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Abstract

Context-dependent interpretations are a termination proof method developed
by Hofbauer in 2001. They extend the interpretations into F-algebras by intro-
ducing an additional parameter to the interpretation functions. The additional
parameter is changed by the context of the evaluated subterm, thus giving rise
to the name “context-dependent interpretations”. They were designed to give
good upper bounds on the derivation height of terms with respect to rewrite
systems. In this thesis, the algorithm of Contejean, Marché, Tomás, and Ur-
bain for automatically finding polynomials interpretations to prove termination
of rewrite systems is adapted to context-dependent interpretations. We will
describe our implementation of this adaptation. Furthermore, we will present
a subclass of context-dependent interpretations which induces a quadratic up-
per bound on the derivational complexity of the considered rewrite system.
Finding context-dependent interpretations of this subclass is also part of the
implementation, for which we will present some experimental results.
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1 Introduction

Derivational complexity analysis is a research field within term rewriting, which
is a model of computation. Derivational complexity analysis deals with the
maximum length of rewrite sequences admitted by terminating rewrite systems
or classes of rewrite systems. The derivational complexity of a rewrite system
is a function which maps the size of a term to the maximum number of rewrite
steps that can be done starting from any term of that size. For classes of
rewrite systems, characterizing the functions that may bound the derivational
complexity (function) for rewrite systems of that class is a way to measure
an aspect of its strength. One result in this area is the following theorem by
Hofbauer [8]:

Theorem 1.1 (Hofbauer 1992). Termination via the multiset path order implies
the existence of a primitive recursive bound on the derivational complexity of
the rewrite system.

A similar result is the following theorem by Weiermann [27]:

Theorem 1.2 (Weiermann 1995). Termination via the lexicographic path order
implies the existence of a multiple recursive bound on the derivational complexity
of the rewrite system.

Primitive recursion and multiple recursion in these theorems mean the same
as defined below in Section 2.1. Another result from this area is the following
theorem by Hofbauer and Lautemann about polynomial interpretations [10]:

Theorem 1.3 (Hofbauer, Lautemann 1989). Suppose R is a rewrite system
terminating by polynomial interpretations. Then the derivational complexity
function dcR(n) of is bounded by 22c·n

for some c ∈ R+.

Last, we want to mention the following result by Lepper [11]:

Theorem 1.4 (Lepper 2001). Suppose R is a rewrite system terminating by the
Knuth-Bendix order (KBO). Then the derivational complexity function dcR(n)
of is bounded by Ack(2O(n)).

With some restrictions, this result has been extended to infinite rewrite sys-
tems in 2006 by Moser [23]. All bounds mentioned in these theorems are essen-
tially optimal.

Another application of derivational complexity analysis (and term rewriting
in general) are functional programming languages. Functional programs are
conceivable as constructor based orthogonal term rewriting systems that take
a term as input and return its normal form as output. For example, see [7]
for some recent techniques by Giesl, Swiderski, Schneider-Kamp and Thiemann
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for transforming Haskell programs into rewrite systems. In this case, we are
interested in the number of steps it takes to compute the normal form. While the
upper bounds in the results cited above are nice for theoretical considerations,
they are too huge to be practical for analyzing functional programs. We are
interested in logarithmic, linear, polynomial or similar upper bounds on the
derivational complexity of rewrite systems, instead.

Methods have been established in order to capture the rewrite systems that
represent functions which can be computed by Turing machines in a number
of steps that is a polynomial in the size of the input. In such rewrite systems,
the application of the function is represented by a term f(t1, . . . , tn), where f
is a defined function symbol and the terms t1, . . . , tn only consist of constructor
symbols. These terms are particularly interesting for rewrite systems which
encode functions in their defined symbols. As shown by Bonfante, Cichon,
Marion, and Touzet [3, 4], a subclass of polynomial interpretations can show
that such a function encoded by a rewrite system is computable in a polynomial
number of steps by a Turing machine. Also, the termination proof methods
LMPO by Marion [18] and POP by Arai and Moser [1] can verify that functions
encoded by rewrite systems. Like the subclass of polynomial interpretations
described in [3, 4], POP is also able to induce a polynomial upper bound on the
derivation height of function symbols. However, the property that a rewrite
system represents functions computable in a polynomial number of steps by
Turing machines and the property that we have a polynomial upper bound on
the derivation height of special terms are different from the property that a
rewrite system has a polynomial derivational complexity. Also, the polynomial
bound holds only for constructor terms f(t1, . . . , tn). Concerning polynomial
derivational complexity, we only know of a result from string rewriting, which
was presented by Waldmann in a talk in 2006 [26]. In this talk, it was shown that
matrix interpretations induce a polynomial upper bound on the derivational
complexity if the interpretation has a special shape.

In this thesis, we deal with context-dependent interpretations. They were
introduced by Hofbauer in 2001 [9]. For interpretations over the domain N
(and in particular, polynomial interpretations), the interpretation of a term
is also an upper bound on its derivation height. Context-dependent interpre-
tations are an effort to improve this bound, and at the same to generalize
interpretations into the natural numbers. Even though Hofbauer stated that
he believes that it might be possible to find context-dependent interpretations
automatically, we do not know of any other implementation doing that. We will
describe two approaches, which we have implemented, for automatically gener-
ating context-dependent interpretations. The first approach is a heuristic given
in Hofbauer’s paper which transforms given polynomial interpretations over the
natural numbers into context-dependent interpretations. The second approach
is based on an algorithm to find polynomial interpretations for proving termi-
nation automatically, which has been developed by Contejean, Marché, Tomás,
and Urbain in 2005 [5]. We have adapted this algorithm such that it works
for context-dependent interpretations. Furthermore, we present a subclass of
context-dependent interpretations which is well-suited for automatic search by
the second method and induces a quadratic (and therefore polynomial) upper
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1 Introduction

bound on the derivational complexity of the considered rewrite system. Exper-
imental results show that our implementation of this approach performs quite
well on the Termination Problems Database (TPDB) [17], which is the stan-
dard test database for termination proof methods. They also show that from a
quantitative point of view, this method compares quiet well to LMPO.

This thesis is organized as follows: In Chapter 2, we recall some basic no-
tions which we will use later on. In particular, we recall polynomial interpre-
tations and present some interesting subclasses of polynomial interpretations.
In Chapter 3, we introduce context-dependent interpretations. We also recall
some results about context-dependent interpretation which were given by Hof-
bauer in [9]. Chapter 4 describes the two algorithms to find context-dependent
interpretations automatically. In Chapter 5, we present the subclass of context-
dependent interpretations which induces a quadratic upper bound on deriva-
tional complexity. Furthermore, we show that the restricted class of context-
dependent interpretations that we are dealing with is still strong enough to
handle rewrite systems which are terminating, but not simply terminating. In
Chapter 6, we discuss implementations of the approaches described in Chapter
4. Chapter 7 points out some work that is related to our thesis. We describe
LMPO and work by Lucas about proving termination by polynomial interpre-
tations into the real numbers. Finally, Chapter 8 summarizes this thesis and
states possible future work about context-dependent interpretations.
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2 Preliminaries

2.1 Basic Notions

In this section, we define some basic notions that we use in this thesis. We start
with some basic notions from outside the field of term rewriting.

Given two functions f(x) and g(x), we say that f(x) = O(g(x)) if there exist
some constants c, y0 such that for all y ≥ y0, we have f(y) ≤ c · g(y). As an
example, for some a, b ∈ R+

0 , consider the functions

f(x) = a(1 + b)(x2 + x) g(x) = x2 .

Let c = 2a(b + 1) and y0 = 1. Then for all y ≥ 1, we have

f(y) = a(1 + b)(y2 + y) ≤ a(1 + b)(y2 + y2) = 2a(1 + b)y2 = c · g(y)

and therefore, f(x) = O(g(x)). Given a series of real numbers (x1, x2, . . .),
the limes inferior (or infimum of the series, denoted by inf(x1, x2, . . .), is the
greatest real number x such that for all i ∈ N, we have x ≤ xi. Similarly,
the limes superior (or supremum) of the series, denoted by sup(x1, x2, . . .), is
the smallest real number x such that for all i ∈ N, we have x ≥ xi. As an
example, we have infi∈N

1
i+1 = 0. We say that a function f is in FP if there

exist a Turing machine M , a polynomial P , and a natural number n0 and a
bijective size-preserving encoding function e such that on input e(x1, . . . , xn),
M computes e(f(x1, . . . , xn)) in at most P (n) steps whenever n ≥ n0, where n
is the size of the input x. The set of primitive recursive functions is the smallest
set of functions over N such that

• the zero function z with z(x) = 0 is primitive recursive,

• the successor function s with s(x) = x + 1 is primitive recursive,

• the projection functions πj
i for all j ∈ N and i ∈ {1, . . . , j}, where

πj
i (x1, . . . , xi, . . . , xj) = xi

• whenever functions f of arity m and g1, . . . , gm of arity n are primi-
tive recursive, then h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))
is primitive recursive, as well (closure under composition),

• and whenever functions g of arity n and h of arity n+2 are primitive recur-
sive, then the function f of arity n+1 with f(0, x1, . . . , xn) = g(x1, . . . , xn)
and f(k+1, x1, . . . , xn) = h(f(k, x1, . . . , xn), k, x1, . . . , xn) is primitive re-
cursive, as well (closure under primitive recursion).
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2 Preliminaries

An example of a function that grows faster than any primitive recursive function
is the binary Ackermann function. The binary Ackermann function Ack is
defined recursively as follows:

Ack(0,m) = m + 1
Ack(n + 1, 0) = Ack(n, 1)

Ack(n + 1,m + 1) = Ack(n, Ack(n + 1,m))

Definition 2.1. For k > 2, the k-ary Ackermann function is defined recursively
as follows:

Ack(0̄,m) = m + 1
Ack(l̄, n + 1, 0) = Ack(l̄, n, 1)

Ack(l̄, n + 1,m + 1) = Ack(l̄, n,Ack(l̄, n + 1,m))
Ack(l̄, n + 1, 0, 0̄,m) = Ack(l̄, n,m, 0̄,m)

In this definition, 0̄ is used to denote a sequence of a fixed number of zeroes,
and l̄ to denote a sequence of a fixed number of variables l1, . . . , li.

Definition 2.2. The set of multiply recursive functions is the smallest set of
functions over N which contains the zero function, the successor function, the
projection functions, and the binary and all k-ary Ackermann functions and is
closed under composition and primitive recursion.

A multiset M is a collection of elements from a domain A where each element
may occur arbitrarily often. It is characterized by a function M : A → N,
where M(a) = n if the element a occurs in M exactly n times. The empty
multiset, denoted by ∅ is the multiset such that for all a ∈ A, we have ∅(a) = 0.
Given multisets M1, . . . ,Mn,M,N over a domain A, the following operations
are defined on them:

• M ⊆ N if for all a ∈ A, we have M(a) ≤ N(a)

• X = M ]N if for all a ∈ A, we have X(a) = M(a) + N(a)

• X = M −N if for all a ∈ A, we have X(a) = max{0,M −N}

• X = maxmul{M1, . . . ,Mn} if we have X(a) = max{M1(a), . . . ,Mn(a)}
for all a ∈ A

Given an irreflexive order > on a set A, the multiset order >mul on multisets
over A is defined as follows: we have M >mul N if there exist two multisets X
and Y over A such that N = (M−X)]Y , X 6= ∅, and ∀y ∈ Y : ∃x ∈ X : x > y.

2.2 Term Rewriting

The remainder of this chapter will cover some basics of term rewriting and
termination of term rewrite systems. We will only cover the concepts which
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2.2 Term Rewriting

are relevant to this thesis. For a general introduction to term rewriting, see
[2, 22, 25], for instance.

A term rewrite system (TRS) R consists of a signature F , a countably infinite
set of variables V that is disjoint from F , and a finite set of rewrite rules l → r,
where l and r are terms such that l /∈ V and all variables which occur in r
also occur in l. The signature F defines a set of function symbols, and assigns
to each function symbol f a natural number n. This number n denotes the
number of arguments of f , and we say that f has arity n. We call function
symbols with arity 0 constants. For the rest of this thesis, we will only consider
TRSs with a finite signature and a finite amount of rules. We will also assume
that every signature contains at least one constant function symbol.

Definition 2.3. Given a set of functions symbols F such that each function
symbol has a fixed arity, and a set of variables V, the set of terms T (F ,V) over
F and V is the smallest set such that

1. every variable from V is in T (F ,V),

2. every constant function symbol from F is in T (F ,V),

3. and whenever we have that terms t1, . . . , tn ∈ T (F ,V) and f is a function
symbol of arity n > 0, then f(t1, . . . , tn) ∈ T (F ,V).

The set of terms T (F) without any variables is called the set of ground terms
over F . It is defined exactly as T (F ,V), but the first clause of the definition is
dropped.

Definition 2.4. The root symbol of a term t, denoted by root(t) is defined as
follows:

root(x) = x if x ∈ V
root(f(t1, . . . , tn)) = f if f ∈ F and arity(f) = n

The size of a term t, denoted by |t|, is defined as follows:

|x| = 1 if x ∈ V

|f(t1, . . . , tn)| = (
n∑

i=1

|ti|) + 1 if f ∈ F and arity(f) = n

Definition 2.5. A substitution is a mapping σ : Dom(σ) → T (F ,V), and a
ground substitution is a mapping σ : Dom(σ) → T (F), where Dom(σ) denotes
a finite subset of V. Application of a (ground) substitution σ to a term t (this
is denoted by tσ) replaces all occurrences of variables x where x ∈ Dom(σ) by
σ(x).

Definition 2.6. A context C is a term from T (F ∪{�},V) such that � occurs
exactly once. The symbol � denotes a fresh function symbol of arity 0. Ap-
plication of a context to a term t (this is denoted by C[t]) replaces the unique
occurrence of � in C by t.
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2 Preliminaries

With the rewrite rules of a TRS R, we associate the relation →R, which is
defined as follows:

Definition 2.7. Given a TRS R, its rewrite relation is the smallest relation
over T (F ,V) that contains all rewrite rules and is closed under contexts and
substitutions. If R is clear from the context, we also write → instead of →R.
The transitive closure of this relation is denoted by →+. The reflexive and
transitive closure of → is denoted by →∗. For n ∈ N, we write →n to denote
the reflexive closure of the empty relation if n = 0, and → · →n−1 otherwise.

Definition 2.8. A TRS R terminates (we can also say, it is strongly normal-
izing, or →R is Noetherian) if there exists no infinite chain of terms t0, t1, . . .
such that for each i ∈ N, we have ti →R ti+1.

Definition 2.9. A TRS R is confluent if for all terms a, b, and c such that
a →∗ b and a →∗ c, there exists a term t such that b →∗ d and c →∗ d.

Definition 2.10. For a given signature F , the embedding TRS for F (denoted
by Emb(F)) is the rewrite system consisting of the rewrite rules

f(x1, . . . , xi, . . . , xn) → xi

for all function symbols f and all i ∈ {1, . . . , n} with n = arity(f). The
transitive closure of the rewrite relation of an embedding TRS is denoted by B,
and the reflexive and transitive closure is denoted by D.

If for a TRS R over a signature F , we have the property that R ∪ Emb(F)
is terminating, we say that R is simply terminating.

One of the most well-known syntactic methods of proving termination is the
multiset path order (MPO).

Theorem 2.11. Given a rewrite system R and an irreflexive order > on F
(> is called the precedence), the multiset path order on T (F ,V), denoted by
>mpo, is defined as follows: Given two terms t = f(t1, . . . , tn) and s, we have
t >mpo s if

1. ti >mpo s or ti = s for some i ∈ {1, . . . , n}, or

2. s = g(s1, . . . , sm), f > g, and t >mpo si for all i ∈ {1, . . . ,m}, or

3. s = f(s1, . . . , sn) and (t1, . . . , tn) >mpo
mul (s1, . . . , sn)

If for every rewrite rule l → r ∈ R, we have l >mpo r, then R is terminating.
Moreover, R is simply terminating.

Definition 2.12. Given a TRS R over a signature F , we say that a function
symbol f ∈ F is a defined symbol if there exists a rewrite rule l → r ∈ R such
that f = root(l). Otherwise, we call f a constructor symbol. The set of defined
symbols is denoted by FD, and the set of constructor symbols is denoted by FC .
We call a term of the shape f(t1, . . . , tn) ∈ T (F ,V) a constructor term if f is
a defined symbol, and the terms t1, . . . , tn do not contain any defined symbols.
The TRS R is a constructor system if for every rewrite rule l → r ∈ R, l is a
constructor term.
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2.3 Polynomial Interpretations

Definition 2.13. A confluent constructor system R computes a function f :
(T (FC))n → T (FC) if whenever we have f : x1, . . . , xn 7→ y, then we also have
f(x1, . . . , xn) →∗ y.

Definition 2.14. For a terminating TRS R, the derivation height of a ground
term t with respect to R is defined as

dhR(t) = max{n | ∃s : t →n
R s} .

As an example, consider the TRS R consisting of the two rewrite rules

x+0 → x

x+S(y) → S(x+y)

over the signature containing the constant function symbol 0, the unary function
symbol S, and the binary function +. Consider the ground term S(0)+S(S(0)).
Then the only possible rewrite sequence is

S(0)+S(S(0)) → S(S(0)+S(0)) → S(S(S(0)+0)) → S(S(S(0))) .

Therefore, we have dhR(S(0)+S(S(0))) = 3. Also note that the fact that we
only consider finite rewrite systems is essential for the well-definedness of dhR.
Consider the infinite, but terminating rewrite system R with the rewrite rule

b(x) → x

and a rewrite rule
a → bn(0)

for all n ∈ N. Then there exists no natural number which bounds the derivation
height of the term a.

