
The Exact Hardness of Deciding Derivational and
Runtime Complexity∗

Andreas Schnabl1 and Jakob Grue Simonsen2

1 Institute of Computer Science, University of Innsbruck
Technikerstr. 21a, A-6020 Innsbruck, Austria
andreas.schnabl@uibk.ac.at

2 Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 126-128, DK-2300 Copenhagen S, Denmark
simonsen@diku.dk

Abstract
For any class C of computable total functions satisfying some mild conditions, we prove that the
following decision problems are complete for level Σ0

2 of the arithmetical hierarchy: (A) Deciding
whether a term rewriting system (TRS for short) has runtime complexity bounded by a function
in C. (B) Deciding whether a TRS has derivational complexity bounded by a function in C.

In particular, the problems of deciding whether a TRS has polynomially (exponentially)
bounded runtime complexity (respectively derivational complexity) are Σ0

2-complete. This places
deciding polynomial derivational or runtime complexity of TRSs at the same level in the arith-
metical hierarchy as deciding nontermination or nonconfluence of TRSs. We proceed to show that
the related problem of deciding for a single computable function f whether a TRS has runtime
complexity bounded from above by f is Π0

1-complete. We further prove that analysing the im-
plicit complexity of TRSs is even more difficult: The problem of deciding whether a TRS accepts
a language of terms accepted by some TRS with runtime complexity bounded by a function in
C is Σ0

3-complete.
All of our results are easily extended to the notion of minimal complexity (where the length

of shortest reductions to normal form is considered) and remain valid under any computable
reduction strategy. Finally, all results hold both for unrestricted TRSs and for the class of
orthogonal TRSs.

1998 ACM Subject Classification F.1.3, F.2.2, F.4.1, F.4.2

Keywords and phrases term rewriting, derivational complexity, arithmetical hierarchy

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Term rewriting is a simple model of non-deterministic computation that underlies much of
declarative and functional programming. Term rewriting systems (TRSs for short) are finite
sets of oriented equations (rewriting rules) on first-order terms–e.g. c(c(x, y), z)→ c(x, c(y, z))
for the associative law from algebra. The application of such a rule somewhere in a term–
e.g. c(2, c(c(3, 3), 1)) →R c(2, c(3, c(3, 1)))–is the elementary step of computation in term
rewriting.

In the last few years, complexity analysis has emerged as an important research field
within the term rewriting community. Several measures of complexity have been considered

∗ This work was partially supported by a grant of the University of Innsbruck.

© Andreas Schnabl and Jakob Grue Simonsen;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Exact Hardness of Derivational and Runtime Complexity

for term rewriting. The conceptually simplest one was suggested by Hofbauer and Lautemann
in [18]: The derivational complexity function with respect to a terminating TRS R relates
the worst-case number of rewriting steps in a computation to the size of the initial term.
Other such measures include runtime complexity [16], which is a restriction of derivational
complexity only considering initial terms corresponding to function calls, and the complexity
of the function computed by a TRS [8], its implicit complexity. While all of these measures
consider a kind of worst case complexity, some average case analysis has been done, as well
[7]. The focus has been on measures that take the worst case number of rewriting steps in a
reduction as their metric. The most common way to establish upper bounds on these has
been to infer them from a termination proof of the given TRS, see [17, 22, 30, 29] for some
examples of this approach. A possible modification of this approach is to restrict existing
termination proof techniques in order to obtain smaller complexity bounds; instances of this
idea can be found in [19, 2, 16].

The problem of deciding, for some TRS R, whether its derivational or runtime complexity
is bounded by a single function, or a family of functions, is–unsurprisingly–undecidable.
In the work reported in this paper, we follow recent investigations into the exact level of
undecidability (in the arithmetical hierarchy) of questions in rewriting [24, 9], according to
which many of the standard properties of rewriting (termination, normalisation, confluence)
are known to be Π0

2-complete. We also follow a much older set of investigations into the
exact level of undecidability of intensional properties of programs [12, 23, 20, 1]. Compared
to other models of computation such as Turing Machines, term rewriting operates in a quite
nonstandard way, and it is a priori not clear that the classic results can be transferred to term
rewriting. For instance, for nonlinear rewriting rules (where a variable may occur more than
once in either the left- or the right-hand side) such as f(x, x, y)→ g(x, y, y), it is assumed
that both the equality check implicit in determining whether the rule can be applied (e.g. the
first two arguments of f must be identical terms), and the copying of arbitrarily large terms
(e.g. the term substituted for y can be large) can be done within a single computation step.
Even more pertinent, the set of allowed “starting configurations” in derivational and runtime
complexity analysis is defined much more liberally than in other models of computation. For
Turing machines, only (a certain subset of all) well-formed configurations are considered, and
in pure functional programs, the arguments of a function are always well-formed elements
of a data type, e.g. f(s(s(0))) — “f applied to 2”. In contrast, derivational complexity, for
example, must also consider “junk” terms that do not correspond to well-formed starting
configurations such as f(s(f(f(s(0))))). We verify that despite these obstacles, the classical
results hold for TRSs.

Our results show that the decision problems for complexity functions such as the above
are either Π0

1-complete (for a specific function as an upper bound) or Σ0
2-complete (for

existence of an upper bound in a family of functions satisfying some mild conditions). This
is in line with classical results on the degrees of undecidability of intensional complexity of
programs. Our results run counter to the intuition given by the traditional approach to
complexity analysis of rewriting: Upper bounds on the derivational complexity of a TRS are
established by extraction from a proof of termination of the TRS. However, the exact degree
of undecidability for deciding whether the derivational complexity of a TRS is (for instance)
polynomially bounded is the same as for deciding whether it is non-terminating.

All results easily carry over to a different flavour of complexity from formal language
theory, confusingly also called derivational complexity, but which is starkly different from the
homonymous notion in term rewriting. In formal language theory, the derivational complexity
relates an integer n to the maximum length of shortest derivations of sentences of length at

A. Schnabl and J.G. Simonsen 3

most n [6, 27].
For implicit complexity of TRSs, where the computational complexity of the mathematical

function computed by a given TRS R is considered [5, 19, 21], the pertinent decision problems
are even harder: Deciding whether the implicit complexity of R is, for instance, polynomial
or exponential is even harder than the previously mentioned problems: Σ0

3-complete. Again,
this is in line with the classical results [12, 23]. However, in practice, the additional existential
quantifier (quantifying over the possibly more efficient TRS) might make it easier to establish
upper bounds on the implicit complexity of a TRS than to establish upper bounds on its
derivational or runtime complexity as there is an additional degree of freedom in constructing
the proof of the upper bound.

