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Abstract

This thesis is concerned with derivational complexity analysis of term rewrite
systems. Term rewriting is a simple, but Turing-complete model of computation
which resembles first-order functional programming. Derivational complexity
is a natural measure of time complexity for term rewrite systems: it relates the
maximum number of computational steps in term rewriting (rewrite steps) with
the size of the initial term. In the literature, there exist many results certifying
upper bounds on the derivational complexity of a term rewrite system whose
termination can be proved by certain techniques. In this thesis, we expand
upon these results by the following contributions.

First, we determine the hardness of deciding whether a certain class of func-
tions is an upper bound on the derivational complexity of a given term rewrite
system. For that, we employ the arithmetical hierarchy, a device for classify-
ing the degree of undecidability of decision problems. Although term rewriting
has some significant differences from other models of computation, it turns out
that the hardness of this decision problem is the same as for the corresponding
decision problem for Turing Machines.

Second, we consider variants of existing termination proof techniques which
have been defined specifically for derivational complexity analysis: context de-
pendent interpretations and restrictions of matriz interpretations. We state
complexity results corresponding to these techniques. Moreover, despite their
seeming difference, we present an equivalence between important subsets of
them.

Third, we consider the currently most important technique for proving termina-
tion of term rewrite systems: the dependency pair framework. 1t is a framework
for combining many small partial proof arguments (which are formalised as DP
processors) into a complete termination proof of the considered term rewrite
system. Moreover, the possibility to define new DP processors makes the de-
pendency pair framework easily extensible. While, as stated before, complexity
results exist for many (direct) termination proof techniques, no results existed
for any DP processors in the dependency pair framework before. We consider
the most important DP processors and give derivational complexity bounds
term rewrite systems whose termination can be proved by various combina-
tions of these DP processors. Moreover, we provide examples which show that
all these complexity bounds are essentially optimal.

Finally, we give a brief overview over the software tool T¢cT, which is an auto-
matic prover for upper complexity bounds for term rewrite systems. The focus
of TcT is polynomial bounds. In particular, those techniques mentioned in this
thesis, from which a polynomial upper bound on the derivational complexity of
the considered term rewrite system can be concluded, have been implemented
in TcT.
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Preface

Own Contributions

Since this thesis is embedded into an existing and active research area, it goes
without saying that it is impossible to strive for its self-containment without
including anything other than my own work. Giving all required foundations
of the treated topic and describing related work is necessary to make this thesis
more complete. Moreover, in order to improve quality of the results, and make
them available to the international community in a timelier manner, most of
the actual scientific contributions of this thesis have already been published
in conference proceedings and journal papers. These previous publications
are [84, 82, 83, 98]. The paper [82] is a journal paper partly based on a previ-
ous conference paper [80], and [83] is a conference paper built upon a previous
workshop contribution [81]. On the other hand, [84, 98] are principally inde-
pendent conference papers. In the following, I provide a general breakdown of
what parts of this thesis have been known previously, what parts are new con-
tributions, and which of these new contributions have already been published
in one of the just mentioned papers. More specific pointers to used sources are
given at the respective places in the text of the thesis.

Chapter 2: Since this chapter recalls the fundamentals of the topics covered
throughout the rest of the thesis, it draws almost exclusively from pre-
existing knowledge (which can mainly be found in the references given
at the beginning of each section in this chapter). Exceptions to this
rule, where my definitions slightly digress from standard notions in the
literature I am aware of, are the notion of LIFETIME; in Definition 2.11
([98]), the notion of simple progeny in Definition 2.25 (similar to the
notion of progenies used in [82]), the operator = from Definition 2.36
([98]), the notion of induced complexity given in Definitions 2.37 and 2.51
(used less formally in [82]), the measure of DP complexity as shown in
Definition 2.47 (used in a similar way in [80]), and the notion whether
a DP processor completely solves a DP problem, see Definitions 2.49,
2.58, and 2.70. Moreover, the small observations made in Theorems 2.52,
2.53, and 2.56 (which was given in [82] first), and Example 2.54, and the
slight modifications to the usable rules refinement exhibited throughout
Section 2.4.2 (to the extent they differ from the treatment of usable rules
given by Hirokawa and Middeldorp in [43]) are new.

Chapter 3: The content of this chapter is a contribution of this thesis. It has
previously been published jointly by myself and Simonsen in [98].

Chapter 4: This chapter recapitulates known results about termination proof



techniques and associated complexity results, and therefore mostly draws
from pre-existing knowledge found in the literature. Exceptions to this
rule are the complexity considerations for top-bounds (Theorem 4.56),
top-DP-bounds (Theorem 4.58), and match-DP-bounds (Example 4.59),
which are completely new.

Chapter 5: The material presented in this chapter mostly consists of new con-
tributions, which have been published jointly by Moser, myself, and Wald-
mann in [84]. Exceptions to this rule are the following items, which are
already known in the literature: parts of the foundations of context de-
pendent interpretations (generalised from Hofbauer’s version [49]) which
are introduced in the first part of Section 5.3 in order to be built upon
(essentially Definition 5.9, Theorem 5.10, a slightly less general version of
Lemma 5.16, and the notions of A-linear and A-restricted interpretations
introduced by Definition 5.13) have been included in my Master’s the-
sis [96] and a subsequent conference paper [79]. Moreover, Section 5.4 is
entirely devoted to the description of related work by Middeldorp, Moser,
Neurauter, Waldmann, and Zankl [86, 110, 76]. Finally, the experiments
described in Section 5.5 were completely rerun with the newest versions
of the respective tools and testbeds, hence this section is only partially
based on the corresponding section in [84].

Chapter 6: This chapter wholly consists of new contributions, most of which
have been published jointly by Moser and myself. The material presented
in Sections 6.2 and 6.3 appeared in [83], while Sections 6.4, 6.5, 6.6, 6.8,
and 6.9 were essentially published in [82]. A result similar to the main
result of Section 6.7 was contained in [82], as well, but I have completely
revised its proof, and hence improved that result. The experimental com-
parison described in Section 6.10 is completely new.

Chapter 7: The material presented in this chapter is completely new, and has
not been published before. The software described in this chapter has
been developed jointly by Avanzini, Moser, and myself.

I would like to note that the publications listed at the beginning of this section
do not form an exhaustive listing of the papers (co-)authored by me during my
PhD studies. The content of the remaining papers has not (or only partially,
where explicitly mentioned) been used for this thesis. These papers are [79, 7,
97]. The first of these papers [79] has not been included in this thesis because
it was based on the results produced by my Master’s thesis. The software tool
described in the second paper [7] is not being developed anymore. Moreover
functionality-wise, it has been mostly subsumed by TcT, which is described in
Chapter 7 and used for the experiments conducted for Section 5.5. The final
of these papers [97] is a description of cdiprover3, which is used for a part
of the experiments described in Section 5.5. However, since its functionality
related to polynomial interpretations is subsumed by TcT, context dependent
interpretations are already treated in Section 5.3, and cdiprover3 is not being
developed anymore, either, I decided not to include the material of that paper
into this thesis.



Coauthorship statements

As mentioned above, most new scientific contributions made by this thesis have
previously appeared in papers coauthored by me [84, 82, 83, 98]. In the fol-
lowing, I clarify my contributions to each of these papers in their published
versions.

e The paper [84] was joint work with Georg Moser and Johannes Wald-
mann. Moser had introduced me to the topic of derivational complexity
and suggested the topic of the paper. Waldmann had the idea for one of
the paper’s two main theoretical contributions (proving polynomial com-
plexity bounds using triangular matrix interpretations). I had the idea
for the other theoretical contribution (the relationship between context
dependent and triangular matrix interpretations), filled out the formal
proof details for the main theorems, implemented the techniques, and
conducted the experiments. In the manuscript, I was responsible for the
general description of one of the main topics (context dependent inter-
pretations) and all the proofs. Waldmann filled in the general remarks
about the other main topic (matrix interpretations), summarised the re-
lationship between various subclasses of matrix and context dependent
interpretations, and gave some general context for matrix interpretations.
Finally, Moser fleshed out everything else (description of experiments and
the paper’s general context, and parts of the description of matrix and
context dependent interpretations), and did the final editing, and a lot of
reformulation and restructuring throughout most of the paper.

e The paper [82] was joint work with Georg Moser. I had the proof ideas
for most of the theoretical contributions (the upper complexity bounds
and examples illustrating their optimality for the basic dependency pair
method, its restriction to string rewriting, dependency graphs, and us-
able rules), while some of them, and several corrections in others, were
the result of joint discussion. I subsequently filled out the proofs in the
paper. Moser suggested the topic of the conference paper [80] underlying
this article. He added a crucial ingredient in one of the proofs (using fast
growing functions to provide an upper bound on the derivational com-
plexity of the simulating TRS for dependency graphs) and its technical
details, collaborated with me in working out some of the other proofs,
and contributed many simplifications, reformulations and clarifications to
most other technical proof parts.

e The paper [83] was joint work with Georg Moser. I had the idea for
the theoretical contribution of the paper, and constructed the proof of
all technical theorems. Several technical corrections were the result of
joint discussion. Moser contributed many suggestions for improving the
structure and presentation of the proof, added the general descriptions
putting the theoretical relevance of the result into context, and the final
editing of the paper.



e The paper [98] was joint work with Jakob Grue Simonsen. The idea for
writing this paper came from Simonsen. The main theoretical contri-
butions of the paper were the result of joint discussion, with Simonsen
mainly providing proof concepts on the general level and pointers to rel-
evant literature in computability theory, and me transferring the general
ideas to term rewriting and filling in the technical details on that level. In
the manuscript, I mostly contributed the material related to the core com-
plexity notions for rewriting (derivational complexity, implicit complexity,
and runtime complexity), while Simonsen wrote down the results related
to other notions of complexity (minimal complexity and complexity under
strategies), which have specific relevance outside of term rewriting, and
he provided most of the explanations giving the general context of the
paper. I did the final editing of the paper.



Chapter 1
Introduction

What more do we know if we have
proved a theorem by restricted
means other than if we merely
know the theorem is true?

Georg Kreisel

In this thesis, we consider term rewriting, a model of computation. On one
hand, term rewriting is very simple and intuitive. First-order terms are used as
the data structure in this model of computation, and a program is given by a
set of rules (a term rewrite system), where each rule is essentially an oriented
equation over terms. Then a step of computation (a rewrite step) in this model
is a replacement of an occurrence of the left-hand of such a rule in a term by its
right-hand side. Note that this way of computation is in general nondeterminis-
tic. A term which no longer allows the application of any rewrite rules (a normal
form) is regarded as the result of such a computation. On the other hand, term
rewrite systems have the same computational power as Turing Machines, the
classical universal model of computation, so any computable function can be
computed by a term rewrite system (if the Church-Turing thesis, which asserts
the same for Turing Machines, is true). Hence, they are an adequate mathemat-
ical abstraction of programs in any contemporary programming language. In
particular, term rewriting shares a lot of conceptual similarity with (first-order)
functional and declarative programming.

An important property of programs in any model of computation is cor-
rectness, and one significant component of correctness is termination, i.e. the
assertion that the program under consideration always produces a result in a
finite amount of time, regardless of the input it is given. For Turing Machines,
the problem whether a given Machine satisfies termination is called the uniform
halting problem, which is well-known to be undecidable in general. The same
is true for the problem of deciding termination of a given term rewrite system.
Even the exact degree of undecidability of these two problems (which is mea-
sured by the arithmetic hierarchy) is known to be the same. Still, termination of
term rewriting has been a very active research field in the last decades, produc-
ing many partial decision procedures for this problem. One of these techniques,
which we want to highlight, is the dependency pair framework [35, 36, 103].
Unlike most other techniques, which try to prove or disprove termination in
a single step, the dependency pair framework allows the modular combination
of many small proof arguments; these “small proof arguments” are essentially
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formalised as DP processors. The existence of these techniques lead to the de-
velopment of powerful tools which prove or disprove termination of term rewrite
systems automatically. Since 2004, there exists an annual international termi-
nation competition with the purpose of stimulating the development of such
tools. This competition has initially been hosted in Paris', and since 2008 in
Innsbruck?. We mention the following automatic termination provers, which
have participated in the standard term rewriting or string rewriting (which is
essentially term rewriting with a restriction on the structure of terms) cate-
gory in the termination competition during the last two years: AProVE [34],
CiME [15], Matchbox [108], MU-TERM [69], T1Tp [64], and VMTL [95]. Most of
these tools implement some variant of the dependency pair framework, and the
most successful of them crucially depend on it.

Another property of programs in any model of computation is their complez-
ity. Since for many programs, not only termination, but also termination within
a reasonable time frame, and with a reasonable usage of resources, is desirable,
the complexity of a program is also a very important property. Note that in
general, the term “complexity” is ambiguous, since various measures of com-
plexity exist. On a very general level, programs with polynomially bounded
time complerity are deemed to be feasible [17]. A very natural measure of
time complexity for term rewriting, which has been suggested by Hofbauer and
Lautemann in [50], is the length of the longest sequence of rewrite steps starting
from any term, dependent on that term’s size. This is formalised by the notion
of derivational complexity. Any complexity measure akin to worst case time
complexity (such as derivational complexity) can be viewed as an extension
of the property of termination: while termination only asserts that any com-
putation by the program under consideration must finish at some point, the
complexity measure expresses how soon this point must occur. Equal to ter-
mination, it is also undecidable whether the derivational complexity of a given
term rewrite system is contained in a certain class of functions (for many impor-
tant classes of functions). However, the degree of undecidability of each of these
decision problems is different from the degree of undecidability of termination
(it is neither strictly higher nor strictly lower, but incomparable, see Section 3.4
for details). It should also be noted that it is a priori not clear whether counting
rewrite steps is an invariant cost model, i.e. whether the length of a sequence
of rewrite steps is polynomially related to the length of an equivalent computa-
tion performed on a Turing Machine. However, this has been answered in the
positive by Dal Lago and Martini [19], and by Avanzini and Moser [6].

Other complexity measures for term rewriting than derivational complexity
have appeared in the literature, as well. For instance, it was suggested by Cichon
and Lescanne in [14, 68] to only consider those terms as starting terms which
represent a function call with values as arguments. Moreover, [14] proposed as a
specific complexity measure the further restriction of values to natural numbers
represented by the function symbols 0 and s (successor). In the vein of the above
mentioned restriction on starting terms, Hirokawa and Moser later formally

'See http://www.lri.fr/~marche/termination-competition/
2See http://termcomp.uibk.ac.at/
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defined the notion of runtime complezity [44]. We would also like to mention
the concept of implicit computational complexity (see [9] for an overview of the
research field around this concept, for instance), which does not consider the
complexity of some specific algorithm using some specific computational device,
but rather the complexity of the considered function itself, which essentially
amounts to the worst case time complexity of the best algorithm computing the
function. Finally, another notion, which measures average case time complexity
(in contrast to the notions mentioned up to here, which are worst case time
complexity measures) can be found in [13].

The main theme of this thesis is the analysis of upper bounds on the deriva-
tional complexity of term rewrite systems. Specifically, we focus on obtaining
derivational complexity bounds by using termination proofs. For many known
termination proof techniques (in particular, for most direct termination proof
techniques), it is known that provability of termination of a term rewrite system
via that technique implies some upper bound on the derivational complexity of
that term rewrite system. We seek to expand this knowledge. In this regard,
we put a particular emphasis on the dependency pair framework, but we also
consider other termination proof techniques. Doing that is useful in several
ways. First, it yields a way to automatically prove complexity bounds for term
rewrite systems. Second, it reveals an aspect of the inherent power of termi-
nation proof techniques. Third, it may be useful to obtain more information
about the inner workings of the analysed proof techniques.

Concerning the first of these points, the immediately obtained way to auto-
matically prove complexity bounds for term rewrite systems works as follows:
using the same techniques as automatic termination provers (or often, subsets
or restrictions thereof, which yield tighter complexity bounds than the related
full technique), termination of a given system is shown. The upper bound on its
derivational complexity then follows immediately from the termination proof in
conjunction with a general complexity result for the applied technique. Lifted
from term rewrite systems to “real world programming languages”, this imme-
diately yields an opportunity for practical applicability whenever the inferred
complexity bounds are low enough: since for many programs, feasibility is a
desirable property (or even an expected property, so infeasibility would indi-
cate a programming error; or, for instance in real-time systems, feasibility is
even a strictly necessary property), the automatic confirmation of (feasible)
complexity bounds is an important step in the verification of a program.

The second of the above mentioned points, the revelation of the inherent
power of termination proof techniques, works on a more fundamental level.
Upper bounds on the derivational complexity implied by the applicability of
some termination proof technique immediately reveal a limit of the power of
that technique: the technique can not be sufficient to prove termination of any
system whose derivational complexity is beyond that bound. Some techniques
even completely characterise a complexity class. So, termination proof tech-
niques which characterise a larger complexity class are in a sense more powerful
than techniques characterising only a smaller class of functions. This has been
a motivation of Hofbauer and Lautemann to introduce derivational complex-
ity [50]. Previous work in this direction has been done by Dershowitz and
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Okada [24]. Note that still, this measure of strength does not entail a strict
hierarchy of termination proof techniques. Hence, in many cases term rewrite
systems exist whose termination can be proved using the “weaker” method, but
not by the “stronger” one.

Finally, as mentioned above, the proof that some technique is a sound com-
plexity proof technique might reveal more information about the inner workings
of that technique than the proof of its soundness as a termination proof tech-
nique. This is particularly true for techniques whose soundness as a termination
proof technique is shown via indirect, nonconstructive means, while soundness
as a complexity proof technique is typically shown constructively. A prime
example of this is the basic dependency pair method, whose soundness as a ter-
mination proof technique is usually shown in the literature via the nonexistence
of minimal infinite chains (compare Theorem 2.44 below). The only informa-
tion this yields about how termination in a term rewrite system comes about
is the absurdity of its nontermination. In contrast, a proof of its soundness as
a complexity proof technique would typically use more constructive means (it
has to give a concrete complexity bound), which yield more information about
the technique itself.

As examples, we mention some direct termination proof techniques for which
complexity results are known. Polynomial interpretations [65, 66] are one of the
oldest techniques for proving termination of term rewrite systems. They work
by assigning natural numbers to terms in such a way that rewrite steps imply
a decrease of the assigned number. The provability of termination of a term
rewrite system by a polynomial interpretation implies a double exponential up-
per bound on its derivational complexity [50]. Another, recently introduced,
well-known termination proof method is the technique of matriz interpreta-
tions [52, 27]. Matrix interpretations work on a similar principle as polynomial
interpretations, but use vectors of natural numbers instead of natural numbers.
It has been shown that in general, termination proofs by matrix interpretations
imply an exponential upper bound on the derivational complexity of the consid-
ered term rewrite system [52, 27]. Finally, we mention context dependent inter-
pretations [49], a generalisation of polynomial interpretations which has been
developed with the intent of obtaining better complexity bounds. In [96, 79],
two subclasses of context dependent interpretations have been identified (A-
restricted interpretations and A-linear interpretations) which are suitable for
automated search, and whose applicability guarantees a quadratic or exponen-
tial complexity bound, respectively.

In order to meet our goal of increasing the understanding about upper bounds
on the derivational complexity of term rewrite systems, we take the following
fourfold approach. First, we do a classification of the main problem considered
in this thesis: given a term rewrite system, how difficult is it to decide whether
its derivational complexity is contained within some fixed class of functions?
In particular, how difficult is this problem compared to similar problems such
as deciding termination of a given term rewrite system? The answers to these
questions allow us to get a general understanding how the complexity analysis
of particular term rewrite systems should be approached. Second, we consider
variants of established termination proof techniques which were introduced with



the specific intent of obtaining tighter upper bounds on the derivational com-
plexity of term rewrite systems. Third, we give upper bounds on the deriva-
tional complexity of term rewrite systems whose termination can be shown by
well-known proof techniques. Here we pay specific attention to the dependency
pair framework. We analyse several ways of applying it to prove termination
of term rewrite systems. Finally, we give an overview of TcT, an automatic
complexity prover for term rewriting by Martin Avanzini, Georg Moser, and
the author of this thesis. In TcT, the above mentioned restrictions of matrix
interpretations together with various other techniques, which can be used to
obtain upper bounds on the derivational complexity of term rewrite systems,
are implemented.
More concretely, the main contributions of this thesis are the following:

1. We investigate the degree of undecidability of the problem of checking
whether a certain class of functions is an upper bound on the derivational
complexity of a given term rewrite system. We also perform this analysis
for several extensions and variants of this decision problem, such as con-
sidering runtime complexity or implicit complexity instead of derivational
complexity, restricting the upper complexity bound to a single concrete
function, restricting to a particular strategy of choosing the next applied
rewrite step (for terms which allow more than a single rewrite step), or
considering the length of the shortest sequence of rewrite steps to a normal
form (rather than the longest one). It turns out that each of these decision
problems is as hard as its counterpart for Turing Machines. Although it
is not obvious that the results about time complexity for Turing Machines
can be transferred to derivational complexity for term rewriting, we put
together all links which are necessary to show that this is indeed the case.

2. We identify a subclass of matrix interpretations called triangular matriz
interpretations, which is a syntactic restriction of the class of matrix in-
terpretations. If termination of a term rewrite system is provable by such
a matrix interpretation, then its derivational complexity is bounded by
a polynomial. Moreover, we establish a tight correspondence between a
subclass of context dependent interpretations (which is a slight general-
isation of the two subclasses introduced in [96, 79]) and a restriction of
triangular matrix interpretations: whenever termination of a term rewrite
system can be proved by one of the two methods, it can be proved by the
other one, as well.

3. We establish upper bounds on the derivational complexity of term rewrite
systems whose termination can be proved by various incarnations of the
dependency pair framework. On one hand, we investigate the full depen-
dency pair framework based on a selected set of DP processors; we chose
this set such that it consists of the most important and fundamental DP
processors. On the other hand, we also investigate the most basic version
of the dependency pair method, as introduced in [2], possibly enhanced
by some of the refinements described in [2, 36, 43] (argument filterings,
dependency graphs, and usable rules). For all complexity bounds shown
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for these methods, we also present examples witnessing that the bounds
are essentially optimal.

This thesis is structured as follows (excluding this introduction). In Chap-
ter 2, we recall well-known basics about term rewriting and other, related areas,
which we will use in this thesis. This is also where we take the opportunity
to fix the notation we employ for these notions. Item 1 of the above men-
tioned contributions is laid out in Chapter 3. Chapter 4 begins to cover the
topic of complexity bounds inferred from the applicability of termination proof
techniques. Here, we recall some classical termination proof techniques whose
potential as complexity proof techniques has already been analysed in the liter-
ature. We use this chapter to recall and collect these results, focusing on direct
proof techniques. Item 2 of the contributions, the investigation of the above
mentioned restricted proof techniques, is covered by Chapter 5. In Chapter 6,
we treat Item 3 of the contributions. Chapter 7 is devoted to an overview of
the complexity prover TcT. Finally, we give a brief summary of the thesis in
Chapter 8.

