 t_1, \ldots, t_n are constructor terms

rewrite system ${\mathcal R}$

```
reverse(nil) \rightarrow nil
reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)
shuffle(nil) \rightarrow nil
shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))
append(nil, ys) \rightarrow ys
append(x :: xs, ys) \rightarrow x :: append(xs, ys)
```

rewrite system ${\mathcal R}$

 $reverse(nil) \rightarrow nil$ $reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)$ $shuffle(nil) \rightarrow nil$ $shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$ $append(nil, ys) \rightarrow ys$ $append(x :: xs, ys) \rightarrow x :: append(xs, ys)$

derivational complexity

 $\mathsf{dc}_\mathcal{R}(k) \in \mathcal{O}(k^4)$

rewrite system ${\mathcal R}$

 $reverse(nil) \rightarrow nil$ $reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)$ $shuffle(nil) \rightarrow nil$ $shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$ $append(nil, ys) \rightarrow ys$ $append(x :: xs, ys) \rightarrow x :: append(xs, ys)$

derivational complexity

 $\mathsf{dc}_\mathcal{R}(k) \in \mathcal{O}(k^4)$

runtime complexity

 $\operatorname{rc}_{\mathcal{R}}(k) \in \mathcal{O}(k^3)$

rewrite system ${\mathcal R}$

 $reverse(nil) \rightarrow nil$ $reverse(x :: xs) \rightarrow append(reverse(xs), x :: nil)$ $shuffle(nil) \rightarrow nil$ $shuffle(x :: xs) \rightarrow x :: shuffle(reverse(xs))$ $append(nil, ys) \rightarrow ys$ $append(x :: xs, ys) \rightarrow x :: append(xs, ys)$

derivational complexity

 $\mathsf{dc}_\mathcal{R}(k) \in \mathcal{O}(k^4)$

runtime complexity

$$\operatorname{rc}_{\mathcal{R}}(k) \in \mathcal{O}(k^3)$$

... beyond reach of current complexity tools
Termination and Complexity Research

Termination Tools

CiME, T_TT₂, AProVE, Matchbox, MuTerm, VMTL, WANDA, THOR, ...

Complexity Tools

T_CT, Matchbox, GT, AProVE

Confluence Research

Confluence Tools

ACP, CSI, Saigawa