
Proving Quadratic Derivational Complexities
using Context Dependent Interpretations?

Georg Moser and Andreas Schnabl

Institute of Computer Science
University of Innsbruck, Austria

{georg.moser,andreas.schnabl}@uibk.ac.at

Abstract. In this paper we study context dependent interpretations, a
semantic termination method extending interpretations over the natural
numbers, introduced by Hofbauer. We present two subclasses of con-
text dependent interpretations and establish tight upper bounds on the
induced derivational complexities. In particular we delineate a class of
interpretations that induces quadratic derivational complexity. Further-
more, we present an algorithm for mechanically proving termination of
rewrite systems with context dependent interpretations. This algorithm
has been implemented and we present ample numerical data for the as-
sessment of the viability of the method.

1 Introduction

In order to assess the complexity of a (terminating) term rewrite system (TRS
for short) it is natural to look at the maximal length of derivation sequences,
as suggested by Hofbauer and Lautemann in [1]. To be precise, let R denote a
finitely branching and terminating TRS over a finite signature. The derivational
complexity function with respect to R (denoted as dcR) relates the length of
the longest derivation sequence to the size of the initial term. For direct termi-
nation techniques it is often possible to infer an upper bound on dcR(n) from
the termination proof of R, cf. [1,2,3,4,5]. (Currently it is unknown how to es-
timate the derivational complexity of a TRS R, if termination of R has been
shown via transformation methods like the dependency pair method or semantic
labelling, but see [4,6] for partial results in this direction.) For example lin-
ear derivational complexity can be verified by the use of automata techniques:
linear match-bounded TRSs induce linear derivational complexity, see [5]. Un-
fortunately such a feasible growth rate is not typical. Already termination proofs
by polynomial interpretations imply a double-exponential upper bound on the
derivational complexity, cf. [1]. In both cases the upper bounds are tight.

However, the tightness of the mentioned bounds does not imply that the
upper bounds are always optimal. In particular polynomial interpretations typ-
ically overestimate the derivational complexity. In [7] Hofbauer introduced so-
called context dependent interpretations as a remedy. These interpretations ex-
tend traditional interpretations by introducing an additional parameter. The
? This research is supported by FWF (Austrian Science Fund) project P20133.

parameter changes in the course of evaluating a term, which makes the in-
terpretation dependent on the context. The crucial advantage is that context
dependent interpretations typically improve the induced bounds on the deriva-
tional complexity of TRSs. Furthermore this technique allows the handling of
non-simple terminating systems. (See [7] and Section 2 for further details.)

In this paper, we establish theoretical and practical extensions of Hofbauer’s
approach. As theoretic contributions, we present two subclasses of context depen-
dent interpretations, i.e., we introduce ∆-linear and ∆-restricted interpretations.
We show that ∆-linear interpretations induce exponential derivational complex-
ity, while ∆-restricted interpretations induce quadratic derivational complexity.
Furthermore, we provide examples showing that these bounds are tight. In [7] it
is shown that context dependent interpretations are expressive enough to show
termination of TRSs that are not simply terminating. We improve upon this
and show that ∆-restricted interpretations suffice here. On the practical side,
we design an algorithm that automatically searches for ∆-linear interpretations
and ∆-restricted interpretations, which shows that the technique can be mech-
anised. This answers a question posed by Hofbauer in [7]. The procedure has
been implemented and we provide ample numerical data to assess its viability.
TRSs with polynomial derivational complexity appear to be of special interest.
Thus, we finally compare the applicability of our method to other termination
techniques that also induce polynomial derivational complexity.

The remainder of this paper is organised as follows. In the next section we
recall basic notions and starting points of this paper. In Section 3 we introduce
the class of ∆-linear interpretations and describe the algorithm that mechanises
the search for ∆-linear and ∆-restricted interpretations. In Section 4, we obtain
the mentioned results on the derivational complexities induced by either of these
interpretations. Furthermore, we show in this section that already ∆-restricted
interpretations allow the treatment of non-simple terminating TRSs. Section 5
provides experimental data and finally in Section 6 we conclude and mention
future work.

2 Context Dependent Interpretations

We assume familiarity with the basics of term rewriting, see [8,9]. Knowledge
of context dependent interpretations [7] will be helpful. Below we recall the
basic results from the latter paper in a slightly different, but equivalent way,
compare [7,10]. See [7] for the motivation and intuition underlying the introduced
concepts.

Let F be a finite signature, let V be a set of variables and let R denote a
terminating TRS over F . The induced relation →R is assumed to be finitely
branching. We simply write → for →R if R is clear from context. The derivation
length of a term t with respect to R is defined as follows: dlR(t) = max{n |
∃u t →n u}. The derivational complexity (with respect to R) is defined as:
dcR(n) = max{dlR(t) | |t| 6 n}, where |t| denotes the size of t, i.e., the number
of symbols of t as usual. (For example the size of the term f(a, x) is 3.) We

say the derivational complexity of R is linear, quadratic, double-exponential,
if dcR(n) is bounded by a linear, quadratic, double-exponential function in n,
respectively. A context dependent F-algebra (CDA for short) C is a family of
F-algebras over the reals parametrised by a set D ⊆ R+ of positive reals. A
CDA C associates to each function symbol f ∈ F of arity n, a collection of n+1
mappings: fC : D × (R+

0)n → R+
0 and f i

C : D → D for all 1 6 i 6 n. As usual
fC is called interpretation function, while the mappings f i

C are called parameter
functions. In addition C is equipped with a set {>∆| ∆ ∈ D} of proper orders,
where we define: z >∆ z′ if and only if z − z′ > ∆.