The main contributions listed above are independent of each other, so they
can be read in any order. However, all of the chapters (not considering introduc-
tion and conclusion) depend on Chapter 2. Moreover, Chapters 5, 6, and 7 all
assume knowledge of the termination proof techniques and complexity results
presented in Chapter 4, and Chapter 7 additionally depends on Sections 5.2
and 5.4. So more or less, the interdependence of chapters in this thesis can be
expressed by the following graph:

3/2\4
7N\
T 6

7
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Chapter 2

Preliminaries

If in other sciences we should
arrive at certainty without doubt
and truth without error, it
behooves us to place the
foundations of knowledge in
mathematics.

Roger Bacon

2.1 Orders and Relations

We recall and fix some well-known notions and notations for orders and rela-
tions, which are needed for this thesis.

Definition 2.1. Let — be a binary relation over some domain M. Then we
call = transitive if for all x,y,z € M such that + — y and y — 2z, we have
x — z. The relation — is reflerive if x — x for all x € M, and it is irreflezive if
xr — x for no x € M. It is antisymmetric if for all z,y € M, z -y and y — x
implies x = y. We call — total if for all z,y € M, we have x — y or y — «.

Definition 2.2. A preorder is a transitive and reflexive binary relation. We
call a transitive, antisymmetric, and reflexive binary relation a partial order,
and a transitive and irreflexive relation a proper order. A binary relation is a
total order if it is transitive, antisymmetric, reflexive, and total.

Definition 2.3. Let — be a binary relation over some domain M. Then the
transitive closure of —, often denoted as —™, is the smallest transitive binary
relation over M such that — C —T. The reflezive closure of —, often denoted
as —=, is the smallest reflexive binary relation over M such that —» C —~.
We write —* for the reflexive and transitive closure of —, which is the smallest
reflexive and transitive binary relation such that — C —*. For n € N, we often
denote the n-fold composition of — as —", i.e., for z,y € M, x =% y if and
only if z = y, and x —"*! y if and only if there exists some z € M such that
r—"zand z = y.

It is easy to see that for any binary relation —, we have —+= Un>1 —"
—== U= and - = J,,cn =™

11
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Definition 2.4. Let —, and —4 be binary relations over some domain M.
Then the composition of —, and — g, denoted as —, - —3, is defined such that
for all x,y € M, we have v —, - —g y if and only if there exists some z € M
such that * —, z and z =3 y.

The relation — relative to —4 (also called —, modulo —g), is denoted as
—o/—p. It is defined by —,/—3 = —>2§ N —>;§.

We often write x —, ¥y —+ 2 in order to indicate that x —, y and y —3 .

Definition 2.5. A binary relation — over a domain M is called well-founded if
there exists not infinite sequence tg,t1, ... of elements of M such that t; — ;11
for all n € N. Tt is finitely branching if for all s € M, the set {t | s — t} is
finite.

Definition 2.6. Let M be a set. Then a multiset X over M is a mapping
associating a natural number X (m) (called the multiplicity of m) with every
m € M. We say that some m € M is an element of X (denoted as m € X) if
X(m) > 0. A multiset X is a subset of a multiset Y (we write X C Y in that
case) if for all m € M, we have X (m) < Y (m). The union of two multisets X
and Y (written as X UY) is the multiset Z such that Z(m) = X(m) + Y (m)
for all m € M. The difference of two multisets X and Y (written as X \'Y) is
the multiset Z such that Z(m) = max{X(m) — Y (m),0} for all m € M.

Sometimes we explicitly write down multisets in a set-style notation, e.g. M =
{{z1,...,2n}}. Then M(m) is defined to be the number of elements x; of the
given sequence such that m = z;.

Definition 2.7. The multiset extension of a proper order >, denoted as >™ul
is defined to be the following order over multisets over M: given two multisets
X and Y over M, we have X >™1 Y if and only if there exists a multiset Z
such that Z C X, Z C Y, and there exists some x € X \ Z such that = > y for

allye Y\ Z.

The lexzicographic extension of a or proper order >, denoted as >, is the
following order over tuples of length n over M: we have (z1,...,2,) >
(y1,...,yn) if and only if there exists some 1 < i < n such that z; = y;

for all 1 < j <4, and z; > ;.

2.2 Computability and Recursion Theory
2.2.1 Turing Machines

In this section, we introduce the essentials of Turing Machines, see [93], for
instance. Moreover, this section serves the purpose of fixing the specific formal-
isation of Turing Machines used throughout this thesis.

Definition 2.8. A (deterministic single-tape) Turing Machine is defined to be
a triple (@, X, d), where

e () is a finite set of states containing at least three distinct states gs (the
starting state), q, (the accept state), and g, (the reject state),

12



2.2 Computability and Recursion Theory

e Y is a finite set of tape symbols containing at least two distinct symbols
O (the blank symbol) and & (the left end marker), and

e 0 is a function from Q \ {ga, ¢} X X to @ x X x {L, R} and is called the
transition function. It must be defined such that for all ¢ € Q \ {qa, ¢},
we have §(q,F) = (¢',F, R) for some ¢’ € @ (here L represents a move to
the left, and R a move to the right).

A (deterministic dual-tape) Turing Machine is a triple (Q, %, ¢), identical to a
single-tape Turing Machine, except that § is a function from Q\ {qq, ¢} X X x X
to @ x ¥ x {L,R} x X x {L,R}. We assume that for all ¢ € @Q \ {qa4, -} and
b € X, we have §(¢,F,b) = (¢/,, R, ,2’) and §(q,b,F) = (¢", V", 2", R) for
some ¢',¢" € Q, b, b’ € 3, and o', 2" € {L, R}.

Definition 2.9. A configuration of a single-tape Turing Machine is a triple
(¢, w, 1), where

e g € @ (q denotes the current state),

e w =Fw with v’ € ¥* (w denotes the current content of the tape, apart
from infinitely many [J symbols to the right of w), and

e i c{l...|w|} (i is the current position of the scanner).
A configuration of a dual-tape Turing Machine is a quintuple (¢, w, i, v, j), where
e ¢, w, and i are defined as for single-tape Turing Machines,

e v = v with v/ € ¥* (v denotes the current content of the second tape,
except for infinitely many O symbols to the right of v), and

e je{1...|v|} (jisthe current position of the scanner on the second tape).

A start configuration of a single-tape Turing Machine is a configuration (g, w, 7)

such that ¢ = ¢5, w = Fw' for some input word w’, and i = 1. A start
configuration of a dual-tape Machine is a configuration (¢, w,i,v,j) such that
q=¢qs, w="Frw,i=1 v =+, and j = 1. The size of a configuration

a = (g, w,1) of a single-tape Machine, denoted as |«/|, is the length of w (also
denoted as |w|). For dual tape Machine configurations « = (q, w, 4, v, j), we set
laf = w| + [v].

Definition 2.10. We recall the following standard semantic notions of Turing
Machines, which we will use liberally throughout the thesis. Let M = (Q, %, 0)
be a (single-tape or dual-tape) Turing Machine.

1. The single-tape Machine M moves in a single step from a configuration

(¢,w, ) to a configuration (¢, w’,i’) if w = w1 ... wy,|, v = w). ..wl’w,‘,
d(q, wi) = (¢',wj, ), wj = w; for all j # i, and either x = L and i’ = i—1,
orx=Randi =1+ 1.

13
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2. The dual-tape Machine M mowves in a single step from a configuration
(¢,w,4,v,5) to a configuration (¢',w’,i’,v', ") if w = wi...wy, v =
V1 V), W= W .w"w,|7 v =0 ..v"v,|, d(q, wi,vj) = (q',wg,x,v;,y),
wy, = wy, for all k # i, vy = v for all | # j, either x = L and ' =i — 1,
orx=Rand ¢ =i+ 1, and either y= L and 7 = j — 1, or y = R and
j=j+1

3. The Machine M moves (in n steps) from a configuration «g to a config-
uration ay, if there exist configurations aq, ..., a,—1 such that M moves
from a;_1 to a; in a single step for all 1 < i < n.

4. The single-tape (respectively dual-tape) Machine M halts on configuration
a if it moves from « to a configuration (¢, w, ) (respectively (q,w,i,v, 7))
such that ¢ € {q4, ¢}

5. The Machine M halts on input word w if it halts on the start configuration
for the input word w. It halts (universally) if it halts on all words over 3.

6. The single-tape (respectively dual-tape) Machine M accepts an input
word x if it moves from the start configuration for z to a configura-
tion (q,w,7) (respectively (q,w,i,v,7)) such that ¢ = q,. It rejects =
if it moves from the start configuration for = to a configuration (g, w, 1)
(respectively (g,w,i,v,j)) such that ¢ = ¢,. Given a language L, the
Machine M accepts exactly L if for every input word x, M accepts z if
and only if x € L.

Finally, given a (single-tape or dual-tape) Turing Machine M, we define the
functions TiME); and LIFETIME); gauging two measures of time complexity.
For the second function, we chose the name LIFETIME),; to reflect the close
relationship to the Turing Machine mortality problem (see [41], for instance),
which asks whether a given Turing Machine halts on all configurations.

Definition 2.11. Let M be a (single-tape or dual-tape) Turing Machine. Then
we define the mappings TIME s, LIFETIME; : N — N as follows:

TIME (n) = max{m | M runs m steps on input word = A |z| < n}

LIFETIME ) (n) = max{m | M runs m steps on configuration a A |a| < n}

If there exists any input word of length at most n (respectively, a configuration
a with |a| < n) on which M does not halt, then TiMEp (n) (respectively,
LiFETIME/(n)) is undefined.

2.2.2 The Arithmetical Hierarchy

We now recapitulate the arithmetical hierarchy, see [93, 28], for instance.

Definition 2.12. Let n € N. A set (or, equivalently, a language, or a decision
problem) A C N is in X0 if there exists an (n + 1)-ary decidable predicate!

IThe predicate may be chosen to be primitive recursive without changing the notions defined.

14
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P(x1,...,Zpn,xyy1) such that A is exactly the subset of N for which the unary
predicate
Vo ... Qry P(1,. .. Ty, Tnt1)

holds, where @ is either 3 or V depending on whether n is odd or even.
The set A is in I1V if there exists an (n + 1)-ary decidable predicate P such
that A is exactly the subset of N for which

Vri3xg...Qry P(x1,. .., Ty, Tnt1)
holds, where @) is V or 3, depending on whether n is odd or even.

For decision problems over countable domains other than N (such as tuples
of natural numbers, Turing Machines, terms, or TRSs, for instance), we often
tacitly assume the existence of a Godel numbering, which makes the decision
problem equivalent to one over N. Thus, the definitions of this section naturally
extend to decision problems over any such domain.

Note that A8 is exactly the set of decidable languages, and ¥ is the set of
recursively enumerable languages.

Definition 2.13. Let n € N. A set A C N is X0-hard (respectively I10-hard)
if for every set B in X0 (respectively, for every set B in I1?), there exists a
computable function f such that z € B if and only if f(z) € A for all x € N.

Definition 2.14. Let n € N. A set A C N is X0 -complete (respectively I19-
complete) if it is both contained in XU (respectively in I19) and ¥0-hard (re-
spectively T12-hard).

Proposition 2.15 ([93, Theorem 13-VIII]). The following decision problem
FIN is X9-complete:

Instance: A (single-tape) Turing Machine M

Question: Is the number of inputs on which M halts finite?

2.2.3 Primitive and Multiple Recursion

We recall some essentials of recursion theory, compare [89, 94]. We call the
following functions over N initial functions: the zero functions z,(x1,...,2,) =
0 of all arities, the unary successor function s(z) = z + 1, and all projection
functions 7¢(x1,...,7,) = x; for 1 < i < n. A class C of functions over N
is closed under composition if for all f: N — N and g¢1,...,gm: N* — N
in C, the function h(zy,...,x,) = f(g1(x1,...,Zn)s .., gm(T1,...,2y)) is in
C, as well. It is closed under primitive recursion if for all f: N* — N and
g: N2 5 N, the function h defined by h(0,z1,...,z,) = f(z1,...,7,) and
hy+1,21,...,2n) = f(y,h(y,21,...,Tpn), 1, .., Ty) is contained in C, as well.
The k-ary Ackermann function Ay for k > 2 is defined recursively as follows:

Ap(0,...,0,25) =z + 1
Ak($1,...,l‘k_1 + 1,0) = Ak(l‘l,. . .,xk_l,l)
Ak(l’l,...,l’k_l + 1,21+ 1)
Ag(z1, ..., 2 +1,0,...,0,21)

Ak(ajla .. 'a:l:k’—laAk(l'la cey L1+ 173316))
Ag(z1, ... mi, 2k, 0,...,0, 2k)

15
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Here, the last equation is a schema instantiated for all 1 < ¢ < k — 2. The set
of primitive recursive functions is the smallest set of functions over N which
contains all initial functions and is closed under composition and primitive
recursion. The set of multiply recursive functions is the smallest set of functions
over N which contains all initial functions and k-ary Ackermann functions, and
is closed under composition and primitive recursion.

The k-ary Ackermann functions form a hierarchy which completely captures
the set of multiply recursive functions in the following sense:

Theorem 2.16 ([94], Chapter 1). For every multiply recursive function f, there
exists a k such that Ax(n) ¢ O(f(n)).

2.3 Term Rewrite Systems

In the following sections, we introduce the notions of term rewriting used
throughout this thesis. Their purpose is to keep the thesis self-contained rather
than to give a complete treatment of term rewriting. More general introduc-
tions to term rewriting (including the concepts defined in this section, unless
mentioned otherwise) can be found in [8, 102], for instance.

Terms form the basic data structures on which computations by term rewrite
systems are performed. They are formally built up as follows.

Definition 2.17. Let F9, F! ... be a family of pairwise disjoint sets. Then
F = Uien F'is a signature. For each f € F, we call f a function symbol, and
we say that the arity of f is m such that f € F™. A constant is a function
symbol of arity 0.

Throughout this thesis, unless specifically stated otherwise, we assume sig-
natures to be finite and to contain at least one constant.

Definition 2.18. Let F be a signature, and V a countably infinite set disjoint
from F, whose elements we call variables. The set of terms built up from F and
V (denoted by T (F,V)) is the smallest set fulfilling the following conditions:

1. For each x € V, we have z € T(F,V).

2. For each f € F, if n is the arity of f and t1,...,t, € T(F,V), then
ft1, ... tn) € T(F,V).

Throughout this thesis, we assume F to be a signature, and V a set of
variables satisfying the conditions of Definition 2.18. Unless mentioned oth-
erwise, we assume terms to be built up from F and V. For terms of the shape
fG..(f(t))...) where f is repeated n times, we use the abbreviation f™(t).

Definition 2.19. We now recall some fundamental properties of terms, which
will be liberally used in this thesis.

1. The set of function symbols in a term t, denoted as Fun(t), is defined as:

Fun(t) = 1] iftey
P UUrcien Fun(ty) ift = f(ty,... t)
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. The set of variables in a term t, denoted as Var(t), is:

EG! iftey
Var(t) = {Ulgign Var(t;) ift= f(t1,... tn)

. The root symbol of a term ¢, (notation: rt(t)), is t if t € V, and f if
t= f(t1,... tn).

. We say that s is a subterm of ¢ (writing s < t) if either s = ¢t or ¢t =
f(t1,...,ty) such that s < ¢; for some 1 < i < n. The strict subterm
relation is defined by s <t <= s <t As # t. The inverse of the
subterm relation is called the superterm relation.

. A term t such that Var(t) = () is a ground term. The set of ground terms
in T(F,V) is denoted as T (F).

. A position is a finite sequence of natural numbers. The set of positions of
a term t is the following:

{¢} ifteVy
Pos(t) = {etu U ip ift=f(t1,...,tn)
1<i<n
p67<70:(ti)

Here we use € to denote the empty sequence. For p € Pos(t), we write
t|, to denote the subterm of t at position p. We have t|¢ = t and, for
t = f(t1,...,tn), tlip = til,. We use a partial order < on positions such
that p < ¢ if and only if p is a prefix of g. The strict part of < is denoted
as <, le.p < q < p < qgApF# q We use the two abbreviations
Posr(t) = {p € Pos(t) | rt(t) € F} and Posy(t) = {p € Pos(t) | rt(t) €
V}. We call two positions p and g parallel (writing p || ¢) if neither p < ¢
nor p > q holds.

. The size of a term ¢, denoted as |t| is the number of function symbol and
variable occurrences in t. Formally, it is defined as follows:

] = 1 ifteV
1+21<i<n|ti| ift:f(tly---»tn)

. The depth of a term t, denoted as dp(t), is the the length of the longest
simple path from the root to any leaf in the parse tree of t. More formally:

dp(t) = 0 ifteVy
P L max({0y U {1+ dp(t) | 1 <i <n}) it = f(tr,...,tn)

. The number of occurrences of a variable or function symbol x in a term
t, denoted as |t|,, is the following:

1 ift==x

0 ifteVandt#ux

L+30 Jtile ift=f(t1,...,ty) and f =z

S ltile ift = f(t1,...,t,) and f #x

t|, =
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Two further important concepts, which are implicitly applied during each
step in term rewriting, are contexts and substitutions.

Definition 2.20. A substitution is a mapping o: V — T (F,V) such that the
set {x | o(x) # x} is finite. A substitution o is canonically extended to terms
as follows (to denote the application of a substitution o on a term ¢, we use the
notation to):

to — o(t) iftey
\ fto, .. teo) if = f(tr,. .. t)

Definition 2.21. Let { be a fresh function symbol of arity 0, called the hole.
A context is a term in T(F U {0}, V) containing exactly one occurrence of §.
For a context C' and term ¢, the term C[t] denotes the replacement of ¢ by ¢.

t if C=9¢
Clt] =4 f(s1,---,8i[t], .-+, 8n) if C= f(s1,...,8,) and O € Fun(s;),

i.e. s; is a context

These concepts are enough to define rewrite steps, the primitive operation of
term rewriting.

Definition 2.22. A rewrite rule over a signature F and a variable set V is a
pair [ — r of terms from 7 (F,V) such that [ ¢ V and Var(l) 2 Var(r). A term
rewrite system (TRS for short) over a signature F and a variable set V is a set
of rewrite rules over F and V. A TRS R induces the following binary rewrite
relation —g over T (F,V): we have s = t if and only if there exist a context
C, a substitution o, and a rewrite rule [ — r € R such that

s =C|lo] and t = C[ro] .

The pair s —g t is also called a rewrite step. We call a sequence of rewrite
steps t1 =g to =R ... =R t, & rewrite sequence or a derivation. The position
p such that C|, = ¢ is the redex position of this rewrite step. The set of normal
forms of R (or normal forms of —x) is defined by NF(R) = {s | At s = t}.
If for a rewrite rule [ — r € R and a rewrite step C[lo] —r Cl[ro], we have
t € NF(R) for all ¢ < lo, then we also call the step an innermost rewrite step,
denoted as C[lo] S Clro].

Unless mentioned otherwise, we assume rewrite rules and TRSs to be defined
over F and V such that F consists exactly of the function symbols occurring
in the TRS under consideration, and V is some countably infinite set including
all variables occurring in that TRS. If F contains only unary and constant
function symbols, we also call the TRS under consideration a string rewrite
system? (SRS for short). When giving the rules of a TRS, we generally use sans
serif font for function symbols, and roman font for variables. Unless specifically

2This is sometimes called unary rewriting, as opposed to the notion of string rewriting com-
monly used in the literature, where only unary function symbols are allowed. All results
about string rewriting presented in this thesis hold for both flavours of string rewriting.
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stated otherwise, we also assume TRSs to be finite throughout this thesis. If
the TRS R is clear from the context, we sometimes write — instead of —%.
We write s 2 ¢ to indicate the redex position p of the rewrite step s — t. We
write s = ¢ to indicate that the redex position of this rewrite step is not e. If
we wish to indicate the applied rewrite rule [ — r in a rewrite step s — t, we
write s —;_,, t. In order to express that the reduct t of a rewrite step s —x t
is a normal form of R, we write s —>!R t. We use s —>%! if s > tand tis a
normal form of R.

In the sequel, we sometimes refer to specific subclasses of rewrite rules and
TRSs, which are defined by simple syntactic criteria. We now define those such
subclasses which we use in the remainder of this thesis.

Definition 2.23. A term ¢ is called linear if for all z € Var(t), we have |t|, = 1.
A rewrite rule | — r is called left-linear if [ is linear, right-linear if r is linear,
and linear if both [ and r are linear. A TRS R is called left-linear (respectively
right-linear, linear) if all rewrite rules of R are left-linear (respectively right-
linear, linear).

A rewrite rule | — r is called duplicating if there exists a variable z € Var(l)
such that ||, < |r[z. A TRS is called duplicating if at least one of its rewrite
rules is duplicating.

A rewrite rule I — 7 is called erasing if Var(l) D Var(r). We say that a TRS
is erasing if at least one of its rewrite rules is erasing.

Given a rewrite step s — t, in order to formalise whether two positions in s
and t are the “same”, the notion of descendants is used.

Definition 2.24. Let A: s 25, t be a rewrite step, and let p € Pos(s). Then
the descendants of p in t (denoted by p\A) are defined as follows:

{p} if p<p orplp,
PNA={Paq |l =la}t if p=p'qq2 with ¢ € Posy(l),
0 otherwise .

For a set P C Pos(s), we define P\A = {J,p p\A. For derivations A : s =",
we set p\A = {p}, if A is the empty derivation. Otherwise, we can split A into
Ay :s— s and Ag i s’ —* ¢, and set p\A = {(p\A1)\A2}.

We also need a richer definition of descendants below. In contrast to de-
scendants, this notion should consider the positions destroyed and created by

rewrite steps, as well. We now give a simplified version of progenies, which are
defined in [80].

Definition 2.25. Let A: s 25,_,, t be a rewrite step, and let p € Pos(s). Then
the simple progenies of p in t (denoted by p \\* A) are defined as follows:

{p} if p<p orplp,

P\ A= Waste | rlas =lan} i p=paige with a1 € Posy(D),
{rar | @1 € Posg(r)} ifp=7p,
0 otherwise .
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For aset P C Pos(s), we define P\*A = (J, p p\*A. For derivations A : s = ¢,
we set p \* A = {p}, if A is the empty derivation. Otherwise, we can split A
into A1 : s — s’ and Ay : &' —>* t, and set p\®* A ={(p\® 41) \* A2}.

For similar modified definitions of the notion of descendants in the literature,
which also include the positions destroyed and created by rewrite steps in some
way, see [107] or [102, Section 8.6], for instance.

Definition 2.26. Let R be a TRS based on F and V. Then the defined symbols
of R are collected in the set D = {f | rt(l) = f for some rewrite rule [ — r €
R}. The constructors of R are defined by Cr = F \ Dg. The set of basic terms
of R is defined to be the following set Br:

Br ={f(vi,...,on) | f €EDr Avi,...,v, € T(CR)}

We call R a constructor TRS if for eachrulel — r € R, we havel = f(l1,...,1,)
for some f € Dg and ly,...,l, € T(Cr,V).