Finally, when using TRSs to reason about functional programs, the notion of strategy is
usually employed to make evaluation deterministic and express for instance call-by-value and
call-by-name. We show that all of our results remain valid for any computable strategy.

2 Preliminaries

We presuppose basic familiarity with computability theory [25, 10] and term rewriting [4, 28],
but recall central definitions and notions of rewriting and computability below. Let V be a
countably infinite set of variables, and F a finite signature of function symbols with fixed
arities containing at least one symbol of arity 0. The set of terms over F and V is denoted
as T (F ,V). The set of ground terms over F is denoted as T (F). The root symbol (denoted
as rt(t)) of a term t is either t itself, if t ∈ V, or the symbol f , if t = f(t1, . . . , tn). The
size (denoted as |t|) of a term t is the total number of occurrences of variables and function
symbols in t. A substitution is a mapping σ : V → T (F ,V), where the number of variables x
such that σ(x) 6= x is finite. We usually write tσ instead of σ(t) to denote the application of
σ to a term t. We introduce a fresh constant • (the hole) and define a context C as a term
(over F ∪ {•} and V) containing exactly one occurrence of •. For a term t and a context C,
C[t] denotes the replacement of • by t in C.

Let R be a finite TRS over F and V, i.e. a finite set of rewriting rules l → r with
l, r ∈ T (F ,V) such that l is not a variable, and each variable in r also occurs in l. We
only consider finite TRSs in this paper. A TRS R induces a rewrite relation →R as follows:
s→R t if there exist a rule l→ r in R, a context C, and a substitution σ such that s = C[lσ]
and t = C[rσ]. A term s is a normal form of →R if there exists no term t such that s→R t.
A rule l→ r is left-linear if l does not contain multiple occurrences of the same variable. A
TRS is orthogonal if it contains no critical pairs, and all of its rules are left-linear.

The n-fold composition of →R is denoted as →n
R, and we write →∗R for the reflexive

and transitive closure of →R. We write s →!
R t if s →∗R t and t is a normal form of

→R. We write s →n,!
R t if s →n

R t and t is a normal form. A TRS R is confluent if for
all terms s, t, u such that u →∗R s and u →∗R t, there exists a term v such that s →∗R v

and t →∗R v. It is well-known that orthogonality of a TRS implies its confluence. The
derivation tree of a term s wrt. R is the following directed graph: the nodes are all terms
t such that s →∗R t, and there exists an edge from t to t′ iff t →R t′. We say that a
derivation tree is non-circular if no path starting from the root in the tree contains the
same term more than once. Observe that if s is R-terminating, then the derivation tree of
s wrt. R is finite and non-circular, and s is its single source node. The derivation height
of a term s with respect to a finitely branching, terminating binary relation → is given by
dh(s,→) = max{n : ∃t.s →n t}, and the derivational complexity function of a TRS R is
defined as dcR(n) = max{dh(s,→R) : |s| ≤ n}.

4 Exact Hardness of Derivational and Runtime Complexity

A function symbol f is a defined symbol of R if there exists a rewrite rule l → r such
that rt(l) = f ; otherwise, it is a constructor of R. We denote the set of defined symbols of
R as D, while the constructors of R are collected in C. A TRS R is a constructor TRS if
every rule in R has the shape f(l1, . . . , ln)→ r for f ∈ D and l1, . . . , ln ∈ T (C,V). The set
of basic terms is B = {f(v1, . . . , vn) : f ∈ D ∧ v1, . . . , vn ∈ T (C)}. The runtime complexity
function of a TRS R is rcR(n) = max{dh(s,→R) : |s| ≤ n ∧ s ∈ B}.

We briefly recapitulate the arithmetical hierarchy. Let n ∈ N. A set A ⊆ N is in Σ0
n (re-

spectively in Π0
n) if there is an (n+1)-ary decidable predicate1 P (x1, . . . , xn, xn+1) such that A

is exactly the subset of N for which the unary predicate ∃x1.∀x2. · · ·Qxn.P (x1, . . . , xn, xn+1)
(respectively ∀x1.∃x2. · · ·Qxn.P (x1, . . . , xn, xn+1)) obtains, where Q is either ∃ or ∀ depend-
ing on whether n is odd or even (respectively even or odd). We say that a set A ⊆ N is
Σ0

n-hard (respectively Π0
n-hard) if for every set B in Σ0

n (respectively, for every set B in Π0
n),

there exists a computable function f such that x ∈ B iff f(x) ∈ A for all x ∈ N. A set A ⊆ N
is Σ0

n-complete (Π0
n-complete) if it is both contained in Σ0

n (in Π0
n) and Σ0

n-hard (Π0
n-hard).

For a function f and a set G of functions N → N, we say that f is globally bounded
by a function in G (f ≤ G) if there exists a function g ∈ G such that for all n ∈ N, we
have f(n) ≤ g(n). The set G is closed under polynomial slowdown if, for any g ∈ G and
any polynomial P over N, we have f ≤ G for f(x) = P (g(x)). In particular, the set of all
polynomials over N is closed under polynomial slowdown. We define the set of functions
Ξ(G) as

⋃
g∈G,a∈N,b∈N g(a · n+ b).

Observe that if G is the set of polynomials with non-negative integer coefficients, then
G = Ξ(G), Ξ(G) is closed under polynomial slowdown, and f ≤ Ξ(G) iff f is bounded by a
polynomial. On the other hand, if G =

⋃
a∈N ga with ga(x) = ax, then Ξ(G) is again closed

under polynomial slowdown, and f ≤ Ξ(G) iff f is bounded by an exponential function; in
order to see that Ξ(G) is closed under polynomial slowdown, let gc ∈ G, and let P be a
polynomial of degree d with coefficients at most a; then P (gc(n)) ≤ gc+2(d · n+ (d+ 1) · a).

3 Turing Machines as Rewriting Systems

We assume that the reader is familiar with the standard definitions of Turing Machines [25].
The following is the specific formalisation of Turing Machines used throughout this paper.

I Definition 1. A (deterministic single-tape) Turing Machine is a triple (Q,Σ, δ), where
Q is a finite set of states containing at least three distinct states qs (the starting state),
qa (the accept state), and qr (the reject state).
Σ is a finite set of tape symbols containing at least two distinct symbols � (the blank
symbol) and ` (the left end marker).
δ is a function from Q\{qa, qr}×Σ to Q×Σ×{L,R} and is called the transition function.
It must be defined such that for all q ∈ Q \ {qa, qr}, we have δ(q,`) = (q′,`, R) for some
q′ ∈ Q. L represents a move to the left, and R a move to the right.