Let C be a CDA and let a ∆-assignment denote a mapping: α : D×V → R+
0 .

We inductively define a mapping [α, ∆]C from the set of terms into the set R+
0

of non-negative reals:

[α, ∆]C(t) :=

{
α(∆, t) if t ∈ V
fC(∆, [α, f1

C (∆)]C(t1), . . . , [α, fn
C (∆)]C(tn)) if t = f(t1, . . . , tn) .

We fix some notational conventions: Due to the special role of the additional
variable ∆, we often write fC [∆](z1, . . . , zn) instead of fC(∆, z1, . . . , zn). Further-
more, we usually denote the evaluation of t as [α, ∆](t), if the respective algebra
is clear from context.

We say that a CDA C is ∆-monotone if for all ∆ ∈ D and for all a1, . . . , an, b ∈
R+

0 with ai >fi
C(∆) b for some i ∈ {1, . . . , n}, we have

fC [∆](a1, . . . , ai, . . . , an) >∆ fC [∆](a1, . . . , b, . . . , an) .

Note that if all interpretation functions fC [∆] are weakly monotone with respect
to the standard ordering on R+

0 , then validity of the inequalities

fC [∆](z1, . . . , zi + f i
C(∆), . . . , zn)− fC [∆](z1, . . . , zi, . . . , zn) > ∆ ,

suffices in order to conclude ∆-monotonicity of C, cf. [7].
A CDA C is compatible with a TRS R (or R is compatible with C) if for

every rewrite rule l → r ∈ R, every ∆ ∈ D, and any assignment α: [α, ∆](l) >∆

[α, ∆](r) holds.

Example 1 ([7]). As running example, we consider the TRS R1 with the single
rewrite rule a(b(x)) → b(a(x)). We assume D = R+. The following interpretation
and parameter functions

aC [∆](z) = (1 + ∆)z a1
C(∆) =

∆

1 + ∆

bC [∆](z) = z + 1 b1
C(∆) = ∆ ,

define a CDA C that is ∆-monotone and compatible with R1, compare [7].

Theorem 2 ([7]). Let R be a TRS and suppose that there exists a ∆-monotone
and compatible CDA C. Then R is terminating and

dlR(t) 6 inf
∆∈D

[α, ∆](t)
∆

(1)

holds for all terms t ∈ T (F ,V).

The next example clarifies the impact of Theorem 2, compare [7].
Example 3. Consider the TRS R1 together with the CDA C in Example 1. Sup-
pose c ∈ F is a constant and cC [∆] = 0. We assert D = R+. Then we obtain
[α, ∆](an(bm(c))) = (1 + ∆n)m and hence:

inf
∆>0

[α, ∆](an(bm(c)))
∆

= inf
∆>0

(1
∆

+ n
)
m = nm > dlR1(a

n(bm(c))) .

Furthermore, an easy inductive argument reveals: dlR1(a
n(bm(c))) = nm.

Hence with respect to the term an(bm(c)), compatibility with C entails an opti-
mal upper bound on the derivation length of R1. This is also true for all ground
terms. A proof of inf∆>0

[α,∆](t)
∆ = dlR1(t) for all t ∈ T (F) can be found in [7].

Definition 4. A ∆-quotient is an expression of the form
∆

a + b∆
,

where a, b ∈ N and either a > 0 or b > 0. A ∆-quotient d is nontrivial, if d 6= ∆.

Lemma 5. Let d1, d2 be ∆-quotients and let d = d1[∆ := d2] denote the result
of substituting d2 for ∆ in d1. Then d is a ∆-quotient.

As usual a polynomial P in the variables z1, . . . , zn (over the reals) is a
finite sum

∑m
i=1 ciz

i1
1 . . . zin

n . To accommodate ∆-quotients we slightly generalise
polynomials.

Definition 6. An extended monomial M in the variables ∆ and z1, . . . , zn is a
finite product c ·

∏
i vi such that c is an integer and vi is xn, x ∈ {∆, z1, . . . , zn}

or vi is a ∆-quotient. The integer c is called the coefficient and the expression vi

a literal. Finally, an extended polynomial P over ∆ ∈ D and z1, . . . , zn ∈ R+
0

is a finite sum
∑

i Mi of extended monomials Mi (in ∆ and z1, . . . , zn).

Note that the coefficients of an extended polynomial are integers. If the context
clarifies what is meant, we will drop the qualifier “extended”. Examples 1 and 3
as well as the examples studied in [7] suggest a restricted notion of context
dependent algebras. This is the subject of the next definition.
Definition 7. A polynomial context dependent interpretation of F is a CDA
(C, {>∆| ∆ ∈ D}) satisfying the following properties:
– the interpretation function fC is an extended polynomial,
– the parameter set D equals R+, and
– for each f ∈ F the parameter functions f i

C are ∆-quotients.