If R is clear from context, we often write D, C, B instead of Dy, Cr, and Bg,
respectively.
We recall the notion of relative rewriting, cf. [31] or [102, Section 6.5.3].

Definition 2.27. Let R and & be TRSs. The induced relative rewrite relation
of R modulo § is defined by —g/s = —r/—s. The set of normal forms of
R/S is defined by NF(R/S) = {s | At s = s t}

Definition 2.28. A TRS R is terminating (or strongly normalising) if its
rewrite relation is well-founded. A term t is terminating with respect to R if
there exists no infinite sequence tg,t1, ... such that ¢t =ty and ¢; — ;41 for all
1€ N.

Termination analysis for TRSs has received a lot of attention during the last
years, see [2, 42, 43, 33, 103, 27, 61], for instance. Most direct termination proof
techniques are based on reduction orders, cf. [8, 102].

Definition 2.29. A binary relation > on terms is closed under substitutions if
s > t implies so > to for all substitutions o. On the other hand, > is closed
under contexts if s > t implies C[s] > C[t] for all contexts C'.

Definition 2.30. A reduction order is a proper order > on terms which is
well-founded and closed under substitutions and contexts.

Definition 2.31. A TRS R is compatible with a binary relation > if for all
rewrite rules I — r € R, we have [ > r.

The following classical theorem describes the generality of reduction orders:

Theorem 2.32. A TRS R is terminating if and only if there exists a reduction
order which is compatible with R.
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Definition 2.33. The derivation tree of a term s with respect to a TRS R
is the following directed graph: the nodes are all terms ¢ such that s —% ¢,
and there exists an edge from t to ' if and only if ¢ — t. A derivation tree
is mon-circular if no path starting from the root in the tree contains the same
term more than once.

Observe that if s is terminating with respect to a TRS R, then the derivation
tree of s with respect to R is finite and non-circular, and s is its single source
node.

While termination of a TRS R certifies that R only gives rise to finite deriva-
tions, the length of these derivations is measured by the derivational complexity
function of R, see e.g. [50].

Definition 2.34. The derivation height of a term s with respect to a finitely
branching, well-founded binary relation — is defined as dh(s,—) = max{n |
dt s =™ t}. The deriwational complezity of a TRS R over F and V is the
following function dcg : N — N:

der(n) = max{dh(t, >g) | t € T(F) AJt| < n}
The innermost derivational complexity of R is the following function idcg:
ideg (n) = max{dh(t, 5r) | t € T(F) A t| < n}

Another measure akin to derivational complexity is the notion of runtime
complexity. This is a natural complexity measure if term rewriting is seen as
a first-order functional programming language: it only takes into account as
starting terms of derivations those terms which model single function calls.
This has been suggested in [14, 68] and formally cast into a definition in [44],
for example.

Definition 2.35. The runtime complezity function of a TRS R is
rcr(n) = max{dh(t, »g) |t € Br A|t| < n}.

Likewise, the innermost runtime complezity of R is the function
ircg (n) = max{dh(¢, L>R) |t e BrR AJt| < n}.

Generally, we use sets of number theoretic functions to express upper bounds
on the derivational or runtime complexity of TRSs. We now define some notions
related to such sets.

Definition 2.36. We call a (finite or infinite) set of mappings N — N a class
of number theoretic functions. Let C be a class of number theoretic functions.

For a function f: N — N, we say that f is bounded by a function in C
(denoted as f < C) if there exists a function g € C such that for all n € N, we
have £(n) < g(n).

The class C is closed under polynomial slowdown if, for any g € C and any
polynomial P over N, we have f < C for f(n) = P(g(n)). We define the set of
functions E(C) as U,ec genpen 9(a - n + ).
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Note that in particular, the set of all polynomials over N is closed under
polynomial slowdown. Moreover, in that case we have C = Z(C), E(C) is closed
under polynomial slowdown, and f < Z(C) if and only if f is bounded by a
polynomial. On the other hand, if C = (J,cn{ga} with g.(2) = a®, then Z(C)
is again closed under polynomial slowdown, and f < Z(C) if and only if f is
bounded by an exponential function; in order to see that =(C) is closed under
polynomial slowdown, let g. € C, and let P be a polynomial of degree d with
coefficients at most a; then P(g.(n)) < gey2(d-n+ (d+1)-a). Finally, the sets
of primitive and multiply recursive functions are both obviously closed under
polynomial slowdown, as well.

With every finite class {fi,..., fn} of number theoretic functions, we natu-
rally associate an infinite class {g1, g2, . . .} of number theoretic functions, where
gi = fi for all i < n, and g; = f, for all ¢ > n. Therefore, when considering
any class of number theoretic functions, it suffices without loss of generality to
consider any infinite class.

Many reduction orders establish upper bounds on the derivational complexity
of the TRS under consideration. We formalise this notion as follows.

Definition 2.37. Let C be a class of number theoretic functions, and > a
reduction order. We say that > induces complexity C if for every TRS R which
is compatible with >, dcg is bounded by a function in C.

An even stronger property is the characterisation of complexity classes by
sets of reduction orders.

Definition 2.38. Let O be a set of reduction orders, and C a class of number
theoretic functions. We say that O characterises the complexity class C if the
following two properties hold:

1. Every reduction order contained in O induces complexity C.

2. Every function in C can be encoded as a TRS which is compatible with a
reduction order in O.

Another central property of TRSs besides termination and (derivational or
runtime) complexity is confluence, which roughly expresses determinism of the
computation carried out by a TRS.

Definition 2.39. A TRS R is confluent if for all terms s, ¢, and u such that
u —% s and u —x t, there exists a term v such that s =% v and t =7, v.

An important criterion for asserting confluence of TRSs are critical pairs:

Definition 2.40. Let R be a TRS over F and V. A triple (I — r,p,l' — r'),
where | — r and " — 1/ are rules of R, and p € Posx(l) is called a critical pair
of R if there exist substitutions o and 7 such that lo|, = I'r, and either p # €
or the rules [ — 7 and I’ — r’ are distinct. If R is left-linear and has no critical
pairs, then it R is also called orthogonal.

At this place, we only mention one well-known criterion out of the many
confluence criteria in the literature involving critical pairs: any orthogonal TRS
is confluent.
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2.4 Dependency Pair Framework

All termination proof techniques mentioned until here are direct proof tech-
niques, i.e. they take a TRS as input and try to prove its termination in a
single step. In contrast, the dependency pair framework [35, 36, 103], which is
the most important modern termination proof technique, essentially works by
combining a number of smaller termination proof arguments in a modular way.
In this section, we recall the basics of the dependency pair framework.

Definition 2.41. Let F be a signature. Then F* = FU {f* | f € F}, where
for each f € F, ff is a fresh function symbol with the same arity as f. We call
the symbols in F* \ F dependency pair symbols. For a term t, t? is defined to
be t if t is a variable, and fi(t1,...,t,) if t = f(t1,...,tn).

Definition 2.42. Given a TRS R over F and V, the dependency pairs of R
are the following rewrite rules over F# and V:

DP(R)={l! 5 ' |l > rcRAu<rAuAlArt(u) € D}

The central objects in termination proofs by the dependency pair framework
are DP problems. The central idea in such proofs is to transform DP problems
into equivalent sets of (generally easier) DP problems until only trivial DP
problems remain.

Definition 2.43. A DP problem? is a pair (P, R) such that P and R are sets
of rewrite rules over ¥ and V. A DP problem is finite if there exists no infinite
sequence of rules sy — g, s1 — t1,... from P such that for all i € N, there exist
substitutions ¢ and 7 such that both s;7 and ¢;0 are terminating with respect
to R, and t;o0 =} s;x17. Such an infinite sequence of rules from P (in case
(P, R) is not finite) is called a minimal infinite chain with respect to (P, R).

A DP processor is a mapping from DP problems to sets of DP problems.
A DP processor @ is sound if for every DP problem (P,R), finiteness of all
problems in ®((P,R)) implies that the problem (P, R) is finite.

Theorem 2.44 ([2]). A TRS R is terminating if and only if the DP problem
(DP(R),R) is finite.

The following is an immediate consequence of the definitions.
Lemma 2.45. Every DP problem of the form (0, R) is finite.

Based on Theorem 2.44 and Lemma 2.45, termination proofs in the DP frame-
work are formalised into proof trees:

3The observation that pairs I¥ — u such that v < [ need not be considered is due to Der-
showitz [22]. Thus we sometimes refer to the restriction “u 417 as Dershowitz condition.
“In this thesis, DP problems (P, R) are equivalent to DP problems of the shape (P, 0, R, m) in
the notation of [35, 103]. We use this simplified notation because the processors considered
in this thesis do not perform any actions on the two components we drop in our notation.
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Definition 2.46. Let R be a TRS. A proof tree of R is a tree satisfying the
following: the nodes are DP problems, the root is (DP(R),R), each node is
either a leaf of the shape (), R), or a node (P,R’) for which there exists a
sound DP processor ® such that the elements of ®((P,R’)) are exactly the
child nodes of (P,R’), and each of the edges from (P, R’) to the elements of
®((P,R)) is labelled by ®.

It is immediate from Definition 2.46, Theorem 2.44, and Lemma 2.45, that
the existence of a proof tree of a TRS R implies termination of R.
The natural complexity measure accompanying DP problems is the following.

Definition 2.47. Let P and R be sets of rules over F# and V. Then the DP
complexity of P and R is the following function over N:

DPcpx (n) = max{dn(t, p/—) | [t < n}

2.4.1 Reduction Pairs

We now recall some fundamental DP processors. The first processor we men-
tion is the reduction pair processor. Reduction pairs form a natural extension
of reduction orders to DP problems. Already in the first incarnation of the de-
pendency pair method [2], they have been the quintessential method of showing
finiteness of DP problems.

Definition 2.48. A reduction pair is a pair of orders (3=, =) satisfying the
following properties:

1. »= is a preorder which is closed under substitutions and contexts
2. > is a proper order which is well-founded and closed under substitutions
3. === C > (wesay that = and > are compatible if this property holds)

Definition 2.49 ([2, 35]). Let (3=, >) be a reduction pair. Then the reduction
pair processor for (3=, >) is the following DP processor:

{(P',R)} if P\ P’ is the maximal subset of P
compatible with >, and P’ UR is
compatible with >=

{(P,R)} otherwise

O (P, R)) =

We say that (I)F;H completely solves a DP problem (P, R) if the first case of

its definition applies with P’ = (.

Theorem 2.50 ([2, 35]). For every reduction pair (=, >), the reduction pair

processor @'FEH s sound.

Definition 2.51. Let C be a class of number theoretic functions, and (3=, >)
a reduction pair. We say that (=,>) induces complexity C if for every DP
problem (P, R) such that (I)E;P#) completely solves (P, R), the function DPcp »
is bounded by a function in C.
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It is easy to construct reduction pairs directly from reduction orders.

Theorem 2.52. Let > be a reduction order and > the reflexive closure of >.
Then (=,>) is a reduction pair. Moreover, whenever > induces complezity C,
then (=,>) induces complezity C, as well.

Proof. From the assumption that > is a reduction order, it follows immediately
that (>, >) has all defining properties of a reduction pair. Let (P, R) be a DP
problem which is completely solved by (>,>). Divide R into R— & R~ such
that R_ is compatible with =, and R~ is compatible with >. Then, since R_
is compatible with =, for every derivation A : s =% 5 t, there exists another
derivation B : s —p . ¢ such that the length of B is greater than or equal
to the number of P-steps in A. It follows that DPcp r(n) < depur. (n) for
all n € N. Moreover, P U R~ is compatible with >, and thus the theorem
follows. O

We can extend the second part of Theorem 2.52 to DP problems which are
not completely solved by the reduction pair processor under consideration:

Theorem 2.53. Let > be a reduction order which induces complexity C, and
(P,R) a DP problem with {(P',R)} = @E{;>)((73,R)). Then there exists a
Junction in C which bounds DPcp\p: prygr from above.

Proof. Since {(P',R)} = <I>F>P7>)((73, R)), the DP processor <I>g’,>)((73, R)) com-
pletely solves (P \ P’,P’UR). Hence, by Theorem 2.52, there exists a function

in C which bounds DPcp\p pryg from above. O

However, the second part of Theorem 2.52 can probably not be generalised
by replacing > by an arbitrary preorder = such that (3=, >) is reduction pair:

Example 2.54. Consider the sets of rewrite rules S; = {f(s(z)) — f(z)} and
Sy = {d(s(z)) — s(s(d(x)))}. Then it is easy to verify that —>§1/32 is a re-
duction order, and (—>j§2, —>§1 / 32) is a reduction pair. Using the DP problem
(S1,82) and the set of starting terms {f(d"(s(z))) | n € N}, one can see that

(=%, —>§1 /82) does not induce linear (and not even polynomial) complexity.

However, we conjecture that the reduction order —>§1 S does induce linear
complexity, i.e. there exists no terminating TRS R which is compatible with
—>‘J§1 /S and whose derivational complexity grows faster than linear.

Note that the trivially constructed reduction pair of Theorem 2.52 does not
make any use of the fact that the strict part of a reduction pair is not required
to be closed under contexts. One way to repair this problem is to use argument
filterings.

Definition 2.55. An argument filtering for a signature F is a mapping 7 with
domain F such that for every function symbol f € F of arity n, we have either
w(f) =iforsomei € {1,...,n}or w(f) = [i1,...,0m] with 1 <i3 < -+ < iy, <
n. Based on 7, a signature JF; is defined, which contains each function symbol
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f such that 7(f) has the shape [i1,...,%y], and the arity of f in F, is m. An
argument filtering 7 is lifted to a mapping from T (F,V) to T (Fx, V) as follows:

t ifteVy
m(t) = § 7(t;) ift = f(t1,....tn) and 7(f) =i
flm(tiy),...,m(ti,,)) ift= f(tr,...,tn) and w(f) = [i1, ..., im] -
The mapping 7 is further lifted to TRSs in the natural way:
T(R)={n(s) = 7(t) |s >t € R}

For each binary relation -, an argument filtering 7 gives rise to the following
relation >":
s="t < 7(s) = 7(t)

Theorem 2.56. Let (=, ) be a reduction pair and m an argument filtering.
Then (3=7,>T) is a reduction pair. Moreover, whenever (=,>) induces com-
plexity C, then (=™, >") induces complezity C, as well.

Proof. The first part of the theorem follows directly from [2, Theorem 11].
For the second part, let (P, R) be a DP problem which is completely solved by
‘1>(R>f,r7>ﬁ). By definition, s ="t <= 7(s) = 7(t),and s =" t <= 7(s) > 7(t),
therefore the DP problem (7 (P),7(R)) is completely solved by @'&P’}). Observe
that s —g ¢ implies 7(s) =R 7(t), and s Sp t implies 7(s) i>7r(7>) m(t).
Moreover, |7(t)| < [t| for any term t. Thus, DPcp r(n) < DPcrip) ~(r)(n) for
all n € N, and the second part of the theorem follows.

2.4.2 Usable Rules

One way to facilitate the search for reduction pairs by reducing the size of the
second component of a DP problem is to only consider the usable rules of that
problem [36, 43] (also compare [103], where they are called needed rules instead,
or [63], for alternative definitions). The basic idea here is that in a DP problem
(P,R), only those rules in a certain subset of R are really relevant for minimal
infinite chains. This subset contains those rules which can be “triggered” by
P-rewrite steps. It should be noted that none of the above mentioned references
fully reflects this idea in its definition of usable rules. All of these definitions
are rather safe approximations of this idea; in the following, we give a more
general definition.

Definition 2.57. Let P and R be sets of rewrite rules. Then a term ¢ is called
a usable term of P with respect to R if there exist a rule [ — r € P, a position
p € Posz(r), substitutions o and 7, a derivation A : ro =% u, and a position
q € p\* A such that u|, = t7. A term ¢ is also called a usable term of P with
respect to R if alternatively, there exist no rewrite rule [ — r € R, and no
substitutions o and 7 such that to —% 7. We write UTx(P) to denote the set
of usable terms of P with respect to R.

The usable rules of P with respect to R (denoted as URg(P)) are all rules
[ — r from R such that | € UTg(P).

A set U such that URR(P) CU C R is a sound approzimation of URR(P).
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Note that the inclusion of the second alternative in the definition of UTx (P)
does not add anything to URz(P), so it could be omitted without loss. Still,
we included it in order to ease some technical details in Section 6.9, where we
analyse the derivational complexity of TRSs whose termination can be proved
with the help of the usable rules processor defined below in Definition 2.58.

In order to see that this definition differs from the definition of needed rules
given in [103], which is the most general definition in the above mentioned
references (to the best of our knowledge, no more general definition existed up
to now), consider the following DP problem (P,R):

P = {fi(s(2)) = Fi(f(g(x)))} R ={f(s(x)) = f(f(g(x))) 8(0) = 1}
Then URR(P) = {g(0) — 1}. On the other hand, in the notation of and
according to [103, Definition 4.5], we have N (P,0,R) = R.

Definition 2.58 ([36, 43, 103]). Let U be a set of rewrite rules and (3=, >) a
reduction pair. Furthermore, let C. be the set containing the two rewrite rules
c(z,y) — x and c(x,y) — y for some fresh function symbol c of arity 2. Then

the usable rules processor <I>5R(> ) is the following DP processor:

{(P",R)} if P\ P is the maximal subset of P
compatible with =, P’ UU U C, is

@57(%})((73,73)) = compatible with =, and I/ is a sound
approximation of URz(P)

{(P,R)} otherwise

We say that @g{'—% ) completely solves a DP problem (P, R) if the first case of

its definition applies with P’ = (.

We now give the soundness proof of the usable rules processor in our new
definition. We follow the soundness proof given in [43], but give more attention
to the parts of the proof which had to be modified for our new definition.

We start by defining an interpretation on terms, which is an adaptation of
the mapping Zg from [43, Definition 15] to our new definition of usable rules.

Definition 2.59. Let P and R be sets of rewrite rules. The interpretation Ip
is a mapping from terminating terms in 7(F*, V) to terms in T (Ffw {nil, c}, V),
where nil is a fresh function symbol and c is the function symbol introduced by
C., inductively defined as follows:

t if t is a variable
f(I’]D7R(t1), oo ’I'P7R(tn>) if t = f(t17 .o ,tn)
I’p,R(t) = and t € UT’R(P)

c(f(Zpr(tr), - Ipr(ta)),t') ift= f(ts,... tn)
and t ¢ UTR(P)

where in the last clause t' denotes the term order({Zpr(u) | t =& u}) with

nil fTr=0

order(T) = { c(t,order(T'\ {t})) iftis the minimum element of T

Here an arbitrary but fixed total order on 7 (F* U {nil,c}, V) is assumed.
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The difference between Definition 2.59 and [43, Definition 15] is the side
condition in the last two cases of the definition of Zp .
The next definition is essentially [43, Definition 16].

Definition 2.60. Let P and R be sets of rewrite rules, and let o be a substitu-
tion such that o(z) is terminating with respect to R for all x € V. Then oz,
is the substitution defined by oz,  (¥) = Ip r(c(x)).

Lemma 2.61. Let P and R be sets of rewrite rules, t a term, and o a substi-
tution. If to is terminating with respect to R, then Ip r(to) —o, 101y 5, and,
if all non-variable subterms of t are contained in UTR(P), then Ipr(to) =
tozp -

Proof. Analogous to [43, Lemma 17]. O

Lemma 2.62. Let P and R be sets of rewrite rules, s — t € URg(P), and
p € Posg(t). Then t|, € UTR(P).

Proof. Since s — t € URR(P), we have s € UTg(P), and trivially s =7 s.
Therefore, by definition, there exist a rule [ — r € P, a position g € Posz(r),
substitutions ¢ and 7, a derivation A : 70 —% u, and a position ¢’ € ¢ \* A
such that u|y = s7. So, u can be written as C[s7| for some context C. By
assumption, we have the rewrite step A; : C[s7] —xr C[t7], which can be
appended to A, resulting in B : ro =% C[s7] =g C[tr]. Moreover, we have
¢'p € ¢ \* A and hence ¢'p € ¢ \* B, and we have C[t7]|y, = t7[,. Thus, the
lemma follows. O

The next lemma is a new auxiliary lemma in order to help with the new proof
of Lemma 2.64 below.

Lemma 2.63. Let P and R be sets of rewrite rules, and suppose A : s =g t,
s € UTR(P). Then t|, € UTR(P), for every position p € € \* A.

Proof. 1f there exist no rule I — r € R and no substitutions ¢ and 7 such
that so —7% [T, then due to s —x ¢, there exist no rule [ — r € R and no
substitutions o and 7 such that to —} [7, either. Hence t € UT%(P) in this
case.

In the other case, there exist a rule | — r € P, a position ¢ € Poszg(r),
substitutions ¢ and 7, a derivation A; : ro =% u, and a position ¢’ € ¢ \* 4;
such that u|y = s7. So, u can be written as C[s7| for some context C. We can
concatenate A; and A to B : ro =% C[sT] =g C[tr]. Moreover, by assumption
p € e\® A, hence ¢'p € ¢ \\* B, and thus the lemma follows. O

The next lemma is equivalent to [43, Lemma 19]. Due to the fact that, in
contrast to [43], the side conditions in the definition of Zp & (t) inspect not only
the root symbol of ¢ (this property is used in one part of the proof of [43, Lemma
19]), a part of the proof of this lemma had to be modified.

Lemma 2.64. Let P and R be sets of rewrite rules, and suppose that A : s £>R t
and that s and t are terminating with respect to R. Then Ip R(s) _>:JFRR(77)UCG

Ipr(t).
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Proof. We distinguish two cases for p:

e Suppose that there exists a position ¢ < p such that s|; ¢ UTr(P).
Choose ¢ to be such that s|, ¢ UTg(P), but for all positions ¢’ < ¢, we
do have s|y € UTg(P). Then Ip r(slq) —¢. order({Zpr(u) | slq =r
u}) _>(JZZ Ipr(tly). By Lemma 2.63, we also have t|y € UTg(P) for all
positions ¢’ < g. Hence, for each ¢’ < ¢, if s|y = f(s1,...,i,...,5,) and
tly = f(s1,...,ti,...,5p), then by definition of Ip r,

Ipr(sly) = f(Zpr(s1), -, IpR(S), - - -, IpR(Sn))
Ipr(tly) = f(Zpr(s1), .-, IpR(E), - - - Ip,r(SR)) -

By a simple inductive argument, we get Zp r(s) —>a Ipr(t), so the
lemma follows.

e Suppose that for all positions ¢ < p, we have s|; € UTg(P). The
rule I — r applied in the step A must be contained in URz(P), since
s|p = lo for some substitution . By Lemma 2.61, Zp r(s]p) —¢, 1075 -
Moreover, t|, = ro, and by Lemma 2.63, for all non-variable subterms
r’ of r, we have o € UTg(P). Hence by Lemma 2.61, Zp g(ro) =
T0Ip - Clearly, loz, . —URx(P) T0Ip », and hence Ip r(slp) _>:JFRR(P)UC€
Ip r(t|p). By assumption, for all ¢ < p, if s|g = f(s1,...,8;,...,8,) and
tlg = f(s1,...,ti,..., Sp), then

) = f@pr(s1),...., IpR(8i), .-, IpR(5n))
o) =Ff@pr(s1),.... Ipr(ti), ..., ZpR(Sn)) -

The lemma now follows by a simple inductive argument.