A (deterministic dual-tape) Turing Machine is a triple (Q,Σ, δ), identical to a single-tape
Turing Machine, except that δ is a function from Q\{qa, qr}×Σ×Σ to Q×Σ×{L,R}×Σ×
{L,R}. We assume that for all q ∈ Q\{qa, qr} and b ∈ Σ, we have δ(q,`, b) = (q′,`, R, b′, x′)
and δ(q, b,`) = (q′′, b′′, x′′,`, R) for some q′, q′′ ∈ Q, b′, b′′ ∈ Σ, and x′, x′′ ∈ {L,R}.

I Definition 2. A configuration of a single-tape Turing Machine is a triple (q, w, i), where
q ∈ Q denotes the current state.

1 The predicate may be chosen to be primitive recursive without changing the notions defined.

A. Schnabl and J.G. Simonsen 5

w = `w′ with w′ ∈ Σ∗ denotes the current content of the tape, apart from infinitely many
� symbols to the right of w.
i ∈ {1 . . . |w|} is the current position of the scanner.

A configuration of a dual-tape Turing Machine is a quintuple (q, w, i, v, j), where
q, w, and i have the same meaning as for single-tape Turing Machines.
v = `v′ with v′ ∈ Σ∗ denotes the current content of the second tape, except for infinitely
many � symbols to the right of v.
j ∈ {1 . . . |v|} is the current position of the scanner on the second tape.

A start configuration of a single-tape Turing Machine is a configuration (q, w, i) such that
q = qs, w = `w′ for some input word w′, and i = 1. A start configuration of a dual-tape
machine is a configuration (q, w, i, v, j) such that q = qs, `w′, i = 1, v = `, and j = 1. The
size of a configuration α = (q, w, i) of a single-tape machine, denoted as |α|, is |w| (here |w|
denotes the length of w). For dual tape machine configurations α = (q, w, i, v, j), we have
|α| = |w|+ |v|.

Given a (single-tape or dual-tape) Turing Machine M , the notions “M moves from
configuration α to configuration β in one step”, “M runs for n steps on input word x”, “M
halts on configuration α”, “M halts on input word x”, “M accepts/rejects input word x”,
and “M accepts (exactly) language L” are defined in the usual way. We leave it to the reader
to fill out the formal details.

Finally, given a (single-tape or dual-tape) Turing Machine M , we define the functions
TimeM and LifeTimeM : N→ N as follows; we chose the name LifeTimeM to reflect the
close relationship to the Turing Machine mortality problem, which asks whether a given
Turing Machine halts on all configurations:

TimeM (n) = max{m : M runs m steps on input word x ∧ |x| ≤ n}
LifeTimeM (n) = max{m : M runs m steps on configuration α ∧ |α| ≤ n}

If there exists any input word of length at most n (respectively, a configuration α with |α| ≤ n)
on which M does not halt, then TimeM (n) (respectively, LifeTimeM (n)) is undefined.

We now encode dual-tape Turing MachinesM as TRSs ∆(M), essentially using the encod-
ing of [28, Chapter 5], lifted to dual-tape machines. We build up the signature F of ∆(M) from
a set of defined symbolsD and constructor symbols C as follows. For each symbol b ∈ Σ, the set
C contains b as a unary function symbol, as well as a nullary symbol B. For each state q ∈ Q,
D contains q as a function symbol of arity 5. Additionally, D contains the unary symbols ok
and runM. Words over Σ are translated to terms by φ(ε) = B, and φ(bw) = b(φ(w)), where
b ∈ Σ and w ∈ Σ∗. A configuration (q, w, i, v, j) such that w = w1 . . . wn and v = v1 . . . vm is
encoded as the term q(ok(B), φ(wi−1 . . . w1), φ(wi . . . wn), φ(vj−1 . . . v1), φ(vj . . . vm)). This
way, it is easy to simulate Turing Machine computation steps by rewriting steps. For ease
of notation, we often identify w and φ(w) for w ∈ Σ∗ during the rest of this paper. The
purpose of demanding the subterm ok(B) to be present in the encoding of a configuration is
to ensure that configurations (in particular, unreachable configurations) can not be encoded
by basic terms. Therefore, in contrast to the construction in [28, Chapter 5], ∆(M) is not a
constructor TRS.

I Definition 3. Let M = (Q,Σ, δ) be a dual-tape Turing Machine. Then the orthogonal
TRS ∆(M) is defined by the rules shown in Figure 1.

Here, the rules for the transition function of the given Turing Machine are the natural
lifting of the rules given in [28, Chapter 5] to our encoding of configurations. The first of the

6 Exact Hardness of Derivational and Runtime Complexity

transition function rewrite rule (for each q ∈ Q \ {qa, qr} and a, b, c, d ∈ Σ)

δ(q, b, d) = (q′, b′, R, d′, R) q(ok(B), x, by, z, dw) → q′(ok(B), b′x, y, d′z, w)
δ(q, b, d) = (q′, b′, R, d′, L) q(ok(B), x, by, cz, dw) → q′(ok(B), b′x, y, z, cd′w)
δ(q, b,�) = (q′, b′, R, d′, R) q(ok(B), x, by, z,B) → q′(ok(B), b′x, y, d′z,B)
δ(q, b, d) = (q′, b′, L, d′, R) q(ok(B), ax, by, z, dw) → q′(ok(B), x, ab′y, d′z, w)
δ(q, b, d) = (q′, b′, L, d′, L) q(ok(B), ax, by, cz, dw) → q′(ok(B), x, ab′y, z, cd′w)
δ(q, b,�) = (q′, b′, L, d′, R) q(ok(B), ax, by, z,B) → q′(ok(B), x, ab′y, d′z,B)
δ(q,�, d) = (q′, b′, R, d′, R) q(ok(B), x,B, z, dw) → q′(ok(B), b′x,B, d′z, w)
δ(q,�, d) = (q′, b′, R, d′, L) q(ok(B), x,B, cz, dw) → q′(ok(B), b′x,B, z, cd′w)
δ(q,�,�) = (q′, b′, R, d′, R) q(ok(B), x,B, z,B) → q′(ok(B), b′x,B, d′z,B)

additional rules

runM(x) → qs(ok(B),B,`(x),B,`(B))
qa(ok(B), x, y, z, w) → qa(B, x, y, z, w)
qr(ok(B), x, y, z, w) → qr(B, x, y, z, w)

ok(ok(B)) → B

Figure 1 The TRS ∆(M) defined by a dual-tape Turing Machine M

four additional rules is responsible for rewriting a basic term of the shape runM(w) into the
encoding of a start configuration. The other three additional rules ensure that qa, qr, and ok
are defined symbols without violating the orthogonality of the TRS. This also implies that
each term in T (F) is a word over Σ.

I Lemma 4. Let M be a Turing Machine. Then rc∆(M)(n) = 0 for all n < 2, and
rc∆(M)(n) = TimeM (n− 2) + 2 for all n ≥ 2.