Lemma 8. Let C denote a polynomial context dependent interpretation, let α be
a ∆-assignment, and let t be a term. Then [α, ∆](t) is an extended polynomial.

Proof. The lemma is a direct consequence of the definitions and Lemma 5. ut
Remark 9. Hofbauer showed in [7] that for any monotone polynomial interpre-
tation compatible with a TRS R, there exists a polynomial context dependent
interpretation which is ∆-monotone and compatible with R and induces at least
the same upper bound on the derivational complexity as the polynomial inter-
pretation.

3 Automated Search for Context Dependent
Interpretations

One approach to find context dependent interpretations (semi-)automatically
was already mentioned in Hofbauer’s paper [7]. A given polynomial interpreta-
tion is suitably lifted to a context dependent interpretation such that monotonic-
ity and compatibility are preserved, but the upper bound on the derivational
complexity is often improved. Unfortunately, experimental evidence suggests
that the applicability of this heuristics is limited, if one is interested in auto-
matically finding complexity bounds, see Section 5 for further details. However,
the standard approach for automatically proving termination via polynomial
interpretations as stipulated by Contejean et al. [11] can be adapted. The de-
scription of this adaption is the topic of this section. We restrict the form of
parametric interpretations that we consider.

Definition 10. A (parametric) ∆-linear interpretation is a polynomial context
dependent interpretation C whose interpretation functions and parameter func-
tions have the following form:

fC(∆, z1, . . . , zn) =
n∑

i=1

a(f,i)zi +
n∑

i=1

b(f,i)zi∆ + cf∆ + df

f i
C(∆) =

∆

a(f,i) + b(f,i)∆

where the occurring coefficients are supposed to be natural numbers. For a para-
metric ∆-linear interpretation, a(f,i), b(f,i), cf , and df (f ∈ F , 1 6 i 6 n) are
called coefficient variables.

Note that for any ∆-linear interpretation, we have a(f,i) > 0 or b(f,i) > 0 (f ∈ F ,
1 6 i 6 n): Any ∆-linear interpretation is a polynomial context dependent
interpretation by definition. And hence the parameter functions have to be ∆-
quotients, cf. Definition 7. Moreover the coefficients a(f,i), b(f,i) are used in the
interpretation function and the parameter functions. This is necessary for the
correctness of Lemma 12 below.

Example 11. Consider the TRS R1 from Example 1. The parametric interpre-
tation and parameter functions have the form:

aC [∆](z) = az + bz∆ + c∆ + d a1
C(∆) =

∆

a + b∆

bC [∆](z) = ez + fz∆ + g∆ + h b1
C(∆) =

∆

e + f∆
.

The following lemma is a direct consequence of the definitions.

Lemma 12. Let C be an ∆-linear interpretation. Then C is ∆-monotone.

Due to Lemma 12, in order to prove termination of a given TRS R, it suffices
to find a ∆-linear interpretation compatible with R. This observation is reflected
in the following definition.

Definition 13. Let R be a TRS and let C be a parametric ∆-linear interpreta-
tion. The compatibility constraints of R with respect to C are defined as

CC(R, C) ={[α, ∆](l)− [α, ∆](r)−∆ > 0 | l → r ∈ R}∪
∪ {a(f,i) + b(f,i) − 1 > 0 | f ∈ F , 1 6 i 6 ar(f)} .

Here ar(f) denotes the arity of f and α refers to a symbolic ∆-assignment:
Expressions of the form [α, ∆](x) for x ∈ V remain unevaluated.

While the first half of CC(R, C) represents compatibility with R, the second
set of constraints guarantees that the denominators of the occurring ∆-quotients
are different from 0. Thus any solution to CC(R, C), instantiating coefficients
with natural numbers, represents a polynomial context dependent interpretation
compatible with R.

Example 14. Consider the (parametric) CDA C from Example 11 and set ∆1 =
a1
C(∆) and ∆2 = b1

C(∆). Let α1 = [α, ∆2[∆ := ∆1]](x) and let α2 = [α, ∆1[∆ :=
∆2]](x). Then the constraint [α, ∆](a(b(x)))− [α, ∆](b(a(x)))−∆ > 0 becomes:(

aeα1 + afα1∆1 + ag∆1 + beα1∆ + bfα1∆1∆ + bg∆1∆ + (bh + c)∆+

+ah + d
)
−

(
aeα2 + beα2∆2 + ce∆2 + afα2∆ + bfα2∆2∆ + cf∆2∆+

+(df + g)∆ + de + h
)
−∆ > 0 .

For all constraints (P > 0) ∈ CC(R, C), P is an extended polynomial,
cf. Lemma 8. It is easy to see how an extended polynomial (over ∆, z1, . . . , zn)
is transferable into a (standard) polynomial (over ∆, z1, . . . , zn): Multiply (sym-
bolically) with denominators of (nontrivial) ∆-quotients till all (nontrivial) ∆-
quotients are eliminated. This simple procedure is denoted as A. Correctness and
termination of the procedure follow trivially.