Definition 2.15. The derivational complexity of a TRS R is the following
function dcR : N → N:

dcR(n) = max{dhR(t) | |t| = n}

2.3 Polynomial Interpretations

The basic semantic method of proving termination of a TRS is finding an in-
terpretation into a well-founded monotone algebra.

Definition 2.16. An F-algebra for some signature F is defined to be a pair
A = (A, [·]A). We call the set A the carrier of the algebra. The other element of
the pair, [·]A, consists of interpretation functions fA : An → A for all function
symbols f ∈ F , where n is the arity of f .

Definition 2.17. An assignment is a mapping α : V → A, where A is the
carrier of an F-algebra. We denote the application of an interpretation [·]A and
an assignment α to a term t by [α]A(t). It is evaluated as follows:

[α]A(x) = α(x) if x ∈ V
[α]A(f(t1, . . . , tn)) = fA([α]A(t1), . . . , [α]A(tn)) if f ∈ F and arity(f) = n

9



2 Preliminaries

Definition 2.18. An interpretation function fA : An → A is monotone with
respect to a (quasi-)order >, if for all a1, . . . , an, b ∈ A with ai > b for some
i ∈ {1, . . . , n}, we have

fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an) .

If > is not irreflexive, then we also call this property weak monotonicity.
A well-founded monotone F-algebra is an F-algebra (A, [·]A) equipped with

a proper order > such that > is well-founded and for every function symbol
f ∈ F , the interpretation function fA is monotone with respect to >.

Definition 2.19. A well-founded monotone algebra (A, [·]A, >) is compatible
with a TRS R if for every rewrite rule l → r ∈ R and every assignment α,
[α]A(l) > [α]A(r).

The following theorem relates termination of TRSs and well-founded mono-
tone algebras. A proof of it can be found in [22].

Theorem 2.20. A rewrite system R is terminating if and only if there exists a
well-founded monotone algebra A = (A, [·]A, >) such that R is compatible with
A.

One of the well-known examples of interpretations into well-founded mono-
tone F-algebras are polynomial interpretations:

Definition 2.21. A polynomial interpretation is an interpretation into a well-
founded monotone algebra (A, [·]A, >) such that A ⊆ N, > is the standard order
on the natural numbers, and for every function symbol f , the interpretation
function is a polynomial.

Lemma 2.22. Suppose that we have a polynomial interpretation into a well-
founded monotone algebra A. Let R be a TRS. If A is compatible with R, then
R is terminating, and the following bound on the derivation height holds for all
terms t ∈ T (F ,V) and all assignments α:

dhR(t) ≤ [α]A(t)

Proof. Since every polynomial interpretation is an interpretation into a well-
founded monotone algebra, termination of R follows directly from Theorem
2.20. Because the carrier of the interpretation is a subset of N and > is the
standard order on N, we have that a > b ⇐⇒ a − b ≥ 1. Therefore, for all
terms t and s such that t →[α]A(t) s, we have [α]A(s) = 0. Thus, s must be a
normal form, and indeed we have dhR(t) ≤ [α]A(t).

2.4 Subclasses of Polynomial Interpretations

In this section, we are looking at two simple subclasses of polynomial interpre-
tations. One of them is very useful for automatically proving termination of
rewrite systems, while the other infers a very low bound on the derivational
complexity of a rewrite system.
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2.4 Subclasses of Polynomial Interpretations

Definition 2.23. A polynomial interpretation with linear polynomials is a poly-
nomial interpretation such that for each function symbol f of arity n, the in-
terpretation function fA has the form

fA(x1, . . . , xn) = af,0 +
n∑

i=1

af,ixi ,

where af,j ∈ N for j ∈ {0, . . . , n}.

Linear polynomials are the most commonly used polynomials for automat-
ically generated termination proofs with polynomial interpretations. Other
classes of polynomials which may be used for proving termination by poly-
nomial interpretations are the simple, simple-mixed, and quadratic polynomials
from Steinbach’s classification [24].

Definition 2.24. A polynomial interpretation with simple polynomials is a
polynomial interpretation such that for each function symbol f of arity n, the
interpretation function fA has the form

fA(x1, . . . , xn) =
∑

ij∈{0,1}

af,i1,...,inxi1
1 · . . . · xin

n ,

with af,i1,...,in ∈ N.

Definition 2.25. A polynomial interpretation with simple-mixed polynomials
is a polynomial interpretation such that for each function symbol f of arity n,
the interpretation function fA has the form

fA(x1, . . . , xn) =
∑

ij∈{0,1}

af,i1,...,inxi1
1 · . . . · xin

n +
n∑

i=1

bix
2
i ,

with af,i1,...,in ∈ N and bi ∈ N.

Definition 2.26. A polynomial interpretation with quadratic polynomials is a
polynomial interpretation such that for each function symbol f of arity n, the
interpretation function fA has the form

fA(x1, . . . , xn) =
∑

ij∈{0,1,2}

af,i1,...,inxi1
1 · . . . · xin

n ,

with af,i1,...,in ∈ N.

A simple subclass of linear polynomials is the class of additive polynomials.
As we will see, a termination proof by polynomial interpretation with additive
polynomial induces a linear upper bound on the derivational complexity of a
rewrite system.

Definition 2.27. A polynomial interpretation with additive polynomials is a
polynomial interpretation such that for each function symbol f of arity n, the
interpretation function fA has the form

fA(x1, . . . , xn) = af +
n∑

i=1

xi ,

where af ∈ N.
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2 Preliminaries

Lemma 2.28. Suppose that we have a polynomial interpretation with additive
polynomials into a well-founded monotone algebra A, and that A is compatible
with R. Then for each ground term t and every assignment α, we have

[α]A(t) ≤ c|t| ,

where c is the smallest natural number such that for every function symbol f ,
we have cA ≥ af . The constant af has the same meaning as in Definition 2.27.

Proof. We prove this by induction on the structure of t. Since t is a ground
term, it has the structure f(t1, . . . , tn) for some ground terms t1, . . . , tn and a
function symbol f of arity n. Then, by unfolding the definition of [α]A, we get

[α]A(t) = fA([α]A(t1), . . . , [α]A(tn))

= af +
n∑

i=1

[α]A(ti)

≤ af +
n∑

i=1

c|ti| .

The last line here follows from the induction hypothesis. By definition of c, we
know that af ≤ c. Furthermore, by definition of | · |, we have

∑n
i=1 |ti| = |t|−1.

Therefore,

af +
n∑

i=1

c|ti| ≤ c + (
n∑

i=1

|ti|)c

= c + (|t| − 1)c
= c|t| .

This concludes
[α]A(t) ≤ c|t| ,

which is what we wanted to show.

Lemma 2.29. Let R be a TRS, and suppose that we have a polynomial in-
terpretation with additive polynomials into a well-founded monotone algebra A,
and that A is compatible with R. Then the following holds:

dcR(m) ∈ O(m)

Proof. By Lemma 2.22, R is terminating, and we have for all ground terms t
and all assignments α

dhR(t) ≤ [α]A(t) .

Together with Lemma 2.28, we get

dhR(t) ≤ [α]A(t) ≤ c|t| ∈ O(|t|) .

This concludes
dcR(m) ∈ O(m) ,

which is what we wanted to show.

12



2.4 Subclasses of Polynomial Interpretations

Table 2.1: A simple rewrite system.
a(b(x)) → b(a(x))

As an example, consider the single-rule TRSR from Table 2.1 over the signature
containing the unary function symbols a and b, and the constant function sym-
bol c. The following polynomial interpretation with linear polynomials shows
termination of R:

aA(x) = 2x bA(x) = x + 1 cA = 0

However, for this example, there exists no polynomial interpretation with ad-
ditive polynomials into a well-founded monotone algebra A such that A is
compatible with R. If such an interpretation existed, then the interpretation
functions for a and b would have the shape

aA(x) = d + x , bA(x) = e + x .

Then we would have

[α]A(a(b(x))) = d + e + α(x) , [α]A(b(a(x))) = e + d + α(x) ,

hence
[α]A(a(b(x))) = [α]A(b(a(x))) ,

and therefore
[α]A(a(b(x))) ≯ [α]A(b(a(x))) .

Thus, there is no way to establish compatibility of A with R.
As shown by Bonfante, Cichon, Marion, and Touzet in [3, 4], additive poly-

nomials are also closely related to functions computable in FP:

Definition 2.30. Let R be a TRS. Suppose that we have a polynomial inter-
pretation such that for each defined symbol f , the interpretation function fA
is a polynomial, and for each constructor symbol g, the interpretation function
gA has the shape

gA(x1, . . . , xn) = ag +
n∑

i=1

xi ,

where ag ∈ N. Then we call the interpretation a Π(0)-interpretation. If all inter-
pretation functions for the defined function symbols are linear/simple/simple-
mixed/quadratic polynomials, then we say that the interpretation is a Π(0)-
interpretation with linear/simple/simple-mixed/quadratic polynomials, respec-
tively. If R is a confluent constructor system with a Π(0)-interpretation, then
R is a Π(0)-rewrite system.

In terms of derivation height, we have the following bound on an extension
of the class of Π(0)-rewrite systems:

13
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Lemma 2.31. Let R be a TRS. Suppose that we have a polynomial interpre-
tation such that for each defined symbol f , the interpretation function fA is a
polynomial, and for each constructor symbol g, the interpretation function gA
has the shape

gA(x1, . . . , xn) = ag +
n∑

i=1

xi ,

where ag ∈ N. Then there exists a polynomial P in one variable such that for
every ground constructor term t, we have

dhR(t) ≤ P (|t|) .

Proof. It follows directly from Lemma 2.28 that there exists a constant c such
that for each term t ∈ T (FC), we have [α]A(t) ≤ c|t|. For each defined func-
tion symbol f with arity n, the interpretation function f(x1, . . . , xn) is a poly-
nomial Pf in n variables. Therefore, for each ground constructor term of the
shape f(t1, . . . , fn), we have the bound [α]A(f(t1, . . . , tn)) ≤ Pf (c|t1|, . . . , c|tn|).
Now define P ′

f (x) = P (x, . . . , x) for all function symbols f ∈ FD and P (x) =∑
f∈FD Pf (cx). Then for each ground constructor term t = f(t1, . . . , tn), P ′

f (|t|)
and P (|t|) are obviously polynomials in |t|. Furthermore, we have

Pf (c|t1|, . . . , c|tn|) ≤ Pf (c|t|, . . . , c|t|) = P ′
f (c|t|) ≤ P (|t|) ,

and thus dhR(t) ≤ [α]A(t) ≤ P (|t|).

Definition 2.32. A function f : An → A is Π(0)-computable if there exists a
Π(0)-rewrite system which computes f such that T (FC) = A.

Theorem 2.33 (Bonfante, Cichon, Marion, Touzet 1999). The set of Π(0)-
computable functions is exactly the set of functions computable in FP.

14



3 Context-Dependent Interpretations

3.1 Introduction

Context-dependent interpretations were introduced by Hofbauer in 2001 [9].
Like with interpretations into well-founded monotone algebras, we define an
interpretation function for each function symbol. However, these interpreta-
tion functions take a real parameter, which we will usually denote by ∆, as
an additional argument. Additionally, some functions are defined which de-
scribe how this parameter ∆ changes when we move through the term. Before
introducing context-dependent interpretations formally, we reiterate the intro-
ductory example of [9], following Hofbauer’s presentation, to give a motivation
why context-dependent interpretations should be used.

Consider the TRS R from Table 2.1 over the signature containing the unary
function symbols a and b, and the constant function symbol c. One way to
prove termination of R is to construct a polynomial interpretation into a well-
founded monotone algebra B. As we have seen in of Section 2.4, a suitable
interpretation is

aB(x) = 2x bB(x) = x + 1 cB = 0 .

Consider the family of terms an(bm(c)). Lemma 2.22 allows us to use the
bound dhR(an(bm(c))) ≤ [α]B(an(bm(c))) on their derivation height. We have
[α]B(an(bm(c))) = 2n ·m. However, we can see that for each a in these terms,
the rewrite rule can be applied at most m times. Afterward, no more bs remain
to the right of this a. Therefore, the maximum number of rewrite steps that
can be done starting from an(bm(c)) is n ·m. So in this example, Lemma 2.22
heavily overestimates the derivation height of the given terms.

For context-dependent interpretations, an additional parameter which is usu-
ally denoted by ∆ is introduced into the interpretation functions. In this exam-
ple, the following interpretation functions ranging over R+

0 with the parameter
∆ ranging over R+ are suitable:

aA(∆, x) = (1 + ∆)x bA(∆, x) = x + 1 cA(∆) = 0

Note that these interpretation functions are very similar to the ones that were
used in the polynomial interpretation. With these interpretation functions, we
can evaluate ground terms of the structure f(t1, . . . , tn) as follows:

α]A(∆, f(t1, . . . , tn)) = fA(∆, [α]A(f1
A(∆), t1), . . . , [α]A(fn

A(∆), tn))

In order to apply this definition, we need to additionally define the functions f i
A

for all function symbols f and i ∈ {1, . . . , n} with n = arity(f). The intuition
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3 Context-Dependent Interpretations

behind these functions is that they dictate how the parameter ∆ changes as we
proceed into the term, adding the “context-dependence” to the interpretation.
For the example, the following functions can be used:

a1
A(∆) =

∆
1 + ∆

b1
A(∆) = ∆

Because the context-dependency has been added to the interpretation and the
carrier is now the set of nonnegative real numbers (which is not well-founded
with respect to the standard order on the real numbers), the usual termina-
tion criterion cannot be used. Instead, it is required that the interpretation
is ∆-monotone and ∆-compatible with R. ∆-monotonicity requires for every
function symbol f , each i ∈ {1, . . . , n} with n = arity(f), all ∆ ∈ R+, and all
a1, . . . , an, b ∈ R+

0 , it holds that b− ai ≥ f i
A(∆) implies

fA(∆, a1, . . . , b, . . . , an)− fA(∆, a1, . . . , ai, . . . , an) ≥ ∆ .

If for all f ∈ F , the interpretation function fA is weakly monotone in all
arguments with respect to the standard order on the real numbers, then it is
sufficient to check just

fA(∆, a1, . . . , ai + f i
A(∆), . . . , an)− fA(∆, a1, . . . , ai, . . . , an) ≥ ∆ .

∆-compatibility requires the same as standard compatibility, i.e. that all rewrite
rules are oriented from left to right by the interpretation. However, the differ-
ence between the left hand side and the right hand side must be at least ∆, i.e.
for all ∆ ∈ R+ and all rewrite rules l → r ∈ R, the following must hold:

[α]A(∆, l)− [α]A(∆, r) ≥ ∆

For the example in this section, checking ∆-monotonicity amounts to checking
whether the inequalities

aA(∆, x + a1
A(∆))− aA(∆, x) ≥ ∆

bA(∆, x + b1
A(∆))− bA(∆, x) ≥ ∆

hold for all x ∈ R+
0 and ∆ ∈ R+. Indeed, we have

aA(∆, x + a1
A(∆))− aA(∆, x) = (1 + ∆)(x +

∆
1 + ∆

)− (1 + ∆)x = ∆

and
bA(∆, x + b1

A(∆))− bA(∆, x) = x + ∆ + 1− (x + 1) = ∆ .

Therefore, ∆-monotonicity holds for this interpretation. For ∆-compatibility,
the following inequality has to be checked:

[α]A(∆, a(b(x)))− [α]A(∆, b(a(x))) ≥ ∆
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Indeed, we have

[α]A(∆, a(b(x)))− [α]A(∆, b(a(x)))

= aA(∆, [α]A(a1
A(∆), b(x)))− bA(∆, [α]A(b1

A(∆), a(x)))

= (1 + ∆)bA(
∆

1 + ∆
, x)− (aA(∆, x) + 1)

= (1 + ∆)(α(
∆

1 + ∆
, x) + 1)− ((1 + ∆)α(

∆
1 + ∆

, x) + 1)

= ∆ .

Therefore, by Theorem 3.6 below, R is terminating. Furthermore, by Theorem
3.8 below, the following upper bound on the derivation height holds for every
ground term t:

dhR(t) ≤ inf
∆∈D

[α]A(∆, t)
∆

For the example family of terms an(bm(c)), we have

[α]A(∆, an(bm(c))) = (1 + ∆n)m ,

which can be proved by induction on n. For the base case, we obviously have
[α]A(∆, bm(c)) = m. For the induction step,

[α]A(∆, a(an(bm(c)))) = (1 + ∆)[α]A(
∆

1 + ∆
, an(bm(c)))

= (1 + ∆)(1 +
∆

1 + ∆
n)m

= (1 + ∆ + ∆n)m
= (1 + ∆(n + 1))m ,

where the second line follows from the induction hypothesis. Finally, Theorem
3.8 yields the following bound on the derivation height:

dhR(an(bm(c))) ≤ inf
∆∈R+

(1 + ∆n)m
∆

= n ·m ,

which is optimal for this example. This shows that context-dependent interpre-
tations are capable of inducing stronger upper bounds on the derivation height
of terms than polynomial interpretations.

3.2 Context-Dependent Interpretations

Having reviewed Hofbauer’s motivating example for context-dependent inter-
pretations, we will now introduce them more formally.

Definition 3.1. A context-dependent algebra is a triple A = {A,D, [·]A}.
Again, the set A is the carrier of the algebra. The last element of the triple, [·]A,
contains interpretation functions fA : D × An → A for every function symbol
f ∈ F , where n is the arity of f . Additionally, for each i ∈ {1, . . . , n}, we have
a function f i

A : D → D.