Proof. First, observe that the only basic terms t which are not normal forms with respect
to →∆(M) have runM as their root symbol. Hence, we assume rt(t) = runM. Moreover, the
single argument of runM must be a word over Σ. Then the only one-step reduct of t is the
encoding of a starting configuration of M . Moreover, clearly |t| ≥ 2. A straightforward
argument (compare [28, Exercise 5.3.3]) reveals the following:

Whenever s is the encoding of a configuration α of M whose current state is not qa or qr,
and s→∆(M) s

′, then s′ is the encoding of a configuration β of M such that M moves
from α to β in a single step.
Whenever s is the encoding of a configuration α of M whose current state is qa or qr,
then dh(s,→∆(M)) = 1.
Whenever α and β are configurations of M such that M moves from α to β in a single
step, then for each term encoding s of α, there exists a term encoding s′ of β such that
s→∆(M) s

′.
From these three observations, the lemma follows immediately. J

4 Hardness of Runtime Complexity Analysis

We now consider the hardness of establishing upper bounds on the runtime complexity of
TRSs. Thanks to Lemma 4, it is possible to use existing results about the time complexity of
Turing Machines [12] directly. Note that it is necessary to use dual-tape machines in order to
obtain the following results exactly as formulated. If we used single-tape machines instead,

A. Schnabl and J.G. Simonsen 7

there would be an additional quadratic slowdown in the proofs for both of the results from
[12] we use. Allowing multi-tape Turing Machines instead of dual-tape machines would yield
an additional speedup in the order of n logn [14]; however, this additional speedup is not
needed for obtaining the results below.

I Lemma 5. Let G = {g1, g2, . . .} be a recursively enumerable set of computable, strictly
increasing, and total functions N→ N. Then there is a computable, strictly increasing, and
total function f : N→ N such that f � Ξ(G).

Proof. Let f(n) = 1 + max{g1(n2 + n), . . . , gn(n2 + n)}. Then f is obviously computable,
strictly increasing, and total, and for all c, d, k ∈ N, we have f(n) > gk(c · n + d) for all
n > max{c, d, k}. J

I Proposition 6. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions N→ N. Then the following decision problem is Σ0

2-hard:
Instance: A dual-tape Turing Machine M .
Question: Is TimeM ≤ Ξ(G)?

Proof. By [12, Theorem 2], the proposition holds for the special case that G is the set
of polynomials. Inspection of the proof of [12, Theorem 2] yields that only the following
two properties of G are used: Ξ(G) must contain the function n+ 1, and there must exist
a computable total function f such that f � Ξ(G). The first property follows from the
assumption that G must consist of strictly increasing total functions, and the second property
follows from Lemma 5. J

I Theorem 7. Let G be a recursively enumerable set of computable, strictly increasing, and
total functions N→ N. Then the following decision problem is Σ0

2-complete:
Instance: A TRS R.
Question: Is rcR ≤ Ξ(G)?
If the problem instances are restricted to orthogonal TRSs, Σ0

2-completeness holds, as well.

Proof. To see that the problem is contained in Σ0
2, let P (x1, x2, x3) be the ternary predicate

on N that obtains exactly if the ith function gi in G and the TRS R encoded by x3 satisfy
rcR(x2) ≤ gi(j ·x2 + k), where (i, j, k) is the triple encoded by x1. Observe that P (x1, x2, x3)
is a decidable predicate: as G is recursively enumerable and consists of computable functions,
we may compute gi(j · x2 + k); as the signature and set of rules of R are both finite, we
may compute the finite set of basic terms of size at most x2, and for each of these compute
their derivation trees up to depth gi(j · x2 + k) and subsequently check whether the leaves of
each tree consist only of normal forms, and whether all trees are non-circular. Thus, the
answer to the question to be decided is “yes” for the TRS encoded by x3 iff the predicate
∃x1.∀x2.P (x1, x2, x3) obtains, proving containment in Σ0

2.
We now show Σ0

2-hardness of the problem. By Proposition 6, it is Σ0
2-hard to decide

whether TimeM ≤ Ξ(G), given a dual-tape Turing Machine M . From Lemma 4, it follows
that rc∆(M) ≤ Ξ(G) iff TimeM ≤ Ξ(G). The transformation ∆ is obviously computable, and
∆(M) is orthogonal. Therefore, it is Σ0

2-hard to decide whether rcR ≤ Ξ(G), given a TRS R
(independent of whether R is restricted to be orthogonal). J

I Proposition 8. Let f be a computable and total function N→ N such that f(n) > n for
all n ∈ N. Then the following decision problem is Π0

1-hard:
Instance: A dual-tape Turing Machine M .
Question: Is TimeM (n) ≤ f(n) for all n ∈ N?

8 Exact Hardness of Derivational and Runtime Complexity

Proof. Straightforward generalisation of [12, Theorem 1]. J

I Theorem 9. Let f be a computable and total function N→ N such that f(n) > n for all
n ∈ N. Then the following decision problem is Π0

1-complete:
Instance: A TRS R.
Question: Is rcR(n) ≤ f(n) for all n ∈ N?
If the problem instances are restricted to orthogonal TRSs, Π0

1-completeness holds, as well.

Proof. To see that the problem is contained in Π0
1, consider the binary predicate P (x1, x2)

on N that obtains iff rcR(x1) ≤ f(x1) where R is the TRS encoded by the integer x2. As f is
computable and total, and as the derivation tree of each of the finite number of terms of size
at most x1 can be computed up to depth f(x1), the predicate is obviously decidable. Hence,
the answer to the question to be decided is “yes” iff the predicate ∀x1.P (x1, x2) obtains, and
containment in Π0

1 is shown.
We now show Π0

1-hardness of the problem. Let f ′(n) = f(n + 2) − 2, and note that
f ′(n) > n. By Proposition 8, it is Π0

1-hard to decide whether TimeM (n) ≤ f ′(n) for all
n ∈ N, given a dual-tape Turing Machine M . By Lemma 4, we have rc∆(M)(n) ≤ f(n) for all
n ∈ N iff TimeM (n) ≤ f ′(n) for all n ∈ N. The transformation ∆ is obviously computable,
and ∆(M) is orthogonal. Therefore, it is Π0

1-hard to decide whether rcR(n) ≤ f(n) for all
n ∈ N, given a TRS R (independent of whether R is restricted to be orthogonal). J

5 Implicit Computational Complexity Analysis for Rewriting

In this section we establish Σ0
3-completeness of deciding implicit complexity bounds on TRSs:

Deciding whether the computation carried out by a TRS can be done within a certain time
bound, possibly by another, more efficient TRS. In the literature, there exist similar results
about Turing Machines [12, 23]. In order to be able to apply them, we need to establish a
link between computations carried out by TRSs and Turing Machines. For one direction of
this link, Lemma 4 suffices. The existence of the other direction of the link has recently been
shown by Avanzini and Moser [3]. In the following, we define a simple notion of computation
by a TRS, and glue the above components together.