Definition 15. Let R be a TRS and let C be a parametric ∆-linear interpreta-
tion. The polynomial compatibility constraints of R with respect to C are defined
as follows: PCC(R, C) := {P ′ > 0 | P > 0 ∈ CC(R, C) and P ′ := A(P)}.

Example 16. Consider the constraint P > 0 depicted in Example 14. To apply
the algorithm A we first have to symbolically multiply with the expression a+b∆
and later with e + f∆. The resulting constraint P ′ > 0 (with the polynomial P ′

in the “variables” ∆, α1, and α2) has the form:(
(b2ef + bf2)α1∆

3 + (2abef + af2 + b2e2 + bef)α1∆
2

+(2abe2 + a2ef + aef)α1∆ + (a2e2)α1

)
−

(
(abf2 + b2f)α2∆

3 + (a2f2 + 2abef + abf + b2e)α2∆
2

+(2a2ef + abe2 + aeb)α2∆ + (a2e2)α2

)
+

(
(b2fh− bdf2 − bf)∆3

+(2abfh + b2eh + bdf − adf2 − 2bdef − bfh− be− af)∆2

+(a2fh + 2abeh + adf + bde− 2adef − afh− bde2 − beh− ae))∆

+(a2eh + ade− ade2 − aeh)
)

> 0 .

We obtain PCC(R1, C) = {P ′ > 0, a + b− 1 > 0, e + f − 1 > 0}, where the last
two constraints reflect that all denominators of ∆-quotients are non-zero.

Let P > 0 be a constraint in PCC(R, C) such that n distinct symbolic as-
signments [α, d](x) occur in P (x ∈ V, d a ∆-quotient). (In Example 16 two
symbolic assignments occur: α1 and α2.) Then P is conceivable as a polyno-
mial in Z[∆, z1, . . . , zn]. It remains to verify that (a suitable instance of) P is
positive, i.e., we have to prove that P (∆, z1, . . . , zn) > 0 for any values ∆ > 0,
zi > 0. This is achieved by testing for absolute positivity instead of positivity,
compare [11].

A polynomial P is absolutely positive if P has non-negative coefficients only.
A parametric polynomial P is called absolutely positive if there exists an instance
P ′ of P such that P ′ is absolutely positive. Clearly any absolutely positive poly-
nomial is positive. Thus for a given constraint P > 0 ∈ PCC(R, C) it suffices to
find instantiations of the coefficient variables such that all coefficients are natu-
ral numbers. This is achieved through the construction of suitable Diophantine
inequalities over the coefficients.

Lemma 17. Let R be a TRS and let C denote a parametric ∆-linear interpre-
tation. If for all P > 0 ∈ PCC(R, C), P is absolutely positive then there exists
an instantiation of C compatible with R.

Proof. If P is absolutely positive, there exist natural numbers that can be sub-
stituted to the coefficient variables in P such that the resulting polynomial P ′

is absolutely positive and thus positive. By definition this implies that the con-
straints in CC(R,V) are fulfilled. We define an instantiation C′ of C by applying
the same substitution to the coefficient variables in C. Then C′ is compatible
with R. ut

As an immediate consequence of Lemmata 12, 17, and Theorem 2 we obtain
the following theorem.

Theorem 18. Let R be a TRS and let C denote a parametric ∆-linear inter-
pretation. Suppose for all P > 0 ∈ PCC(R, C), P is absolutely positive. Then R
is terminating and property (1) holds for D = R+.

It is easy to see that the Diophantine inequalities induced by Example 16
cannot be solved, if the symbolic assignments α1 and α2 are treated as different
variables. This motivates the next definition.

Definition 19. Given a TRS R and a ∆-linear interpretation C, the equality
constraints of R with respect to C are defined as follows:

EC(R, C) = {(a + b∆)− (c + d∆) = 0 | Property (∗) is fulfilled}

(∗) There exists P > 0 ∈ PCC(R, C), x ∈ V such that [α, d1](x) and [α, d2](x)
occur in P and d1 = ∆

a+b∆ 6= ∆
c+d∆ = d2.

Example 20. Consider Example 16. Property (∗) is applicable to the ∆-quotients
d1, d2 in the ∆-assignments α1 = [α, d1] and α2 = [α, d2] as

d1 =
∆

ae + (be + f)∆
6= ∆

ae + (af + b)∆
= d2 .

Thus the constraint (ae+(be+f)∆)− (ae+(af + b)∆) = 0 occurs in EC(R1, C).
This is the only constraint in EC(R1, C).

Let P > 0 ∈ PCC(R, C), assume the equality constraints in EC(R, C) are
fulfilled and assume we want to test for absolute positivity of P . By assumption
distinct symbolic assignments can be treated as equal, which may change the
coefficients we need to consider in P . This is expressed by writing P > 0 ∈
PCC(R, C) ∪ EC(R, C). Furthermore, we call a parametric polynomial a zero
polynomial if there exists an instance P ′ of P such that P ′ = 0.