Ipr(s
Ipr(t

l4) =
l4) =
O

Having transferred all needed auxiliary lemmata from [43] to our new defini-
tion, soundness of our new definition is concluded easily.

Theorem 2.65. For every set of rules U and reduction pair (=, =), the usable

rules processor @5?(%}) s sound.
Proof. Analogous to [43, Theorem 20]. O

2.4.3 Dependency Graphs

We now recall the dependency graph processor. Just as reduction pairs, depen-
dency graphs were already presented in [2]. Their purpose is to split a given
DP problem into as many smaller parts as possible, making them one of the
first ways to modularise termination proofs.

Definition 2.66. The dependency graph of a DP problem (P, R) (denoted by
DG(P,R)) is a directed graph whose nodes are the elements of P. It contains
an edge from node s — t to the node u — v whenever there exist substitutions
o and 7 such that to —% ur. A directed graph G is a sound approzimation

29



2 Preliminaries

of a dependency graph DG(P,R) if the nodes of G are the elements of P, and
whenever there exists an edge from node s — ¢ to the node u — v in DG(P, R),
there is also an edge from s — ¢t to u — v in G.

A strongly connected component® (SCC for short) of a directed graph G is a
maximal subset of the nodes of G such that for each pair of nodes ni,ng in G,
there exists a (possibly empty) path from ny to ny. We call a SCC trivial if it
consists of a single node n such that the only path from n to itself is the empty
path. All other SCCs are called nontrivial.

Definition 2.67 ([2, 35]). Let G be a graph. Then the dependency graph
processor for G is the following DP processor:

{(P',R) | P"is a nontrivial SCC of G} if G is a sound
approximation
of DG(P,R)

{(P,R)} otherwise

Y°((P,R)) =

Theorem 2.68 ([2, 35]). For every directed graph G, the dependency graph
processor @gG is sound.

2.4.4 Subterm Criterion

We now recall the subterm criterion processor [43]. It is very simple, but still
powerful (due to only having to consider the first component of a given DP
problem), and hence well-suited for automated termination provers.

Definition 2.69 ([43]). A simple projection m is an argument filtering such
that for each dependency pair symbol f%, we have w(f#) =i for some 1 < i < n,
where n is the arity of f, and for each other function symbol g, we have 7(g) =
[1,...,m], where m is the arity of g.

Since the filtering 7(f) for every non-dependency pair function symbol f is
fixed, we only mention 7(f*) for dependency pair symbols ff when defining
simple projections.

Definition 2.70 ([43, 103]). Let 7 be a simple projection. Then the subterm
criterion processor for 7 is defined as follows:
{(P',R)} if P\ P is the maximal subset of P compatible
PXC((P,R)) = with >, and P’ is compatible with >
{(P,R)} otherwise

We say that ®3C completely solves a DP problem (P, R) if the first case of its
definition applies with P’ = (.

Theorem 2.71 ([43, 103]). For every simple projection 7, the subterm criterion
processor ®3C is sound.

®Note that this is the standard definition of SCC from graph theory (cf. [18], for instance),
which slightly differs from the definition that is often used in the literature about termi-
nation of term rewriting.
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Chapter 3

The Exact Hardness of Deciding
Derivational Complexity

Some problems are so complex
that you have to be highly
intelligent and well informed just
to be undecided about them.

Laurence Johnston Peter

3.1 Introduction

Before delving into the main theme of this thesis, which is to investigate the
derivational complexity of TRSs whose termination can be proved by certain
techniques, we analyse the hardness of the decision problem we are investi-
gating. The problem of deciding, given a TRS R, whether its derivational
complexity is bounded by a fixed family of functions, is (unsurprisingly) unde-
cidable. In this chapter, we confirm the exact degree of undecidability of this
decision problem, and a number of related decision problems. We follow recent
investigations into the exact level of undecidability (in the arithmetical hierar-
chy) of questions in rewriting [92, 26], according to which many of the standard
properties of rewriting (termination, normalisation, confluence) are known to
be I19-complete. We also follow a much older set of investigations into the ex-
act level of undecidability of intensional properties of programs [37, 91, 72, 3].
Note that compared to other models of computation such as Turing Machines,
term rewriting operates in a quite nonstandard way, and hence it is a priori not
clear that the classic results can be transferred to term rewriting. For instance,
for nonlinear rewriting rules such as f(z,z,y) — g(z,y,y), it is assumed that
both the equality check implicit in determining whether the rule can be applied
(e.g. the first two arguments of f must be identical terms), and the copying
of arbitrarily large terms (e.g. the term substituted for y can be large) can be
done within a single computation step. Even more pertinent, the set of allowed
“starting configurations” in derivational complexity analysis (and even in run-
time complexity analysis) is defined much more liberally than in other models
of computation. For Turing machines, only (a certain subset of all) well-formed
configurations are considered, and in pure functional programs, the arguments
of a function are always well-formed elements of a data type, e.g. f(s(s(0))) — “f
applied to 2”. In contrast, derivational complexity must also consider “junk”
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3 The Exact Hardness of Deciding Derivational Complexity

terms that do not correspond to well-formed starting configurations such as
f(s(f(f(s(0))))), for instance, as starting terms. We verify that despite these
obstacles, the classical results hold for TRSs.

The results presented in this chapter show that the decision problems for the
complexity measures for TRSs are either II9-complete (for a specific function as
an upper bound) or Eg—complete (for existence of an upper bound in a family of
functions satisfying some mild conditions). This is in line with classical results
on the degrees of undecidability of intensional complexity of programs.

All results easily carry over to a different flavour of complexity from formal
language theory, confusingly also called derivational complexity, which is starkly
different from the homonymous notion in term rewriting. In formal language
theory, the derivational complexity relates an integer n to the maximum length
of shortest derivations of sentences of length at most n [11, 99]. We name the
corresponding complexity measures for term rewriting minimal complexity in
the sequel.

For implicit complexity of TRSs, where the computational complexity of the
mathematical function computed by a given TRS R is considered, the perti-
nent decision problems are even harder: Deciding whether the implicit com-
plexity of R is, for instance, polynomial or exponential, is even harder than
the previously mentioned problems: :9-complete. Again, this is in line with
the classical results [37, 91]. However, in practice, the additional existential
quantifier (quantifying over the possibly more efficient TRS) might make it
easier to establish upper bounds on the implicit complexity of a TRS than to
establish upper bounds on its derivational or runtime complexity, as there is an
additional degree of freedom in constructing the proof of the upper bound.

Finally, when using TRSs to reason about functional programs, the notion of
strategy is usually employed to make evaluation deterministic and express for
instance call-by-value and call-by-name. We show that all of our results remain
valid for any computable strategy.

3.2 Runtime Complexity

We now consider the hardness of establishing upper bounds on the runtime
complexity of TRSs by classifying the corresponding decision problems in the
arithmetical hierarchy. We start by giving an encoding of Turing Machines as
TRSs which essentially uses the encoding of [102, Section 5.3.1] lifted to dual-
tape Machines. Moreover, we performed some changes in order to align the
TRS with the semantics of basic terms and runtime complexity. Using this
encoding, it is then possible to use existing results about the time complexity
of Turing Machines [37] directly. Note that it is necessary to use dual-tape
machines in order to obtain the following results exactly as formulated. If
we used single-tape machines instead, there would be an additional quadratic
slowdown in the proofs for both of the results from [37] we use. Allowing Turing
Machines with any number of tapes instead of dual-tape machines would yield
an additional speedup in the order of nlogn according to [40]; however, this
additional speedup is not needed for obtaining the results of this section.
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3.2 Runtime Complexity

We start by giving the above mentioned encoding of Turing Machines as
TRSs, based on the encoding given in [102, Section 5.3.1]. Given a Turing
Machine M = (Q, %, §), the encoding produces a TRS A(M). For each symbol
b € X, the signature F of A(M) contains a constructor symbol b of arity 1.
Moreover, F contains the nullary constructor symbol >. For each state q € @,
the defined function symbols in F contain ¢ as a function symbol of arity 5.
Additionally, F contains the unary defined function symbols ok and runM. As
n [102, Section 5.3.1], words over ¥ are translated to terms by a mapping ¢,
which is defined as follows:

> ifw=c¢€
o(w) = {b((l)(w’)) it w = b

A configuration (q,w,,v,j) such that w = wy...w, and v = vy ...v,, is en-
coded as the term

q(ok(D), gb(wi,l ce wl), gb(wl ce wn), ¢(Uj,1 . ’Ul), ¢(Uj e ’Um)) .

This way, it is easy to simulate Turing Machine computation steps by rewrite
steps.

Notation 3.1. For ease of notation, we often identify w and ¢(w) for w € ¥*
during the rest of this chapter.

Definition 3.2. Let M = (Q, >, 0) be a dual-tape Turing Machine. Then the
orthogonal TRS A(M) is defined by the rules shown in Figure 3.1. Here we use
ok to abbreviate ok(r>)

’ transition function ‘ rewrite rule (¢ € Q \ {qa, ¢} and a,b,¢,d € X0) ‘
4(q,b,d) = (¢',V,R,d', R) q(ok, z,by, z,dw) — ¢'(ok, bz, y,d 2, w)
5(q,b,d) = (¢',V/,R,d', L) q(ok, z, by, cz,dw) — ¢'(ok, bz, y, z, cd'w)
5(¢,6,0) = (¢, V/, R,d’, R) q(ok, z, by, z,1>) = ¢/(ok, V'w,y, d'z, 1>)
d(q,b,d) = (¢',V,L,d,R) q(ok, az, by, z,dw) — ¢ (ok, z,ab’y, d' z, w)
5(gq,b,d) = (¢',V/,L,d', L) q(ok, az, by, cz,dw) — ¢'(ok, z,ab'y, z, cd'w)
5(q,0,0) = (¢,b',L,d',R) q(ok, az, by, z,>) — ¢'(ok, z, ab'y, d’ z,>)
d(¢,0,d) = (¢,V,R,d', R) q(ok, z,1>, z, dw) — ¢'(ok, bz, >, d'z, w)
3(¢,0,d) = (¢,V/,R,d', L) q(ok, x, >, cz, dw) — ¢’ (ok,b'x, >, 2, cd'w)
4(¢,0,0) = (¢,V,R,d, R) q(ok,x, >, z,1>) — ¢ (ok, bz, >, d'z,1>)

’ ‘ additional rules ‘

runM(z) — gs(ok, >, H(z), >, H(>>))

qa(ok, 7, y, 2, W) = qu(>, 2,7y, 2, W)

q,«(&,:ﬁ,y, z, w) — QT(Daxv Y, Z7w)
ok(ok) — >

Figure 3.1: The TRS A(M) defined by a dual-tape Turing Machine M
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3 The Exact Hardness of Deciding Derivational Complexity

The purpose of demanding the subterm ok(r>>) to be present in the encoding
of a configuration is to ensure that configurations (in particular, unreachable
configurations) can not be encoded by basic terms. Therefore, in contrast to
the construction in [102, Section 5.3.1], A(M) is not a constructor TRS. Apart
from that, the rules for the transition function of the given Turing Machine are
the natural lifting of the rules given in [102, Section 5.3.1] to our encoding of
configurations. The first of the four additional rules is responsible for rewriting
a basic term of the shape runM(w) into the encoding of a start configuration.
The other three additional rules ensure that q4, ¢, and ok are defined symbols
without violating the orthogonality of the TRS. This also implies that each
term in 7(C) is a word over X.

Lemma 3.3. Let M be a Turing Machine. Then rcacpy(n) =0 for all n < 2,
and rcacary(n) = TIMEp (0 — 2) + 2 for all n > 2.

Proof. First, observe that the only basic terms ¢ which are not normal forms
of A(M) have runM as their root symbol. Hence, we assume rt(¢) = runM.
Moreover, the single argument of runM must be a word over . Then the only
one-step reduct of ¢ is the encoding of a starting configuration of M. Moreover,
clearly |t| > 2. A straightforward argument (compare [102, Exercise 5.3.3))
reveals the following:

e Whenever s is the encoding of a configuration o of M whose current state
is not g, or gr, and s =) s’, then s’ is the encoding of a configuration
B of M such that M moves from « to 5 in a single step.

e Whenever s is the encoding of a configuration o of M whose current state
is g, or ¢, then dh(s, —ar)) = 1.

e Whenever o and g are configurations of M such that M moves from « to
B in a single step, then for each term encoding s of «, there exists a term
encoding s’ of § such that s — () s’

From these three observations, the lemma follows immediately. ]

Using Lemma 3.3, it is now possible to transfer existing results about the
time complexity of Turing Machines [37] to runtime complexity of rewriting.
We use the operator = as specified in Definition 2.36.

Lemma 3.4. Let C = {q1, 92, - ..} be a recursively enumerable set of computable,
strictly increasing, and total functions N — N. Then there exists a computable,
strictly increasing, and total function f: N — N such that f £ Z(C).

Proof. Let f(n) = 1+ max{gi(n®+ n),...,gn(n®> +n)}. Then f is obviously
computable, strictly increasing, and total, and for all ¢, d, k € N, we have f(n) >
gr(c-n+d) for all n > max{c,d, k}. O

Theorem 3.5. Let C be a recursively enumerable set of computable, strictly
increasing, and total functions N — N. Then the following decision problem is
9-hard:
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3.2 Runtime Complexity

Instance: A dual-tape Turing Machine M.

Question: Is TIMEy, < E(C)7

Proof. We show this theorem by giving a straightforward generalisation of the
proof of [37, Theorem 2], which handles the special case that C is the set of
polynomials. That proof proceeds by reduction from FIN: given a single-tape
Turing Machine M, another dual-tape Turing Machine p(M) is constructed
such that TIME,(3s) < Z(G) if and only if M € FN.

The machine p(M) starts by checking whether the input word has the shape
2475 where z is a word over the input alphabet of M, and f is not a symbol
of the tape alphabet of M. If the input word does not have the desired shape,
then p(M) halts immediately; otherwise, = is copied to the second tape, and
M is simulated with input z for k steps. If M halts after exactly & steps, then
p(M) continues running for at least f(2|x|+ k) steps, and then halts. Here, f is
a computable, strictly increasing, and total function such that f £ Z(G) (such
a function exists by Lemma 3.4). Otherwise, p(M) halts immediately.

Note that for all inputs which are either not of the shape xﬁ‘$|+k, or such
that M does not halt on = after exactly k steps, p(M) runs in linear time.
If M € FiN, then there are only finitely many inputs such that M runs for
f(2]z| + k) many steps, hence TIME, () is linear in that case. As G contains a
strictly increasing function, it then follows that TIME, ;) < Z(G). On the other
hand, if M ¢ FIN, then TIME,(5s) majorises f, and thus TIME, ) € 2(G). O

Theorem 3.6. Let C be a recursively enumerable set of computable, strictly
increasing, and total functions N — N. Then the following decision problem is
Eg—complete, even if the problem instances are restricted to orthogonal TRSs:

Instance: A TRS R.
Question: Is rcg < E(C)7

Proof. To see that the problem is contained in Eg, let P(z1,22,23) be the
ternary predicate on N that holds exactly if the i*" function g; in C and the
TRS R encoded by z3 satisfy rcg(z2) < gi(j-x2+ k), where (i, j, k) is the triple
encoded by z1. Observe that P(x1,x2,x3) is a decidable predicate: as C is
recursively enumerable and consists of computable functions, we may compute
9i(j - z2 + k); as the signature and set of rules of R are both finite, we may
compute the finite set of basic terms of size at most xs, and for each of these
compute their derivation trees up to depth ¢;(j - x2 + k) and subsequently check
whether the leaves of each tree consist only of normal forms, and whether all
trees are non-circular. Thus, the answer to the question to be decided is “yes”
for the TRS encoded by z3 if and only if the predicate Jz1Vzy P(x1,x2,x3)
holds, proving containment in 28.

We now show 9-hardness of the problem. By Theorem 3.5, it is 39-hard to
decide whether TIME); < E(C), given a dual-tape Turing Machine M. From
Lemma 3.3, it follows that rca(ary < Z(C) if and only if TiMEy < =(C). The
transformation A is obviously computable, and A(M) is orthogonal. Therefore,
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3 The Exact Hardness of Deciding Derivational Complexity

it is ¥9-hard to decide whether rcg < Z(C), given a TRS R (independent of
whether R is restricted to be orthogonal). O

Theorem 3.7. Let f be a computable and total function N — N such that
f(n) >n for alln € N. Then the following decision problem is 113-hard:

Instance: A dual-tape Turing Machine M.

Question: Is TIME)/(n) < f(n) for all n € N?

Proof. Straightforward generalisation of [37, Theorem 1]. O

Theorem 3.8. Let f be a computable and total function N — N such that
f(n) > n for all n € N. Then the following decision problem is I1{-complete,
even if the problem instances are restricted to orthogonal TRSs:

Instance: A TRS R.

Question: Is rcg(n) < f(n) for all n € N?

Proof. To see that the problem is contained in I1{, consider the binary predicate
P(z1,22) on N that holds if and only if rcg(z1) < f(x1), where R is the TRS
encoded by xs. As f is computable and total, and as the derivation tree of
each of the finite number of terms of size at most x1 can be computed up to
depth f(x1), the predicate is obviously decidable. Hence, the answer to the
question to be decided is “yes” if and only if the predicate Vx; P(x1,x2) holds,
and containment in 1Y is shown.

We now show I19-hardness of the problem. Let f'(n) = f(n+2)—2, and note
that f’(n) > n. By Theorem 3.7, it is TI{-hard to decide whether TIME;(n) <
f'(n) for all n € N, given a dual-tape Turing Machine M. By Lemma 3.3, we
have rcaary(n) < f(n) for all n € N if and only if TiMEp(n) < f'(n) for all
n € N. The transformation A is obviously computable, and A(M) is orthogonal.
Therefore, it is TI9-hard to decide whether rcg(n) < f(n) for all n € N, given a
TRS R (independent of whether R is restricted to be orthogonal). O

3.3 Implicit Computational Complexity Analysis for
Rewriting

In this section we establish Eg-completeness of deciding implicit complexity
bounds on TRSs: deciding whether the computation carried out by a TRS can
be done within a certain time bound, possibly by another, more efficient TRS.
In the literature, there exist similar results about Turing Machines [37, 91]. In
order to be able to apply them, we need to establish a link between computations
carried out by TRSs and Turing Machines. For one direction of this link, we
use Lemma 3.3. The existence of the other direction of the link has recently
been shown by Avanzini and Moser [6]. In the following, we define a simple
notion of computation by a TRS, and glue the above components together.
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Definition 3.9. Let R be a TRS over F and V, let f be a specific n-ary defined
function symbol (we call f the main function of R), and a another specific
symbol in F (we call a the accepting symbol of R). Then for t1,...,t, € T(Cr)
we say that R accepts (t1,...,t,) if f(t1,...,tn) —>!R t such that rt(t) = a. The
language accepted by R is the set

LR)=A{(t1,...,tn) | t1,...,tn € T(CR) AR accepts (t1,...,tn)} .

Definition 3.10. Let R be a TRS with main function f of arity n, accepting
symbol a. Let L C T(Cr)", and let C be a set of computable, strictly increasing,
and total functions. We say that R (deterministically) accepts L in time =(C)
if L(R) = L, R is confluent, and rcg < Z(C).

The notions of acceptance for Turing Machines and TRSs are indeed related
in the natural way by A:

Lemma 3.11. Let M be a dual-tape Turing Machine with tape alphabet ¥ and
accepting state qq. For each word x € ¥*, M accepts x if and only if A(M) with
main function runM and accepting symbol q, accepts ¢(x). Moreover, LIA(M))
1s exactly the language accepted by M.

Proof. Follows by the arguments used to prove Lemma 3.3. 0

Theorem 3.12. Let C be a recursively enumerable set of computable, strictly
increasing, and total functions. Then the following decision problem is ¥9-hard:

Instance: A dual-tape Turing Machine M.

Question: Does there exist a dual-tape Turing Machine M’ accepting the same
language as M such that TIME;r < Z(C)?

Proof. By [91, Corollary 3], for each set C' of decidable languages containing an
infinite language A and all languages B such that A\ B is finite, the following
problem is Eg—hard:

Instance: A (dual-tape) Turing Machine M.
Question: Is the language accepted by M contained in C?

Fix C to be the set of all languages L decided by any (dual-tape) Turing Machine
M’ with TiMEy < Z(C). As C contains a strictly increasing function, C
contains an infinite language A and all languages B such that A\ B is finite.
For instance, ¥*, where ¥ is the tape alphabet of M, is a suitable instance of
A here. Thus C satisfies the assumptions of [91, Corollary 3], and the theorem
follows. O

Now we have all necessary ingredients to show the main theorem of this

section. Theorem 3.12 yields the corresponding result for Turing Machines,
while Lemma 3.11 and [6] form the bridge to term rewriting.
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Theorem 3.13. Let C be a recursively enumerable set of computable, strictly
increasing, and total functions such that Z(C) is closed under polynomial slow-
down. Then the following decision problem is Eg—complete, even if the problem
instances are restricted to orthogonal TRSs:

Instance: A TRS R.

Question: Does there exist a TRS which accepts £(R) in time Z(C)?

Proof. First we show that the problem is contained in Eg. Let P(x1,x9,x3,4)
be the predicate on N that holds exactly if the " function g; in C, the TRS S
encoded by [, and the TRS R encoded by x4 satisfy the following properties:

e 1 encodes the 4-tuple (i, j, k,1).
o rcr(ze) < x3 and res(x2) < gi(j - 2 + k).

e R and S have the same main function f, accepting symbol a, and con-
structors Cr in their signatures Fr and Fs.

e For all ty,...,t, € T(Cr) with |f(t1,...,ty)| < x2, there exists u; €
T (Fr) with rt(u1) = a and f(t1,...,t,) —% ui if and only if there exists
us € T(Fs) with rt(ug) = a and f(t1,...,tn) —% us.

Observe that P(x1,x2,x3,x4) is a decidable predicate: As C is recursively enu-
merable and consists of computable functions, we may compute g;(j-z2+k); as
the signature and set of rules of both R and S are finite, we may compute the fi-
nite set of basic terms over Fr (respectively Fg) of size at most x2, and for each
of these compute their derivation trees up to depth x3 (respectively g;(j-x2+k))
and subsequently check whether the leaves of each derivation tree consist only
of normal forms, and whether all trees are non-circular. If that is the case, then
the set of normal forms of the considered terms is finite, as well, and hence it
is computable whether f(t1,...,t,) —>!R up and f(t1,...,t,) —>E§ ug for all rel-
evant ti,...,tn, u1, uo. As the answer to the question to be decided is “yes” for
the TRS encoded by x4 if and only if the predicate 3x;Vao3xs Pz, x2, 23, x4)
holds, containment in Zg is proved.