17



3 Context-Dependent Interpretations

Definition 3.2. A ∆-assignment is a mapping α : D × V → A, where the
triple {A,D, [·]A} is a context-dependent algebra. We denote the application
of a context-dependent interpretation [·]A and a ∆-assignment α to a term t by
[α]A(t). It is evaluated as follows:

[α]A(∆, x) = α(∆, x)

[α]A(∆, f(t1, . . . , tn)) = fA(∆, [α]A(f1
A(∆), t1), . . . , [α]A(fn

A(∆), tn)),

where x ∈ V, f ∈ F , and arity(f) = n. Because of the special role of the
additional parameter, we will write α[∆](x), [α]A[∆](t), and fA[∆](t1, . . . , tn)
instead of α(∆, x) [α]A(∆, t), and fA(∆, t1, . . . , tn), respectively for the rest of
this thesis.

Definition 3.3. Let (A,D, [·]A) be a context-dependent algebra, and {>∆| ∆ ∈
D} a set of proper orders. We say that [·]A is ∆-monotone with respect to the
set of orders >∆ if for all ∆ ∈ D, a1, . . . , an, b ∈ A with ai >f i

A(∆) b for some
i ∈ {1, . . . , n}, we have

fA[∆](a1, . . . , ai, . . . , an) >∆ fA[∆](a1, . . . , b, . . . , an).

Furthermore, we say that [·]A is monotone with respect to a (quasi-)order >,
if for all ∆ ∈ D, a1, . . . , an, b ∈ A with ai > b for some i ∈ {1, . . . , n}, we have

fA[∆](a1, . . . , ai, . . . , an) > fA[∆](a1, . . . , b, . . . , an).

If > is not irreflexive, then we also call this property weak monotonicity.
We say that a well-founded ∆-monotone algebra is a context-dependent al-

gebra (A,D, [·]A) equipped with proper orders >∆ for all ∆ ∈ D such that [·]A
is ∆-monotone with respect to these orders, and all >∆ are well-founded.

Definition 3.4. A well-founded ∆-monotone algebra (A,D, [·]A, {>∆| ∆ ∈ D})
is ∆-compatible with a TRS R if for every rewrite rule l → r ∈ R, every ∆ ∈ D,
and every ∆-assignment α, we have

[α]A[∆](l) >∆ [α]A[∆](r).

Lemma 3.5. Let R be a TRS and A a well-founded ∆-monotone algebra that
is ∆-compatible with R. Then for all terms s and t, and all ∆ ∈ D, we have

s → t =⇒ s >∆ t.

Proof. This lemma can be proved by induction on s. If the rewrite step takes
place at the root position of s, then the lemma follows immediately from ∆-
monotonicity. If the rewrite step takes place below the root position, then s
must have the structure f(s1, . . . , si, . . . , sn), and the rewrite step takes place in
si for some i ∈ {1, . . . , n}. Then we have si → ti and t = f(s1, . . . , ti, . . . , sn).
From the induction hypothesis, we get

[α]A[f i
A(∆)](si) >f i

A(∆) [α]A[f i
A(∆)](ti).

18
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Together with ∆-monotonicity, this yields

fA[∆](. . . , [α]A[f i
A(∆)](si), . . .) >∆ fA[∆](. . . , [α]A[f i

A(∆)](ti), . . .)

Thus,
[α]A(. . . , si, . . .) >∆ [α]A(. . . , ti, . . .),

which is what we wanted to show.

Theorem 3.6. A rewrite system R is terminating if and only if there exists
a well-founded ∆-monotone algebra A = (A,D, [·]A, {>∆| ∆ ∈ D}) that is
∆-compatible with R.

Proof. The “if” part follows immediately from the well-foundedness of the or-
ders >∆ and Lemma 3.5. For the “only if”, we construct a well-founded mono-
tone algebra A = (A,D, [·]A, {>∆| ∆ ∈ D}) that is ∆-compatible with R. By
Theorem 2.20, there is a well-founded monotone algebra B = (B, [·]B, >) that is
compatible with R. Then let A = B, D = {0}, >0=>, and [·]A be constructed
as follows; for each function symbol f of arity n, let fA[∆](x1, . . . , xn) =
fB(x1, . . . , xn), and for every i ∈ {1, . . . , n}, let fA(∆) = ∆. Since > is well-
founded, >0 is obviously well-founded, as well. Monotonicity of B implies for
all ai > b:

fB(a1, . . . , ai, . . . , an) > fB(a1, . . . , b, . . . , an)
fA[∆](a1, . . . , ai, . . . , an) >0 fA[∆](a1, . . . , b, . . . , an)

As f i
A(∆) = ∆ and >0=>, this concludes ∆-monotonicity of A. Hence, A is a

well-founded ∆-monotone algebra.
For ∆-compatibility, we first prove the following claim: For every assignment

α, there is a ∆-assignment α0 such that for every term t, we have [α]B(t) =
[α0]A[0](t). The ∆-assignment α0 is created from α by setting α0[0](x) = α(x).
This claim is proved by induction on the structure of t. If t is a variable, then
the claim follows from the definition of α0. If t = f(t1, . . . , tn) then the claim
follows from the induction hypotheses and the definitions of fA and fB, which
concludes the inductive proof of the claim.

As can be easily seen, for every ∆-assignment α0, there is an assignment α
such that α0 was constructed from α as described in the above claim. Therefore,
for every ∆-assignment α0, there is an assignment α such that for every rewrite
rule l → r ∈ R, [α0]A[0](l) >0 [α0]A[0](r) follows immediately from [α]B(l) >
[α]B(r). Thus we can conclude ∆-compatibility of A and therefore the theorem.

We have just introduced context-dependent interpretations along similar lines
of thought as Hofbauer did in [9], but on a slightly more abstract level. Hof-
bauer’s context-dependent interpretations are a special case of the interpreta-
tions into well-founded ∆-monotone algebras defined below, and we will call
them context-dependent interpretations over the reals in the following.
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Definition 3.7. A context-dependent interpretation over the reals is an inter-
pretation into a well-founded ∆-monotone algebra A = (A,D, [·]A, {>∆| ∆ ∈
D}) such that A ⊆ R+

0 , D ⊆ R+, and for all ∆ ∈ D:

a >∆ b ⇐⇒ a− b ≥ ∆

As can be easily seen, every order >∆ is well-founded on subsets of the
nonnegative real numbers. Note that if for every function symbol f , the function
fτ [∆] is weakly monotone with respect to the standard order ≥ on R+

0 , checking
∆-monotonicity just amounts to checking whether

fτ [∆](x1, . . . , xi + f i
τ (∆), . . . , xn)− fτ [∆](x1, . . . , xi, . . . , xn) ≥ ∆.

Theorem 3.8 (Hofbauer 2001). Let R be a TRS. Suppose that we have a
context-dependent interpretation over the reals into a well-founded ∆-monotone
algebra A. If A is ∆-compatible with R, then R is terminating and the following
bound on the derivation height holds for all terms t ∈ T (F ,V) and all ∆-
assignments α:

dhR(t) ≤ inf
∆∈D

[α]A[∆](t)
∆

Proof. Since every context-dependent interpretation over the reals is an inter-
pretation into a well-founded ∆-monotone algebra, termination of R follows
directly from Theorem 3.6. By Lemma 3.5, each rewrite step subtracts at least
∆ from the interpretation of a term. Furthermore, the carrier of the A must be
a subset of N. Therefore, for all ∆ ∈ D and all terms t and s such that t →n s
where n = [α]A[∆](t)

∆ , we have [α]A[∆](s) = 0. Thus, s must be a normal form,
and indeed we have dhR(t) ≤ [α]A[∆](t)

∆ . Since this holds for all ∆ ∈ D, we also
have dhR(t) ≤ inf∆∈D

[α]A[∆](t)
∆ , which is what we wanted to show.

3.3 A special case of context-dependent interpretations

Above we have seen a definition of context-dependent interpretations and the
subclass of context-dependent interpretations over the reals. We have also seen
that they can be used to prove termination of rewrite systems. Hofbauer has
also shown in [9] that context-dependent interpretations over the reals are also
a generalization of polynomial interpretations. In this section, we give a pre-
sentation of this result of Hofbauer. In polynomial interpretations into some
well-founded monotone algebra A, we usually take N as carrier and the inter-
pretation functions fA : Nn → N for all function symbols f ∈ F are polynomial
functions. We can now extend the domain of the interpretation functions from
N to R+

0 . We can assume the original functions to be monotone with respect to
the standard order > on N. For natural numbers, the standard order coincides
with the order >1, which is defined as a >1 b ⇐⇒ a− b ≥ 1. This property is
preserved if we extend the function to the domain R+

0 by defining an algebra B
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with the carrier R+
0 and the interpretation functions

fB(k1 + x1, . . . , kn + xn)

=
∑

bi∈{0,1}

(fA(k1 + b1, . . . , kn + bn)
n∏

i=1

((1− bi)(1− xi) + bixi)) ,

where ai = ki + xi with ki ∈ N and 0 ≤ xi < 1. This function is constructed as
follows: each argument in this function is between two natural numbers (ki and
ki + 1, or simply ki + bi), for which the result can be computed by the original
interpretation function. For each argument, this function adds weighted results
of fA(. . . , ki, . . .) and fA(. . . , ki + 1, . . .). The weight factors are computed in
the big product in the above formula. For bi = 0, the weight factor is 1 − xi,
and for bi = 1, the weight factor is xi. This means that the closer ai is towards
ki + 1, the more weight fA(. . . , ki + 1, . . .) gains, and vice versa. Finally, the
above formula employs this mechanism for not only one, but all arguments of
fB.

To finish the definition of the context-dependent interpretation over the reals,
we have to specify how the parameter ∆ is handled by the interpretation. For
that purpose, we define a context-dependent algebra C = (R+

0 , R+, [·]C) with
the following interpretation functions fC and f i

C :

fC [∆](a1, . . . , an) = ∆fB(a1/∆, . . . , an/∆)

f i
C(∆) = ∆

Lemma 3.9. Suppose that we have an interpretation into an algebra B =
(R+

0 , [·]B) which is monotone and compatible with a TRS R with respect to
the order >1 on the real numbers. Then the interpretation into the context-
dependent algebra C yielded by the above construction fulfills the following prop-
erties:

1. for all ground terms t, all assignments α, and all ∆-assignments α′ such
that α′[∆](x) = ∆α(x) for every variable x, the equality [α′]C [∆](t) =
∆[α]B(t) holds

2. C is ∆-compatible with R with respect to the set of orders {>∆| ∆ ∈ R+}
from Definition 3.7

3. C is ∆-monotone with respect to the set of orders {>∆| ∆ ∈ R+} from
Definition 3.7

Proof. Property 1 can be verified by structural induction on t. If t is a variable,
then the property holds by the assumptions about α and α′. If t is a constant,
then the property holds by the definition of fC , which concludes the base cases.
If t has the shape f(t1, . . . , tn) where f is a function symbol with arity n > 0,
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then expanding the definitions of fC and f i
C yields:

[α′]C [∆](. . . , ti, . . .) = fC [∆](. . . , [α′]C [f i
C(∆)](ti), . . .)

= fC [∆](. . . , [α′]C [∆](ti), . . .)
= fC [∆](. . . , ∆[α]B(ti), . . .)
= ∆fB(. . . , ∆[α]B(ti)/∆, . . .)
= ∆fB(. . . , [α]B(ti), . . .)
= ∆[α]B(f(. . . , ti, . . .))

The third line in this proof follows from the induction hypothesis, the rest is
straightforward.

For property 2, we know that the interpretation into B is compatible with R
with respect to the order >1, therefore [α]B(l)−[α]B(r) ≥ 1 for every rewrite rule
l → r in R and all assignments α. Furthermore, we can conclude [α′]C [∆](l)−
[α′]C [∆](r) = ∆[α]B(l) − ∆[α]B(r) ≥ ∆ from property 1 whenever α(x) =
α′[∆](x)/∆ for all variables x. Since ∆[α]B(l) − ∆[α]B(r) ≥ ∆ holds for all
assignments α, we also have [α′]C [∆](l)− [α′]C [∆](r) ≥ ∆ for all ∆-assignments
α′.

For property 3, we know that the interpretation into B is monotone with re-
spect to the order >1, so we have fB(. . . , b′i, . . .)− fB(. . . , bi, . . .) ≥ 1 whenever
b′i − bi ≥ 1. We need to show that fC [∆](. . . , a′i, . . .) − fC [∆](. . . , ai, . . .) ≥ ∆
whenever a′i−a ≥ ∆, which is equivalent to the inequality ∆fB(. . . , a′i/∆, . . .)−
∆fB(. . . , ai/∆, . . .) ≥ ∆ or fB(. . . , a′i/∆, . . .) − fB(. . . , ai/∆, . . .) ≥ 1. We
know that a′i − ai ≥ ∆, which is equivalent to a′i/∆ − ai/∆ ≥ 1. There-
fore, fB(. . . , a′i/∆, . . .)− fB(. . . , ai/∆, . . .) ≥ 1 follows from the monotonicity of
B with respect to the order >1, which holds by assumption.

Lemma 3.9 is a modification of Lemma 2 from [9]. Hofbauer’s version of
this lemma requires a polynomial interpretation over N. This interpretation
is extended to an interpretation over R+

0 (while preserving 1-monotonicity and
also monotonicity) first, then it is transformed into a ∆-monotone (and also
monotone) context-dependent interpretation. However, Lemma 3.9 starts with
a 1-monotone polynomial interpretation into R+

0 and only does the second step
in the construction. In this way, we construct context-dependent interpreta-
tions which are not necessarily weakly monotone, but still imply termination
of a rewrite system. We will use this further below in an example to prove
termination of a non-simply terminating rewrite system.

3.4 Examples: Non-Simple Termination

In [9], it has already been shown by Hofbauer that context-dependent inter-
pretations are able to handle rewrite systems which are terminating, but not
simply terminating. We reiterate his example that showed that Theorem 3.8
can also be applicable to non-simply terminating rewrite systems. Consider the
TRS R with the single rewrite rule

a(a(x)) → a(b(a(x))) .
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Consider the interpretation into the following algebra B = (R+
0 , [·]B) equipped

with the order >1 from Section 3.3, where [·]B is defined by the interpretation
functions

aB(x) = dxe+
1
2

bB(x) = dx− 1
2
e .

Now we check that monotonicity and compatibility with R hold for this inter-
pretation. Since all interpretation functions are weakly monotone, it suffices to
check the two inequalities

aB(x + 1)− aB(x) ≥ 1 bB(x + 1)− bB(x) ≥ 1

in order to verify monotonicity. For the first inequality, we have

aB(x + 1)− aB(x) = dx + 1e+
1
2
− (dxe+

1
2
)

= dxe+ 1 +
1
2
− (dxe+

1
2
)

= 1 .

The second inequality can be checked in a similar fashion. Hence, monotonicity
holds with respect to >1. All that is left to show is compatibility with R with
respect to >1. An even stronger property can be shown, namely

[α]B(a(a(x)))− [α]B(a(b(a(x)))) = 1

for all assignments α. Expanding the left hand side of this equality yields

[α]B(a(a(x)))− [α]B(a(b(a(x))))

= d[α]B(a(x))e+
1
2
− (d[α]B(b(a(x)))e+

1
2
)

= d[α]B(a(x))e − d[α]B(b(a(x)))e

= dd[α]B(x)e+
1
2
e − dd[α]B(a(x))− 1

2
ee

= dd[α]B(x)e+
1
2
e − ddd[α]B(x)e+

1
2
− 1

2
ee .

Obviously, d[α]B(x)e is a natural number. Therefore, we have dd[α]B(x)e+ 1
2e =

d[α]B(x)e + 1. We apply this and simplify both sides of the “−” some more,
and get

dd[α]B(x)e+
1
2
e − ddd[α]B(x)e+

1
2
− 1

2
ee

= d[α]B(x)e+ 1− ddd[α]B(x)e+
1
2
− 1

2
ee

= d[α]B(x)e+ 1− ddd[α]B(x)eee
= d[α]B(x)e+ 1− d[α]B(x)e
= 1 ,

which concludes compatibility with respect to the order >1. Now we can use
the construction from Section 3.3 in order to construct a context-dependent
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algebra C equipped with the orders {>∆| ∆ ∈ R+} from Definition 3.7. By
Lemma 3.9, C is ∆-monotone and ∆-compatible with R. We apply Theorem
3.8 to conclude termination of R and the upper bound

dhR(t) ≤ inf
∆∈D

[α′]C [∆](t)
∆

for all ground terms t. Together with part 1 of Lemma 3.9, this implies that we
have the upper bound dhR(t) ≤ [α]B(t) on the derivation height for all ground
terms t.

Lemma 3.10. If a term t ∈ T (F) is a normal form with respect to R, then
b[α]B(t)c = 0.

Proof. First we show by induction on the length of t that any ground term t′

which is a normal form with respect to R and does not have an a as outer-
most function symbol fulfills the property [α]B(t′) = 0. The base case (t = c)
holds trivially. For the step case, we have the induction hypothesis that for
all subterms t′′ of t′ whose outermost function symbol is not an a, we have
[α]B(t′′) = 0, in particular for the outermost such subterm t′′. The next func-
tion symbol to the left of this t′′ is either an a or a b. If it is a b, then we
have bB([α]B(t′′)) = bB(0) = 0, which is what we wanted to show. If it is an a,
then a(t′′) cannot be equal to t′ because of the assumption that a may not be
the outermost function symbol of t′. Therefore, there must be another function
symbol to the left of a(t′′). That function symbol may not be another a, since
the property that t′ must be a normal form with respect to R would be violated
in that case. Therefore, the next function symbol must be a b, and we have
t′ = b(a(t′′)) and bB(aB([α]B(t′′))) = bB(1

2) = 0, which is what we wanted to
show. This concludes the first claim.

To prove the actual lemma, we have to distinguish two cases. Either the
outermost symbol of t is not an a, then the lemma holds because of the above
claim. Otherwise, t has the structure a(t′). The outermost function symbol of
t′ cannot be an a (otherwise, t would not be a normal form with respect to R).
Therefore, [α]B(t′) = 0, which concludes b[α]B(a(t′))c = b1

2c = 0, which is what
we wanted to show.