Corollary 21. Let R be a TRS and let C denote a parametric ∆-linear inter-
pretation. Suppose for all P > 0 (P = 0) ∈ PCC(R, C)∪EC(R, C), P is absolutely
positive (P is a zero polynomial). Then R is terminating and property (1) holds
for D = R+.

Corollary 21 opens the way to efficiently search for CDAs: Finding a ∆-
monotone and compatible CDA C amounts to solving the Diophantine con-
straints in PCC(R, C)∪EC(R, C). It is well-known that solvability of Diophantine
constraints is undecidable [12]. However, there is an easy remedy for this: we re-
strict the domain of the coefficient variables to a finite one.

Example 22. Consider the TRS R1 from Example 1 and the ∆-linear interpreta-
tion C from Example 11. Applying the above described algorithm, the following
Diophantine (in)equalities need to be solved.

b2ef + bf2 − abf2 − b2f > 0 abe2 + a2ef + aef − 2a2ef − aeb > 0

b2fh− bdf2 − bf > 0 a2eh + ade− ade2 − aeh > 0
a + b− 1 > 0 e + f − 1 > 0

be + f − af − b = 0 af2 + b2e2 + bef − a2f2 − abf − b2e > 0

2abfh + b2eh + bdf − adf2 − 2bdef − bfh− be− af > 0

a2fh + 2abeh + adf + bde− 2adef − afh− bde2 − beh− ae > 0 .

Here the constraints a + b− 1 > 0, e + f − 1 > 0 guarantee that the denomina-
tors of occurring ∆-quotients are positive, and the equality be + f − af − b = 0
expresses the equality constraint in EC(R1, C). Our below discussed implemen-
tations of the algorithm presented in this section find the following satisfying
assignments for the coefficient variables fully automatically:

a = b = e = h = 1 c = d = f = g = 0 .

4 Derivational Complexities Induced by Polynomial
Context Dependent Interpretations

In this section we show that the derivational complexity induced by ∆-linear
interpretations is exponential and that this bound is tight. Furthermore, we
introduce a restricted subclass of ∆-linear interpretations that induces (tight)
quadratic derivational complexity.

Recall the TRS R1 considered in Example 1. This TRS belongs to a family of
TRSs Rk for k > 0: a(b(x)) → bk(a(x)) and it is not difficult to see that for k > 2
the derivational complexity of Rk is exponential. In [7] ∆-linear interpretations
Ck were introduced such that

inf
∆>0

[α, ∆]Ck
(t)

∆
= dlRk

(t) ,

holds for any ground term. I.e., for all k > 0 there exist ∆-linear interpretations
that optimally bound the derivational complexities of Rk. This triggers the ques-
tion whether we can find such context dependent interpretations automatically.
The next example answers this question affirmatively, for k = 2.1

Example 23. Consider the TRSs R2: a(b(x)) → b(b(a(x))).2 To find a ∆-linear
interpretation, we employ the same parametric interpretation C, as in Exam-
ple 11 and build the set of constraints CC(R2, C) and consecutively the polyno-
mial compatibility constraints PCC(R2, C) together with the equality constraints
EC(R2, C). We only state the (automatically) obtained interpretation and param-
eter functions:

aC [∆](z) = (2 + 2∆)z a1
C(∆) =

1
2 + 2∆

bC [∆](z) = z + 1 b1
C(∆) = ∆ .

As a consequence of Example 23 we see the existence of TRSs, compatible with
∆-linear interpretations, whose derivational complexity function is exponential.
Moreover, we have the following lemma.

Lemma 24. Let C denote a ∆-linear interpretation and let K denote the maxi-
mal coefficient occurring in C. Further let t be a ground term, α a ∆-assignment
and ∆ > 0. Then [α, ∆](t) 6 (K + 2)|t|(∆ + 1).

Proof. Straightforward induction on t. ut

Theorem 25. Let R be a TRS and let C denote a ∆-linear interpretation com-
patible with R. Then R is terminating and dcR(n) = 2O(n). Moreover there
exists a TRS R such that dcR(n) = 2Ω(n).
1 The answer remains positive for k = 3. Detailed experimental evidence and

additional information on the considered constraints are available at http://

cl-informatik.uibk.ac.at/∼aschnabl/experiments/cdi/.
2 This is Example 2.50 in Steinbach and Khler’s collection [13].

http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/
http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/

Proof. The proof of the upper bound follows the pattern of the proof of Theo-
rem 29 below. To show that this upper bound is tight, we consider the TRS R2

from Example 23. It is easy to see that dcR2(n) = 2Ω(n) holds. ut
In order to establish a termination method that induces polynomial deriva-

tional complexity, we restrict the class of ∆-linear interpretations.

Definition 26. A ∆-restricted interpretation is a ∆-linear interpretation. In
addition we require that for the interpretation functions and parameter functions

fC(∆, z1, . . . , zn) =
n∑

i=1

a(f,i)zi +
n∑

i=1

b(f,i)zi∆ + cf∆ + df

f i
C(∆) =

∆

a(f,i) + b(f,i)∆
,

we have a(f,i) ∈ {0, 1} for all 1 6 i 6 n.