We now show Eg—hardness of the problem. By Theorem 3.12, it is Eg—hard to
decide whether there exists a dual-tape Turing Machine M’ accepting the same
language as M such that TIME,;» < Z(C), given a dual-tape Turing Machine M.
Let g, be the accepting state of M. We set runM to be the main function, and ¢,
the accepting symbol of A(M). Note that A(M) is orthogonal, so the reduction
described here works regardless of whether the problem instance is restricted to
be orthogonal. By Lemma 3.11, L = L(A(M)) is the language accepted by M.
It remains to show that there exists a dual-tape Turing machine M’ accepting
L with TiMEy;» < Z(C) if and only if there exists a TRS R’ (deterministically)
accepting L in time ZE(C).

In order to show the direction from left to right, suppose that there exists
a dual-tape Turing machine M’ accepting L with TiMEy; < Z(C). Then by
employing Lemma 3.11 again, we obtain L(A(M')) = L if we set the main
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function to runM again, and the accepting symbol of A(M’) to the accepting
state of M’. Moreover, by the construction of A, the TRS A(M’) is orthogonal.
Thus, A(M’) (deterministically) accepts L in time Z(C).

For the direction from right to left, suppose that there exists a confluent TRS
R’ with main function f, accepting symbol a, and rcgs < Z(C). Then by [6,
Theorem 6.2] there exists a deterministic (dual-tape) Turing Machine M’ such
that TiME (n) € O(log(rcr/(n))? - regs(n)7). Since rcgr < Z(C), and Z(C) is
by assumption closed under polynomial slowdown, we have TIME,;» < Z(C), as
well. O

3.4 Derivational Complexity

We proceed to give the completeness result for establishing upper bounds on the
derivational complexity of TRSs. Unfortunately, we cannot lift the results of
Section 3.2 directly from runtime complexity to derivational complexity. The
definition of the derivational complexity of a TRS places no restrictions on
the considered starting term; in particular, we have to consider encodings of
unreachable configurations in the underlying Turing Machine. The crucial in-
gredient of the main theorem in this section is an investigation by Herman [41]
of the mortality problem for Turing Machines. Herman’s proof gives a concrete
reduction of the mortality problem from the halting problem that involves only
a polynomial overhead in time complexity. In order to use this reduction, we
switch from dual-tape to single-tape Turing Machines for this section.

Theorem 3.14 ([39, Theorem 6]). Let M be a dual-tape Turing Machine.
Then there exists a single-tape Turing Machine M’ which accepts and rejects

exactly the same input words as M, and satisfies the property TIMEp; (n) €
O(max{TIMEps(n)?,n?}).

Lemma 3.15. Let M be a single-tape Turing Machine with tape alphabet 3.
Then there exists a single-tape Turing Machine M’ such that M' accepts and
rejects exactly the same input words from X* as M, M’ halts on all config-
urations if and only if M halts on all input words, and LIFETIMEp;(n) €
O(max{TiMEps(n)3,n3}).

Proof. By [41, Theorem 1], there exists a single-tape Turing Machine M’ which
accepts the same input words from >* as M, and halts on all configurations if
and only if M halts on all input words. We start by giving the construction
of [41, Theorem 1], adapted to our particular setting. The only major difference
is that [41] considers Turing machines with a tape growing both left and right,
whereas our machines only have tapes growing to the right.

Let O be the blank symbol, * the left end marker, ) the set of states, g5 the
starting state, and g, and ¢, the accepting and rejecting states of M. The tape
alphabet ¥/ of M’ is X, extended by the following symbols:

di, do, d3 delimiters of tape sections
H left end marker of M’
P(g.z) “position of the head of M, scanning symbol x in state ¢”
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For each state ¢ € Q and tape symbol z € 3, there exists a symbol p(, .y in
Y. The left end marker of M’ is I, and the blank symbol of M’ is [J, the same
as for M.

The Turing Machine M’ is built from five submachines called START, SIM,
RSPACE, CHECK, and RESTART. The submachine START sets up the
format of the tape required for the simulation of M. SIM is responsible for sim-
ulating a single move of M in M'. RSPACE extends the tape space dedicated
to storing the tape contents of M to the right when necessary. CHECK checks
whether the tape of M’ currently has the format assumed for the simulation.
Finally, RESTART is responsible for restoring the initial configuration of M
in the simulation.

Whenever control is passed to SIM, from CHECK or RESTART, the tape
contents has the shape

O dyrwdaxw pg 0 w2ds

with w,wy,ws € ¥*, ¢ € ), x € ¥ and the head pointing somewhere between
F and d;. This corresponds to the configuration (q,wjzws,i) of M, where i
points to the symbol x.

The five submachines work as follows:

e The submachine START copies the input word and puts in some of the
new symbols introduced in ¥’. Concretely, on an input word w over ¥*,
START passes control to SIM with the tape

l—dl*wdgp(q&*)wag

and the head pointing to p(,, - On the other hand, if w ¢ X*, then M’
immediately rejects.

e The submachine SIM starts by moving the tape head rightwards until it
finds a symbol p, ). If ¢ = gq or ¢ = ¢y, then M’ immediately accepts
or rejects, respectively. If ¢ is neither ¢, nor g,, then a single step done
by M on state g and tape symbol x is simulated by SIM. If the symbol
immediately to the right of the new p(y ..y symbol (added by the simu-
lation of the move of M) is d3 at this point, then SIM passes control to
RSPACE. On the other hand, if any symbol from ¥ (the tape alpha-
bet of M) is immediately to the right of p(y ., then control is passed to
CHECK.

e The submachine RSPACE moves (the unique occurrence of) the symbol
ds one cell to the right. A [ is inserted in the old position of d3. Finally,
control is given to CHECK.

e The submachine CHECK checks whether the contents of the tape is of
the form assumed by the simulation. If any of the checks described below
fails, M’ immediately rejects. First, CHECK moves the tape head to
the right, searching for a ds symbol. Next, it moves the tape head to
the left until it reaches ds. While moving towards ds, it checks whether
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all symbols encountered on the way are elements of 3, with exactly one
exception, which must be p(, ) for some ¢ € @ and x € ¥. Moreover,
the last symbol encountered before da must be either *, or p(, ,) for some
q € Q. After reading do, CHECK moves further to the left until it
encounters d;. While moving towards dy, it checks whether all symbols
encountered on that way are elements of ¥, and the last symbol right of
d; must be *. Finally, it moves to the left even further, until a [J or
is encountered (other than that, only x symbols are allowed to the left
of di). If a O is encountered first, it is replaced by a x, and control is
passed to SIM. If I is encountered first, then all x symbols are replaced
by O symbols. Afterwards, the whole contents of the tape (up to ds) is
moved one space to the right, inserting an additional [J to the right of I-.
Then control is passed to RESTART. This mechanism ensures that the
number of steps simulated without any call to RESTART is bounded by
the number of [J symbols to the left of d;.

e If the number of [ symbols to the left of dy is not sufficient for simulating
M on the given input, the submachine RESTART increases this upper
bound by one, and restores the starting configuration of M. Specifically,
everything between ds and ds is deleted from the tape. Then, RESTART
copies the string between d; and do between do and ds, replacing the
leftmost * by the symbol p(g, ). Finally, control is passed to SIM.

This finishes the description of the construction given in [41, Theorem 1].
We now show that LIFETIME; (n) € O(TiMEy(n)3). First, observe that for
each submachine N € {START, SIM, RSPACE, CHECK,RESTART} on
its own, we have LIFETIMEN(n) € O(n). Hence, we only consider runs of M’
containing loops involving SIM and CHECK (and possibly RSPACE and
RESTART). Note that such a loop can only have more than one iteration if
at the end of the run of the current submachine, the tape contents ¢ is of the
form

Sﬂ_DU_U*Udl*wdQ*wlp((Lx)degSr ,

with s;,5, € ¥, w,wi,ws € ¥, ¢ € Q, v € ¥, and the head pointing some-
where between F and ds.

In that case, M is simulated for u — v many steps, then control is passed to
RESTART (unless M halts during the simulation). Thanks to RESTART,
the initial configuration of M for input word w is restored, and u is incremented
by one. This process is repeated until u is large enough to allow the simulation
to reach the halting state, i.e. at most TIME/(|w|) many times. Hence, the total
number of loop iterations is bounded quadratically in max{TIME(|t|),|t|}.
Since the number of moves done in each loop iteration is bounded linearly in
TiMEp([t]), the Lemma follows. O

We now encode single-tape Turing Machines M as TRSs A;(M). Similar to
Section 3.2, we use the encoding of [102, Section 5.3.1]: a configuration (q,w, )
such that w = wy ... w, is encoded as the term g(d(w;—1...w1), p(w; ... wy)).
However, we slightly change the rules of Ay to reflect that we consider machines
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3 The Exact Hardness of Deciding Derivational Complexity

with only one-way infinite tapes for simplification purposes. Note that A; does
not contain any mechanism to enforce any restriction on the starting term of
a derivation; this is because we are considering derivational complexity (rather
than runtime complexity) in this section.

Definition 3.16. Let M = (Q, 3, 0) be a single-tape Turing Machine. Then the
orthogonal constructor TRS A (M) is defined by the rules shown in Figure 3.2.

’ transition function ‘ rewrite rule (¢ € Q \ {¢a, -} and a,b € ) ‘

6(q,b) = (¢',V/, R) q(z,by) — ¢ (V'z,y)
d(q,0) = (¢',', L) q(az, by) — ¢'(z,ab’y)
6(¢,0) = (¢, V', R) q(z,>) — ¢ (b'x,1>)

Figure 3.2: The TRS A;(M) defined by a single-tape Turing Machine M

We call a ground term of the shape ¢(s,t) over the signature of Aj(M) a
restricted term if ¢ € Q, and s,t € ¥*, and the first symbol of st is - (here
(-)~! denotes string reversal).

Lemma 3.17. Let M be a single-tape Turing Machine. Then dca,(ap(n) €
LIFETIME (2(n)) and dca,(ar)(n) € n - LIFETIME);(O(n)).

Proof. The following holds by straightforward arguments (compare [102, Exer-
cise 5.3.3]):

e For each restricted term s encoding a configuration « of M such that
§ = AL (M) s’, the term s’ is also restricted, and encodes a configuration (3
of M. Moreover, M moves from « to § in a single step.

e Whenever o and g are configurations of M such that M moves from « to
B in a single step, then for each (restricted) term encoding s of «, there
exists a (restricted) term encoding s’ of 8 such that s — A1 (M) s,

The above implies that for each configuration « of M, the derivation height
dh(s, —>A1(M)) is exactly the number of moves that can be done from « until M
halts, where s is a (restricted) term which encodes a.. Therefore, dc Ax( M)(n) S
LIFETIME;(2(n)).

It remains to show that dca, (ar)(n) € n- LIFETIME)(O(n)). It easily follows
from the above observations that rca, (ar)(n) € LIFETIME)(O(n)). We use the
construction of [29, Appendix B.2|, which allows us to lift this upper bound to
starting terms of arbitrary shape. We define two functions f and g. The func-
tion f maps ground terms over the signature F of A;(M) to pairs containing
a string over the tape alphabet, and a multiset of restricted terms over F. The
purpose of f (compare [29, Lemma B.5]) is to extract a number of restricted
terms from a term. The helper function g ensures that the leftmost symbol on
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the tape of each configuration encoded by a restricted term is indeed a .

)
f(a(x)) = (a(w), M ifaeX, f(z)=(w, M)
fla(z,y)) = (> {q(g(w,v))} UM1UMy)  ifq € Q, f(z) = (w, My),
and f(y) = (v, Ma)

g(>,F(v)) = (>,Fv)
g9(>,v) = (F(>),v)
g(H(>),v) = (H(>),v)
g9(a(>),v) = (a(-(>)),v) if a € X\ {}
gla(z),v) = (a(y), 2) otherwise, if a € ¥

and (y,z) = g(x,v)

By [29, Lemma B.8], we get that for every term ¢ over F with f(t) = (w, M), the
inequality dh(t, —a, () < X_senqdh(s, =, (ar)) holds. Moreover, >\ |s| <
[t|. Hence, dca,(ar)(n) < n - rca,(ary(n). Thus, the above observations about

restricted terms suffice in order to conclude dca, (37)(1) € n-LIFETIME (O(n)).
O

An alternative idea for showing Lemma 3.17 might be to transfer [115, The-
orem 14], which states that termination of a many-sorted TRS is equivalent
to termination of the corresponding TRS without any sort information under
certain conditions, from termination to complexity. The sort information could
then be used to enforce that only restricted terms are considered. However, the
proof of [115, Theorem 14] is an indirect one, based on the nonexistence of min-
imal counterezamples. The role of these minimal counterexamples in this proof
is akin to the role of minimal infinite chains in the dependency pair framework.
Hence, lifting this proof argument from termination to complexity (as done in
Chapter 6 for the dependency pair framework) seems to be a nontrivial task.

We are now able to transfer Theorem 3.5 to derivational complexity of term
rewriting. Theorem 3.14 and Lemma 3.15 take care of the the unrestrictedness
of the considered starting terms, and Lemma 3.17 performs the actual transfer
from Turing Machines to TRSs.

Theorem 3.18. Let C be a recursively enumerable set of computable, strictly
increasing, and total functions N — N such that Z(C) is closed under polynomial
slowdown. Then the following decision problem is X9-complete, even if the
problem instances are restricted to orthogonal or constructor TRSs:

Instance: A TRS R.
Question: Is dcg < E(C)7

Proof. The proof of containment of the problem in X9 is identical to Theo-
rem 3.6 mutatis mutandis, whence we only show its ¥9-hardness. By Theo-
rem 3.5, it is ¥9-hard to decide, given a dual-tape Turing Machine M, whether
TiMEy; < E(C). By Theorem 3.14 and Lemma 3.15, there exists a single-tape
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3 The Exact Hardness of Deciding Derivational Complexity

Turing machine M’ such that LIFETIME ;- (n) € O(max{TiME);(n)% n®}), and
M’ accepts the same language as M. As Z(C) is by assumption closed under
polynomial slowdown, and contains a strictly increasing function (and hence
also a function dominating i'(n) = n®), we have LIFETIME); < Z(C) if and
only if TiMEy, < Z(C). Moreover, by Lemma 3.17, we have dca,(ar)(n) €
LirETMEN (2(n)) and deca, vy € 1 - LIFETIME)/(O(n)). As Z(C) is closed
under polynomial slowdown, it follows that dca,(ay < Z(C) if and only if
LiFETIME) < Z(C). The transformations used in Theorem 3.14 and Lem-
mata 3.15 and 3.17 are obviously computable, and A;(M’) is an orthogonal
constructor TRS. Therefore, it is ¥9-hard to decide whether dcg < Z(C), given
a TRS R (independent of whether R is restricted to be orthogonal or a con-
structor TRS). O

Note that in the above proof, dca, a7y < Z(C) if and only if rea, (1) < Z(C),
hence this is also an alternative proof of the 28—completeness of determining
whether rcg < Z(C), which places slightly stricter assumptions on C, but allows
R to be restricted to constructor TRSs.

3.5 Minimal Complexity

The proofs in this section and Section 3.6 below are based on the observation
that the simulation of a Turing machine M by the TRS A(M) has exactly
one redex in each term encoding a configuration of M. Every ilk of problem
we consider concerns sets of reductions to some normal form; if there is only
one possible reduction starting from every term encoding of each Turing Ma-
chine configuration, the proofs of hardness of the various kinds of problems
we consider remain virtually identical, regardless of whether we consider min-
imal or maximal reductions, and regardless of reduction strategy. This crucial
observation is stated in Lemma 3.20 below.

Definition 3.19. We define the minimal height of a term s with respect to
a finitely branching, well-founded binary relation — by mh(s,—) = min{n |
dt s —>%’! t}. The twin notions of minimal derivational complexity and minimal
runtime complexity of a TRS R are then defined by:

}

mdcg (n) = max{mh(s, —>g) | |s| < n
mrcr (n) = max{mh(s,—>g) | |s| <nAs e Br}

S

The next lemma states the crucial observation for extending our previous
results to the notions of minimal complexity.

Lemma 3.20. Let M be a dual-tape Turing machine and let s be a term in the
signature of A(M) containing exactly one redex. If s —a(ar) t, then t contains
at most one redex.

Proof. By assumption, the only redex of s is the one contracted by the step
s — () t- Hence, t only contains redexes created by that step. As A(M) is
left-linear, redexes can only be created if the right-hand side of the rule I — r
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employed in s —(pp) t overlaps with a left-hand side of some other rule. Write
s —amn) t as Cllo] =y Clro] for a suitable context C' and substitution o.
Split on cases as follows:

e If rt(l) is either some state ¢ or runM, inspection of the rules of A(M)
yields that r is of the form ¢'(ok(>>), z,y, z, w) or ¢'(>>, x,y, z,w) for some
state ¢ and words z, ¥y, 2z, and w. Clearly, r can only overlap with the
left-hand side of a rule I’ — 7’ if the overlap occurs at the root of I’ and
r. As A(M) is orthogonal, at most one such rule I’ — 7’ can exist, and
hence there is at most one redex in ¢.

e If | = ok(ok(r>)), then r = i>. Obviously, &> is a normal form on its own.
By assumption, C' contains no redex on its own, and A(M) is orthogonal.
Therefore, C[>] contains at most one redex.

O]

Theorem 3.21. Theorems 3.6, 3.8, and 3.13 all hold with the notion of rcg
replaced by mrcg mutatis mutandis.

Proof. Every basic term s in an orthogonal TRS (such as A(M) for a dual-
tape Turing Machine M) contains at most one redex. For each TRS on the
form A(M), it is therefore immediate by Lemma 3.20 that the minimum and
maximum lengths of reduction to normal form from s are the same. Therefore,
all arguments in the hardness proofs of Theorems 3.6, 3.8, and 3.13 remain
sound if we replace rcg by mrcg, so the hardness results follow.

For containment in the respective complexity classes, observe that in the
proofs of Theorems 3.6, 3.8, and 3.13 (each of the three distinct variations of)
the predicate P considers longest maximal paths (maximal in the sense that
the path is not a strict prefix of any other path) in the derivation tree of terms;
this can obviously be replaced by the shortest maximal paths, as required by
mrcr, without affecting computability of P. O

Theorem 3.22. Theorem 3.18 holds with the notion of dcg replaced by mdcg
mutatis mutandis.

Proof. Containment in 9 follows in the same way as in the proof of Theo-
rem 3.21.

We now show %9-hardness. Observe that for any (single-tape) Turing Ma-
chine M, the TRS A;(M) is orthogonal, right-linear, and nonerasing. There-
fore, for all terms s, ¢, and u such that u —a,(ar) s and u —aar) T, either s = ¢
or there exists a term v such that s —a(y7) v and ¢ —a () v: due to orthogo-
nality and nonerasingness, any rewrite step in A(M) keeps all other redexes of
the considered term intact. Moreover, due to right-linearity, rewrite steps do
not create additional copies of other redexes, either, hence the order in which
any two redexes of a term are contracted does not change the resulting term.
Due to this property, it follows by a straightforward inductive argument that
dh(t, —a,(ar)) = mh(t, =, (ar)) for any term ¢. With this equality, the hardness
result follows by arguments identical to those in the proof of Theorem 3.18. [
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3.6 Strategies

The results so far concern TRSs with unconstrained rewrite relation. In the
modelling of programming languages, it is common to consider TRSs with
strategies dictating the redex to be contracted in each term. Using the same
ideas as in the last section, the previous results in the paper carry over to the
setting of TRSs with strategies. Thus, the results of the previous sections of
the paper remain valid under, for example, any innermost strategy, and under
deterministic strategies such as the leftmost-outermost strategy.

Definition 3.23. Let R be a TRS. A strategy S for R is defined by a relation
—s € —x such that any term ¢ is a normal form of —5 if and only if it is a
normal form of —g. We call a strategy for R computable if, given a term ¢, the
(finite) set {t' | t —s t'} is computable.

Here we use the notion “strategy” according to [102, Definition 9.1.1]. Note
that this does not cover everything that is commonly called a “strategy” in term
rewriting. For instance, the proofs of this section can not be directly carried over
to context-sensitive rewriting. Indeed, for restrictive context-sensitive “strate-
gies”, the blocking of redexes might decrease the complexity of the considered
TRS dramatically. For example, a context-sensitive “strategy” which blocks
all redexes would make any derivational complexity bounds easily decidable.
Hence, we stick to the notion of “strategy” given in Definition 3.23.

The notions of runtime and derivational complexity of TRSs with strategies
are defined mutatis mutandis. For the next theorem, Lemma 3.20 is again the
crucial proof ingredient.

Theorem 3.24. Let f be a computable mapping returning a computable strategy
f(R) for each TRS R. Theorems 3.6, 3.8, and 3.13, 3.18, 8.21 and 3.22 all
hold for the rewrite relation of R with strateqy S = f(R) (where the instance
in each decision problem is R ).

Proof. Observe that if a term s contains exactly one redex, then for any term ¢
and strategy S for R, we have s = t if and only if s —g ¢. For every TRS of the
form A(M), each basic term of A(M) has at most one redex. By Lemma 3.20,
it is immediate that the lengths of all reductions to normal form from s are the
same. Therefore, all arguments in the hardness proofs of Theorems 3.6, 3.8,
3.13, and 3.21, remain sound under S.

For ¥9-hardness of the remaining two properties, observe that for any (single-
tape) Turing Machine M, the TRS A (M) is orthogonal, right-linear, and non-
erasing. Therefore, for all terms s, ¢, and u such that u =, (ar) s and u —a(ar)
t, either s =t or there exists a term v such that s —a) v and £ =ap) v. It
follows that for any term ¢, all reductions from ¢ to its (unique) normal form
have the same length. In particular, we have dh(t, =, (ar)) = dh(t, —s). Hence,
the hardness proofs for Theorems 3.18 and 3.22 remain sound when restricted
to S.

To prove containment in the respective classes of the arithmetical hierarchy,
observe that each containment proof in Theorems 3.6, 3.8, 3.13, 3.18, 3.21,
and 3.22 is done by computing the derivation tree starting from a term s to a
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certain depth. The derivation tree with respect to a strategy can be obtained
by pruning the full derivation tree: a branch ¢ —x t” (and thus, the entire
subtree starting from t”) is cut off if and only if ¢ ¢ {t' | t =g t'}. As the
strategy is computable, the pruning operation is clearly computable, hence also
the pruned derivation trees, and we may thus replace the trees in the proofs of
the above theorems by their pruned versions, concluding the proof. O

3.7 Conclusion

In this chapter, we have proved that a number of problems related to bounding
the derivational and runtime complexity of rewrite systems are complete for
classes in the arithmetical hierarchy. In particular, it is 39-complete to decide
whether the derivational complexity, the innermost derivational complexity,
the runtime complexity, or the innermost runtime complexity of a given TRS is
bounded by a polynomial. This sets the stage for the remainder of this thesis:
since by Theorem 3.18, the problem whether the derivational complexity of a
given TRS is within some fixed complexity class is highly undecidable (for many
frequently used complexity classes), it is necessary to resort to partial decision
procedures for this problem. Moreover, due to derivational complexity analysis
being in a sense an extension of termination analysis (once termination of some
program or TRS is established, the question arises how fast termination hap-
pens), the method used in the subsequent chapters to establish upper bounds
on the derivational complexity of TRSs (inference of the bounds from a termi-
nation proof) is a very natural one. However, it should be noted that the two
problems are located in slightly different positions in the arithmetical hierarchy:
while deciding termination is IT13-complete [26], deciding complexity bounds is
Eg—complete, putting derivational complexity analysis into the same position
in the arithmetical hierarchy as nontermination analysis. This suggests that it
might be promising to try to certify polynomial (or other) complexity bounds
for TRSs in a completely novel way.