I Definition 10. Let R be a TRS with signature F = D] C, let f be a specific n-ary
function symbol in D (we call f the main function of R), and a another specific symbol in
the signature of F (we call a the accepting symbol of R). Then for t1, . . . , tn ∈ T (C) we say
that R accepts (t1, . . . , tn) if f(t1, . . . , tn)→!

R t such that rt(t) = a. The language accepted
by R is the set L(R) = {(t1, . . . , tn) : t1, . . . , tn ∈ T (C) ∧R accepts (t1, . . . , tn)} .

I Definition 11. Let R be a TRS with main function f of arity n, accepting symbol a, and
signature F = D] C, let L ⊆ T (C)n, and let G be a set of computable, strictly increasing,
and total functions. We say that R (deterministically) accepts L in time Ξ(G) if L(R) = L,
R is confluent, and rcR ≤ Ξ(G).

As shown by the next lemma, ∆ indeed relates the notions of acceptance for Turing
Machines and TRSs in the natural way. It follows by the same arguments as Lemma 4.

I Lemma 12. Let M be a dual-tape Turing Machine with tape alphabet Σ and accepting state
qa. For each word x ∈ Σ∗, M accepts x iff ∆(M) with main function runM and accepting
symbol qa accepts φ(x). Moreover, L(∆(M)) is exactly the language accepted by M .

I Proposition 13. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions. Then the following decision problem is Σ0

3-hard:

A. Schnabl and J.G. Simonsen 9

Instance: A dual-tape Turing Machine M .
Question: Does there exist a dual-tape Turing Machine M ′ accepting the same language as

M such that TimeM ′ ≤ Ξ(G)?

Proof. By [23, Corollary 3], for each set C of decidable languages containing an infinite
language A and all languages B such that A \B is finite, the following problem is Σ0

3-hard:
Instance: A (dual-tape) Turing Machine M .
Question: Is the language accepted by M contained in C?
Fix C to be the set of all languages L decided by any (dual-tape) Turing Machine M ′ with
TimeM ′ ≤ Ξ(G). As G contains a strictly increasing function, C contains an infinite language
A and all languages B such that A \ B is finite. For instance, Σ∗, where Σ is the tape
alphabet of M , is a suitable instance of A here. Thus C satisfies the assumptions of [23,
Corollary 3], and the proposition follows. J

Now we have all necessary ingredients to show the main theorem of this section. Proposi-
tion 13 yields the corresponding result for Turing Machines, while Lemma 12 and [3] form
the bridge to term rewriting.

I Theorem 14. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions such that Ξ(G) is closed under polynomial slowdown. Then the following
decision problem is Σ0

3-complete:
Instance: A TRS R.
Question: Does there exist a TRS which accepts L(R) in time Ξ(G)?
If the problem instances are restricted to orthogonal TRSs, Σ0

3-completeness holds, as well.

Proof. First we show that the problem is contained in Σ0
3. Let P (x1, x2, x3, x4) be the

predicate on N that obtains exactly if the ith function gi in G, the TRS S encoded by l, and
the TRS R encoded by x4 satisfy the following properties:

x1 encodes the 4-tuple (i, j, k, l).
rcR(x2) ≤ x3 and rcS(x2) ≤ gi(j · x2 + k)
R and S have the same main function f , accepting symbol a, and constructors C in their
signatures FR and FS .
For all t1, . . . , tn ∈ T (C) with |f(t1, . . . , tn)| ≤ x2, there exists u1 ∈ T (FR) with rt(u1) = a

and f(t1, . . . , tn)→!
R u1 iff there exists u2 ∈ T (FS) with rt(u2) = a and f(t1, . . . , tn)→!

S
u2.

Observe that P (x1, x2, x3, x4) is a decidable predicate: As G is recursively enumerable and
consists of computable functions, we may compute gi(j · x2 + k); as the signature and set
of rules of R (respectively S) are both finite, we may compute the finite set of basic terms
over FR (respectively FS) of size at most x2, and for each of these compute their derivation
trees up to depth x3 (respectively gi(j · x2 + k)) and subsequently check whether the leaves
of each tree consist only of normal forms, and whether all trees are non-circular. If that
is the case, then the set of normal forms of the considered terms is finite, as well, and
hence it is computable whether f(t1, . . . , tn)→!

R u1 and f(t1, . . . , tn)→!
S u2 for all relevant

t1, . . . , tn, u1, u2. As the answer to the question to be decided is “yes” for the TRS encoded
by x4 iff the predicate ∃x1.∀x2.∃x3.P (x1, x2, x3, x4) obtains, containment in Σ0

3 is proved.
We now show Σ0

3-hardness of the problem. By Proposition 13, it is Σ0
3-hard to decide

whether there exists a dual-tape Turing Machine M ′ accepting the same language as M
such that TimeM ′ ≤ Ξ(G), given a dual-tape Turing Machine M . Let qa be the accepting
state of M . We set runM to be the main function, and qa the accepting symbol of ∆(M).
Note that ∆(M) is orthogonal, so the reduction described here works regardless of whether

10 Exact Hardness of Derivational and Runtime Complexity

the problem instance is restricted to be orthogonal. By Lemma 12, L = L(∆(M)) is the
language accepted by M . It remains to show that there exists a dual-tape Turing machine
M ′ accepting L with TimeM ′ ≤ Ξ(G) iff there exists a TRS R′ accepting L in time Ξ(G).

In order to show the direction from left to right, suppose that there exists a dual-tape
Turing machine M ′ accepting L with TimeM ′ ≤ Ξ(G). Then by employing Lemma 12 again,
we also have L(∆(M ′)) = L if we set the main function to runM again, and the accepting
symbol of ∆(M ′) to the accepting state of M ′. Thus, ∆(M ′) (deterministically) accepts L
in time Ξ(G).