Example 27. Consider the TRS R1 from Example 1. The assignment of coeffi-
cient variables as defined in Example 22 induces a ∆-restricted interpretation.

Lemma 28. Let C denote a ∆-restricted interpretation with coefficients a(f,i),
b(f,i), cf , df (f ∈ F , 1 6 i 6 ar(f)) and we set

M := max({cf , df | f ∈ F} ∪ {1})
N := max({b(f,i) | f ∈ F , 1 6 i 6 ar(f)} ∪ {1}) .

Further let t be a ground term, α a ∆-assignment and let ∆ > 0. Then [α, ∆](t) 6
M(|t|+ N |t|2∆).

Proof. We proceed by induction on t. As t ∈ T (F), the evaluation is independent
of the assignment. Hence we write [∆](t) instead of [α, ∆](t). If t = f ∈ F , then

[∆](t) = cf∆ + df 6 M(∆ + 1) 6 M(|t|+ N |t|2∆) .

If on the other hand t = f(t1, . . . , tn), then

[∆](t) =
∑

i

(afi
+ bfi

∆)[f i
C(∆)](ti) + cf∆ + df (2)

6
∑

i

(afi + bfi∆)
(
M(|ti|+ N |ti|2

∆

afi + bfi∆

)
+ cf∆ + df (3)

=
∑

i

(
(afi + bfi∆)M |ti|+ MN |ti|2∆

)
+ cf∆ + df (4)

6
∑

i

(
(1 + N∆)M |ti|+ MN |ti|2∆

)
+ M(∆ + 1) (5)

6
∑

i

|ti|
(
(1 + N∆)M + MN(|t| − 1)∆

)
+ M(∆ + 1) (6)

= (|t| − 1)
(
(1 + N∆)M + MN(|t| − 1)∆

)
+ M(∆ + 1) (7)

= M
(
(|t| − 1)(1 + N∆) + N(|t| − 1)2∆ + (∆ + 1)

)
(8)

6 M(|t|+ N |t|2∆) . (9)

In line (3) we employ the induction hypothesis, in (6) we use |ti| 6 |t| − 1 and
for (9) a simple calculation reveals: (|t|−1)(1+N∆)+N∆(|t|−1)2 +(∆+1) =
|t|+ N |t|2∆ + ∆−N |t|∆ 6 |t|+ N |t|2∆. ut

Theorem 29. Let R be a TRS and let C denote a ∆-restricted interpretation
compatible with R. Then R is terminating and dcR(n) = O(n2). Moreover there
exists a TRS R such that dcR(n) = Ω(n2).

Proof. By Theorem 2 R is terminating and by Lemma 28, there exists K ∈ N,
such that for any ground term t: [∆](t) 6 K(|t|+ K|t|2∆) 6 K2|t|2(∆ + 1) and
hence

dlR(t) 6 inf
∆>0

[∆](t)
∆

6 inf
∆>0

K2|t|2(∆ + 1)
∆

= K2|t|2 .

We obtain dlR(t) = O(|t|2) for any t ∈ T (F ,V) and thus dcR(n) = O(n2). The
tightness of the bound follows by Example 1. ut

By definition the constant employed in Theorem 29 depends only on the
employed interpretation functions. Moreover this dependence is linear. In con-
cluding this section, we want to stress that ∆-restricted interpretation are even
strong enough to handle non-simple terminating TRSs.

Example 30 ([7]). Consider the TRS R with the one rule a(a(x)) → a(b(a(x))).
By applying the algorithm described in Section 3, we find the below given ∆-
restricted interpretation C automatically:

aC [∆](z) = 2z∆ + 2 bC [∆](z) = z∆ a1
C(∆) =

1
2

b1
C(∆) = 1 .

By Theorem 18, C is compatible with R. Hence Theorem 29 implies that the
derivational complexity of R is (at most) quadratic.

5 Experimental Results

In this section we describe the programs cdi1, cdi2, and cdi3. These programs pro-
vide search procedures for context dependent interpretations. The program cdi1
implements the heuristics of Hofbauer in [7], mentioned in Section 3 above. On
the other hand, programs cdi2 and cdi3 implement the algorithm presented in
Section 3 and incorporate constraint solvers for Diophantine (in)equalities. The
program cdi1 searches for ∆-linear interpretations, while cdi2 and cdi3 can search
for ∆-linear and ∆-restricted interpretations. We summarise further differences
below:

cdi1 Firstly, the program searches for a polynomial interpretation compatible
with a TRS R. This interpretation is then lifted to a polynomial context
dependent interpretation C as follows: Coefficients of the form k + 1 are
replaced by k + ∆. Finally Mathematica3 is invoked to verify that the
resulting CDA C is ∆-monotone and compatible with R.