We also hope that our results may be used to prove the exact hardness of
other problems in applied logic—this would avoid the tedium of pure reduction
from Turing Machines.

A related open problem is Problem #107 of the RTA list of open problems®,
a list of open problems collected by researchers in term rewriting: what are
complete characterisations of polynomial derivational complexity?

http://rtaloop.mancoosi.univ-paris-diderot.fr/
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Chapter 4

Classical Termination Proof Techniques

Science is what we understand
well enough to explain to a
computer. Art is everything else
we do.

Donald Ervin Knuth

The idea of investigating upper bounds on the derivational complexity of
TRSs whose termination can be proved by specific techniques ranges back more
than 20 years [50]. In the meantime, many (mechanisable) termination proof
techniques have been analysed in this way. In this chapter, we recall the most
important of these techniques and the corresponding historic complexity results.

Generally, reduction orders can be divided into those operating on a purely
syntactic basis (i.e. comparing terms purely by their structure), and those using
semantic means to compare terms (e.g. by assigning values from some other
domain to terms) [115]. Both kinds of methods are represented in this chapter.

4.1 Well-founded Monotone Algebras

Most semantic termination proof techniques (in particular, the techniques pre-
sented in this section) are based on well-founded monotone algebras, cf. [115].
Well-founded monotone algebras purely depend on interpreting terms into some
well-founded domain.

Definition 4.1 ([70]). An F-algebra A consists of a set A (called the carrier of
A) and, for every function symbol f € F, an interpretation function fq: A™ —
A, where n is the arity of f. Given an assignment a: V — A, we write [a]4(¢)
to denote the evaluation of a term ¢ by A. This evaluation is defined inductively
as follows:

] (t):{a(t) iftey
A Falle]a(ty), - [0]a(tn)) it = f(tr,... tn)

A well-founded monotone F-algebra is a pair (A, >), where A is an F-algebra
and > is a well-founded proper order such that for every function symbol f € F,
fa is strictly monotone in all coordinates with respect to >. For any well-
founded monotone F-algebra (A, >), the following order > 4 is defined:

s>t <= [a]a(s) > [a]a(t) for all assignments o
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Theorem 4.2 ([115]). For every well-founded monotone algebra (A,>), the
order >4 is a reduction order. Moreover, for any terminating TRS R, there
exists a well-founded monotone algebra (A, >) such that R is compatible with
>A.

A well-known natural extension of well-founded monotone algebras for gener-
ating reduction pairs in the dependency pair framework is the concept of weakly
monotone algebras.

Definition 4.3. A weakly monotone F-algebra is a triple (A, >, >), where A is
an F-algebra, > is a preorder such that for every function symbol f € F, f4 is
monotone in all coordinates with respect to >, and > is a well-founded proper
order such that >->-> C >. For any weakly monotone F-algebra (A, >,>),
the following orders > 4 and >4 are defined:

szat < [a]a(s) > [a]a(t) for all assignments o
>

s>t <= [a]a(s) > [a]a(t) for all assignments «
Theorem 4.4. For any weakly monotone algebra (A, >,>), the pair of orders
(Z4,>4) is a reduction pair.

Proof. Straightforward extension of Theorem 4.2. O

We mention three specific instances of well-founded monotone F-algebras:
polynomial interpretations, matrix interpretations, and arctic interpretations.

Definition 4.5 ([65, 66]). A polynomial interpretation is an F-algebra A such
that:

1. the carrier of A is N, and

2. for each function symbol f € F, the interpretation function f4 is a poly-
nomial with range N.

If for each function symbol f € F, the interpretation function f4 is a linear
function, then we call A a linear interpretation. If for each f € F, there exists
some ¢ € N such that fa(z1,...,2,) =c+ Y ;" z;, then Ais a strongly linear
interpretation.

Theorem 4.6 ([65]). Let A be a polynomial interpretation such that for each
function symbol f € F, the interpretation function f4 s strictly monotone
in all arguments. Then (A,>), where > is the usual strict order on N, is a
well-founded monotone F-algebra.

Theorem 4.7. Let A be a polynomial interpretation such that for each func-
tion symbol f € F, the interpretation function fa is weakly monotone in all
arguments. Then (A, >,>), where > and > are the usual weak and strict orders
on N, respectively, is a weakly monotone F-algebra.

Proof. Analogous to Theorem 4.6. O
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If A is a polynomial interpretation, we often only write A for (A, >) if the
premises of Theorem 4.6 hold for (A, >); we call A a strict polynomial interpre-
tation in that case. Similarly, we often write A for (A, >, >) if the premises of
Theorem 4.7 hold for (A, >, >); then we call A a weak polynomial interpretation.

The following general upper bounds on derivation heights are easy to see:

Lemma 4.8. Let R be a TRS and A a strict polynomial interpretation such
that > 4 is compatible with R. Then for all termst and assignments o, we have
dh(t, —=r) < [a]a(?).

Lemma 4.9. Let (P,R) be a DP problem and A a weak polynomial interpre-
tation. Suppose that <I>E;A >4) completely solves (P, R). Then for all terms t
and assignments o, we have dh(t, Sp/—x) < [a]a(t).

Based on Lemma 4.8, Hofbauer and Lautemann have shown the following
general complexity bound for polynomial interpretations:

Theorem 4.10 ([50]). For any strict polynomial interpretation A, the reduction
order > 4 induces double exponential complexity.

It is not difficult to extend the proof of Theorem 4.10 given in [50] to restricted
classes of polynomial interpretations.

Theorem 4.11 ([50]). For any strict linear interpretation A, the reduction
order > 4 induces exponential complexity.

Theorem 4.12. For any strict strongly linear interpretation A, the reduction
order > 4 induces linear complexity.

Using Lemma 4.9 instead of Lemma 4.8, the last three theorems are easily
lifted to reduction pairs:

Theorem 4.13. For any weak polynomial (respectively linear, strongly linear)
interpretation A, the reduction pair (Z4,>4) induces double exponential (re-
spectively exponential, linear) complezity.

The second specific example of F-algebras we mention are matriz interpreta-
tions. The initial formulation of matrix interpretations was given by Hofbauer
and Waldmann [52]. It has been extended by Endrullis et al. [27] to the version
most widely used in automatic termination proving.

We use M; ; to refer to the entry of a matrix M in row 7 and column j. We
write |[M]| to denote the maximum entry of a matrix M.

Definition 4.14 ([27]). A matriz interpretation is an F-algebra A such that:

1. the carrier of A is N? for some d € N\ {0} (we call d the dimension of
the interpretation), and

2. for each function symbol f € F, the interpretation function f4 has the
shape fa(zi1,...,2n) = b+ > ;" A; - x;, such that n is the arity of f,
b e Nd, and A; is a d X d-matrix over N for all 1 < 7 < n, where + is
the usual component-wise addition for vectors over N, and - is the usual
matrix-vector multiplication over N.
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Theorem 4.15 ([27]). Let A be a matriz interpretation of dimension d such
that for each function symbol f € F and 1 < i < n, we have A;; ;1 > 0, where
falzr, ... zn) = b+ 30 Ai -z and n is the arity of f. Let > be the order
on N? defined by (ay,...,aq) > (b1,...,bg) <= a1 >y b A /\;-1:2 a; >N b;, and
>N and >y be the usual orders on N. Then (A, >) is a well-founded monotone
F-algebra.

Theorem 4.16 ([27]). Let A be a matriz interpretation of dimension d. More-
over, let > and > be the following orders on N, where >y and >y are the usual
orders on N:

(al,...,ad)Q(bl,...,bd) < /\ai>NbZ-
=1
d
(al,...,ad)>(b1,...,bd) <~ a1 >Nb1/\/\ai>Nbi
=2

Then (A, >, >) is a weakly monotone F-algebra.

If A is a matrix interpretation, we often only write A for (A, >) if the premises
of Theorem 4.15 hold for (A, >); we call A a strict matrixz interpretation in that
case. Similarly, we often write A in order to refer to (A, >, >), calling A a weak
matriz interpretation.

As described by Waldmann in [109], there is a direct translation from matrix
interpretations to weighted automata over the semiring constructed by N and
standard addition and multiplication over N. This allows the usage of results
from weighted automata theory on matrix interpretations. For instance, as
mentioned in Section 5.4 below, this is done in [110, 76] in order to help deter-
mine the complexity induced by reduction orders and reduction pairs based on
matrix interpretations. Ingredients of termination proofs which can be trans-
lated into weighted automata over other semirings include arctic interpretations
(described later in this section) and match-bounds (described in Section 4.4 be-
low).

The following general upper bounds on derivation heights are easy to see:

Lemma 4.17. Let R be a TRS and A a strict matriz interpretation such that
> A is compatible with R. Then for all terms t and assignments a, [a]a(t) =
(a1,...,aq) tmplies dh(t,—r) < a;.

Lemma 4.18. Let (P,R) be a DP problem and A a weak matriz interpreta-
tion. Suppose that <I>E;PA >4) completely solves (P, R). Then for all termst and
assignments a, [a)4(t) = (ay,...,aq) implies dh(t, Sp/—r) < a1.

Based on Lemma 4.17, Endrullis et al. have shown the following complexity
bound:

Theorem 4.19 ([27]). For any strict matriz interpretation A, the reduction
order > 4 induces exponential complexity.

Using Lemma 4.18 instead of Lemma 4.17, the last theorem is easily lifted to
reduction pairs:
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Theorem 4.20. For any weak matriz interpretation A, the reduction pair (=4
,>4) induces exponential complezity.

The last instance of F-algebras we mention here are arctic interpretations
[61]. In their basic idea, they are quite similar to matrix interpretations. How-
ever, they work on a different domain, and due to technical reasons, they are
rather restricted when used as the foundation of a reduction order. These re-
strictions will get lifted when they are used as the basis for reduction pairs
instead. We now recall the carrier used by arctic interpretations.

Definition 4.21 ([61]). The arctic semiring is the set A = NU{—o00}, together
with the following operations 4+, and *4:

n if m=—o0
m4an=<m if n = —o00
max{m,n} if m,neN

—00 ifm=-oc0orn=-o0
m*xp n = .
m+yn ifm,neN

The order >, on A is the usual strict order on N extended by a >, —oo for all
a € A (in particular, —oo > —o0), and >, is its reflexive closure. Addition of
vectors or matrices over A is defined to be the component-wise application of
+4. Matrix-vector multiplication for matrices and vectors over A is defined as
usual, employing 4 as addition and 4 as multiplication for matrix and vector
entries.

Definition 4.22 ([61]). An arctic interpretation is an F-algebra A satisfying
the following properties:

1. the carrier of A is A? for some d € N (we call d the dimension of the
interpretation), and

2. for each function symbol f € F, the interpretation function f4 has the
shape fa(z1,...,2n) =b+a D1 Ai*a x;, such that n is the arity of f,
be A and A; is a d x d-matrix over A for all 1 < i < n.

Theorem 4.23 ([61]). Let A be an arctic interpretation of dimension d over
signature F satisfying the following properties:

1. all function symbols in F have arity at most 1,
2. for each function symbol f € F of arity 0, we have fa € N x A%1 and

3. for each function symbol f € F of arity 1, we have A11 € N and b =
(—00,...,—00), where fa(x) =b+a Axp x.

Let > be the order on A% defined by (a1, ...,aq) > (b1,...,by) <= /\f:1 a; >p
bi, restricted to N x A1, Then (A, >) is a well-founded monotone F-algebra.
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Theorem 4.24 ([61]). Let A be an arctic interpretation of dimension d such
that for every function symbol f € F, either b € N x A1 or there exists some
1 < i < n such that Aj1q € N, where fa(xi,...,xn) = b+a D iy Ai ka2
and n is the arity of f. Moreover, let > and > be the following orders on A%,
restricted to N x A1

d
(al,...,ad)>(b1,...,bd) <~ /\ai2Abi

=1

d
(al,...,ad)>(b1,...,bd) <~ /\ai>Ab2~

=1

Then (A, >, >), is a weakly monotone F-algebra.

If A is an arctic interpretation, we often only write A for (A, >) if the premises
of Theorem 4.23 hold for (A, >); we call A a strict arctic interpretation in that
case. Similarly, we often write A for (A, >, >) if the premises of Theorem 4.24
hold for (A, >, >); then we call A a weak arctic interpretation.

The following general upper bounds on derivation heights are easy to see:

Lemma 4.25. Let R be a TRS and A a strict arctic interpretation such that
> 4 is compatible with R. Then for all terms t and assignments a, [a](t) =
(a1,...,aq) tmplies dh(t,—r) < ai.

Lemma 4.26. Let (P,R) be a DP problem and A a weak arctic interpreta-
>

tion. Suppose that @&PA 2 completely solves (P, R). Then for all termst and
assignments «, []4(t) = (ay,...,aq) implies dh(t, Sp/—r) < ay.

Essentially based on a variant of Lemma 4.25, the following complexity bound
is shown in [61, Lemma 17]:

Theorem 4.27 ([61]). For any strict arctic interpretation A, the reduction
order > 4 induces linear complexity.

Using Lemma 4.26 instead of Lemma 4.25, the last theorem is easily lifted to
reduction pairs:

Theorem 4.28. For any weak arctic interpretation A, the reduction pair (=4
,>4) induces linear complexity.

4.2 Knuth-Bendix Orders

Knuth-Bendiz orders (KBOs for short), originally defined in [60], but see also [8]
or [102, Section 6.4.4], are the earliest of the classical reduction orders we present
here. They share some ingredients both with interpretations (cf. Section 4.1)
and recursive path orders (cf. Section 4.3). A KBO is defined by a precedence
and a weight function.
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4.2 Knuth-Bendix Orders

Definition 4.29. A precedence is a proper order on function symbols. A weight
function is a pair (w,wp), where wg € R*, and w is a mapping from F to Ra'.
A weight function (w,wy) is admissible with respect to the precedence > if for
every function symbol f € F, we have either w(f) > wp, or f has arity 1,
w(f) =0, and f > g for each g € F\ {f}. A weight function (w,wy) is lifted
to a mapping from T (F,V) to Ry (also denoted as w) as follows:

w(t)_{wo iftey
w(f)+ > wt) ift=f(tr,... tn)

Definition 4.30. Let > be a precedence and (w,wp) an admissible weight
function. Then the Knuth-Bendix order based on > and (w,wy), denoted as
>KBO(w,uwo)» 18 defined as follows: s >kgo(w,uw) t if |8z = [t]. for all z € Var(s),
and one of the following alternatives holds:

1. w(s) > w(t)
2. s = f"(t) for some n >0
3. w(s) =w(t)and f > g, if s = f(s1,...,5,) and t = g(t1,...,tm)

4. w(s) = w(t) and (s1,...,Sn) >1|2)L§>O(wwo) (t1,...,tn), if s = f(s1,...,5n)
and ¢t = f(ty, ... tn)

As apparent from their definition, KBOs are both syntactic and semantic
reduction orders. Most criteria in the recursive definition are purely syntactic
criteria, while the weight function forms the semantic component of KBOs.

Theorem 4.31 ([60]). For any precedence > and weight function (w,wg) that
is admissible with respect to >, the resulting KBO >kgo(w,uw,) S @ reduction
order.

The general upper bound on the derivational complexity of TRSs whose ter-
mination can be proved by a KBO is due to Lepper.

Theorem 4.32 ([67]). For any precedence > and weight function (w,wq) which
is admaissible with respect to >, the resulting KBO >kgo(w,uw,) induces complez-
ity Ack(O(n),0). This bound is essentially optimal.

Proof Sketch (for the upper bound). Let >kgo(w,uw,) be @ KBO, and R a TRS
which is compatible with >kgo(w,w,)- Based on >kpo(w,uw,) and R, a mapping
Z: T(F) — N is defined which employs the fast growing functions. It is then
shown that for all ground terms s and ¢, s —x t implies Z(s) > Z(t), and hence
for all ground terms ¢, dh(t, —»g) < Z(t). Finally, it is shown that there exists
a constant C' (depending only on R and >KBO(w,w0)) such that for all ground
terms ¢, Z(t) < Ack(C - n,0). O

A weaker upper bound has previously been shown by Hofbauer [47]. For
restricted classes of TRSs which terminate by Theorem 4.31, Hofbauer has
shown that dcg (n) is contained in 20("):
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Theorem 4.33 (][50, 47]). If F contains no function symbol of arity greater than
1, then for any precedence > and weight function (w,wq) which is admissible
with respect to >, the resulting KBO >kpo(w,w,) on T (F,V) induces complexity
20(") | This bound is essentially optimal.

Theorem 4.34 ([50, 47]). Let R be a TRS, and >kgo(w,wy) @ KBO which is
compatible with R. If w(f) = 0 implies |l|f > |r|¢ for each rulel — r € R,
then dcg(n) € 2900 . This bound is essentially optimal.

Finally, Moser [77] has extended Theorem 4.32 to infinite TRSs under some
restrictions.

4.3 Recursive Path Orders

Recursive path orders are another classical set of reduction orders. While they
operate on a purely syntactic basis, their definitions are reasonably simple, and
it is rather easy to verify whether a given TRS is compatible with a recursive
path order, they are still very powerful with respect to the derivational com-
plexity of TRSs whose termination they can prove. In this thesis, we mention
two specific instances of recursive path orders: multiset path orders (MPOs for
short), and lezicographic path orders (LPOs for short).

Multiset path orders [20], originally just called recursive path orders, were the
first kind of recursive path orders appearing in the literature. They are defined
as follows:

Definition 4.35 ([20]). Let > be a precedence. Then the multiset path order
based on >, denoted as >mpo, is defined as follows: we have s >\upo t if one
of the following alternatives holds:

1. s = f(s1,...,8p) such that s; Zmpo t for some 1 < i < n, where Zppo is
>mpo U ~

2. s= f(s1,...,8n) and t = g(t1,...,ty) such that f > g and s >mpo t; for
alll <i<m

3.5 = f(s1,...,8,) and t = f(t1,...,t,) such that {{s1,...,sa}} >Wiko

{{t1,...,tn}}

Here ~ denotes the permutative equivalence of terms: we have s ~ t if either
s=t,ors= f(s1,...,8n), t = f(t1,...,tn), and there exists a permutation 7
of {1,...,n} such that s; ~ ¢ for all 1 <i < n.

Theorem 4.36 ([20]). For any precedence >, the MPO >mpo based on > is a
reduction order.

The following is a straightforward extension of Theorem 4.36:

Theorem 4.37. For any precedence >, the corresponding pair (Zmpo, >MpPO)
1s a reduction pair.

Hofbauer has shown the complexity induced by MPOs:
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Theorem 4.38 ([48]). For any precedence >, the MPO >mpo based on >
induces primitive recursive complexity. This bound is essentially optimal.

Proof Sketch. Let >mpo be some MPO, and R a TRS which is compatible with
>mpo. Based on >ppo and R, a well-founded monotone algebra (A, >y) with
the following properties is defined: the carrier of A is N, > is the usual order on
N, for every function symbol f € F, the interpretation function f, is primitive
recursive, and R is compatible with >y 4. Hence, the upper complexity bound
follows.

In order to see optimality (and, moreover, that MPOs characterise the set of
primitive recursive functions), observe that every primitive recursive function
f can be computed by a TRS compatible with a MPO, which is constructed
as follows: define f using only initial functions, composition, and primitive
recursion, and transform the resulting definition into rewrite rules in the natural
way. O

An alternative proof of Theorem 4.38 has been given by Buchholz in [12,
Section 3]. It starts out by proving that compatibility with an MPO implies
termination of a given TRS. Since this termination proof is given using only a
certain restricted fragment of Peano arithmetic (namely, $9-TA), it then follows
from classical proof-theoretic results (namely, [88]) that MPOs induce primitive
recursive complexity.

Theorem 4.39. For any precedence >, the reduction pair (Zmpo, >Mmpo) in-

~

duces primitive recursive complexity. This bound is essentially optimal.

Proof. This theorem is proved exactly in the same way as Theorem 4.38. The
only crucial piece of information which is needed to transfer the proof of this
theorem is that for all terms s and ¢, s ~ t implies [&]4(s) = [a]a(t) for all
assignments «, which is [48, Lemma 5.2(v)]. Optimality follows from Theo-
rem 4.38, since for every TRS R which is compatible with some MPO >upo,
the DP problem (R, ) is completely solved by ®RP O

(ZmPo,>mpP0)”
The second kind of recursive path orders we consider are lezicographic path
orders [58]:

Definition 4.40 ([58]). Let > be a precedence. Then the lexicographic path
order based on >, denoted as >| pg, is defined as follows: s >|pg t if one of the
following alternatives holds:

1. s = f(s1,...,8n) such that s; > po t for some 1 < i < n, where > pg is
the reflexive closure of >| pg

2. s= f(s1,...,8,) and t = g(t1,...,tm) such that f > g and s > po t; for
all1 <i<m

3. s=f(s1,...,8,) and t = f(t1,...,t,) such that s > po t; for all 1 < i <
n, and (s1,...,Sn) >}_e|’§o (t1,.. . tn)

Theorem 4.41 ([58]). For any precedence >, the LPO > po based on > is a
reduction order.
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Weiermann has shown the complexity induced by LPOs:

Theorem 4.42 ([113]). For any precedence >, the LPO > po based on >
induces multiply recursive complexity. This bound is essentially optimal.

Proof Sketch. Let > po be some LPO, and R a TRS which is compatible with
>Lpo- Based on > pp and R, a well-founded monotone algebra (A, >y) with
the following properties is defined: the carrier of A is N, > is the usual order on
N, for every function symbol f € F, the interpretation function f4 is multiply
recursive (the interpretation employs the fast growing functions F,, for o < w®,
which are known to be multiply recursive functions [89]), and R is compatible
with >y 4. Hence, the upper bound follows.

Optimality of this upper bound follows from the fact that LPOs characterise
the set of multiply recursive functions, which can be seen as follows: by defini-
tion, any multiply recursive function f can be defined using only initial func-
tions, composition, primitive recursion, and k-ary Ackermann functions. Any
function defined this way can be immediately transformed into a TRS which is
compatible with a LPO. O

An alternative proof of Theorem 4.42 has been given by Buchholz in [12,
Sections 1-2]. It proceeds in the same spirit as the alternative proof of Theo-
rem 4.38, but uses a different fragment of Peano arithmetic (namely, T19-TA).