For the direction from right to left, suppose that there exists a confluent TRS R′ with
main function f , accepting symbol a, and rcR′ ≤ Ξ(G). Then by [3, Theorem 6.2] there exists
a deterministic (dual-tape) Turing Machine M ′ such that TimeM ′(n) ∈ O(log(rcR′(n))3 ·
rcR′(n)7). Since rcR′ ≤ Ξ(G), and Ξ(G) is by assumption closed under polynomial slowdown,
we have TimeM ′ ≤ Ξ(G), as well. J

6 Hardness of Derivational Complexity Analysis

We proceed to give the completeness result for establishing upper bounds on the derivational
complexity of TRSs. Unfortunately, we cannot lift the results of Section 4 directly from
runtime complexity to derivational complexity. The definition of the derivational complexity
of a TRS places no restrictions on the considered starting term; in particular, we have to
consider encodings of unreachable configurations in the underlying Turing Machine. The
crucial ingredient of the main theorem in this section is an investigation by Herman [15] of
the mortality problem for Turing Machines. Herman’s proof gives a concrete reduction of
the mortality problem from the halting problem that involves only a polynomial overhead
in time complexity. In order to use this reduction, we switch from dual-tape to single-tape
Turing Machines for this section.

I Proposition 15 ([13, Theorem 6]). Let M be a dual-tape Turing Machine. Then there
exists a single-tape Turing Machine M ′ such that M ′ accepts and rejects exactly the same
input words as M , and TimeM ′(n) ∈ O(max{TimeM (n)2, n2}).

I Lemma 16. Let M be a single-tape Turing Machine with tape alphabet Σ. Then there
exists a single-tape Turing Machine M ′ such that M ′ accepts and rejects exactly the same
input words from Σ∗ as M , M ′ halts on all configurations iff M halts on all input words,
and LifeTimeM ′(n) ∈ O(max{TimeM (n)3, n3}).

Proof. By [15, Theorem 1], there exists a single-tape Turing Machine M ′ which accepts
the same input words from Σ∗ as M , and halts on all configurations iff M halts on all
input words. The proof that LifeTimeM ′(n) ∈ O(max{TimeM (n)3, n3}) is deferred to the
extended version of this paper [26]. J

We now encode single-tape Turing Machines M as TRSs ∆1(M). As in Section 3, we use
the encoding of [28, Chapter 5]: a configuration (q, w, i) such that w = w1 . . . wn is encoded
as the term q(φ(wi−1 . . . w1), φ(wi . . . wn)). However, we slightly change the rules of ∆1 to
reflect that we consider machines with only one-way infinite tapes for simplification purposes.
Note that ∆1 does not contain any mechanism to enforce any restriction on the starting
term of a derivation; this is because we are considering derivational complexity (rather than
runtime complexity) in this section.

I Definition 17. Let M = (Q,Σ, δ) be a single-tape Turing Machine. Then the orthogonal
constructor TRS ∆1(M) is defined by the rules shown in Figure 2.

A. Schnabl and J.G. Simonsen 11

transition function rewrite rule (for each q ∈ Q \ {qa, qr} and a, b ∈ Σ)

δ(q, b) = (q′, b′, R) q(x, by) → q′(b′x, y)
δ(q, b) = (q′, b′, L) q(ax, by) → q′(x, ab′y)
δ(q,�) = (q′, b′, R) q(x,B) → q′(b′x,B)

Figure 2 The TRS ∆1(M) defined by a single-tape Turing Machine M

We call a ground term of the shape q(s, t) over the signature of ∆1(M) a restricted term
if q ∈ Q, and s, t ∈ Σ∗, and the first symbol of s−1t is ` (here (·)−1 denotes string reversal).

I Lemma 18. Let M be a single-tape Turing Machine. Then we have dc∆1(M)(n) ∈
LifeTimeM (Ω(n)) and dc∆1(M)(n) ∈ n · LifeTimeM (O(n)).

Proof. The following holds by straightforward arguments (compare [28, Exercise 5.3.3]):
For each restricted term s encoding a configuration α of M such that s→∆1(M) s

′, the
term s′ is also restricted, and encodes a configuration β of M . Moreover, M moves from
α to β in a single step.
Whenever α and β are configurations of M such that M moves from α to β in a single
step, then for each (restricted) term encoding s of α, there exists a (restricted) term
encoding s′ of β such that s→∆1(M) s

′.

The above implies that for each configuration α ofM , the derivation height dh(s,→∆1(M))
is exactly the number of moves that can be done from α untilM halts, where s is a (restricted)
term which encodes α. Therefore, dc∆1(M)(n) ∈ LifeTimeM (Ω(n)).

It remains to show that dc∆1(M)(n) ∈ n · LifeTimeM (O(n)). It easily follows from the
above observations that rc∆1(M)(n) ∈ LifeTimeM (O(n)). We use the construction of [11,
Appendix B.2], which allows us to lift this upper bound to starting terms of arbitrary shape.
We define two functions f and g. The function f maps ground terms over the signature F of
∆1(M) to pairs containing a string over the tape alphabet, and a multiset of restricted terms
over F . The purpose of f (compare [11, Lemma B.5]) is to extract a number of restricted
terms from a term. The helper function g ensures that the leftmost symbol on the tape of
each configuration encoded by a restricted term is indeed a `.

f(B) = (B, ∅)
f(a(x)) = (a(w),M) if a ∈ Σ, f(x) = (w,M)

f(q(x, y)) = (B, {q(g(w, v))} ∪M1 ∪M2) if q ∈ Q, f(x) = (w,M1), f(y) = (v,M2)
g(B,`(v)) = (B,`v)

g(B, v) = (`(B), v)
g(`(B), v) = (`(B), v)
g(a(B), v) = (a(`(B)), v) if a ∈ Σ \ {`}
g(a(x), v) = (a(y), z) otherwise, if a ∈ Σ, (y, z) = g(x, v)

By [11, Lemma B.8], we get that for every term t over F with f(t) = (w,M), the inequality
dh(t,→∆1(M)) ≤

∑
s∈M dh(s,→∆1(M)) obtains. Moreover, |M| ≤ |t|. Hence, dc∆1(M)(n) ≤

n · rc∆1(M)(n). Thus, the above observations about restricted terms suffice in order to
conclude dc∆1(M)(n) ∈ n · LifeTimeM (O(n)). J

12 Exact Hardness of Derivational and Runtime Complexity

We are now able to transfer Proposition 6 to derivational complexity of term rewriting.
Proposition 15 and Lemma 16 take care of the the unrestrictedness of the considered starting
terms, and Lemma 18 performs the actual transfer from Turing Machines to TRSs.

I Theorem 19. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions N→ N such that Ξ(G) is closed under polynomial slowdown. Then the
following decision problem is Σ0

2-complete:
Instance: A TRS R.
Question: Is dcR ≤ Ξ(G)?
If the instances are restricted to orthogonal or constructor TRSs, Σ0

2-completeness also holds.