As shown above, every rewrite step reduces the interpretation of a term in
the algebra B by exactly 1. From Lemma 3.10, we know that the interpretation
of a normal form must be smaller than 1. This concludes that b[α]B(t)c = dh(t),
so the interpretation gives an optimal upper bound on the derivation length for
all ground terms in this example.

Now we will look at another example which is not simply terminating. Con-
sider the non-simply terminating rewrite system R with the rewrite rules

half(0) → 0 bits(0) → 0

half(s(0)) → 0 bits(s(x)) → s(bits(half(s(x))))
half(s(s(x))) → s(half(x))
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Again, we define an algebra B with the carrier R+
0 and the interpretation func-

tions

0B = 0

sB(z) = bz +
1
3
c+

5
3

halfB(z) = bzc+
4
3

bitsB(z) =
{

4n
4n + 3

if ∃n ∈ N : n + 1
3 ≤ z < n + 2

3
if ∃n ∈ N : n− 1

3 ≤ z < n + 1
3

,

where z ∈ R+
0 and n ∈ N. We can easily see that 0B, sB, and halfB are monotone

with respect to >1. For bitsB, it is a little bit more complicated. We have to
show that bitsB(z′)− bitsB(z) ≥ 1 whenever z′ − z ≥ 1. If n′ − 1

3 ≤ z′ < n′ + 1
3

for some n′ and n− 1
3 ≤ z < n + 1

3 for some n (n′− n ≥ 1, otherwise z′− z ≥ 1
would not hold), we have monotonicity because

bitsB(z′)− bitsB(z) = 4n′ + 3− (4n + 3) ≥ 4n + 7− (4n + 3) = 4 .

Similarly, if n′ + 1
3 ≤ z′ < n′ + 2

3 for some n′ and n + 1
3 ≤ z < n + 2

3 for some
n (n′ − n ≥ 1, otherwise z′ − z ≥ 1 would not hold). Then we can conclude
monotonicity because of

bitsB(z′)− bitsB(z) = 4n′ − 4n ≥ 4n + 4− 4n = 4 .

If n′+ 1
3 ≤ z′ < n′+ 2

3 for some n′ and n− 1
3 ≤ z < n+ 1

3 for some n (n′−n ≥ 1,
otherwise z′ − z ≥ 1 would not hold), then

bitsB(z′)− bitsB(z) = 4n′ − (4n + 3) ≥ 4n + 4− (4n + 3) = 1 .

If n− 1
3 ≤ z < n + 1

3 for some n′ and n + 1
3 ≤ z < n + 2

3 for some n (n′−n ≥ 2,
otherwise z′ − z ≥ 1 would not hold), then

bitsB(z′)− bitsB(z) = 4n′ + 3− 4n ≥ 4n + 11− 4n = 11 .

In order to see that B is compatible with R with respect to the order >1, we
have to check that the following inequalities hold for all assignments α:

[α]B(half(0))− [α]B(0) ≥ 1
[α]B(half(s(0)))− [α]B(0) ≥ 1

[α]B(half(s(s(x))))− [α]B(s(half(x))) ≥ 1
[α]B(bits(0))− [α]B(0) ≥ 1

[α]B(bits(s(x)))− [α]B(s(bits(half(s(x))))) ≥ 1

Expanding the first inequality yields

[α]B(half(0))− [α]B(0) =
4
3
− 0 =

4
3

.
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3 Context-Dependent Interpretations

In a similar fashion, we get

[α]B(half(s(0)))− [α]B(0) =
7
3
− 0 =

7
3

for the second inequality. Now consider the third inequality. Let n ∈ N be such
that n− 1

3 ≤ α(x) < n + 2
3 . Then we have

[α]B(half(s(s(x))))− [α]B(s(half(x))) ≥ n +
13
3
− (n +

8
3
) =

5
3

.

The fourth inequality can be treated in a similar way as the first two, resulting
in

[α]B(bits(0))− [α]B(0) = 3− 0 = 3 .

For the last inequality, let n ∈ N be such that n − 1
3 ≤ α(x) < n + 2

3 again.
This yields

[α]B(bits(s(x)))− [α]B(s(bits(half(s(x))))) = 4n + 11− (4n + 9 +
2
3
) =

4
3

.

This concludes that B is compatible with R with respect to the order >1.
As in the previous example, we can now apply Lemma 3.9 to construct a ∆-
monotone context-dependent interpretation into the nonnegative real numbers
which is ∆-compatible with R. This proves termination of R and the following
upper bounds on the derivation height of all ground terms t:

dhR(t) ≤ inf
∆∈D

[α′]C [∆](t)
∆

dhR(t) ≤ [α]B(t)

We want to remark that it is essential in this example that the interpretation
functions may not be weakly monotone if we want to construct a context-
dependent interpretation by applying Lemma 3.9.

Lemma 3.11. There exists no interpretation into an algebra A with the carrier
R+

0 which is weakly monotone with respect to the standard order ≥ on the real
numbers, monotone with respect to the order >1, and compatible with R with
respect to the order >1.

Proof. Since A uses the carrier R+
0 , we know that 0A ≥ 0, sA(0) ≥ 0, halfA(0) ≥

0, and bitsA(0) ≥ 0. We also know that A must be monotone with respect to
the order >1, therefore sA(n) ≥ n, halfA(n) ≥ n, and bitsA(n) ≥ n for all n ∈ N.
Furthermore, A is weakly monotone with respect to the standard order ≥ on
the real numbers, therefore we also know that sA(z) ≥ n, halfA(z) ≥ n, and
bitsA(n) ≥ n for all z = n + y with n ∈ N and 0 ≤ y < 1. Because of y < 1, we
can also write this as sA(z) > z − 1, halfA(z) > z − 1, and bitsA(n) > z − 1.

Claim: For all terms r, t with [α]A(t) = m + a, m ∈ N, and 0 ≤ a < 1, if t is
a subterm of r, then [α]A(r) ≥ m.

We prove this claim by structural induction on r. For the base case, we
assume that r = t. Then, trivially [α]A(r′) = m + a ≥ m. For the step case,
we assume that r = s(r′), r = half(r′) or r = bits(r′), where t is a subterm of r.
By induction hypothesis, [α]A(r′) ≥ m. If r = s(r′), then together with weak
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monotonicity and sA(z) ≥ n for z = n + y, n ∈ N, and 0 ≤ y < 1, this implies
that [α]A(r) ≥ m. For the cases r = half(r′) and r = bits(r′), [α]A(r) ≥ m
follows by analogy, which concludes the induction and thus the claim.

Since A has to be compatible with R with respect to the order >1, the
rewrite rule half(0) → 0 implies that halfA(0A) ≥ 0A + 1. We know that A is
weakly monotone with respect to the standard order ≥ on the real numbers and
monotone with respect to the order >1, therefore halfA(0A + z) ≥ 0A + n + 1
whenever z = n + y with n ∈ N and 0 ≤ y < 1. Again we have the constraint
y < 1, so this can be written as halfA(z′) > z′ for all z′ ≥ 0A. Because of the
rewrite rule bits(0) → 0, we can argue in a similar fashion that bitsA(z′) > z′

for all z′ ≥ 0A.
Let 0A = n0 + x0, where n0 ∈ N and 0 ≤ x0 < 1. Since [α]A(half(0)) ≥

n0 +x0 +1 ≥ n0 +1, we can conclude from our claim that for all terms t which
have half(0) as a subterm, [α]A(t) ≥ n0 + 1 > 0A. Because all terms occurring
below contain the subterm x := half(0), we are allowed to use all inequalities
we concluded above.

The inequality halfτ (z) > z implies

[α]A(half(s(x))) = halfA([α]A(s(x))) > [α]A(s(x)) .

Together with the fact that A is weakly monotone with respect to the standard
order ≥ on the real numbers, this implies that

[α]A(bits(half(s(x)))) ≥ [α]A(bits(s(x))) .

Applying the inequality sA(z) > z − 1 yields

sA([α]A(bits(half(s(x))))) > [α]A(bits(half(s(x))))− 1 ≥ [α]A(bits(s(x)))− 1 .

This can be written as

[α]A(s(bits(half(s(x))))) > [α]A(bits(s(x)))− 1

or
[α]A(bits(s(x)))− [α]A(s(bits(half(s(x))))) < 1 ,

which is a contradiction to the requirement that A is compatible with R with
respect to the order >1.

The upper bound on the derivation length induced by this interpretation
looks similar to the previous example. We can see that it will be exponential in
the number of occurrences of “bits” this time. However, the typical application
of this rewrite system is to start with a constructor term, i.e. a term of the form
bits(sn(0)) or bits(sn(0)), so we have better (linear) bounds for these average
cases:

[α]B(half(sn(0))) = 2n +
1
3

[α]B(bits(sn(0))) = 8n + 3
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4 Automating the Search for
Context-Dependent Interpretations

4.1 Hofbauer’s Heuristic

One approach towards finding context-dependent interpretations automatically
is a heuristic that was already mentioned in Hofbauer’s paper [9]. In order to
explain Hofbauer’s heuristic, we will step through the construction of a context-
dependent interpretation for an example that was already given in [9]. It is also
a problem in the TPDB [17], namely the problem with the id TRS/SK90-2.50.
Consider the TRS R consisting of the single rewrite rule

a(b(x)) → b(b(a(x)))

over the signature containing the unary function symbols a and b, and the
constant function symbol c. First, a polynomial interpretation into a well-
founded monotone algebra B is constructed, which proves termination of R.
For this example, a suitable interpretation into N is

aB(x) = 3x bB(x) = x + 1 cB = 0 .

The most difficult part in searching a context-dependent interpretation over
the reals is to find suitable functions fA. In Hofbauer’s heuristic, this point is
addressed by arbitrarily choosing a coefficient k+1 in the original interpretation
and replacing it by k + ∆. For this example, the best choice is to replace the
“3” in aB by “2 + ∆”. This yields the following functions fA:

aA[∆](x) = (2 + ∆)x bA[∆](x) = x + 1 cA[∆] = 0

The other part of the interpretation we have to find are the functions f i
A.

Once we have the functions fA, they can be constructed by applying the ∆-
monotonicity constraints. For the first (and only) argument position of the
function symbol a, we have

aA[∆](x + a1
A(∆))− aA[∆](x) ≥ ∆ .

Expanding this inequality and solving it in a1
A(∆) yields

(2 + ∆)(x + a1
A(∆))− (2 + ∆)x ≥ ∆

a1
A(∆) ≥ ∆

2 + ∆
.

Similarly, for b1
A we obtain

b1
A(∆) ≥ ∆ .
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In order to get a good bound on the derivation height, we want to keep the
interpretation as small as possible. Therefore, we choose

a1
A(∆) =

∆
1 + ∆

b1
A(∆) = ∆ .

This completes the definition of the context-dependent interpretation. It is by
construction ∆-monotone. All that is left to do in order apply Theorem 3.8 is
to check whether ∆-compatibility holds. Indeed,

[α]A[∆](a(b(x)))− [α]A[∆](b(b(a(x))))

= aA[∆]([α]A[a1
A(∆)](b(x)))− bA[∆]([α]A[b1

A(∆)](b(a(x))))

= (2 + ∆)bA[
∆

2 + ∆
](x)− (bA[∆]([α]A[∆]a(x)) + 1)

= (2 + ∆)(α[
∆

2 + ∆
](x) + 1)− (aA[∆]([α]A[a1

A](x)) + 2)

= (2 + ∆)(α[
∆

2 + ∆
](x) + 1)− ((2 + ∆)(α[

∆
2 + ∆

](x)) + 2)

= ∆ .

For a term t of the shape an(bm(c)), the polynomial interpretation yields the
bound

dhR(t) ≤ 3n ·m

on the derivation height. For the context dependent interpretation, we have

[α]A[∆](an(bm(c))) = (2n + (2n − 1)∆)m ,

which can be proved by induction on n. For the base case, we obviously have
[α]A[∆](bm(c)) = m. For the induction step, we have

[α]A[∆](a(an(bm(c)))) = (2 + ∆)[α]A[
∆

2 + ∆
](an(bm(c)))

= (2 + ∆)(2n + (2n − 1)
∆

2 + ∆
)m

= (2n+1 + 2n∆ + 2n∆−∆)m

= (2n+1 + (2n+1 − 1)∆)m ,

where the second line follows from the induction hypothesis. Finally, by Theo-
rem 3.8, we have the following bound on the derivation height:

dhR(an(bm(c))) ≤ inf
∆∈R+

(2n + (2n − 1)∆)m
∆

= (2n − 1)m ,

which is in O(2n) and therefore better than the bound from the polynomial
interpretation, which is in O(3n).

The heuristic we have just seen can be defined by the algorithm in Table 4.1:
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Table 4.1: An algorithm to automate the application of Hofbauer’s heuristic

1. Find a polynomial interpretation into a well-founded monotone algebra
A such that all interpretation functions fA are weakly monotone with
respect to the standard order ≥ on R+

0 and A is compatible with R.

2. Choose an arbitrary set of coefficients with positive values from the
polynomials in the functions fA. We call this set of coefficients C.

3. For each function symbol f , construct the function fB[∆](x1, . . . , xn)
as follows: take the function fA(x1, . . . , xn), and for each coefficient c
such that c ∈ C, change its value to k− 1 + ∆, where k is the original
value of c.

4. For each function symbol f and each i ∈ {1, . . . , n} with n = arity(f),
consider the ∆-monotonicity constraint

fτ [∆](x1, . . . , xi + f i
τ (∆), . . . , xn)− fτ [∆](x1, . . . , xi, . . . , xn) ≥ ∆ .

Expand this constraint and solve it in f i
τ (∆). Then for each ∆, define

f i
τ (∆) such that this constraint is fulfilled.

5. Check whether ∆-compatibility holds for the constructed interpreta-
tion. If it holds, then the interpretation is a result of the algorithm.
Otherwise, discard the interpretation.

4.2 Preliminaries for the adapted Algorithm of
Contejean et al.

Although Hofbauer’s heuristic works very well for some examples, experiments
on the TPDB [17] have shown that the number of such examples is rather low.
Therefore, we have changed our strategy from modifying an existing polynomial
interpretation towards generating context-dependent interpretations directly.
For polynomial interpretations, the algorithm of Contejean et al. [5] can be used
to find suitable interpretations automatically. As described in this chapter, this
algorithm can be adapted for context-dependent interpretations over the reals.

In order to make computations on the polynomials easier, we transform them
into a certain normal form. We use the same notation of polynomials as in [5].

Definition 4.1. We define polynomials in normal form as follows:

1. A literal is an expression of the form xn, where x is a variable, and n is
a natural number.

2. A monomial is an expression of the form c ·
∏

i vi, where c is an integer
and vi is a literal for all i. We call c the coefficient of the monomial.

3. A (standard) polynomial is in normal form if it has the form
∑

i mi for
some monomials mi.
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By applying associativity, commutativity, and distributivity of addition and
multiplication, every polynomial can be transformed into this normal form.

For context-dependent interpretations over the reals, we will also consider ∆-
quotients. This gives rise to the following definition of an extended polynomials
in normal form.

Definition 4.2. A ∆-quotient is an expression of the form

∆
p1 + p2∆

,

where ∆ is a parameter ranging over the positive real numbers, and p1, p2 are
polynomials. All coefficients of p1 and p2 must be nonnegative, and either
p1 > 0 or p2 > 0 must hold. We say that the ∆-quotient is in normal form if
p1 and p2 are in normal form.

Definition 4.3. Extended polynomials in normal form are built up as follows:

1. An extended monomial is an expression of the form c ·
∏

i vi, where c is
an integer, and vi is either a literal or a ∆-quotient for all i. We call c
the coefficient of the extended monomial. We say that the monomial is
in normal form if all vi which are ∆-quotients are in normal form.

2. An extended polynomial in normal form is an expression of the form
∑

i mi

for some extended monomials mi which are in normal form.

Definition 4.4. A literal occurs positively (negatively) in an extended polyno-
mial P in normal form if P contains an extended monomial which contains the
literal and whose coefficient is positive (negative).

A useful property of ∆-quotients is the fact that substituting a ∆-quotient
d2 for the ∆ in a ∆-quotient d1 yields another ∆-quotient.

Lemma 4.5. Let d1 = ∆
p1+p2∆ and d2 = ∆

q1+q2∆ be ∆-quotients. Then the result
of substituting d2 for ∆ in d1 is equivalent to a ∆-quotient.

Proof.

d1[∆ := d2] =
d2

p1 + p2d2

=
∆

q1+q2∆

p1 + p2
∆

q1+q2∆

=
∆

q1+q2∆

p1
q1+q2∆
q1+q2∆ + p2

∆
q1+q2∆

=
∆

p1(q1 + q2∆) + p2∆

=
∆

p1q1 + (p1q2 + p2)∆
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All coefficients of p1, p2, q1, and q2 are nonnegative, therefore the coefficients
of p1q1 and p1q2 + p2 are nonnegative, as well. Furthermore, we have either
p1 > 0 or p2 > 0, and we have either q1 > 0 or q2 > 0. Thus, either p1q1 >
0 or p1q2 + p2 > 0 must hold. Since polynomials are closed under addition
and multiplication, this shows that the result is indeed equivalent to a ∆-
quotient.

Definition 4.6. A context-dependent interpretation with ∆-simple polynomi-
als is defined to be an interpretation into a context-dependent algebra A =
(R+

0 , R+, [·]A) such that for all function symbols f of arity n, we have

fA[∆](x1, . . . , xn) = df + ef∆ +
n∑

i=1

af,ixi +
n∑

i=1

bf,ixi∆

f i
A(∆) =

∆
af,i + bf,i∆

for some natural numbers df , ef , af,i, bf,i for all f ∈ F and i ∈ {1, . . . , n}. If
the variables are not instantiated, but kept as variables, then we call such a
∆-simple interpretation for a TRS R the parametric context-dependent with
∆-simple polynomials with respect to R.