Finally, Arai [1, Section 8] has given better (but, naturally, still multiply
recursive) complexity bounds, depending on the signature of the TRS under
consideration. Although the general upper bound given in [113] was indeed
shown to be optimal, the specific bounds for fixed signatures could be improved
by [1, Section 8§].

4.4 Bounds

Finally, we describe (match- and other) bounds, a family of semantic termina-
tion proof techniques which are not based on well-founded monotone algebras.
Here the basic idea is to annotate the function symbols with natural numbers in
such a way that the annotations are strictly increasing under rewriting, and the
increase of annotations under rewrite sequences is limited by a fixed bound (and
hence, a finite and easily proved terminating annotated TRS suffices to faith-
fully simulate the original TRS). The technique has been initially proposed for
string rewriting [32], and later been extended to left-linear TRSs [33]. Further
improvements which allow the technique to be used for non-left-linear TRSs
and DP problems have been made in [63, 62].

Definition 4.43 ([32]). Let F be a signature. Then F" is the infinite signature
{fu| f € FAn €N}, where for each f € F and n € N, f,, is a fresh function
symbol with the same arity as f. We have the mappings base: F® — F,
height: F® — N, and lift,: F — FP for each n € N, which are defined by
base(f,) = f, height(f,) = n, and lift,,(f) = f,. These mappings are extended
to terms by applying them pointwise to all function symbols in the given term.
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Using these correspondences between annotated and unannotated terms, a
given TRS R over unannotated terms is lifted to a TRS R’ over annotated
terms; R’ is said to be a cover of R in that case. The definition given here is
slightly more general than the definitions found in the literature.

Definition 4.44 ([104]). Let R be a left-linear TRS over F and V. Then an
infinite TRS R’ over P and V is called a cover of R if for all rules | — € R and
all terms [’ such that base(l’) = [, there exists a term r’ such that base(r’) = r
and I' = ' e R.

An enrichment is a mapping e from terms I’ and rewrite rules [ — r such that
base(l') =1 to terms r’ such that base(r’) = . An enrichment e is extended to
a cover by setting e(R) = {l' = ' |l = r € RAbase(l') =lAe(l',l = 1) =1r"}.

We mention the following two specific covers/enrichments which appear in
the literature:

Definition 4.45 ([33]). The mappings top and match from pairs of terms to
sets of positions are defined as follows:

top(l,r) = {¢} match(l,r) = Posg(l)

Each of these mappings e € {top, match} is then lifted to an enrichment (and
hence further to a cover) by setting e(l',l — r) = lift.(r), where ¢ = 1+
min{height(rt(!'|,)) | p € e(l,7)}.

These covers have a property which eases termination proofs:

Lemma 4.46 ([33]). Let R be a left-linear TRS. Then every finite subset of
top(R) is terminating. Moreover, if R is right-linear, then every finite subset
of match(R) is terminating.

Since, by the definition of covers, every derivation in R starting from a term
t can be simulated by a derivation in e(R) for any e € {top, match} starting
from lifty(t), this gives rise to the following termination criterion:

Definition 4.47 ([33]). Let R be a left-linear TRS and e a mapping such that
e(R) is a cover of R. Suppose that there exists some ¢ € N such that for all
t € T(F,V) and u with lifto(t) —% u, we have Fun(u) C {f, € F° | n < c}.
Then R is said to be e-bounded by c.

Theorem 4.48 ([33]). Any left-linear and top-bounded, or linear and match-
bounded TRS is terminating.

All of these concepts have been extended to DP problems in [63, 62]. We
start with an extension of Definition 4.44 to DP problems.

Definition 4.49. Let P and R be left-linear TRSs, and P’ C P. Then an
infinite TRS R’ is called a DP-cover of the triple (P,P',R) if for all rules
I = r € PUR and all terms I’ such that base(l’) = [, there exists a term 7/
such that base(r’) =r and I’ — 1’ € R,
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Specifically, covers created by enrichments such as top and match can be
extended to DP-covers as follows:

Definition 4.50 ([63, 62]). Let e be an enrichment such that for all rules
I - r € R and terms !’ with base(!’) = [ we have e(l',l — r) = lift.(r) for
some ¢ € N. Then e-DP is the enrichment defined by e-DP(I',1 — r) = lift. (r),
where ¢ = min{c, height(rt('))} and e(l',l — r) = lift.(r).

An enrichment e and the associated enrichment e-DP are lifted to a DP-
cover by setting e-DP(P, P, R) ={l' =" |l = r € (P\P)URAbase(l') =
INe-DP(l',l = r)=r"yU{ll 7" |l —r e P Abase(l') =1lAe(l',l = 1) =1r"}.

Definition 4.47 can be extended to DP-covers in a straightforward way:

Definition 4.51. Let P and R be left-linear TRSs, P’ C P, and e a mapping
such that e(P,P’,R) is a DP-cover of (P,P’,R). Suppose that there exists
some ¢ € N such that for all t € 7(F,V) and v with lifto(t) =%z u, we have
Fun(u) C {fn € F® | n < c}. Then (P, P, R) is said to be e-bounded by c.

Definition 4.52 ([63, 62]). Let P’ be a set of rewrite rules. Then the top-
bounds processor for P’ is the following DP processor:

{(P\P,R)} if P"CP,PUR is left-linear, and
@;S,p((P, R)) = (P,P’,R) is top-DP-bounded
{(P,R)} otherwise

Moreover, the match-bounds processor for P’ is the following DP processor:

{(P\P,R)} if PPCP,PUR is linear, and
OB ((P,R)) = (P,P',R) is match-DP-bounded
{(P,R)} otherwise

Theorem 4.53 ([63, 62]). For any TRS P’, the DP processors <I>;§,p and ®patch
are sound.

The following general upper bounds on derivation heights follow easily from
Definitions 4.44 and 4.49:

Lemma 4.54. Let R be a left-linear TRS, R’ a cover of R, and t, t' be terms
such that base(t') =t. Then dh(t,—x) < dh(t', —>r/).

Lemma 4.55. Let P and R be left-linear TRSs, P’ C P, R’ a DP-cover of
(P,P',R), and t,t' terms such that base(t') = t. Then dh(t, i>'P//—>('P\’pl)UR) <
dh(t, —>'PuR) < dh(t/7 _>R’)’

Termination proofs by Theorem 4.48 induce the following complexity bounds:

Theorem 4.56. Let R be a left-linear and top-bounded TRS. Then dcr is
bounded by an exponential function.
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Proof. Suppose that R is left-linear and top-bounded by ¢. Let R’ be the restric-
tion of top(R) to rules containing function symbols of height at most ¢, and note
that R’ is finite. Since R is match-bounded by ¢, for every term ¢, the equal-
ity dh(lifto(t), —top(r)) = dh(lifto(t), —=) holds, and hence by Lemma 4.54,
dh(t, —r) < dh(lifto(¢), —%/). There exists a linear interpretation .4 such that
R’ is compatible with > 4, so by Theorem 4.11, dcg/, and thus dcg, is bounded
by an exponential function.

The linear interpretation A is given inductively as follows. For each f € F
of arity n, set

n
fealxi,...,zpy) = sz .
1=1

Let a be the maximum arity of any function symbol in F, g a function symbol
in F of arity a, and b = 1 + max{dp(r) | l = r € R}. Define G%(z) = z and
GH(x) = gi(G¥(x),...,G¥(x)). Then for each f € F of arity n, we set

fi—lA(xla D 73711) =1 + Z[QJ]A(G?(;U)) )
j=1

where aj(z) = z;.

It is easy to check by induction on ¢ — ¢ that for every function symbol
fi € FP, the interpretation function f; 4 is a linear function, and hence A is
a linear interpretation: it is obvious that f. 4 is linear for all f € F. Now we
consider f;_1 4: by induction hypothesis, g; 4 is a linear function. Since the
set of linear functions is closed under composition and addition, it follows that
fi—14 is a linear function, as well.

Finally, we verify that top(R) is compatible with > 4. Let f;(l1,...,l,) = r €
top(R). Moreover, obviously Var(r) C [J7_; Var(l;), hence by strict monotonic-
ity of all interpretation functions, we have max{[a]4(l1),...,[a]a(ln)} = a(v)
for all v € Var(r). By straightforward induction on d, for any term ¢ of
depth at most d containing only function symbols of height between i + 1 and
¢ with Var(t) C Var(r), we have [a]4(t) < [a’]A(Gﬁll(fc)), where o/(z) =
max{[a]a(l;) | 1 < j < n}. By definition, the height of each function symbol

in 7 is at least i + 1. Thus, fiq([a]a(h), ..., [a]a(za)) > [@/]4(GH (2)) >

[a]a(r). H

Theorem 4.57 ([33]). Let R be a linear and match-bounded TRS. Then dcg
is bounded by a linear function.

Proof Sketch. Suppose that R is linear and match-bounded by c. The following
is entailed by the premises in a straightforward manner: s —aien(R) t implies
that the multiset of heights of s is strictly greater than the multiset of heights

of ¢ with respect to >§’2\‘}1, where >, 1s the reverse of the usual strict order
on N (note that >y, restricted to {0,...,c} is obviously well-founded). From

this multiset decrease, it can be shown that the derivational complexity of
match(R) restricted to heights at most ¢, and thus also dcg, is bounded by a
linear function. O
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Theorem 4.58. Let (P, R) be a DP problem, and P’ a set of rewrite rules. Let
{(Q,R)} = @;SP((P,R)). Then Q € P. Moreover, DPcp\ o gur is bounded by

a constant function.

Proof. The first part of the theorem follows directly from the definitions, so
we only prove the second part. If Q = P, then DPcp\g our is the constant
zero function. Otherwise, @ = P \ P/, and we have that P’ C P, PUR is
left-linear, and (P,P’,R) is top-DP-bounded by ¢ for some ¢ € N. Let R’ =
top-DP(P,P’, R). Whenever s —gur t, then for any s’ such that base(s’) = s,
there exists some t' such that base(t') = ¢t and s’ —x/ ¢/, and by definition of
top-DP, we have height(rt(s’)) = height(rt(¢')). On the other hand, suppose
that s —p t. Then for any s’ such that base(s') = s, there exists some #'
such that base(t’) = t and s Sg/ t/, and by definition of top-DP, we have
height(rt(s’)) + 1 = height(rt(¢')). Since (P,P’,R) is top-DP-bounded by ¢,
we have dh(liftg(u), »r/) < ¢ for all w € T(F,V). Thus by Lemma 4.55,
dh(u, i>7;\Q/—>QU73) < ¢, which is what we wanted to show. O

However, we cannot give any complexity bounds for match-DP-bounded
triples. The reason for this is the following: let (P,R) be a DP problem and
P’ C P such that @B (P, R) = {P\P’,R}. Suppose even that P’ = P. Then
by soundness of @%a“h, there exists no minimal infinite chain with respect to
(P,R). However, this does not necessarily entail that Sp /—r is well-founded.
In particular, this scenario of finiteness, but nontermination (and hence absence
of any complexity bound) may occur for match-DP-bounded triples (P, P, R),
as illustrated by the next example:

Example 4.59. Let P = {f(s(z)) — f(z)}, and R = {s(z) — s(s(x))}. It is
easy to check that (P,P,R) is match-DP-bounded by 1, and hence, by Theo-
rem 4.52, the DP problem (P, R) is finite. However, the corresponding relation
Sp /—r is not well-founded, as witnessed by the infinite derivation created by
infinite repetition of the rewrite steps f(s(x)) —r f(s(s(z))) =p f(s(z)). Note
that this derivation does not give rise to a minimal infinite chain, since f(s(z))
is not a normal form with respect to R.

Even if we restrict to DP problems (P, R) such that P U R is linear and
terminating, and (P,P,R) is match-DP-bounded, we cannot give any upper
bound on DPcp . Let P = {f(s(x)) — f(x)} again. Let g be any computable
function. By Turing-completeness of string rewriting, there exists a terminating
SRS S such that r*(z) —& s9M)(z) with k > g(n) for all n € N, and f is not
contained in the signature of S. It is easy to check that (P,P,S) is match-DP-
bounded by 1, and that P U S is terminating. However, DPcp s grows at least
as fast as g, which is allowed to be any computable function.
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Chapter 5

Interpretation Methods for Derivational
Complexity Analysis

The computing scientist’s main
challenge is not to get confused by
the complexities of his own
making.

Edsger Wybe Dijkstra

5.1 Introduction

In the last chapter, we have presented several well-known direct termination
proof techniques. Alongside, we have listed the upper bounds on the deriva-
tional complexity of TRSs whose termination can be proved by those techniques.
The proof techniques specified in the last chapter are not at all specific to
complexity analysis: their main use lies in proving termination of TRSs. Vir-
tually all of them are implemented in leading modern automatic termination
provers such as AProVE [34] and TqTy [64]. In contrast, in this chapter, we
mention techniques which are specific to derivational complexity analysis.
Consider polynomial interpretations: by Theorem 4.10, the reduction order
created by a polynomial interpretation induces double exponential complexity.
Moreover, by Theorem 4.11, the reduction order created by a linear interpreta-
tion induces exponential complexity. Now consider the following example:

Example 5.1 ([49]). Let Rassoc be the TRS given by the following single
rewrite rule over the signature containing the binary function symbol o and the
constant function symbol c:

(zoy)oz—ao(yoz)

Let A be the polynomial interpretation given through the interpretation func-
tions o4(z,y) = 2x +y + 1 and cq = 0. It is easy to check that Rassoc 18
compatible with the resulting reduction order > 4. By Theorem 4.11, dcg,_..
is bounded by an exponential function.

The upper complexity bound given in Example 5.1 is not optimal: the deriva-
tional complexity of Rassoc is bounded by a polynomial of degree 2. This over-
estimation is typical for polynomial interpretations: by Theorem 4.12, strongly
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5 Interpretation Methods for Derivational Complexity Analysis

linear interpretations induce linear complexity. However, even the slightest re-
laxation in the definition of strongly linear interpretations, such as allowing a
single coefficient greater than 1 in the interpretation functions (as in Exam-
ple 5.1) already makes it possible to prove termination of TRSs whose deriva-
tional complexity is exponential. For instance, the TRS given by the single rule
(roy) oz — xoux is compatible with the reduction order based on the linear
interpretation given in Example 5.1. However, the TRS is duplicating, hence
its derivational complexity is at least exponential, as witnessed by the family
of starting terms defined by ¢y = c and ¢,+1 = (¢, © ¢) o ¢, and the derivation
tn+1 — tn 0ty — (tn,1 o tnfl) oty — (tn,1 o tnfl) o (tn,1 o tnfl) — ...
So, using polynomial interpretations, it seems impossible to infer any nonlinear
polynomial upper bounds on the derivational complexity of TRSs. Even worse,
none of the theorems about complexity bounds induced by termination proof
techniques presented in Chapter 4 yields any nonlinear, but polynomial upper
bounds.

In 2001, Hofbauer introduced context dependent interpretations as a remedy,
cf. [49]. These interpretations extend polynomial interpretations by introducing
an additional parameter. The parameter changes in the course of evaluating a
term, which makes the interpretation dependent on the context. Concerning
Example 5.1, a context dependent interpretation can be found which proves
termination of Rassoc and gives an optimal upper bound on its derivational
complexity, compare [49]. In [49], several other examples were presented where
context dependent interpretations allowed to infer tighter complexity bounds
than polynomial interpretations did. However, all context dependent interpreta-
tions given in [49], including the corresponding monotonicity and compatibility
proofs, were hand-crafted, and automation was left as an open problem.

A technique to automatically search for context dependent interpretations
was described by Moser and the author of this thesis in [79, 96]. This was
achieved by delineating two subclasses of context dependent interpretations that
made automation possible. With that technique, most of the manually inferred
complexity bounds shown in [49] could be reproduced automatically. However
the proof of the quadratic upper bound on dcg,_ . could not be automated this
way. In this chapter, we give an overview of context dependent interpretations
and the subclasses used for their automation. We outline the technical reasons
why the previous automation failed on Example 5.1, and give an extension
which remedies that problem.

Beside context dependent interpretations, we also investigate matrix inter-
pretations in this chapter. By Theorem 4.19, the reduction order created from
a matrix interpretation generally induces exponential complexity. However, for
certain restricted shapes of matrix interpretations, the corresponding reduc-
tion orders induce polynomial complexity bounds. We specifically focus on
triangular matriz interpretation, a simple syntactic such restriction of matrix
interpretations. Reduction orders based on triangular matrix interpretations
induce polynomial complexity, where the degree of the polynomial depends on
the dimension of the interpretation.

We proceed to identify a subclass of two-dimensional matrix interpretations
which corresponds to the class of context dependent interpretations we describe.
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5.2 Triangular Matrix Interpretations

This correspondence is understood to be with respect to orientability: for any
context dependent interpretation C from this class whose reduction order is com-
patible with a TRS R there exists a matrix interpretation .4 from the identified
subclass such that >4 is compatible with R, and vice versa. This theoretical
result is interesting in its own right, as it links two different termination proof
techniques which were previously conceived as incomparable.

Finally, we give an overview of another method for restricting matrix inter-
pretations for automated polynomial derivational complexity analysis from the
recent literature [86, 110, 76]. This method is based on weighted automata the-
ory and linear algebra; more precisely, it is the synthesis of two independently
developed methods, one of which was built upon weighted automata [110], and
the other was based on linear algebra [86]. It is complete in the sense that it
characterises the set of matrix interpretations A such that the entries of [a] 4(t)
grow polynomially in |t|, and hence the polynomial growth in [t| of [a]4(t)
follows by Lemma 4.17.

5.2 Triangular Matrix Interpretations

We now introduce a specific form of matrix interpretations called triangular
matriz interpretations. The reduction order based on a triangular matrix inter-
pretation induces polynomial complexity. This contrasts with general matrix
interpretations, which can prove termination of TRSs whose derivational com-
plexity is exponential. Hence the introduced restriction defines a strict subclass
of those TRSs that can be shown terminating by a matrix interpretation.

Definition 5.2. An upper triangular matriz of dimension d is a matrix M in
N*d guch that for all d > i > j > 1, we have M;;=0,and foralld > i > 1, we
have M;; < 1. A triangular matriz interpretation (TMI for short) of dimension
d is a matrix interpretation A of dimension d such that for each interpretation
function f4, all d X d-matrices in f4 are upper triangular matrices.

Note that the main diagonal entries of any upper triangular matrix are from
the set {0, 1}.

Example 5.3 (continued from Example 5.1). We define a triangular matrix
interpretation B, as follows:

e~ (5 1)-7+ (5 )7+ (1) = (0)

It is easy to check that B is compatible with Rassoc-

Lemma 5.4. Let M be an upper triangular matrixz of dimension d and n € N.
Then all entries of M™ are polynomially bounded in n. More precisely, if ¢ > j
then (M™); ; = 0, otherwise (M™); ; < (j—4)!- (a-n)?~", where a = max{M, ; |
1<i,j<d}.

Proof. The case i > j is easy to see. In the other case, we have j > i. Further,
the lemma is easy to see for n < 1. So we only prove the other case, where

65



5 Interpretation Methods for Derivational Complexity Analysis

n > 2. For j > ¢ and n > 2, we prove the lemma by induction on j —
i. If j —i =0, then (M");; = (M; ;)" < 1. If j > i, then by induction
hypothesis, for every i < k < j, we have (M");; < (k —i)!- (a-n)** and
(M™)y; < (j— k) (a-n)i=*. For every 1 < I < n, we have M! = M!~1.
M and therefore (M');; < (M'™1);; Z] l(Ml ik - Mkj It follows by
straightforward induction on n that (M™);; < My j+> " E ( ")ide My -

We have (M");; < a+ > o_ Zj I(Mm)lk a. Furthermore, by induction
hypothesis, we have (M™);x < (k —i)! - (a - m)*~ for every i < k < j and
m € N, hence

n—17—1

(M"™); 5 a—f—zz —1) m)k~t. q

m=0 k=1

§a+2(j—i)-(j—i—1)! (a-m)y~"1.q

a+(j—i)-a’" ij i—1

<a+(j—i)-al™ ’-(n—l)j_i
<@G—=i)l-al™ 1-nj_i_1—|—(j—i)!-aj_i-nj_i_l~(n—1)
=G —i)-ad I
which is what we wanted to show. ]

Due to Lemma 5.4, for any finite set M C N%*¢ of upper triangular matrices,
there is a polynomial p of degree d—1 such that for each sequence My,..., M, €
M, and for each 1,7, it holds that (M - ... M,);; < p(n). Such products
occur when computing values of matrix interpretations on (ground) terms: for
example, let A denote a matrix interpretation of dimension d with interpretation
functions of the shape

fA(@, ) =F- @+ F-7+f ga@9)=G1-Z+Go- 7+
as=ad ba=0b

(@]
QL

A ==
Let v be an arbitrary assignment and ¢ = f(g(a,b),c). Then
[a(t) =F -G+ F -G @+ F -Gy b+ F-c+f.

Clearly the length of each product is at most the depth of the term, which is
smaller than or equal to its size. By the previous argument, entries in each
product are polynomially bounded (with degree d — 1) in the size of ¢t. The
number of products which are finally summed up equals the number of subterms
of ¢, which is exactly the size of t. Therefore, the entries in [a] 4(t) are bounded
by a polynomial of degree d in the size of ¢. This observation leads us almost
directly to the main result of this section.

Theorem 5.5. For any strict triangular matriz interpretation A of dimension
d, the reduction order > 4 induces polynomial complexity, and the degree of the
polynomial is d.
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Proof. Any k-step derivation s —)% t implies s1 > t1 + k, where [a]4(s) =

($1y.+.,84), [a]a(t) = (t1,...,tq), and « is any assignment, also compare
Lemma 4.17. In conjunction with Lemma 5.4 and the above observation, this
suffices to prove the theorem. ]

Using exactly the same reasoning (but employing Lemma 4.18 rather than
Lemma 4.17), the corresponding theorem for reduction pairs can be shown:

Theorem 5.6. For any weak triangular matriz interpretation A of dimension
d, the reduction pair (=4,>4) induces polynomial complexity, and the degree
of the polynomial is d.

Example 5.7. It is easy to see that the derivational complexity of the TRS R
consisting of the rewrite rules {a(b(z)) — b(a(x)),c(a(z)) — b(c(x)), c(b(x)) —
a(c(z)))} is (at least) cubic: for instance, consider the family of starting terms
{c"(@™(b™(z))) | n € N}. Let A be the following TMI A.

101 0 100 0
au@ =101 1|z+ [0 ba(@) =10 1 1|Z+ {0
00 1 1 00 1 1
11 3 1
ca@=(0 1 o]z+ [0
00 1 0

The TRS R is compatible with > 4, so by Theorem 5.5 we conclude that dcg
is a polynomial of degree 3.