3 http://www.wolfram.com/products/mathematica/.

http://www.wolfram.com/products/mathematica/

cdi2 This programs employs a constraint propagation procedure to solve the Dio-
phantine constraints in PCC(R, C) ∪ EC(R, C). Essentially the implementa-
tion follows the technique suggested in [11].

cdi3 The Diophantine (in)equalities in PCC(R, C)∪EC(R, C) are translated into
propositional logic and suitable assignments are found by employing a SAT
solver, in our case MiniSat4. The implementation follows ideas presented
in [14] and employs the plogic library of TTT2.5

The implementation of the transformation steps as described in Section 3, is the
same for cdi2 and cdi3. The programs cdi1, cdi2, and cdi3 are written in OCaml6

(and parts of cdi1 in C). All three programs are fairly small: cdi1 consists of
about 2000 lines of code, while cdi2 and cdi3 use roughly 3000 lines of code
each.In Table 1 we summarise the comparison between the different programs
cdi1, cdi2, and cdi3. The numbers in the third line of the table refer to the number
of bits maximally used in cdi3 to encode coefficients. Correspondingly for cdi2 we
used 32 as strict bound on the coefficients. We are interested in automatically
verifying the complexity of terminating TRSs. Consequentially, as testbed we
employ those 957 TRSs from the version 4.0 of the Termination Problem Data
Base (TPDB for short) that can be shown terminating with at least one of the
tools that participated in the termination competition 2007.7 The presented tests
were performed single-threaded on a 2.40 GHz Intel® Core� 2 Duo with 2 GB
of memory. For each system we used a timeout of 60 seconds, the times in the
tables are given in milliseconds.

Table 1. 957 terminating TRSs

cdi1 cdi2 cdi3
∆-linear ∆-restr. ∆-linear ∆-restricted ∆-linear

2 3 4 5 2 3 4 5

success 19 61 62 83 86 86 86 82 82 82 83
average time - 3132 3595 3652 4041 4008 3986 5496 4981 5010 5527
timeout - 276 782 144 189 222 238 525 687 751 797

Observe that the heuristic proposed in [7] is not suitable as an automatic
procedure. (We have not indicated the time spent by cdi1 as the timing is in-
comparable to the stand-alone approach of cdi2 or cdi3.) With respect to the
comparison between cdi2 and cdi3, the latter outperforms the former, if at least
2 bits are used. Perhaps surprisingly the performance of cdi2 and cdi3 on ∆-
restricted and ∆-linear is almost identical. This can be explained by the strong
impact of larger bounds for the coefficients a(f,i) (f ∈ F , 1 6 i 6 ar(f)) in the

4 http://minisat.se/.
5 http://colo6-c703.uibk.ac.at/ttt2/.
6 http://www.caml.inria.fr/.
7 These 957 systems and full experimental evidence can be found at http://

cl-informatik.uibk.ac.at/∼aschnabl/experiments/cdi/.

http://minisat.se/
http://colo6-c703.uibk.ac.at/ttt2/
http://www.caml.inria.fr/
http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/
http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/

complexity of the issuing Diophantine (in)equalities. However, for both programs
cdi2 and cdi3, the stronger technique gains one crucial system: Example 23.

Table 2 relates existing methods that induce polynomial derivational com-
plexities of TRSs to cdi3. SL refers to strongly linear interpretations, i.e., only in-
terpretation functions of the form fA(x1, . . . , xn) =

∑
i xi +c, c ∈ N are allowed.

Clearly compatibility with strongly linear interpretations induces linear deriva-
tional complexity. Secondly, TTTbox refers to the implementation of the match-
bound technique as in [15]: Linear TRSs are tested for match-boundedness, non-
linear, but non-duplicating TRSs are tested for match-raise-boundedness. This
technique again implies linear derivational complexity. (Employing [16] (as in [5])
one sees that any match-raise bounded TRS has linear derivational complexity.
Then the claim follows from Lemma 8 in [15].) Note that the restriction to
non-duplicating TRS is harmless, as any duplicating TRS induces at least expo-
nential derivational complexity. No further termination methods that induce at
most polynomial derivational complexities for TRSs have previously been known.
In particular related work on implicit complexity (for example [17,18,19,20,21])
does not provide methods that induce polynomial derivational complexities, even
if sometimes the derivation length can be bounded polynomially, if the set of start
terms is suitably restricted. Finally cdi+ denotes our standard strategy: First,
we search for a strongly linear interpretation. If such an interpretation cannot
be found, then a ∆-restricted interpretation is sought (with 5 bits as bound).

Table 2. Termination Methods as Complexity Analysers

SL TTTbox cdi3—∆-restricted cdi+—∆-restricted

success 41 125 86 87
average time 20 577 3986 3010
timeout 0 225 238 237

Some comments on the results reported in Table 2: By definition the set of
TRSs compatible with a strongly linear interpretation is a (strict) subset of those
treatable with cdi+. On the other hand the comparison between TTTbox and cdi+

(or cdi3) may appear not very favourable for our approach. However, cdi+ (and
cdi3) can handle TRSs that cannot be handled by TTTbox. More precisely with
respect to ∆-restricted interpretations cdi+ (and cdi3) can handle 38 (37) TRSs
that cannot be handled with TTTbox. For instance the following example can
only be handled with cdi+ (and cdi3).

Example 31. Consider the following rewrite system R+,-. (This is Example 2.11
in Steinbach and Khler’s collection [13].)