We define the set of coefficient variables of the parametric context-dependent
interpretation with ∆-simple polynomials with respect to a TRS R as

CVDS(R) = {af,i, bf,i, ef , df | f ∈ F , i ∈ {1, . . . , n}}

where n = arity(f).

Note that the newly introduced parameters in the fA functions are all fresh
variables, but each f i

A function reuses two of the new parameters from the
respective fA function.

Definition 4.7. A context-dependent interpretation with restricted ∆-simple
polynomials is defined to be an interpretation into a context-dependent algebra
A = (R+

0 , R+, [·]A) such that for all function symbols f of arity n, we have

fA[∆](x1, . . . , xn) = df + ef∆ +
n∑

i=1

af,ixi +
n∑

i=1

bf,ixi∆

f i
A(∆) =

∆
af,i + bf,i∆

for some natural numbers df , ef , af,i, bf,i for all f ∈ F and i ∈ {1, . . . , n} with
af,i ∈ {0, 1} for all i ∈ {1, . . . , n}. The parametric context-dependent interpre-
tation with restricted ∆-simple polynomials and its set of coefficient variables
CVDSR(R) are defined in the same way as for context-dependent interpretations
with ∆-simple polynomials.

From theses definitions, it follows that every context-dependent interpre-
tation with restricted ∆-simple polynomials is also a context-dependent in-
terpretation with ∆-simple polynomials. Furthermore, we have CVDS(R) =
CVDSR(R).
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4.2 Preliminaries for the adapted Algorithm of Contejean et al.

Lemma 4.8. For every context-dependent interpretation with ∆-simple poly-
nomials, ∆-monotonicity holds.

Proof. For every function symbol f ∈ F and every i ∈ {1, . . . , n} with n =
arity(f), we have

fA[∆](x1, . . . , xi + f i
A(∆), . . . , xn)− fA[∆](x1, . . . , xn)

= af,i · f i
A(∆) + bf,i ·∆ · f i

A(∆)

=
∆

af,i + bf,i∆
· (af,i + bf,i∆)

= ∆ .

Since context-dependent interpretations with ∆-simple polynomials are obvi-
ously weakly monotone with respect to the standard order ≥ on R+

0 , this is
enough to conclude ∆-monotonicity.

Lemma 4.9. Every context-dependent interpretation with ∆-simple polynomi-
als into a context-dependent algebra A = (R+

0 , R+, [·]A) equipped with the orders
{>∆| ∆ ∈ R+} from Definition 3.7 is a context-dependent interpretation over
the reals.

Proof. From Lemma 4.8 and the fact that for all ∆, the order >∆ is well-founded
on R+

0 , it follows that every context-dependent interpretation with ∆-simple
polynomials is an interpretation into a well-founded ∆-monotone algebra. Since
A = R+

0 , D = R+, and for all ∆ ∈ R+, we have

a >∆ b ⇐⇒ a− b ≥ ∆ ,

this concludes the lemma.

Lemma 4.10. In each evaluation step of a context-dependent interpretation
with ∆-simple polynomials, the parameter of the context-dependent interpreta-
tion is representable as a ∆-quotient if for all functions f i

τ in the interpretation,
we have that the denominator of f i

τ is positive.

Proof. We prove this by induction on the position where the evaluation step
takes place. If the evaluation step takes place at the root position of the con-
sidered term, then the parameter is just

∆ =
∆

1 + 0 ·∆
.

If we are looking at an evaluation step below the root of the considered term,
then the current parameter has the shape f i

τ (∆1) for some f , i, and ∆1. By
induction hypothesis, we know that ∆1 is equivalent to a ∆-quotient. By Defi-
nition 4.6, we have

f i
τ (∆1) =

∆1

af,i + bf,i∆1
.

We know that af,i and bf,i are nonnegative polynomials. Furthermore, if the
denominator of f i

τ is positive, then either af,i > 0 or bf,i > 0. Therefore, the
function f i

τ has the shape of a ∆-quotient. Now it follows from Lemma 4.5 that
f i

τ (∆1) must be equivalent to a ∆-quotient, as well.
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4.3 The adapted Algorithm of Contejean et al.

As a first step in the algorithm, parametric polynomials are created for all
interpretation functions which are needed for the given signature. For context-
dependent interpretations, we have found context-dependent interpretations
with (restricted) ∆-simple polynomials to be particularly useful. The restricted
variant induces a nice upper bound on the derivational complexity of a rewrite
system. For the remainder of this chapter, we will abbreviate them by ∆-simple
interpretations and restricted ∆-simple interpretations, respectively.

As a running example for this section, we consider the TRS from Table 2.1
again. We have the parametric ∆-simple interpretation into the well-founded
∆-monotone algebra A = (R+

0 , R+, [·]A, {>∆| ∆ ∈ R+}) for R, where [·]A is
defined by the following functions:

aA[∆](x) = da + ea∆ + aa,1x + ba,1x∆ a1
A(∆) =

∆
aa,1 + ba,1∆

bA[∆](x) = db + eb∆ + ab,1x + bb,1x∆ b1
A(∆) =

∆
ab,1 + bb,1∆

The set of coefficient variables in our example is

CVDS(R) = {da, ea, aa,1, ba,1, db, eb, ab,1, bb,1}

The parametric ∆-simple interpretation is applied to both sides of each
rewrite rule of the TRS R we consider. For each rewrite rule l → r in R,
we construct a compatibility constraint for that rule in this way:

Definition 4.11. Given a TRS R and a ∆-simple interpretation into a well-
founded ∆-monotone algebra A, the rule constraints of R with respect to A
are defined as follows:

rcA(R) = {[α]A[∆](l)− [α]A[∆](r)−∆ ≥ 0 | l → r ∈ R}

The following lemma follows immediately from this definition.

Lemma 4.12. Let R be a TRS and suppose that we have a ∆-simple interpre-
tation into a well-founded ∆-monotone algebra A. If all constraints in rcA(R)
are valid, then A is ∆-compatible with R.

In our running example, we have the following rule constraint for the para-
metric ∆-simple interpretation of R:

rcA(R) = {[α]A[∆](a(b(x)))− [α]A[∆](b(a(x)))−∆ ≥ 0}

= {da + ea∆ + (aa,1 + ba,1∆)[α]A[
∆

aa,1 + ba,1∆
](b(x))

− db − eb∆− (ab,1 + bb,1∆)[α]A[
∆

ab,1 + bb,1∆
](a(x))−∆ ≥ 0}
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= {da + ea∆ + (aa,1 + ba,1∆)(db + eb
∆

aa,1 + ba,1∆

+ (ab,1 + bb,1
∆

aa,1 + ba,1∆
)α[

∆
aa,1ab,1 + (ba,1ab,1 + bb,1)∆

](x))

− db − eb∆− (ab,1 + bb,1∆)(da + ea
∆

ab,1 + bb,1∆

+ (aa,1 + ba,1
∆

ab,1 + bb,1∆
)α[

∆
aa,1ab,1 + (aa,1bb,1 + ba,1)∆

](x))

−∆ ≥ 0}

It follows from the definition of ∆-simple interpretations that all coefficients
occurring in the denominator must be nonnegative. Hence, in order to ensure
that they are not zero, we only have to ensure that the following constraints
hold:

Definition 4.13. Given a TRS R and a ∆-simple interpretation into a well-
founded ∆-monotone algebra A, the nonzero constraints of R with respect to
A are defined as follows:

nzA(R) = {af,i + bf,i − 1 ≥ 0 | f ∈ F , n = arity(f), i ∈ {1, . . . , n}}

In the running example, we have two nonzero constraints:

nzA(R) = {aa,1 + ba,1 − 1 ≥ 0, ab,1 + bb,1 − 1 ≥ 0}

We have to solve the constraints rcA(R) in the variables from CVDS(R).
Because of the way we defined the functions f i

A, these constraints are in general
not standard polynomials. By Lemma 4.10, each parameter in the definition of
∆-simple interpretations is representable as a ∆-quotient. In the interpretation
functions fA, the ∆ appears only in place of variables. Therefore the constraints
are equivalent to extended polynomials in normal form. We transform the
extended polynomials in normal form into standard polynomials in normal form.

Lemma 4.14. Let R be a TRS and suppose that we have a ∆-simple interpre-
tation into a well-founded ∆-monotone algebra A. Then apply the algorithm in
Table 4.2 to all constraints in rcA(R).

If for every ∆-quotient occurring in the constraints, the denominator is pos-
itive, then this procedure terminates and the resulting constraints are valid if
and only if the constraints in rcA(R) are valid.

Proof. In every iteration of the procedure, the picked ∆-quotient has by defi-
nition the form ∆

p1+p2∆ . By assumption, we have p1 + p2∆ > 0. Therefore, in
each step, the only action is that a constraint is multiplied with the positive
term p1 + p2∆. Hence, for each step, the constraints are valid before the step
if and only if they are valid after the step.

All that remains to show now is termination of the procedure. For each
monomial m, define dqm as the multiset of all denominators of ∆-quotients
occurring in m. For each constraint c, let the multiset dqc be

maxmul{dqm | m is a monomial occurring in c} .
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Table 4.2: An algorithm to eliminate ∆-quotients in the rule constraints

1. As long as there are still ∆-quotients in the constraint, pick an arbi-
trary one. If no ∆-quotients are left in the constraint, proceed to Step
4.

2. Multiply each monomial on both sides of the constraint with the de-
nominator of the picked ∆-quotient as follows: whenever a monomial
contains a ∆-quotient which has the same denominator as the picked
∆-quotient, we use the multiplication to eliminate it. For other mono-
mials, treat all ∆-quotients in that monomial as units and use dis-
tributivity on the multiplication in order to bring the constraint back
into normal form.

3. Return to Step 1.

4. Return the resulting polynomial, where all ∆-quotients (except for the
ones in the parameter) are eliminated, and only a standard polynomial
in normal form remains.

Then for every step of the procedure where a ∆-quotient in a constraint c
is picked, the number of occurrences of its denominator is reduced by one in
every monomial in c where the denominator occurred. Therefore, the number
of elements in dqc is reduced by one. After a finite amount of steps, dqc will be
empty for every constraint c, and thus, no constraints contain any ∆-quotients.
At this point, the procedure terminates.

Definition 4.15. Let R be a TRS, and suppose that we have a ∆-simple
interpretation into a well-founded ∆-monotone algebra A. We call the set
of constraints generated from dcA(R) by the procedure in Table 4.2 the rule
polynomials of R with respect to A. We denote this set by rpA(R).

Lemma 4.16. Let R be a TRS and suppose that we have a ∆-simple in-
terpretation into a well-founded ∆-monotone algebra A. If all constraints in
rpA(R) ∪ nzA(R) are valid, then A is ∆-compatible with R.

Proof. Because of Lemma 4.10 and the constraints in nzA(R), we know that all
denominators of ∆-quotients occurring in rcA(R) must be positive. Therefore,
we can apply Lemma 4.14 and the validity of the constraints in rpA(R) in order
to infer validity of the constraints in rcA(R). By Lemma 4.12, this implies that
A is ∆-compatible with R.

In the running example, rcA(R) consists of the single constraint

da + ea∆ + (aa,1 + ba,1∆)(db + eb
∆

aa,1 + ba,1∆

+ (ab,1 + bb,1
∆

aa,1 + ba,1∆
)α[

∆
aa,1ab,1 + (ba,1ab,1 + bb,1)∆

](x))
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− db − eb∆− (ab,1 + bb,1∆)(da + ea
∆

ab,1 + bb,1∆

+ (aa,1 + ba,1
∆

ab,1 + bb,1∆
)α[

∆
aa,1ab,1 + (aa,1bb,1 + ba,1)∆

](x))−∆ ≥ 0 .

In the following, we will abbreviate the ∆-quotients ∆
aa,1ab,1+(ba,1ab,1+bb,1)∆ and

∆
aa,1ab,1+(aa,1bb,1+ba,1)∆ by ∆1 and ∆2, respectively. By applying this abbreviation
and bringing the extended polynomial on the left hand side into normal form,
we get

da + ea∆ + aa,1db + aa,1eb
∆

aa,1 + ba,1∆
+ aa,1ab,1α[∆1](x)

+ aa,1bb,1
∆

aa,1 + ba,1∆
α[∆1](x) + ba,1db∆ + ba,1eb∆

∆
aa,1 + ba,1∆

+ ba,1ab,1∆α[∆1](x) + ba,1bb,1∆
∆

aa,1 + ba,1∆
α[∆1](x)

− db − eb∆− daab,1 − eaab,1
∆

ab,1 + bb,1∆
− aa,1ab,1α[∆2](x)

− ba,1ab,1
∆

ab,1 + bb,1∆
α[∆2](x)− dabb,1∆− eabb,1∆

∆
ab,1 + bb,1∆

− aa,1bb,1∆α[∆2](x)− ba,1bb,1∆
∆

ab,1 + bb,1∆
α[∆2](x)−∆ ≥ 0 .

Now we pick a ∆-quotient in the last constraint, e.g. ∆
aa,1+ba,1∆ . Multiplying

the constraint with the (positive) denominator of the ∆-quotient yields

daaa,1 + daba,1∆ + eaaa,1∆ + eaba,1∆2 + a2
a,1db + aa,1ba,1db∆ + aa,1eb∆

+ a2
a,1ab,1α[∆1](x) + aa,1ba,1ab,1∆α[∆1](x) + aa,1bb,1∆α[∆1](x)

+ aa,1ba,1db∆ + b2
a,1db∆2 + ba,1eb∆2 + aa,1ba,1ab,1∆α[∆1](x)

+ b2
a,1ab,1∆2α[∆1](x) + ba,1bb,1∆2α[∆1](x)

− aa,1db − ba,1db∆− aa,1eb∆− ba,1eb∆2 − daaa,1ab,1 − daba,1ab,1∆

− eaaa,1ab,1
∆

ab,1 + bb,1∆
− eaba,1ab,1∆

∆
ab,1 + bb,1∆

− a2
a,1ab,1α[∆2](x)− aa,1ba,1ab,1∆α[∆2](x)− aa,1ba,1ab,1

∆
ab,1 + bb,1∆

α[∆2](x)

− b2
a,1ab,1∆

∆
ab,1 + bb,1∆

α[∆2](x)− daaa,1bb,1∆− daba,1bb,1∆2

− eaaa,1bb,1∆
∆

ab,1 + bb,1∆
− eaba,1bb,1∆2 ∆

ab,1 + bb,1∆
− a2

a,1bb,1∆α[∆2](x)

− aa,1ba,1bb,1∆2α[∆2](x)− aa,1ba,1bb,1∆
∆

ab,1 + bb,1∆
α[∆2](x)

− b2
a,1bb,1∆2 ∆

ab,1 + bb,1∆
α[∆2](x)− aa,1∆− ba,1∆2 ≥ 0 .
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There is only one kind of ∆-quotients left in the constraint, namely ∆
ab,1+bb,1∆ ,

so we pick it and and do the multiplication:

daaa,1ab,1 + daaa,1bb,1∆ + daba,1ab,1∆ + daba,1bb,1∆2 + eaaa,1ab,1∆

+ eaaa,1bb,1∆2 + eaba,1ab,1∆2 + eaba,1bb,1∆3 + a2
a,1dbab,1 + a2

a,1dbbb,1∆

+ aa,1ba,1dbab,1∆ + aa,1ba,1dbbb,1∆2 + aa,1ebab,1∆ + aa,1ebbb,1∆2

+ a2
a,1a

2
b,1α[∆1](x) + a2

a,1ab,1bb,1∆α[∆1](x) + aa,1ba,1a
2
b,1∆α[∆1](x)

+ aa,1ba,1ab,1bb,1∆2α[∆1](x) + aa,1ab,1bb,1∆α[∆1](x) + aa,1b
2
b,1∆

2α[∆1](x)

+ aa,1ba,1dbab,1∆ + aa,1ba,1dbbb,1∆2 + b2
a,1dbab,1∆2 + b2

a,1dbbb,1∆3

+ ba,1ebab,1∆2 + ba,1ebbb,1∆3 + aa,1ba,1a
2
b,1∆α[∆1](x)

+ aa,1ba,1ab,1bb,1∆2α[∆1](x) + b2
a,1a

2
b,1∆

2α[∆1](x) + b2
a,1ab,1bb,1∆3α[∆1](x)

+ ba,1ab,1bb,1∆2α[∆1](x) + ba,1b
2
b,1∆

3α[∆1](x)

− aa,1dbab,1 − aa,1dbbb,1∆− ba,1dbab,1∆− ba,1dbbb,1∆2 − aa,1ebab,1∆

− aa,1ebbb,1∆2 − ba,1ebab,1∆2 − ba,1ebbb,1∆3 − daaa,1a
2
b,1 − daaa,1ab,1bb,1∆

− daba,1a
2
b,1∆− daba,1ab,1bb,1∆2 − eaaa,1ab,1∆− eaba,1ab,1∆2

− a2
a,1a

2
b,1α[∆2](x)− a2

a,1ab,1bb,1∆α[∆2](x)− aa,1ba,1a
2
b,1∆α[∆2](x)

− aa,1ba,1ab,1bb,1∆2α[∆2](x)− aa,1ba,1ab,1∆α[∆2](x)− b2
a,1ab,1∆2α[∆2](x)

− daaa,1ab,1bb,1∆− daaa,1b
2
b,1∆

2 − daba,1ab,1bb,1∆2 − daba,1b
2
b,1∆

3

− eaaa,1bb,1∆2 − eaba,1bb,1∆3 − a2
a,1ab,1bb,1∆α[∆2](x)− a2

a,1b
2
b,1∆

2α[∆2](x)

− aa,1ba,1ab,1bb,1∆2α[∆2](x)− aa,1ba,1b
2
b,1∆

3α[∆2](x)− aa,1ba,1bb,1∆2α[∆2](x)

− b2
a,1bb,1∆3α[∆2](x)− aa,1ab,1∆− aa,1bb,1∆2 − ba,1ab,1∆2 − ba,1bb,1∆3 ≥ 0

This constraint is the only element of the set rpA(R). As we can see, ∆1 and
∆2 are the only remaining ∆-quotients. They only appear as parameters of α
in this constraint.