Proof. The proof of containment of the problem in Σ0
2 is identical to Theorem 7 mutatis

mutandis, whence we only show its Σ0
2-hardness. By Proposition 6, it is Σ0

2-hard to decide,
given a dual-tape Turing Machine M , whether TimeM ≤ Ξ(G). By Proposition 15 and
Lemma 16, there exists a single-tape Turing machine M ′ such that LifeTimeM ′(n) ∈
O(max{TimeM (n)6, n6}), andM ′ accepts the same language asM . As Ξ(G) is by assumption
closed under polynomial slowdown, and contains a strictly increasing function (and hence
also a function dominating i′(n) = n6), we have LifeTimeM ′ ≤ Ξ(G) iff TimeM ≤ Ξ(G).
Moreover, by Lemma 18, we have dc∆1(M ′) ∈ n · LifeTimeM ′(O(n)). As Ξ(G) is closed
under polynomial slowdown, it follows that dc∆1(M ′) ≤ Ξ(G) iff LifeTimeM ′ ≤ Ξ(G). The
transformations used in Proposition 15 and Lemmas 16 and 18 are obviously computable,
and ∆1(M ′) is orthogonal. Therefore, it is Σ0

2-hard to decide whether dcR ≤ Ξ(G), given
a TRS R (independent of whether R is restricted to be orthogonal or a constructor TRS).
Note that dc∆1(M ′) ≤ Ξ(G) iff rc∆1(M ′) ≤ Ξ(G), hence this is also an alternative proof
of the Σ0

2-completeness of determining whether rcR ≤ Ξ(G), which places slightly stricter
assumptions on G, but allows R to be restricted to constructor TRSs. J

7 Hardness of Minimal Complexity

The proofs in this section and Section 8 are based on the observation that the simulation
of a Turing machine M by the TRS ∆(M) has exactly one redex in each term encoding a
configuration of M—that is, each restricted term. Every ilk of problem we consider concerns
sets of reductions to some normal form; if there is only one possible reduction starting from
every restricted term, the proofs of hardness of the various kinds of problems we consider
remain virtually identical, regardless of whether we consider minimal or maximal reductions,
and regardless of reduction strategy. This crucial observation is stated in Lemma 21 below.

I Definition 20. We define the minimal height of a term s wrt. a finitely branching,
terminating relation → by mh(s,→) = min{n : ∃t.s→n,!

R t}. The twin notions of minimal
derivational complexity and minimal runtime complexity of a TRS R are then defined by:

mdcR(n) = max{mh(s,→R) : |s| ≤ n} mrcR(n) = max{mh(s,→R) : |s| ≤ n∧ s ∈ B} .

I Lemma 21. Let M be a dual-tape Turing machine and let s be a term in the signature of
∆(M) containing exactly one redex. If s→∆(M) t, then t contains at most one redex.

Proof. By assumption, the only redex of s is the one contracted by the step s →∆(M) t.
Hence, t only contains redexes created by that step. As ∆(M) is left-linear, redexes can
only be created if the right-hand side of the rule l→ r employed in s→∆(M) t overlaps with
a left-hand side of some other rule. Write s→∆(M) t as C[lσ]→∆(M) C[rσ] for a suitable
context C and substitution σ. Split on cases as follows:

A. Schnabl and J.G. Simonsen 13

(a) If l is on one of the forms q(· · ·) or runM(x), inspection of the rules of ∆(M) yields
that r is on the form q′(ok(B), · · ·). Clearly, r can only overlap with the left-hand side of a
rule l′ → r′ if the overlap occurs at the root of l′ and r. As ∆(M) is orthogonal, at most one
such rule l′ → r′ can exist, and hence there is at most one redex in t.

(b) If l = ok(ok(B)), then r = B. Obviously, B is a normal form on its own. By
assumption, C contains no redex on its own, and ∆(M) is orthogonal. Therefore, C[B]
contains at most one redex. J

I Theorem 22. Theorems 7, 9, and 14 all hold with the notion of rcR replaced by mrcR
mutatis mutandis.

Proof. Every basic term s in an orthogonal TRS (such as ∆(M) for a dual-tape Turing
Machine M) contains at most one redex. For each TRS on the form ∆(M), it is therefore
immediate by Lemma 21 that the minimum and maximum lengths of reduction to normal
form from s are the same. Therefore, all arguments in the hardness proofs of Theorems 7, 9,
and 14 remain sound if we replace rcR by mrcR, so the hardness results follow.

For containment in the respective complexity classes, observe that in the proofs of
Theorems 7, 9, and 14 (each of the three distinct variations of) the predicate P considers
longest maximal paths in the derivation tree of terms; this can obviously be replaced by the
shortest maximal paths, as required by mrcR, without affecting computability of P . J

I Theorem 23. Theorem 19 holds with the notion of dcR replaced by mdcR mutatis mutandis.

Proof. Containment in Σ0
2 follows in the same way as in the proof of Theorem 22.

We now show Σ0
2-hardness. Observe that for any (single-tape) Turing Machine M , the

TRS ∆1(M) is orthogonal, right-linear, and nonerasing. Therefore, ∆1(M) has the diamond
property, and for any term t, we have dh(t,→∆1(M)) = mh(t,→∆1(M)). With this, the
hardness result follows by arguments identical to those in the proof of Theorem 19. J

8 Hardness under Strategies

The results so far concern TRSs with unconstrained rewrite relation. In the modelling of
programming languages, it is common to consider TRSs with strategies dictating the redex
to be contracted in each term. Using the same ideas as in the last section, the previous
results in the paper carry over to the setting of TRSs with strategies2. Thus, the results of
the previous sections of the paper remain valid under, for example, any innermost strategy,
and under deterministic strategies such as the leftmost-outermost strategy.

I Definition 24. Let R be a TRS. A strategy S for R is defined by a relation →S ⊆ →R
such that any term t is a normal form of→R iff it is a normal form of→S. We call a strategy
for R computable if, given a term t, the (finite) set {t′ : t→S t

′} is computable.

The notions of runtime and derivational complexity of TRSs with strategies are defined
mutatis mutandis. For the next theorem, Lemma 21 is again the crucial proof ingredient.

I Theorem 25. Let f be a computable mapping returning a computable strategy f(R) for
each TRS R. Theorems 7, 9, and 14, 19, 22 and 23 all hold for the rewrite relation of R
with strategy S = f(R) (where the instance in each decision problem is R).

2 Here we use the notion “strategy” according to [28, Definition 9.1.1]. Note that this does not cover
everything that is commonly called a “strategy” in term rewriting. For instance, the proofs of this
section can not be directly carried over to context-sensitive rewriting.

14 Exact Hardness of Derivational and Runtime Complexity

Proof. Observe that if term s contains exactly one redex, then for any term t and strategy
S for R, we have s→R t iff s→S t. For every TRS on the form ∆(M), each basic term of
∆(M) has at most one redex. By Lemma 21, it is immediate that the lengths of all reductions
to normal form from s are the same. Therefore, all arguments in the hardness proofs of
Theorems 7, 9, 14, and 22, remain sound under S.