0+y → y 0−y → x s(x)−s(y) → x−y

s(x)+y → s(x+y) x−0 → x

It is easy to see that R+,- is compatible with the following (automatically gen-
erated) ∆-restricted interpretation C.

−C [∆](x, y) = x + y + 3y∆ + 2∆ 0C [∆] = 0
+C [∆](x, y) = x + y + x∆ + ∆ sC [∆](x) = x + 2 ,

with parameter functions: −1
C(∆) = +2

C(∆) = s1C(∆ =)∆, −2
C(∆) = ∆

1+3∆ , and
+1
C(∆) = ∆

1+∆ . Due to Theorem 29 we conclude quadratic derivational complex-
ity, while the standard polynomial interpretation would only allow to conclude
an exponential upper bound. Note that the deduced quadratic derivational com-
plexity provides an optimal upper bound.

Another issue is the high average yes time (and the higher number of timeouts)
of cdi3 and cdi+ in relation to existing techniques. Although a closer look reveals
that the total times spent by TTTbox and cdi+ (or cdi3) is relatively equal, an
improvement of the efficiency of the introduced tools seems worthwhile.

Remark 32. Note that cdi+ in conjunction with TTTbox can automatically verify
that 163 TRSs in the testbed are of at most quadratic derivational complexity.
Put differently more than 10% of all 1381 TRSs (and more than a third of the 445
non-duplicating TRSs) in version 4.0 of the TPDB are of quadratic derivational
complexity.

6 Conclusion

In this paper we have presented two subclasses of context dependent interpreta-
tions, and established tight upper bounds on the induced derivational complexi-
ties. More precisely, we have delineated two subclasses: ∆-linear and ∆-restricted
context dependent interpretations that induce exponential and quadratic deriva-
tional complexity, respectively. Further, we introduced an algorithm for mechan-
ically proving termination of rewrite systems with context dependent interpre-
tations. As a consequence we established a technique to automatically verify
quadratic derivational complexity of TRSs. Finally, we reported on different im-
plementations of this algorithm and presented numerical data to compare these
implementations with existing methods that allow to automatically verify poly-
nomial derivational complexity of TRSs.

We believe the here presented approach can be extended further. A start-
ing point for future work would be to decide whether it is possible to define
additional subclasses of context dependent interpretations inducing polynomial
derivational complexities that grow faster than quadratic. One possible approach
is to drop the restriction to integer coefficients and thus generalise the notion
of polynomial context dependent interpretations. By Tarski’s quantifier elimi-
nation method, such an extension turns the undecidable positivity problem for
Diophantine (in)equalities into a decidable problem. Further research will clarify
the impact of this extension. A crucial problem in practical considerations is the
known ineffectivity of quantfier elimination, see for example [22].

References

1. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Proc. 3rd RTA. Volume 355 of LNCS. (1989) 167–177

2. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105 (1992) 129–140

3. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path orderings imply multiply recursive derivation lengths. TCS 139 (1995) 355–
362

4. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Proc.
13th LPAR. Volume 4246 of LNCS. (2006) 75–89

5. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that
certify termination of left-linear term rewriting systems. IC 205 (2007) 512–534

6. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Proc. 4th IJCAR, Springer (2008) accepted for publication.

7. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Proc.
12th RTA. Volume 2051 of LNCS. (2001) 108–121

8. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

9. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2003)

10. Schnabl, A.: Context Dependent Interpretations. Master’s thesis, Universität Inns-
bruck (2007) Available at http://cl-informatik.uibk.ac.at/∼aschnabl/.

11. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-
nation using polynomial interpretations. JAR 34 (2005) 325–363

12. Matiyasevich, Y.: Enumerable sets are diophantine. Soviet Mathematics (Dokladi)
11 (1970) 354–357

13. Steinbach, J., Kühler, U.: Check your ordering - termination proofs and open
problems. Technical Report SEKI-Report SR-90-25, University of Kaiserslautern
(1990)

14. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Proc.
10th SAT. Volume 4501 of LNCS. (2007) 340–354

15. Korp, M., Middeldorp, A.: Proving termination of rewrite systems using bounds.
In: Proc. 18th RTA. Volume 4533 of LNCS. (2007) 273–287

16. Hofbauer, D., Waldmann, J.: Deleting string rewriting systems preserve regularity.
TCS 327 (2004) 301–317

17. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11 (2001) 33–53

18. Marion, J.Y.: Analysing the implicit complexity of programs. IC 183 (2003) 2–18
19. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space

bounds. In: Proc. 16th RTA. Volume 3467 of LNCS. (2005) 150–164
20. Marion, J.Y., Péchoux, R.: Resource analysis by sup-interpretation. In: Proc. 8th

FLOPS. Volume 3945 of LNCS. (2006) 163–176
21. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Proc. 9th FLOPS.

Volume 4989 of LNCS. (2008) 130–146
22. Caviness, B., Johnson, J., eds.: Quantifier Elimination and Cylindrical Algebraic

Decomposition. Springer (2004)

http://cl-informatik.uibk.ac.at/~aschnabl/

	Proving Quadratic Derivational Complexities using Context Dependent Interpretations
	Georg Moser and Andreas Schnabl