The next step in the original algorithm of Contejean et al. would be to
view these constraints as (in-)equalities for polynomials in ∆ and α(xi) for all
xi ∈ V. However, for context-dependent interpretations, this approach does
not work, because the variables xi appear in expressions of the form α[∆j ](xi),
instead. The fact that ∆j contains variables from CVDS(R) makes matters
more complicated. We simplify this by adding the following constraints on all
∆j :

Definition 4.17. Given a TRS R and a ∆-simple interpretation into a well-
founded ∆-monotone algebra A, the variable equality constraints of R with
respect to A are defined as follows:

veA(R) = {dj − dk = 0 | ∃c ∈ rpA(R) : ∃x ∈ V :

(α[
∆
dj

](x) occurs positively in c ∧ α[
∆
dk

](x) occurs negatively in c)}

If we add these constraints, we can treat all occurrences of a variable as
“equal”. Then, we can proceed, as in the original algorithm, by looking at the
coefficients of the polynomials in ∆ and α[ ](xi).
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Definition 4.18. Let R be a TRS and suppose that we have a ∆-simple inter-
pretation into a well-founded ∆-monotone algebra A. Then the set of modified
rule polynomials (denoted by rp′A(R)) is constructed as follows: take all con-
straints in rpA(R), and whenever a term of the shape α[∆](x) occurs both
positively and negatively in a constraint, replace these occurrences by α′(x).
The function α′ is defined by α′(x) = α[∆](x) if α[∆](x) occurs in rpA(R).

In the constraint from rpA(R) in the running example, α[∆1](x) is the only
positive occurrence of a variable, and α[∆2](x) is the only negative occurrence.
Therefore, the set veA(R) consists of the single constraint with the normal form

aa,1ab,1 + ba,1ab,1∆ + bb,1∆− aa,1ab,1 − aa,1bb,1∆− ba,1∆ = 0 .

We obtain the single constraint in rp′A(R) by replacing all occurrences of
α[∆1](x) and α[∆2](x) by α′(x).

All constraints in rp′A(R) ∪ nzA(R) ∪ veA(R) have either the shape PO =
0 or PO ≥ 0, where PO denotes a polynomial in the variables ∆ and all
α′(xi) and α[∆](xi). The variables from CVDS(R) form the coefficients of these
polynomials. Now, we transform these constraints by testing nonnegativity or
equality to zero for each coefficient instead of the whole polynomials.

Definition 4.19. A polynomial is absolutely nonnegative if it has nonnegative
coefficients only.

As can be easily seen, every absolutely nonnegative polynomial is also non-
negative.

Definition 4.20. Let R be a TRS and suppose that we have a ∆-simple in-
terpretation into a well-founded ∆-monotone algebra A. Then the coefficient
polynomials of R with respect to A (denoted by cpA(R)) are the constraints
demanding that each coefficient in the polynomial constraints in rp′A(R) ∪
nzA(R) ∪ veA(R) must be nonnegative (if the original constraint demanded
nonnegativity of a polynomial) or equal to zero (if the original constraint set a
polynomial equal to zero).

Lemma 4.21. Let R be a TRS and suppose that we have a ∆-simple interpre-
tation into a well-founded ∆-monotone algebra A. If all constraints in cpA(R)
are valid, then A is ∆-compatible with R.

Proof. If all coefficients of a polynomial are equal to zero, then the whole
polynomial is equal to zero. Furthermore, if a polynomial is absolutely non-
negative, then it is also nonnegative. Therefore, by Definition 4.20, validity
of the constraints in cpA(R) implies validity of the constraints in rp′A(R) ∪
nzA(R) ∪ veA(R). Because the equalities in veA(R) hold, we know that for
each constraint and each variable x, the ∆ such that Definition 4.18 demands
α′(x) = α[∆](x) is unique. Hence, all occurrences of the function α′ are well-
defined, and by the definition of α′ in Definition 4.18, all constraints in rpA(R)
are valid, as well. Thus, all constraints in rpA(R)∪nzA(R) must be valid. Now
we can apply Lemma 4.16 in order to conclude that A is ∆-compatible with
R.
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The coefficient polynomials in the running example are constructed as follows:
the two constraints in nzA(R) do not contain any occurrences of ∆ and α′(x), so
they are directly taken into cpA(R). The single big constraint in rp′A(R) is split
into a number of smaller constraints. For the constant part of the polynomial
in ∆ and α′(x), we get the constraint

daaa,1ab,1 + a2
a,1dbab,1 − aa,1dbab,1 − daaa,1a

2
b,1 ≥ 0 .

For the coefficients of ∆, we have the constraint

daaa,1bb,1 + daba,1ab,1 + eaaa,1ab,1 + a2
a,1dbbb,1 + aa,1ba,1dbab,1

+ aa,1ebab,1 + aa,1ba,1dbab,1 − aa,1dbbb,1 − ba,1dbab,1 − aa,1ebab,1

− daaa,1ab,1bb,1 − eaaa,1ab,1 − daaa,1ab,1bb,1 − aa,1ab,1 ≥ 0 .

For the coefficients of ∆2, we get

daba,1bb,1 + eaaa,1bb,1 + eaba,1ab,1 + aa,1ba,1dbbb,1 + aa,1ebbb,1

+ aa,1ba,1dbbb,1 + b2
a,1dbab,1 + ba,1ebab,1 − ba,1dbbb,1 − aa,1ebbb,1

− ba,1ebab,1 − daba,1a
2
b,1 − daba,1ab,1bb,1 − eaba,1ab,1 − daaa,1b

2
b,1

− daba,1ab,1bb,1 − eaaa,1bb,1 − aa,1bb,1 − ba,1ab,1 ≥ 0 .

The coefficients of ∆3 yield the constraint

eaba,1bb,1 + b2
a,1dbbb,1 + ba,1ebbb,1

− ba,1ebbb,1 − daba,1b
2
b,1 − eaba,1bb,1 − ba,1bb,1 ≥ 0 .

For α′(x), we get
a2

a,1a
2
b,1 − a2

a,1a
2
b,1 ≥ 0 .

For ∆α′(x), we have the constraint

a2
a,1ab,1bb,1 + aa,1ba,1a

2
b,1 + aa,1ab,1bb,1 + aa,1ba,1a

2
b,1

− a2
a,1ab,1bb,1 − aa,1ba,1a

2
b,1 − aa,1ba,1ab,1 − a2

a,1ab,1bb,1 ≥ 0 .

The coefficients of ∆2α′(x) yield

aa,1ba,1ab,1bb,1 + aa,1b
2
b,1 + aa,1ba,1ab,1bb,1 + b2

a,1a
2
b,1 + ba,1ab,1bb,1

− aa,1ba,1ab,1bb,1 − b2
a,1ab,1 − a2

a,1b
2
b,1 − aa,1ba,1ab,1bb,1 − aa,1ba,1bb,1 ≥ 0 .

Finally, ∆3α′(x) yields the constraint

b2
a,1ab,1bb,1 + ba,1b

2
b,1 − aa,1ba,1b

2
b,1 − b2

a,1bb,1 ≥ 0 .

Last, we have to take the single constraint in veA(R) into consideration, which
yields the following last two constraints for cpA(R):

aa,1ab,1 − aa,1ab,1 = 0
ba,1ab,1 + bb,1 − aa,1bb,1 − ba,1 = 0

The following theorem is a direct consequence of Lemma 4.9, Lemma 4.21, and
Theorem 3.8.
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Theorem 4.22. Let R be a TRS and suppose that we have a ∆-simple interpre-
tation into a well-founded ∆-monotone algebra A. If all constraints in cpA(R)
are valid, then R is terminating, and the following bound on the derivation
height holds for all terms t ∈ T (F ,V) and all assignments α:

dhR(t) ≤ inf
∆∈D

[α]A[∆](t)
∆

All that is left to do is to find a satisfying assignment for the constraints
cpA(R). They are Diophantine constraints in the variables in CVDS(R). As
shown by Matiyasevich in 1970 [20], solvability of Diophantine constraints is
undecidable. However, by putting an upper bound on the variables in CVDS(R),
we can make the problem finite. Once we have imposed this upper bound, the
constraints are solved by either giving them to a Diophantine constraint solver
(see [5] or [28], for instance), or they can be encoded into a satisfiability problem
in propositional logic and solved by a SAT solver (see [21] for an implementation
of this approach using MiniSat [6]).

For the running example of this section, both the Diophantine constraint
solver and the SAT solver could find a satisfying assignment for the constraints
in less than a second. Both implementations return the following assignment:

da = 0 db = 1
ea = 0 eb = 0

aa,1 = 1 ab,1 = 1
ba,1 = 1 bb,1 = 0

Except for the constant c, which does not occur in the rewrite rules, this assign-
ment yields the same context-dependent interpretation over the reals that was
also the conclusion of the example from Section 3.1. This assignment satisfies
all constraints in cpA(R). Therefore, by Theorem 4.22, R is terminating, and
the following bound on the derivation height of all terms t ∈ T (F ,V) holds:

dhR(t) ≤ inf
∆∈D

[α]A[∆](t)
∆

As shown by the experimental results in Chapter 6, this procedure works
already very well on the TPDB [17]. It can solve more problems than the
comparable method LMPO. As shown in Chapter 5 below, the restriction of
the method we have used to produce these results induces a quadratic upper
bound on the derivational complexity of these rewrite systems. In comparison,
LMPO can only show a polynomial upper bound on the derivation height of
constructor terms.

In order to demonstrate this algorithm, we recite Example 3.1 from [9]. Con-
sider the TRS R with the single rewrite rule

(x ◦ y) ◦ z → x ◦ (y ◦ z)

over the signature containing the binary function symbol ◦ and the constant
function symbol c. Using Hofbauer’s heuristic, an interpretation into a well-
founded ∆-monotone context-dependent algebra A can be found manually as

41



4 Automating the Search for Context-Dependent Interpretations

follows. We start with a polynomial interpretation into a well-founded mono-
tone algebra B using the carrier N, the standard order > on N, and the inter-
pretation functions ◦B(x, y) = 2x + y + 1 and cB = 0. As can be easily seen,
this interpretation is monotone and compatible with R. We have several pos-
sibilities to apply Hofbauer’s heuristic on this interpretation. Among several
others, we also get this one:

◦A[∆](x, y) = (1 + ∆)x + y + 1 cA[∆] = 0

The constraints for ∆-monotonicity in this example are

◦A[∆(x + ◦1
A(∆), y)− ◦A(x, y) ≥ ∆

◦A[∆(x, y + ◦2
A(∆))− ◦A(x, y) ≥ ∆.

Solving these constraints yields ◦1
A(∆) ≥ ∆

1+∆ and ◦2
A(∆) ≥ ∆. Therefore, we

choose
◦1
A(∆) =

∆
1 + ∆

◦2
A (∆) = ∆

to complete the context-dependent interpretation. This context-dependent in-
terpretation is by construction ∆-monotone. In order to verify ∆-compatibility,
we have to check the constraint

[α]A[∆]((x ◦ y) ◦ z)− [α]A[∆](x ◦ (y ◦ z)) ≥ ∆ .

This constraint can be simplified to

[α]A[∆]((x ◦ y) ◦ z)− [α]A[∆](x ◦ (y ◦ z))

= (1 + ∆)[α]A[
∆

1 + ∆
](x ◦ y) + [α]A[∆](z) + 1

− ((1 + ∆)[α]A[
∆

1 + ∆
]x + [α]A[∆](y ◦ z) + 1)

= (1 + ∆)(
1 + 2∆
1 + ∆

α[
∆

1 + 2∆
](x) + α[

∆
1 + ∆

](y) + 1) + α[∆](z)

− ((1 + ∆)α[
∆

1 + ∆
](x) + (1 + ∆)α[

∆
1 + ∆

](y) + α[∆](z) + 1)

= (1 + 2∆)α[
∆

1 + 2∆
](x) + (1 + ∆)α[

∆
1 + ∆

](y) + 1 + ∆ + α[∆](z)

− ((1 + ∆)α[
∆

1 + ∆
](x) + (1 + ∆)α[

∆
1 + ∆

](y) + α[∆](z) + 1)

= (1 + 2∆)α[
∆

1 + 2∆
](x) + ∆− ((1 + ∆)α[

∆
1 + ∆

](x))

≥ ∆

or
(1 + 2∆)α[

∆
1 + 2∆

](x)− (1 + ∆)α[
∆

1 + ∆
](x) ≥ 0 .

This inequality cannot be proved, since α[ ∆
1+2∆ ](x) and α[ ∆

1+∆ ](x) are inde-
pendent. However, by Lemma 1 of [9], it suffices if we prove [α]A[∆](lσ) −
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[α]A[∆](rσ) for each rewrite rule l → r ∈ R every ∆ ∈ R+ and all ground sub-
stitutions σ instead of our notion of ∆-compatibility in order to get termination
and the upper bound on the derivation height. In our example, the following
inequality would then be left to prove:

(1 + 2∆)[α]A[
∆

1 + 2∆
](xσ)− (1 + ∆)[α]A[

∆
1 + ∆

](xσ) ≥ 0

This is proved by induction on the structure of xσ in [9]. Termination of R and
the upper bound on the derivation height are proved this way, but we could
not yet produce an automatic termination proof by context-dependent inter-
pretations. Our implementation of Hofbauer’s heuristic fails because the tools
we employ to solve the inequalities (Mathematica [19]) fail to do the induction
automatically and get stuck at the last inequality. Our implementation of the
adapted algorithm of Contejean et al. cannot find this context-dependent inter-
pretation because the constraint 1+2∆− (1+∆) = 0 in veA(R) is not fulfilled
for all ∆ ∈ R+.
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5.1 A criterion for quadratic derivational complexity

Even though context-dependent interpretations over the reals automatically
give us a bound for the derivation height of terms, there is still the task to
generally compute these bounds for all possible terms. In the following, we
show that the class of restricted ∆-simple interpretations induces an upper
bound on the derivation height of terms that is quadratic in the number of
function symbols in the term.

Definition 5.1. Suppose that we have a ∆-simple interpretation into a well-
founded ∆-monotone algebra A. Then kA is the smallest natural number such
that for every every function symbol f of arity n, and for each i ∈ {1, . . . , n},
we have

kA ≥ bf,i .

Furthermore, cA is the smallest natural number such that for every function
symbol f , we have

cA ≥ df ∧ cA ≥ ef .

Since we are only dealing with finite TRSs, and we only consider function
symbols of finite arity, the constants kA and cA are obviously well-defined.

Lemma 5.2. Suppose that we have a restricted ∆-simple interpretation into
a well-founded ∆-monotone algebra A. If A is ∆-compatible with R, then we
have for every ground term t

[α]A[∆](t) ≤ cAkA(1 + ∆)(|t|2 + |t|) .

Proof. First we show that the following claim holds for every ground term t:

[α]A[∆](t) ≤ cA(|t|+ ∆ · 1
2
· |t|(kA(|t| − 1) + 2)

Because cA(|t|+∆· 12 ·|t|(kA(|t|−1)+2) ≤ cAkA(1+∆)(|t|2+|t|), the lemma fol-
lows directly from the claim. We prove the claim by induction on the structure
of t. Since t is a ground term, it has the shape f(t1, . . . , tn) for some ground
terms t1, . . . , tn and a function symbol f of arity n. Then, by unfolding the
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definition of [α]A, we get

[α]A[∆](t) = fA[∆]([α]A[f1
A(∆)](t1), . . . , [α]A[fn

A(∆)](tn))

= df + ef∆ +
n∑

i=1

((af,i + bf,i∆)[α]A[f i
A(∆)](ti))

= df + ef∆

+
n∑

i=1

((af,i + bf,i∆)[α]A[
∆

af,i + bf,i∆
](ti))

If n = 0, then f is a constant function symbol, and |t| = 1. For that case, this
yields

[α]A[∆](t) = df + ef∆
≤ cA(1 + ∆) ,

which is what we wanted to show. In the other case, we can apply the induction
hypothesis to the term [α]A[ ∆

af,i+bf,i∆
](ti) for each i ∈ {1, . . . , n}:

df + ef∆

+
n∑

i=1

((af,i + bf,i∆)[α]A[
∆

af,i + bf,i∆
](ti))

≤ df + ef∆

+
n∑

i=1

((af,i + bf,i∆)

· cA(|ti|+
∆

af,i + bf,i∆
· 1
2
· |ti|(kA(|ti| − 1) + 2))) .

We can distribute (af,i + bf,i∆) inside the brackets after cA in order to simplify
this, since it is canceled with the denominator of the division in the second
summand:

df + ef∆

+
n∑

i=1

((af,i + bf,i∆)

· cA(|ti|+
∆

af,i + bf,i∆
· 1
2
· |ti|(kA(|ti| − 1) + 2)))

= df + ef∆

+
n∑

i=1

(cA((af,i + bf,i∆)|ti|+ ∆ · 1
2
· |ti|(kA(|ti| − 1) + 2))) .

By Definition 5.1, we know that df ≤ cA, ef ≤ cA, and bf,i ≤ kA for each
i ∈ {1, . . . , n}. Furthermore, by Definition 4.7, we know that af,i ≤ 1 for each
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i ∈ {1, . . . , n}. Applying this yields

df + ef∆

+
n∑

i=1

(cA((af,i + bf,i∆)|ti|+ ∆ · 1
2
· |ti|(kA(|ti| − 1) + 2)))

≤ cA + cA∆ +
n∑

i=1

(cA((1 + kA∆)|ti|+ ∆ · 1
2
· |ti|(kA(|ti| − 1) + 2))) .