For Σ0
2-hardness of the remaining two properties, observe that for any (single-tape) Turing

Machine M , the TRS ∆1(M) is orthogonal, right-linear, and nonerasing. Therefore, ∆1(M)
has the diamond property, and for any term t, all reductions from t to its (unique) normal
form have the same length. In particular, we have dh(t,→∆1(M)) = dh(t,→S). Hence, the
hardness proofs for Theorems 19 and 23 remain sound when restricted to S.

To prove containment in the respective classes of the arithmetical hierarchy, observe
that each containment proof in Theorems 7, 9, 14, 19, 22, and 23 is done by computing the
derivation tree starting from a term s to a certain depth. The derivation tree with respect
to a strategy can be obtained by pruning the full derivation tree: A branch t → t′′ (and
thus, the entire subtree starting from t′′) is cut off if t′′ /∈ {t′ : t→S t

′}. As the strategy is
computable, the pruning operation is clearly computable, hence also the pruned derivation
trees, and we may thus replace the trees in the proofs of the above theorems by their pruned
versions, concluding the proof. J

9 Conclusion and Suggestions for Future Work

We have proved that a number of problems related to bounding the derivational and runtime
complexity of rewrite systems are complete for classes in the arithmetical hierarchy. We
hope that our results may be used to prove the exact hardness other problems in applied
logic—this would avoid the tedium of pure reduction from Turing machines.

A related open problem is Problem #107 of RTALooP3, a list of open problems collected
by term rewriters: what are complete characterisations of polynomial derivational complexity?

Furthermore, recent efforts have been made to devise automated methods for showing
whether the derivational or runtime complexity of a given TRS is polynomial, see for instance
[2, 16, 30, 29]. All of this recent work was focused on proving termination of a TRS by
some restricted means, and then extracting a complexity bound from that termination proof.
However, the position of this problem in the arithmetical hierarchy (which is the same as the
position of nontermination analysis) suggests that it would be promising to try to certify
polynomial complexity bounds for rewrite systems in a completely novel way.

References
1 A. Asperti. The intensional content of Rice’s theorem. In Proc. 35th POPL, pages 113–119.

ACM, 2008.
2 M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. 9th FLOPS, volume

4989 of LNCS, pages 130–146, 2008.
3 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime

computability. In Proc. 21st RTA, volume 6 of LIPIcs, pages 33–48, 2010.
4 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
5 G. Bonfante, E. A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial

interpretation termination proof. J. Funct. Program., 11(1):33–53, 2001.

3 http://rtaloop.mancoosi.univ-paris-diderot.fr/

http://rtaloop.mancoosi.univ-paris-diderot.fr/

A. Schnabl and J.G. Simonsen 15

6 R. Book. Time-bounded grammars and their languages. J. Comput. Syst. Sci., 5(4):397–
429, 1971.

7 C. Choppy, S. Kaplan, and M. Soria. Complexity analysis of term-rewriting systems. Theor.
Comput. Sci., 67(2):261–282, 1989.

8 E. A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of algorithms.
In Proc. 11th CADE, volume 607 of LNCS, pages 139–147, 1992.

9 J. Endrullis, H. Geuvers, J. G. Simonsen, and H. Zantema. Levels of undecidability in
rewriting. Inform. Comput., 209(2):227 – 245, 2011.

10 M. Fernandez. Models of Computation: An Introduction to Computability Theory. Under-
graduate topics in computer science. Springer London, 2009.

11 M. C. F. Ferreira. Termination of term rewriting. PhD thesis, Universiteit Utrecht, 1995.
12 P. Hájek. Arithmetical hierarchy and complexity of computation. Theor. Comput. Sci.,

8:227–237, 1979.
13 J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. T. Am.

Math. Soc., 117:285–306, 1965.
14 F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing Machines. J.

ACM, 13(4):533–546, 1966.
15 G. T. Herman. Strong computability and variants of the uniform halting problem. Math.

Logic Quart., 17:115–131, 1971.
16 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair

method. In Proc. 4th IJCAR, volume 5195 of LNCS, pages 364–379, 2008.
17 D. Hofbauer. Termination proofs by multiset path orderings imply primitive recursive

derivation lengths. Theor. Comput. Sci., 105(1):129–140, 1992.
18 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.

3rd RTA, volume 355 of LNCS, pages 167–177, 1989.
19 J.-Y. Marion. Analysing the implicit complexity of programs. Inform. Comput., 183(1):2–

18, 2003.
20 J.-Y. Marion and J.-Y. Moyen. Heap-size analysis for assembly programs, 2006. Unpub-

lished manuscript. Available at http://hal.archives-ouvertes.fr/docs/00/06/78/38/
PDF/main.pdf.

21 J.-Y. Marion and R. Péchoux. Sup-interpretations, a semantic method for static analysis
of program resources. ACM Trans. Comput. Log., 10(4), 2009.

22 G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair
method. In Proc. 20th RTA, volume 5595 of LNCS, pages 255–269, 2009.

23 K. W. Regan. Arithmetical degrees of index sets for complexity classes. In Logic and
Machines, volume 171 of LNCS, pages 118–130, 1983.

24 G. Roşu. Equality of streams is a Π0
2-complete problem. In Proc. 11th ICFP. ACM, 2006.

25 H. Rogers Jr. Theory of Recursive Functions and Effective Computability. The MIT Press,
paperback edition, 1987.

26 A. Schnabl and J. G. Simonsen. The exact hardness of deciding derivational and runtime
complexity, 2011. Extended version. Available at http://cl-informatik.uibk.ac.at/
users/aschnabl.

27 S. Sippu. Derivational complexity of context-free grammars. Inform. Control, 53(1–2):52–
65, 1982.

28 TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

29 J. Waldmann. Polynomially bounded matrix interpretations. In Proc. 21st RTA, volume 6
of LIPIcs, pages 357–372, 2010.

30 H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In Proc. 21st
RTA, volume 6 of LIPIcs, pages 385–400, 2010.

http://hal.archives-ouvertes.fr/docs/00/06/78/38/PDF/main.pdf
http://hal.archives-ouvertes.fr/docs/00/06/78/38/PDF/main.pdf
http://cl-informatik.uibk.ac.at/users/aschnabl
http://cl-informatik.uibk.ac.at/users/aschnabl

	Introduction
	Preliminaries
	Turing Machines as Rewriting Systems
	Hardness of Runtime Complexity Analysis
	Implicit Computational Complexity Analysis for Rewriting
	Hardness of Derivational Complexity Analysis
	Hardness of Minimal Complexity
	Hardness under Strategies
	Conclusion and Suggestions for Future Work