By doing two factorizations, we get

cA + cA∆ +
n∑

i=1

(cA((1 + kA∆)|ti|+ ∆ · 1
2
· |ti|(kA(|ti| − 1) + 2)))

= cA + cA∆ +
n∑

i=1

(|ti| · cA((1 + kA∆) + ∆ · 1
2
· (kA(|ti| − 1) + 2)))

= cA(1 + ∆) +
n∑

i=1

(|ti| · cA((1 + kA∆) + ∆ · 1
2
· (kA(|ti| − 1) + 2))) .

Also, by Definition 2.4, we have |ti| ≤ |t| − 1 for each i ∈ {1, . . . , n}:

cA(1 + ∆) +
n∑

i=1

(|ti| · cA((1 + kA∆) + ∆ · 1
2
· (kA(|ti| − 1) + 2)))

≤ cA(1 + ∆) +
n∑

i=1

(|ti| · cA((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2))) .

Factorizing the term cA((1 + kA∆) + ∆ · 1
2 · (kA(|ti| − 1) + 2))) here yields

cA(1 + ∆) +
n∑

i=1

(|ti| · cA((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2)))

≤ cA(1 + ∆) + (
n∑

i=1

|ti|) · cA((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2)) .

From Definition 2.4, we get that
∑n

i=1 |ti| = |t| − 1. Therefore,

cA(1 + ∆) + (
n∑

i=1

|ti|) · cA((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2))

≤ cA(1 + ∆) + (|t| − 1) · cA((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2)) .

Now we only need to apply Factorization and Distributivity some more in order
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to get the result:

cA(1 + ∆) + (|t| − 1) · cA((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2))

= cA(1 + ∆ + (|t| − 1) · ((1 + kA∆) + ∆ · 1
2
· (kA(|t| − 2) + 2)))

= cA(1 + ∆ + (1 + kA∆)(|t| − 1) + ∆ · 1
2
· (|t| − 1)(kA(|t| − 2) + 2))

= cA(|t|+ ∆ + kA∆(|t| − 1) + ∆ · 1
2
· (|t| − 1)(kA(|t| − 2) + 2))

= cA(|t|+ ∆(1 + kA(|t| − 1) +
1
2
· (|t| − 1)(kA(|t| − 2) + 2)))

= cA(|t|+ ∆ · 1
2
· (2 + 2kA(|t| − 1) + (|t| − 1)(kA(|t| − 2) + 2)))

= cA(|t|+ ∆ · 1
2
· (2 + 2kA(|t| − 1) + (|t| − 2)kA(|t| − 1) + 2(|t| − 1)))

= cA(|t|+ ∆ · 1
2
· (2 + |t| · kA(|t| − 1) + 2(|t| − 1)))

= cA(|t|+ ∆ · 1
2
· (2|t|+ |t| · kA(|t| − 1)))

= cA(|t|+ ∆ · 1
2
· |t|(kA(|t| − 1) + 2))

This concludes

[α]A[∆](t) ≤ cA(|t|+ ∆ · 1
2
· |t|(kA(|t| − 1) + 2)) ,

which is what we wanted to show.

Theorem 5.3. Suppose that we have a restricted ∆-simple interpretation into
a well-founded ∆-monotone algebra A. If A is ∆-compatible with R, then R is
terminating, and we have dcR(m) ∈ O(m2).

Proof. By Theorem 3.8, R is terminating, and for every term t, we have

dhR(t) ≤ inf
∆∈D

[α]A[∆](t)
∆

.

Together with Lemma 5.2, we get

dhR(t) ≤ inf
∆∈D

cAkA(1 + ∆)(|t|2 + |t|)
∆

= cAkA(|t|2 + |t|) .

Obviously,
cAkA(|t|2 + |t|) ∈ O(|t|2) ,

thus we conclude the theorem.
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In the running example from Section 4.3, we considered the rewrite system
from Table 2.1. In the end, we obtained a ∆-simple interpretation with the
interpretation functions

aA[∆](x) = (1 + ∆)x a1
A(∆) =

∆
1 + ∆

bA[∆](x) = x + 1 b1
A(∆) = ∆ .

This interpretation is actually a restricted ∆-simple interpretation. Therefore,
Theorem 5.3 applies to R, which certifies a quadratic upper bound on the
derivational complexity of R. Moreover, for every ground term t, Lemma 5.2
gives us the upper bound

[α]A[∆](t) ≤ (1 + ∆)(|t|2 + |t|)

on the derivation height of R. Applying Theorem 3.8 concludes

dhR(t) ≤ inf
∆∈R+

0

(1 + ∆)(|t|2 + |t|)
∆

= |t|2 + |t| .

Even though this bound is slightly less accurate than the bound that was cal-
culated for this example in Section 3.1, it is still in the same complexity class.
Moreover, it is much easier to calculate this bound automatically than the
bound from Section 3.1, considering that only a special family of terms was
chosen there, and that the bound on [α]A[∆](t) for terms t from this family was
calculated by an inductive proof that might not be so easy to automate.

5.2 Quadratic Derivational Complexity and Non-Simple
Termination

As we have seen in Section 3.4, context-dependent interpretations can han-
dle rewrite systems which are terminating, but not simply terminating. How-
ever, the interpretation function were not really “well-behaved”, since they
were discontinuous. Still, even restricted ∆-simple interpretations can handle
non-simple termination. Consider the one-rule TRS R from Section 3.4 again:

a(a(x)) → a(b(a(x)))

By applying the algorithm described in Section 4.3, we obtain the follow-
ing automatically generated restricted ∆-simple interpretation into a context-
dependent algebra A over the reals:

aA[∆](x) = 2∆x + 2 a1
A(∆) =

1
2

bA[∆](x) = ∆x + ∆ b1
A(∆) = 1

Checking that this is indeed a ∆-simple interpretation and applying Lemma
4.8 yields that ∆-monotonicity indeed holds for this interpretation. In order to
verify ∆-compatibility with R, we have to check that the inequality

[α]A[∆](a(a(x)))− [α]A[∆](a(b(a(x)))) ≥ ∆
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holds for all ∆ ∈ R+ and all assignments α. Indeed, we have

[α]A[∆](a(a(x)))− [α]A[∆](a(b(a(x))))

= 2∆[α]A[
1
2
](a(x)) + 2− (2∆[α]A[

1
2
](b(a(x))) + 2)

= 2∆(2 · 1
2
· [α]A[

1
2
](x) + 2) + 2− (2∆(

1
2
· [α]A[1](a(x)) +

1
2
) + 2)

= 2∆[α]A[
1
2
](x) + 4∆ + 2− (2∆(

1
2
· (2[α]A[

1
2
](x) + 2) +

1
2
) + 2)

= 2∆[α]A[
1
2
](x) + 4∆ + 2− 2∆[α]A[

1
2
](x) + 2∆ + ∆ + 2

≥ ∆ .

Now we can apply Theorem 5.3 in order to conclude termination of R and

dcR(m) ∈ O(m2) .

More exactly, Lemma 5.2 yields the following bound for all ground terms t:

[α]A[∆](t) ≤ 4(1 + ∆)(|t|2 + |t|)

with cA = 2 and kA = 2. By applying Theorem 3.8, we can conclude

dhR(t) ≤ inf
∆∈R+

0

4(1 + ∆)(|t|2 + |t|)
∆

= 4(|t|2 + |t|) .

For every two as that occur in a row in the original term, exactly one rewrite step
can be done. Therefore, the real derivational complexity of R is linear. This
means that our result is not optimal for this example. Still, this interpretation
can certify that the derivational complexity of R is not exponential, which is
already a good thing.
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6 Implementation and Experimental
Results

The methods described in the previous chapters have been implemented. In
this chapter, we discuss these implementations.

6.1 Hofbauer’s Heuristic

First, the heuristic of Hofbauer we described in Section 4.1 was implemented.
The implementation of this approach has been split into the three programs
cdiprover, cdisolver and cdibounds.

Cdiprover : This program takes a TRS as input. The input file has to follow
the same syntax as the files in the TPDB. The format specification for this
database is available with the termination problems database [17]. First,
cdiprover tries to find a suitable polynomial interpretation for the given
TRS. For this step, the program dioprover, which was implemented by
Winkler [28], is used. Dioprover searches polynomial interpretations us-
ing the (non-adapted) algorithm of Contejean et al. [5]. Afterward, we try
to apply Hofbauer’s heuristic as described in Table 4.1. This generates a
set of “stubs” of context-dependent interpretations. Each stub contains
the interpretation functions fA for all function symbols f . The program
tries to apply the heuristic at up to two spots in the interpretation at
the same time. Cdiprover outputs the stubs of the context-dependent
interpretations into files ending with .solution<n>.con, where <n> is a
running number. These files can be directly used as input for cdisolver.
The .con files follow the grammar shown in Table 6.1. As we can see, a
spec consists of four parts. The first part (<idlist>) declares a list of
variables that is going to be used in the parts below. Otherwise, it would
not be possible to differentiate between variables and constant function
symbols when parsing a file. The second part (<listofrules>) declares
the rewrite rules of the considered TRS. The third part (<inters>) de-
clares the stub of the context-dependent interpretation. Each element
in this “list” corresponds to a function fA for some function symbol f .
The last part (<monoconstlist>) declares a list of pairs (a, b), where a
is a function symbol, and b is a number in {1, . . . , arity(a)}. Every such
pair means that the ∆-monotonicity constraint has to be checked for this
function symbol and argument position. Cdiprover is written in OCaml.

Cdisolver : Cdisolver takes as input a stub of a context-dependent interpre-
tation. It is possible to use the output files of cdiprover directly as input
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Table 6.1: The output grammar of cdiprover.

<spec> := (VAR <idlist>) (RULES <listofrules>)
(INTER <inters>) (MONOCONSTS <monoconstlist>)

<idlist> := ε | id <idlist>

<listofrules> := ε | <rule> <listofrules>

<rule> := <term> -> <term>

<term> := id | id() | id(<termlist>)
<termlist> := <term> | <term>, <termlist>

<inters> := <inters> id = (<poly>)
| <inters> id() = (<poly>)
| <inters> id(<varlist>) = (<poly>)

<varlist> := id | id, <varlist>

<poly> := ε | <poly> + (int + int ∗ delta)<monovars>
<monovars> := ε | ∗id <monovars>

<monoconstlist> := ε | <monoconst> <monoconstlist>

<monoconst> := id int | id(<varlist>) int

for cdisolver. The expected grammar for the input files of cdisolver is
shown in Table 6.2. The first four parts have exactly the same meaning as

Table 6.2: The input grammar of cdisolver.

<spec> := (VAR <idlist>) (RULES <listofrules>)
(INTER <inters>) (MONOCONSTS <monoconstlist>)
| (VAR <idlist>) (RULES <listofrules>)
(INTER <inters>) (MONOCONSTS <monoconstlist>)
(MINTERMS <mintermlist>)

<mintermlist> := ε | <term> <mintermlist>

the output of cdiprover. The optional fifth part (<mintermlist>) of the
input file declares a list of terms. If a context-dependent interpretation
which induces termination can be constructed from the stub in the given
input file, then the upper bounds on the derivation height are computed
for these terms.

After reading the input file, cdisolver formulates the constraints for ∆-
monotonicity. The solutions to these constraints are used to construct
the functions f i

A for all function symbols f and all i ∈ {1, . . . , n} with
n = arity(f). Then the constraints for ∆-compatibility are constructed
and checked. If they are valid for all assignments α and all ∆ > 0, then the
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complete context-dependent interpretation is given as output. Otherwise,
no context-dependent interpretation is returned for the given stub. For
the case that the procedure ends with success, we may specify a number
of terms for which we want to test the upper bound on the derivation
height. If such terms are given, then for each of them, the limit

inf
∆∈D

[α]A[∆](t)
∆

is calculated and returned, where t is the considered term. The core of
cdisolver is written in C. It is wrapped by an interface in OCaml, which
is responsible for the input and the output of the program. For solving the
constraints for ∆-monotonicity and ∆-compatibility, and for calculating
the bounds on the derivation height of terms, Mathematica [19] is used.
The constraints are built as packets in the core of the program that is
written in C. Mathlink serves as an interface between C and Mathematica,
which transfers the packets between these two parts of the solver. Finally,
Mathematica does the actual solving of the constraints which are encoded
in the packets.

Cdibounds : This program is a subset of cdisolver. It takes a context-
dependent interpretation and a number of terms as input. The expected
grammar of the input file is shown in Table 6.3. The first, second, and

Table 6.3: The input grammar of cdibounds.

<spec> := (VAR <idlist>) (INTER <inters>)
(FTAUI <ftauilist>) (MINTERMS <mintermlist>)

<poly> := ε | <poly> + int <varexps>
<varexps> := ε | ∗delta <varexps> | ∗id <varexps>

| ∗(delta/(int + int ∗ delta))<varexps>
<ftauilist> := ε | <ftaui> <ftauilist>

<ftaui> := id tau int(delta) = (<poly>)

fourth part of the input file (<idlist>, <inters>, and <mintermlist>)
have the same meaning as the corresponding parts in the input files for
cdisolver. The third part (<ftauilist>) declares the functions f i

A for
all function symbols f and all i ∈ {1, . . . , arity(f)}. Cdibounds assumes
that the given context-dependent interpretation is already known to be ∆-
monotone and ∆-compatible with the considered TRS. Like in cdisolver,
Mathlink and Mathematica are then used to compute the upper bound

inf
∆∈D

[α]A[∆](t)
∆

for the derivation height of each term t given in the input file.
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We have tested the combination of cdiprover and cdisolver on version 3.2
of the TPDB [15]. The database contains 865 TRSs, of which 686 are known
to be terminating. We used two variations of cdiprover in this test. One
of them generated stubs of context-dependent interpretations where in each
stub, Hofbauer’s heuristic was applied in exactly one place. The other one
allowed up to two applications of the heuristic per stub. Obviously, the first
variation is less powerful than the second. However, the second approach is
also more computation intensive. For some TRSs in the database, the second
approach generated already several hundred stubs. Both variations were tested
on a on a Sunfire x4600 (x86 64 architecture) with 8 AMD Opteron 2.6GHz
dual core processors and 64GB of RAM. Cdiprover was given 10 seconds to
generate a polynomial interpretation and the stubs. Additionally, for each
stub, cdisolver took between 250 and 500 milliseconds to generate a complete
context-dependent interpretation and to verify or reject it. The following table
shows the results of these tests:

Method Polynomial interpretations CDIs
1 application of the heuristic 120 11

Up to 2 applications of the heuristic 120 17

As we can see, there are not many systems in the database which can be
proved terminating by context-dependent interpretations found by the heuris-
tic. Also, we have not investigated yet how much improvement for the upper
bound on the derivation height of terms we get for these 17 rewrite systems.
Therefore, the development of these three tools has been stopped, and the ap-
proach described in section 4.3 has been implemented, instead.

6.2 The adapted Algorithm of Contejean et al.

The adapted algorithm of Contejean et al. has been implemented in two simi-
lar tools called cdiprover2 and cdiprover3. These two tools take as input a
TRS in the format of the TPDB [17]. Both use the same algorithm to generate
sets of Diophantine constraints. However, after putting upper bounds on the
values of the coefficient variables, the two tools use different approaches to con-
tinue. Cdiprover2 solves the constraints by using the Diophantine constraint
solver from [28], while cdiprover3 transforms the problem into a propositional
satisfiability problem and applies the SAT solver MiniSat [6] to solve it.

Both tools have methods to prove that a system is terminating with a poly-
nomial derivational complexity. They currently use two methods to achieve
this: polynomial interpretations with additive polynomials (which, by Lemma
2.29, induce a linear upper bound on the derivational complexity), and context-
dependent interpretations over the reals with restricted ∆-simple polynomials
(which, by Theorem 5.3, induce a quadratic upper bound on the derivational
complexity). The interpretations are found by generating the according para-
metric interpretations, generating constraints which are sufficient to enforce the
termination criteria, and solving the constraints. For polynomial interpretations
with additive polynomials, this is done according to the original algorithm of
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Contejean et al. [5]. For context-dependent interpretations over the reals with
∆-simple polynomials, the constraints in cpA(R) are generated by the adapted
algorithm of Contejean et al. [5] as described in Section 4.3.

Apart from the methods to prove polynomial derivational complexity of
rewrite systems, cdiprover2 and cdiprover3 also incorporate other termi-
nation proof methods. Since they are extensions of dioprover [28], they are
naturally able to search for the same subclasses of polynomial interpretations as
dioprover. These are polynomial interpretations with linear, simple, simple-
mixed, and quadratic polynomials. Moreover, the option to search for Π(0)-
interpretations has been added to the tools. Last, it is also possible to search
for context-dependent interpretations with (non-restricted) ∆-simple polyno-
mials.

The output of the two tools is a suitable polynomial or context-dependent
interpretation if one can be found. Both tools are extensions of the program
dioprover [28], which implements the original algorithm of Contejean et al.
They are written in OCaml.

The capabilities of cdiprover2 and cdiprover3 at looking for proofs of
polynomial derivational complexity of rewrite systems have been tested on the
recent version (4.0) of the TPDB [17]. They were run on an i686 with an Intel
Pentium 3 GHz dual core processor and 1 GB of memory. As in this year’s
termination competition [16], a timeout of 120 seconds was used. The results
of the tests are listed in the following table:

Cdiprover2 Cdiprover3
A. CDI A. + CDI A. CDI A. + CDI

YES 41 62 72 41 83 84
MAYBE 1309 206 204 1317 330 324
TIMEOUT 8 1090 1082 0 945 950
Avg. YES time 0.512 7.283 3.818 0.021 9.147 5.323

In this table, “A.” denotes polynomial interpretations with additive poly-
nomials. “CDI” means context-dependent interpretations over the reals with
restricted ∆-simple polynomials. The method “Additive + CDI” first tries to
find a polynomial interpretation with additive polynomials. If such an inter-
pretation cannot be found, then a context-dependent interpretation over the
reals with ∆-simple polynomials is searched. As would be expected, context-
dependent interpretations over the reals are quite a bit more powerful than
polynomial interpretations with additive polynomials. However, searching for
additive polynomials is much quicker than searching for restricted ∆-simple
polynomials. As we can see, adding a search for additive polynomials before
looking for restricted ∆-simple polynomials adds a little power to the prover but
also reduces the average time needed to find a termination proof considerably.
Last, we see that encoding the final constraints into SAT lets us find quite some
more solutions in the limited time frame than using the Diophantine constraint
solver.

Even though we do not know about any other efforts to implement automatic
proofs of polynomial upper bounds on the derivational complexity of rewrite
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systems, there are methods which can proof another notion of termination in
polynomial time. These methods can show that functions encoded by a rewrite
system can be computed in FP. Since these are the closest comparisons we can
get for the tests mentioned above, we have also tested two such methods, namely
Π(0)-interpretations (as described in Section 2.4, we used simple-mixed polyno-
mials for the defined symbols) generated by cdiprover3 and an implementation
of LMPO (as described in Section 7.1 below) by Martin Avanzini. We want to
mention that another such method, POP*, which is an extension of POP by
Arai and Moser [1], is currently being developed by Moser and Avanzini. The
tests were run on the current TPDB [17] with a timeout of 120 seconds for each
TRS. The results are shown in the table below:

A. CDI A. + CDI Π(0) LMPO
YES 41 83 84 166 74
MAYBE 1317 330 324 522 1212
TIMEOUT 0 945 950 670 72
Avg. YES time 0.021 9.147 5.323 2.072 0.027

The tests in the first three columns were done with cdiprover3. As we
can see, the results we get are pretty comparable to LMPO. While Π(0)-
interpretations seem to be rather powerful, it must also be said that they
prove that encoded functions are computable in FP, while our method proves
polynomial derivational complexity. The only result which we get from Π(0)-
interpretations for derivational complexity is that the derivation height of con-
structor terms is bounded by a polynomial. The same difference holds for
cdiprover3 and LMPO, but there, cdiprover3 can be applied to more exam-
ples than LMPO.
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7.1 LMPO

LMPO was introduced by Marion in 2003 [18]. It is a restriction of the well-
known multiset path order. Like the Π(0)-interpretations defined in Section
2.4, it has a close relation to functions computable in FP.

Definition 7.1. Given a rewrite system R, a valency for a defined function
symbol f is a function ν(f, ·) : {1, . . . , n} → {0, 1}, where n = arity(f).

Definition 7.2. Let R be a rewrite system, ν a valency for all f ∈ FD and ≈
an equivalence relation on FD. Then the permutative congruence for ≈ which
respects ν is the smallest equivalence relation ∼ on terms such that

• f(t1, . . . , tn) ∼ f(s1, . . . , sn) whenever f ∈ FC and ti ∼ si for all i ∈
{1, . . . , n}, and

• f(t1, . . . , tn) ∼ g(s1, . . . , sn) whenever f, g ∈ FD, f ≈ g, and there exists
a permutation π such that ν(g, i) = ν(f, π(i)) and si ∼ tπ(i) for all i ∈
{1, . . . , n}.

Definition 7.3. Let R be a rewrite system, and let & be an order on FD. Let
≈ denote the reflexive part of &, and > the irreflexive part of &. Then the
light multiset path order consisting of two orders denoted by >lmpo

1 and >lmpo
0

is defined as follows: Let ∼ denote the permutative congruence for ≈ which
respects ν. Given two terms t = f(t1, . . . , tn) and s, we have t >lmpo

1 s if

1. ti >lmpo
1 s or ti ∼ s for some i ∈ {1, . . . , n}, and if f ∈ FD, then ν(f, i) = 1;

or

2. s = g(s1, . . . , sm), f ∈ FD, t >lmpo
1 si for all i ∈ {1, . . . ,m}, and either

g ∈ FC or f > g.

We have t >lmpo
0 s if

1. ti >lmpo
0 s or ti ∼ s for some i ∈ {1, . . . , n}; or

2. s = g(s1, . . . , sm), f ∈ FD, g ∈ FC , and t >lmpo
0 si for all i ∈ {1, . . . ,m};

or

3. s = g(s1, . . . , sm), f, g ∈ FD, f > g, and t >lmpo
ν(f,i) si for all i ∈ {1, . . . ,m};

or

4. s = g(s1, . . . , sn), f ≈ g, and there exists a permutation π such that

• ν(g, i) = ν(f, π(i)) for all i ∈ {1, . . . , n},
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• tπ(i) >lmpo
1 si for some i ∈ {1 . . . , n} with ν(g, i) = 1, and

• tπ(i) >lmpo
ν(g,i) si or tπ(i) ∼ si for all i ∈ {1, . . . , n}.

Theorem 7.4 (Marion 2003). Let R be a rewrite system, ν a valency for all
defined function symbols, and ≥ a precedence over the defined function symbols.
If for all rewrite rules l → r ∈ R, we have l >lmpo

0 r, then R is terminating.

Theorem 7.5 (Marion 2003). A function f : An → A is computable in FP if
and only if there exist a confluent constructor system R which computes f with
T (FC) = A, a valency ν for all defined function symbols, and a precedence ≥
on the defined function symbols such that for all rewrite rules l → r ∈ R, we
have l >lmpo

0 r.

For every LMPO, there exists a corresponding multiset path order such that

s >lmpo
0 t =⇒ s >mpo t .

The precedence for this multiset path order is chosen such that it contains
the precedence of the LMPO and f > g whenever f ∈ TD and g ∈ TC . This
can be easily seen by induction the the structure of s and t, where rule 1 of
>lmpo

0 corresponds to rule 1 of the multiset path order, rule 2 and 3 of >lmpo
0

correspond to rule 2 of MPO, and rule 4 of >lmpo
0 corresponds to the last rule

of MPO.
LMPO can be used to certify that a function computed by a rewrite system is

computable in FP. however, as already mentioned in Chapter 6, it says nothing
about the derivational complexity of the rewrite system.

7.2 Polynomial interpretations over the reals

There are two main differences between implementations of traditional poly-
nomial interpretations and our implementation of context-dependent interpre-
tations. The first difference is that our implementation uses a subset of real
numbers as domain of the interpretations, and the second difference is the
addition of context-dependency. While we do not know about any other im-
plementations in termination provers which use context-dependency, there has
been recent work by Lucas about using the rational and algebraic real numbers
as a domain for polynomial interpretations [12, 13, 14]. The following theorems
are results from [12].

Theorem 7.6 (Lucas 2005). Let R be a rewrite system and suppose that we
have an interpretation into an algebra A = (A, [·]A), where A ⊆ R such that
for every function symbol f ∈ F , the interpretation function fA is continuous
and differentiable in all arguments. If for all i ∈ {1, . . . , n} with n = arity(f),
we have ∂fA(x1,...,xi,...,xn)

∂xi
≥ 1, then for all δ ∈ R+, the function fA is monotone

with respect to the order >δ, where >δ is defined like >∆ in Definition 3.7.

Since for each δ ∈ R+, the order >δ is well-founded, this implies that
(A, [·]A, >δ) is a well-founded monotone algebra if the conditions of this theorem
are fulfilled.
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Theorem 7.7 (Lucas 2005). Let R be a rewrite system and suppose that we
have an interpretation into an algebra A = (A, [·]A) such that (A, [·]A, >δ) is
a well-founded monotone algebra for each δ ∈ R+. Then for each rewrite rule
l → r ∈ R, let δl,r = infα[α]A(l)− [α]A(r). Furthermore, let δ = min{δl,r | l →
r ∈ R}. If δ ∈ R+, then (A, [·]A, >δ) is compatible with R.

If the conditions of this theorem are fulfilled, then by Theorem 2.20, R is
terminating. Lucas suggests an algorithm similar to the algorithm of Contejean
et al. [5] to find interpretations using Q+

0 or R+
0 as carrier. The algorithm starts

by selecting a parametric interpretation (e.g. linear, simple or simple-mixed
polynomials). Then, three kinds of constraints are generated:

1. For each function symbol f ∈ F , the constraint fA(x1, . . . , xn) ≥ 0 ensures
that the interpretation function only returns values from the carrier (Q+

0

or R+
0 ). If only nonnegative coefficients are used in the interpretation,

then this condition is obviously fulfilled and these constraints may be
dropped.

2. For each function symbol f ∈ F and every i ∈ {1, . . . , n}, we have the
constraint ∂fA(x1,...,xi,...,xn)

∂xi
≥ 1. This ensures that Theorem 7.6 can be

applied in order to certify monotonicity of all interpretation functions with
respect to the orders >δ for all δ ∈ R+. We do not have to calculate the
differentiation automatically. This can already be done manually on the
general parametric interpretations. For example, for linear polynomials,
we have for each n-ary function symbol f and each i ∈ {1, . . . , n}:

∂fA(x1, . . . , xi, . . . , xn)
∂xi

=
∂df +

∑n
i=1 af,ixi

∂xi
= af,i ≥ 1

3. For each rewrite rule l → r ∈ R, the polynomial Pl,r = [α]A(l)− [α]A(r)is
generated. The constant coefficient of this polynomial has to be positive,
and all other coefficients have to be nonnegative. This ensures that all
rewrite rules are oriented from left to right. Furthermore, δl,r will then be
the value of the constant coefficient of Pl,r. Therefore, if these constraints
are fulfilled, we have δl,r ∈ R+ for all rewrite rules l → r ∈ R, and thus
δ ∈ R+. This means that if all other constraints are fulfilled as well, then
Theorem 7.7 can be applied in order to conclude termination of R.

Any constraints that contain variables which are not coefficient variables can
now be transformed into a number of smaller constraints which only contain
coefficient variables. This is done in a similar way as the constraints in rp′A(R)∪
nzA(R) ∪ veA(R) are transformed into the constraints in cpA(R) in Definition
4.20. Solving the resulting constraints over the coefficient variables then induces
a polynomial interpretation over Q+

0 or R+
0 which proves termination of R.

In [13], Lucas has shown that polynomial interpretations over the rational
and real numbers are strictly more powerful than polynomial interpretations
over the natural numbers. An interesting question is how the power of poly-
nomial interpretations over the reals relates to the power of context-dependent
interpretations over the reals. However, by generalizing Lemma 3.9, we can see
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that context-dependent interpretations are at least as powerful as interpreta-
tions over the reals.

Lemma 7.8. Suppose that we have an interpretation into a well-founded mono-
tone algebra B = (R+

0 , [·]B, >δ) with δ ∈ R+ which is compatible with a TRS R.
Construct an interpretation into the context-dependent algebra C as follows:

fC [∆](a1, . . . , an) = ∆fB(a1δ/∆, . . . , anδ/∆)/δ

f i
C(∆) = ∆

Then C fulfills the following properties:

1. for all ground terms t, all assignments α, and all ∆-assignments α′ such
that α′[∆](x) = ∆α(x)/δ for every variable x, the equality [α′]C [∆](t) =
∆[α]B(t)/δ holds

2. C is ∆-compatible with R with respect to the set of orders {>∆| ∆ ∈ R+}
from Definition 3.7

3. C is ∆-monotone with respect to the set of orders {>∆| ∆ ∈ R+} from
Definition 3.7

Proof. Property 1 can be verified by structural induction on t. If t is a variable,
then the property holds by the assumptions about α and α′. If t is a constant,
then the property holds by the definition of fC , which concludes the base cases.
If t has the shape f(t1, . . . , tn) where f is a function symbol with arity n > 0,
then expanding the definitions of fC and f i

C yields:

[α′]C [∆](. . . , ti, . . .) = fC [∆](. . . , [α′]C [f i
C(∆)](ti), . . .)

= fC [∆](. . . , [α′]C [∆](ti), . . .)
= fC [∆](. . . , ∆[α]B(ti)/δ, . . .)
= ∆fB(. . . , ∆[α]B(ti)δ/(∆δ), . . .)/δ

= ∆fB(. . . , [α]B(ti), . . .)/δ

= ∆[α]B(f(. . . , ti, . . .))/δ

The third line in this proof follows from the induction hypothesis, the rest is
straightforward.

For property 2, we know that the interpretation into B is compatible with R
with respect to the order >δ, therefore [α]B(l)−[α]B(r) ≥ δ for every rewrite rule
l → r in R and all assignments α. Furthermore, we can conclude [α′]C [∆](l)−
[α′]C [∆](r) = ∆[α]B(l)/δ −∆[α]B(r)/δ ≥ ∆ from property 1 whenever α(x) =
α′[∆](x)δ/∆ for all variables x. Since ∆[α]B(l)/δ − ∆[α]B(r)/δ ≥ ∆ holds for
all assignments α because of [α]B(l) − [α]B(r) ≥ δ, we also have [α′]C [∆](l) −
[α′]C [∆](r) ≥ ∆ for all ∆-assignments α′.

For property 3, we know that the interpretation into B is monotone with
respect to the order >δ, so we have fB(. . . , b′i, . . .)−fB(. . . , bi, . . .) ≥ δ whenever
b′i − bi ≥ δ. We need to show that fC [∆](. . . , a′i, . . .) − fC [∆](. . . , ai, . . .) ≥ ∆
whenever a′i − a ≥ ∆, which is equivalent to showing ∆fB(. . . , a′iδ/∆, . . .)/δ −
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∆fB(. . . , aiδ/∆, . . .)/δ ≥ ∆ or fB(. . . , aiδ/∆, . . .)− fB(. . . , aiδ/∆, . . .) ≥ δ. We
know that a′i − ai ≥ ∆, which is equivalent to a′iδ/∆ − aiδ/∆ ≥ δ. Therefore,
fB(. . . , a′iδ/∆, . . .)− fB(. . . , aiδ/∆, . . .) ≥ δ follows from the monotonicity of B
which holds by assumption.

This concludes that context-dependent interpretations over the reals are at
least as powerful at showing termination as interpretations into algebras over
the real numbers are. Also, as can be seen from the construction, context-
dependent interpretations over the reals which use only polynomial interpreta-
tion functions are at least as powerful as polynomial interpretations into the
reals. What remains open is whether context-dependent interpretations into the
reals are strictly more powerful as a termination criterion than interpretations
into algebras over the real numbers. For interpretations which only use polyno-
mials as interpretation functions, we conjecture that context-dependent inter-
pretations are strictly more powerful. As shown in section 5.2, it is relatively
easy to find termination proofs for non-simply terminating rewrite systems with
context-dependent interpretations, even if we only use very simple polynomials
in the interpretation functions. For polynomial interpretations into the reals, it
is not even sure whether they can handle non-simple termination at all. In [13],
we have seen the construction of rather complex rewrite systems which can be
proved terminating by polynomial interpretations over the rationals or reals,
but not over the natural numbers. A non-simply terminating rewrite system
would have provided a much simpler solution to that problem. Also, concerning
the estimation of upper bounds on the derivational complexity, interpretations
into the rationals and reals still use similar rules as interpretations into the nat-
urals. In particular, repeated application of monomials of the form axn1

1 ·. . .·xnk
k

still gives us an exponential in x1, . . . , xk if a > 1.
However, the relative power of interpretations into the reals comes at a price.

As illustrated by the running example of Section 4.3, even for simple examples,
the constraints can already get rather complicated. This makes it more difficult
to move through the search space effectively. While this is a drawback for
termination proving, where we already have other, faster methods available, we
still think that this method does very well at what it was actually designed for,
namely derivational complexity analysis.
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8 Summary and Future Work

After a very general definition of context-dependent interpretations, we have
seen a solution to Hofbauer’s open question of implementing an automated
search for these interpretations [9]. We have defined a subclass of context-
dependent interpretations for which we can adapt a known algorithm [5] from
polynomial interpretations for proving termination. We have shown that a fur-
ther, easily distinguishable, subclass is able to certify a quadratic, and therefore
polynomial, derivational complexity. Tests of our implementation of this algo-
rithm on the current version of the TPDB [17] have shown that this subclass of
a subclass is still quite powerful. Moreover, even though it looks comparatively
tame, it is still able to handle non-simple termination.

However, there are still quite some open problems for future work. We have
seen that parametric context-dependent interpretations over the reals with (re-
stricted) ∆-simple polynomials behave very nicely when we look for context-
dependent interpretations automatically. It would be interesting to investi-
gate whether there are other parametric interpretations for which this is true.
Also, we currently only have nice criteria for linear and quadratic derivational
complexity. Are there good criteria to certify other subclasses of polynomial
derivational complexity, like cubic or general polynomial derivational complex-
ity? Furthermore, there are other methods (Π(0)-interpretations, LMPO, POP,
and POP*) which can show termination in polynomial time. However, their
notion of encoding functions computable in FP is different from the notion of
polynomial derivational complexity that we used in this thesis. Finding con-
nections between these two notions would help to apply these other methods to
derivational complexity. Another avenue for further research in this area would
be to investigate whether the bound induced by specific matrix interpretations
on string rewrite systems [26] can be generalized to term rewriting. A further
interesting question is the relationship between context-dependent interpreta-
tions and polynomial interpretations over the reals. As we have seen in Section
7.2, context-dependent interpretations are at least as strong as polynomial in-
terpretations over the reals. However, are there concrete examples which can
be proved terminating by context-dependent interpretations, but not by poly-
nomial interpretations over the reals? Last, we want to mention the example
at the end of Section 4.3 again. As we have seen in the example, the induction
part in the termination proof by the context-dependent makes it impossible for
our current implementation termination of this seemingly simple example auto-
matically. If this obstacle could be overcome automatically, this could increase
the power of our implementation even more.
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