Observe that the criterion is not complete: there exist TRSs with polynomial
derivational complexity which are not compatible with any reduction order
based on a TMI. One such example can be found in [27]: let R = {f(a,b) —
f(b,b),f(b,a) — f(a,a)}. Then R has linear derivational complexity, but in
fact no compatible matrix interpretation can exist, cf. [27, Example 7]. Further
note that the the degree mentioned in Theorem 5.5 need not be reached, as
illustrated by the following example.

Example 5.8. Consider the TRS R consisting of the single rule f(f(x)) —
f(c(f(z))). The derivation height of any term is given by the number of (possi-
bly overlapping) occurrences of coupled f’s in the initial term ¢, which is linearly
bounded in the size of t. For the following matrix interpretation A, R is com-
patible with > 4. However, > 4 only induces quadratic complexity:

wo=(3 1)+ () w@=(f )

There even exist TRSs which are compatible with the reduction order based
on a matrix interpretation and whose derivational complexity is polynomial, but
which are not compatible with any reduction order based on a triangular matrix
interpretation. Let R = {f(f(z)) — f(c(f(z))),c(c(x)) — x}. It is demonstrated
in [86, Example 8] that dcg is bounded by a polynomial of degree 2, and there
exists a matrix interpretation A such that R is compatible with > 4. However,
as also shown in [86, Example 8], there exists no triangular matrix interpretation
such that >4 is compatible with A.
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5 Interpretation Methods for Derivational Complexity Analysis

5.3 Context Dependent Interpretations and Matrices

In this section, we describe context dependent interpretations, compare [49].
We recall previously introduced subclasses of context dependent interpreta-
tions which are suitable for automation [96, 79], and extend them. Finally, we
show a tight correspondence between (triangular) matrix interpretations as in-
troduced in Section 5.2 and context dependent interpretations. More precisely,
we define a subclass of context dependent interpretations such that any such
interpretation C gives rise to a restricted TMI A and vice versa. Moreover, C
proves termination and polynomial derivational complexity of a TRS R if and
only if R is compatible with > 4.

Essentially, a context dependent F-algebra is a family of F-algebras which is
parametrised by an element A of a parameter domain. The crucial idea is that
A changes throughout the computation of the interpretation of a term, thus
making the interpretation of a subterm dependent on its context. Note that, as
in [96], our definition of context dependent F-algebras is slightly more general
than the notions introduced by Hofbauer in [49].

Definition 5.9. A context dependent F-algebra (CDA for short) consists of a
carrier A, a parameter domain D, and for each function symbol f € F of arity
n an interpretation function fe: D x A™ — A and a collection of n parameter
functions fé D — D for 1 <i<n. Given a A-assignment o: D xV — A and
a parameter A, we write [o, A]c(t) to denote the evaluation of a term ¢ by C.
This evaluation is defined inductively as follows:

a(At) ifteV
a(At) = { ) N o
fC(Av [Oé, fC (A)]C(tl)a sy [(1, fC (A)]C(tn)) ift = f(tla e 7tn)

A well-founded A-monotone CDA is a pair (C,{>a | A € D}), where C is a CDA
with carrier A and parameter domain D. Moreover, every A € D must be a well-
founded proper order, and a; >a b must imply fe(A,a1,...,ai,...,a,) > fi(A)
fe(Ajay, ..., b, ... ay) for all function symbols f of arity n and all 1 < ¢ < n.
The last property is called A-monotonicity of C with respect to {>a | A € D}.
For any well-founded A-monotone CDA, the following order >¢ is defined:

s>ct <= [a, Ale(s) >a o, Ale(t) for all A € D and A-assignments «

Due to the special role of the parameter A, in the remainder of this section
we often write fe[A](a1,...,a,) instead of fe(A,aq,...,a,).

Theorem 5.10. For any well-founded A-monotone CDA (C,{>a | A € D}),
the order >¢ is a reduction order.

Proof. Since >a is a well-founded proper order, it easily follows from the defi-
nition of >¢ that >¢ is a well-founded proper order, as well.

Next, we show closure under substitutions: by definition, s >¢ ¢ implies
[a, Ale(s) >a o, Ale(t) for all A € D and A-assignments «. In particular, for
all substitutions o and assignments o/, we have [, A]¢(s) >a [a, Ale(t), where
a is defined by (A, x) = [/, Al¢(o(z)). Hence, so >¢ to.
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Finally, closure under contexts follows from [49, Lemma 1] (if the carrier of C
is Ry, and its parameter domain is R*), or from [96, Lemma 3.5] (for the easy
generalisation to the setting considered here). O

Note the obvious similarities between well-founded monotone F-algebras and
well-founded A-monotone CDAs. Based on that, we proceed by defining the
logical sibling of weakly monotone F-algebras.

Definition 5.11. A weakly monotone CDA is a triple (C,>=,{>a | A € D}),
where C is a CDA with carrier A and parameter domain D, > is a preorder
such that for every function symbol f € F, fe¢ is monotone in all coordinates
except the first (i.e., abusing notation, f¢[A] is monotone in all coordinates)
with respect to >, and for all A € D, > is a well-founded proper order such
that > - >a - > C >a. For any weakly monotone CDA (C,>,{>a | A € D}),
the following orders >¢ and >¢ are defined:

szet <= [a,Ale(s) = [, Ale(t) for all A € D and A-assignments «
s>ct <= [a, Ale(s) >a o, Ale(t) for all A € D and A-assignments «

Theorem 5.12. For any weakly monotone CDA (C,=,{>a | A € D}), the
pair of orders (Z¢,>c) is a reduction pair.

Proof. Straightforward extension of Theorem 5.10. O

We now introduce a specific subclass of CDAs called A2-interpretations. They
are a generalisation of A-linear interpretations and A-restricted interpretations,
which were considered in [96, 79].

Definition 5.13. A A2-interpretation is a CDA C with carrier RJ, parame-
ter domain R™, and interpretation functions and parameter functions of the
following form:

felAl (@, mn) =) agaai+ Y bt + g + hpA (5.1)
=1 i=1
_ cua tdgaA

: (5.2)
a(fq) + b A

fe(A)
where a(s;) > 0 or b;) > 0, and ¢(p;y > 0 or d(s; > 0 (for each f € F,
1 <4 < n), and the occurring coefficients are natural numbers.

A A-linear interpretation is a A%-interpretation, where for the parameter
functions as presented in (5.2) we have c(f;) = 0 and d(y;) = 1 for all f € F,
1 <i<n A A-restricted interpretation is a A-linear interpretation with the
additional requirement that in the interpretation and parameter functions as
presented in (5.1) and (5.2), we have a(s ;) € {0,1}.

Theorem 5.14. Let C be a A2-interpretation, and let >a be defined by s >a
t <= s >t+A for all A € RT, where > is the usual weak order on
Ry. Suppose that C is A-monotone with respect to {>a | A € RT}. Then
(C,{>a | A e RT}) is a well-founded A-monotone CDA.
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5 Interpretation Methods for Derivational Complexity Analysis

Proof. Obviously, for every A € RT, the order >A is a well-founded proper
order on Rg . Moreover, by assumption, C is a CDA, and is A-monotone with
respect to {>A | A€R"}. Thus (C,{>a | A € RT}) is a well-founded A-
monotone CDA. O

Theorem 5.15. Let C be a A*-interpretation, let > be the usual weak order on
RS, and let >a be defined by s >A t <= s >t+ A for all A € RY. Then
(C,=,{>a | A € R"}) is a weakly monotone CDA.

Proof. Obviously, > is a preorder, and for every A € R*, the order >4 is a
proper order on Rg. Moreover, > - >aA - > C >a for all A € RT. By the
definition of AZ-interpretations, for every f € F, fe is monotone with respect
to > in all coordinates except the first. Thus, (C,>,{>a | A € R1}) is a weakly
monotone CDA. O

If C is a AZinterpretation, we often only write C for (C,{>a | A € R"}) if
the premises of Theorem 5.14 hold for (C,{>a | A € RT}); we call C a strict
A2-interpretation in that case. Similarly, we often write C for (C,>,{>a |
A € R"}) if the premises of Theorem 5.15 hold for (C,>=,{>a | A € RT});
then we call C a weak A%-interpretation.

For AZ-interpretations, there is a simple syntactic criterion allowing the in-
ference of A-monotonicity.

Lemma 5.16. Let C be a A?-interpretation. Let > be the usual weak order on
Rg, and let >a be defined by s >SAt <= s>t+ A for all A € R". Then
for all f € F, fc is monotone in all coordinates except the first with respect to
>. Moreover, if for all f € F, 1 <i<nin (5.2), we have d(y; > 1, then C is
A-monotone with respect to {>a | A € RT}.

Proof. For all f € F, monotonicity of f¢ in all coordinates with respect to > is
immediate from Definition 5.13. Hence, the first part of the lemma is concluded.
Moreover, due to this, having

felAl(@y ..y 4+ fo(A), . yxn) — felAl(z1 ..y iy ey 2n) = A

for all function symbols f € F of arity n, 1 <i<n, A € R", and z1,...,2, €
R{ is sufficient to conclude A-monotonicity of C with respect to {>a | A € R*}.
This inequality can be shown as follows:

felAl(xy ...,z —|—fé(A),...,xn) — felAl(xy .. gy )
¢+ d; A

= (ai + biA)(xi + m

O]

Example 5.17 ([49], continued from Example 5.1). Consider the following
A-linear interpretation C:

oc [Al(z,y) =1+ A)z+y+1 of(A)=——+ Z(A)=A cc[A]=0
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For all A € RT, ground terms r, s,t, and A-assignments «, we have [o, Al¢((r o
s) o t) — [a,Ale(r o (s o t)) > A. This is shown in [49, Lemma 3] by an
argument using induction on r. However, this argument is not well-suited for
automation: the implementation described in [79], which constructs A-linear
and A-restricted interpretations C, ensuring compatibility of the given TRS
with >¢ automatically, can not find this interpretation.

The following general upper bounds on derivation heights follow quite easily
from the definition of strict and weak AZ-interpretations, and the structure of
the employed orders > for A € R*.

Lemma 5.18 ([49]). Let R be a TRS and C a strict A%-interpretation such
that >¢ is compatible with R. Then for all terms t and A-assignments o, we
have

o o, Ale(?)
dh(t < f —
(t, ==) A1£R+ A

Lemma 5.19. Let (P,R) be a DP problem and C a weak A2-interpretation.
Suppose that @?;c ~¢) completely solves (P,R). Then for all terms t and A-
assignments «, we have

e o o, Ale(t)
dh(t < inf —/———=
( 7—>’P/_>’R) A1£R+ A

Based on Lemma 5.18, it has been shown in [96, Theorem 5.3] and [79,
Theorem 29] that for any strict A-restricted interpretation C, the reduction
order >¢ induces quadratic complexity. Moreover, by [79, Theorem 25], for any
strict A-linear interpretation C, the reduction order >¢ induces exponential
complexity. Using Lemma 5.19 instead of Lemma 5.18, it is easy to lift these
two theorems to the reduction pair (>¢, >¢) induced by a weak A-restricted or
A-linear interpretation, respectively.

In the remainder of this section, we give an alternative proof of these the-
orems. We show a tight correspondence between matrix interpretations of di-
mension 2 and AZ-interpretations. Using this correspondence, we can then
easily show the above theorems by reducing them to Theorems 5.5, 5.6, 4.19,
and 4.20.

Example 5.20 ([49], continued from Example 5.17). The A-linear interpre-
tation C is also a A-restricted interpretation. Due to [79, Theorem 29] we
conclude quadratic derivational complexity for R. Note that this upper bound
is optimal: dcg,_ . is at least quadratic, as witnessed by the family of starting
terms defined by tg =cocand t,11 =%, oc.

It seems worthy of note that the interpretation B employed in Example 5.3
is obtained fully automatically, while the interpretation C is obtained by hand.
Further notice that the context dependent interpretation employed in Exam-
ple 5.17 above uses exactly the same coefficients as the TMI given in Exam-
ple 5.3. This observation motivates the next definition and lemma.
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Definition 5.21. Let C be a AZ-interpretation and let A be a matrix inter-
pretation of dimension 2. We say the A-assignment a: RT x V — R and the
assignment o’: V — N? are corresponding if for all variables = and all A € Rt
we have

a(Ax) =a, +b,A and  d(x) = <b‘r>

Qg
for some a,, b, € N.

Lemma 5.22. Let C denote a A?-interpretation having the shape

n

felAl(z, - mn) = Y agrami+ Y biraTid + g + hpA
=1 =1
i Cifi +d R A
fe(A) = (f)—b(f)A ;
a(fi) T Ot

and let A denote a matriz interpretation of the following form:
"~ (dirsy b h
fal@, ..., Th) = ( (f:) (f”)) T +< f> )
(; Ciri) ) ) gf

where dy iy = 1, and agpzy > 0 or by >0, and ¢y > 0 or dyyy > 0 for all
f € Fand 1l <i<n. Then for any term t, A-assignment «, and assignment
o, we have

[ Ale(t) =s1+ 528 and  [o]4(t) = <)

S1
/ .
for some s1,s2 € N whenever o and o' are corresponding.

Proof. Let a: RTxV — R} and o’: V — N2 be corresponding (A-)assignments.
In order to prove the lemma, we proceed by induction on ¢.

If t € V, then the lemma follows by the assumption that o and o’ are corre-
sponding. Now assume ¢t = f(¢y,...,t,). By induction hypothesis we have that

there exist u;,v; € N such that [a, Ale(t;) = u; + v;A and [/] 4(t;) = <ZZ> for
(]
all 1 <7 < n. First we consider the evaluation of £ with respect to C and a:

[a7A] (f(th . tn))

—Zafz a, fo(A +Zb(fz)a FE(DNE)A + gf + hyA

—Zafz Uz"‘vzfc +bez Uz+vifé(A))+gf+th

= Z a(f i) Ui + Z b(f,i)uiA + Z(a(m) + b(fVZ)A)’U@fé(A) +gf+ th
i=1 i=1 =

= Z a(f.5)Wi + Z b(ﬁi)'LLiA + Z C(f,i)Vi + Z d(ﬁi)viA + 95+ th
=1 =1 i=1 =1

= (O agaui + cravi +95) + O birayui + dipayvi + hy) A
=1 =1
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Now, consider the evaluation of ¢ with respect to A and o':
[O/].A(f(tla s 7tn)) =

~ (d(1.4) b(fi)> o (hf>
= E ’ ) ] alts) +
gt <C(fi) : 9r

)

-y <d(f,z> b(f,n) (U) N <hf)
=1 C(f,i) a(f’i) Ui gf
D i1 O(f) Ui + ()i + 95

From this, we immediately see that the lemma holds. O

We say a matrix interpretation A corresponds to a A’-interpretation C if A
and C are defined as in Lemma 5.22. Note that any matrix interpretation corre-
sponding to a A-restricted interpretation is a triangular matrix interpretation.

Example 5.23. Consider the triangular matrix interpretation A introduced
in Example 5.3 and the A-restricted interpretation C from Example 5.17. The
interpretations A and C are corresponding.

Theorem 5.24. Let R be a TRS and let C be a strict A%-interpretation such
that R s compatible with >¢. Then there exists a corresponding matrix inter-
pretation A of dimension 2 such that R is compatible with > 4.

Proof. To prove the theorem, we need to show that for any rule | — r € R,
the inequality [ > 4 r holds, where A is the matrix interpretation constructed
in Lemma 5.22. Let a be an arbitrary, but fixed assignment. Let o be a A-
assignment which corresponds to a. For every [ — r € R and every A € RT,
we have [o/, Al¢(l) — [/, Ale(r) = a + bA for some a,b € Z. Here we make use
of the fact that for any term ¢, we have [o/, Al¢(t) = ¢ + dA for some ¢,d € N.
This follows from an inductive argument employing the assumed form of the
assignment o', as in the proof of Lemma 5.22. Moreover, as a + bA > A for
all A € R™ due to compatibility of R with >¢, we conclude a > 0 and b > 1.
Thus an application of Lemma 5.22 yields

alatt) - falat = (1) = ;) -

from which compatibility of R with > 4 directly follows. 0

Theorem 5.25. Let (P, R) be a DP problem, let C be a weak A2-interpretation,
and let {(P',R)} = &R ((P,R)). Then there exists a corresponding weak

(2c.>c)
matriz interpretation A of dimension 2 with @?EA >A)((73, R)) ={(P,R)}.
Proof. Analogous to Theorem 5.24. O

The following corollaries are easy consequences of Theorem 5.24 in conjunc-
tion with Theorems 5.5 and 4.19, and Theorem 5.25 in conjunction with The-
orems 5.6 and 4.20, respectively.
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Corollary 5.26. For any strict A-restricted interpretation (respectively A?-
interpretation) C, the reduction order >¢ induces quadratic (respectively expo-
nential) complezity.

Corollary 5.27. For any weak A-restricted interpretation (respectively A%-
interpretation) C, the reduction pair (Zc,>c¢) induces quadratic (respectively
exponential) complexity.

Theorem 5.24 raises the question whether the other direction may hold for
AZ-interpretations: Given a matrix interpretation A of dimension 2 such that
R is compatible with >4, does there exist a AZ-interpretation C such that
R is compatible with >¢7 Or, for DP problems and Theorem 5.25: given
a matrix interpretation of dimension 2 and a DP problem (P,R) such that
PRP (P, R)) = {(P',R)}, does there exist a AZ-interpretation C such that

Za>a

@?;C’>C)((P,R)) = {(P’,R)}? The orders >¢ and >¢ are not well-suited for a

reversal of Theorems 5.24 and 5.25. This is illustrated by the next example.

Example 5.28 (continued from Example 5.17). The A-restricted interpreta-
tion C is not compatible with Rassoc as defined above, i.e. we do not have
[, Ale((z 0 y) 0 2) — [a, Ale(w o (y 0 2)) = A for arbitrary A-assignments .
To construct a counter-example we set (A, x) = A2, and a(A, u) arbitrary for
u # x. We obtain

o, Ale((z 0 y) 0 2) = [a, Ale(z o (y © 2))
= (1+28)[o, 75 xle(@) + A = (1+ A)a

A2 A2
1+2A 1+A

,m]C(ﬂf)

= A+

2A .

This violates the compatibility condition. The second line is obtained by
straightforward simplification of the interpretations of the terms, as demon-
strated in the proof of [49, Lemma 3].

Example 5.28 motivates the next definition.

Definition 5.29. We say that a A-assignment a: RT x V — Rg over the real
numbers is linear if for each variable x there exist natural numbers a and b such
that for all A € R, we have (A, z) = a + bA.

Example 5.30 (continued from Example 5.28). For any linear A-assignment
a, we have [a, Ale((x oy) o z) — [a, Ale(z o (y 0 2)) > A. This can be seen by
just applying a linear A-assignment of the following general form: a(A,x) =
1+ 22, a(Ay) = y1 + y2 A, and (A, z) = z1 + 22A. Then

[a, Ale((z o y) o z)
A
= (1+2A)[, m]6($)+(1+A)[a7 1+A
=14+20)x; +22A+ (1 +A)y1 + y2 A+ 21+ 20A+ A+ 2

le(y) + [, Ale(2) + A +2
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and

[a, Ale(x o (y o 2))

= (14 ), =2 Je@) + (1 + Ao, 1 lelw) + [, Ale(z) +2

1+
=(1+A)z; +22A+ (1 +A)y1 + A+ 21 + 22A + 2.

Thus, (zoy) oz >czo (yoz).

Lemma 5.31. Let o be a substitution, let C be a A?-interpretation, and let «
be a linear A-assignment. Then there exists a linear A-assignment o such that
[, Ale(to) = [o/, Ale(t) for all terms t and A € RT.

Proof. We set o/(A,z) = [a, Al¢(o(x)) for any variable x. Now it follows by
easy inductions (on to and o(x), respectively) that [a, Ale(to) = [o/, Ale(t),
and that [o/, A]¢(zo) has a linear shape. O

Example 5.28 and Lemma 5.31 motivate the next definition.

Definition 5.32. For any AZ-interpretation C, we define the following orders
S and >l

s>t = [a,Ale(s) = o, Ale(t) for all A € R" and linear a
c(s) >a o, Ale(t) for all A € R" and linear o

Theorem 5.33. For any strict A’-interpretation C, the order >gn 1S a re-

duction order which induces exponential complexity. Moreover, if C is a A-
restricted interpretation, then >1Cln induces quadratic complexity.

s>t = [a,A]

Proof. Closure under substitutions of >2n follows by Lemma 5.31, while the
other properties of reduction orders follow analogous to Theorem 5.10.

Now we show that >gn induces quadratic complexity. Let R be a TRS
which is compatible with >2“. By Lemma 5.22 and Theorem 5.24, there exists
a matrix interpretation A of dimension 2 corresponding to C such that R is
compatible with > 4. If C is a A-restricted interpretation, then A is a triangular
matrix interpretation. Hence, dcg is bounded by an exponential function (and
by a polynomial of degree 2, if C is a A-restricted interpretation), and the
theorem follows. O

Theorem 5.34. For any weak A?-interpretation C, the pair of orders (22“
,>2n) s a reduction pair which induces exponential complexity. Moreover, if C
18 a A-restricted interpretation, then (22”, >2n) nduces quadratic complexity.

Proof. Analogous to Theorem 5.33. O

Theorem 5.35. Let A be a strict matriz interpretation of dimension 2 such
that no zero column occurs in any matriz in the interpretation function fa of
any f € F, let C be a corresponding A%-interpretation and let R be a TRS.

lin

Then R is compatible with > 4 if and only if R is compatible with >5".
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Proof. Let C be a A’-interpretation corresponding to A. Note that since no
matrix in any interpretation function of A contains any zero columns, the side
condition that a(s;) > 0 or by > 0, and ¢(y4) > 0 or ds ;) > 0 for all f € F of
arity n and 1 < ¢ < n in Definition 5.13 is satisfied in any case. By Lemma 5.22,
for any linear A-assignment o and assignment o’ which are corresponding, and
any term ¢, the interpretations of ¢t have the shapes

[, Ale(t) = s1 4+ Asa and [@]a(t) = (82> .

S1

Moreover, for any linear A-assignment «, there exists a corresponding assign-
ment o, and vice versa. Hence, for any rewrite rule [ — r, we have [ >2n r if

and only if [ >4 r, and the theorem follows. O

Theorem 5.36. Let A be a weak matriz interpretation of dimension 2 such
that no zero column occurs in any matrix in the interpretation function f4 of
any symbol f, let C be a corresponding A%-interpretation, and let (P, R) be a
DP problem. Suppose that {(P',R)} = ®RP ((P,R)). Then we also have

ep (Za,>a)
(I)(Z}:i“,>g“)((7)’ R)) - {(Plu R)}
Proof. Analogous to Theorem 5.35. O

5.4 Matrix Interpretations of Polynomial Growth

Triangular matrix interpretations, as defined in Section 5.2 above, form a simple
(since they are a straightforward syntactic restriction of matrix interpretations),
but effective tool for inferring polynomial bounds on the derivational complex-
ity of TRSs. The key observation in the proof of the polynomial complexity
bounds is that the entries of any product of matrices from the interpretation
grow only polynomially in the length of the considered product. For triangular
matrix interpretations, this observation was shown in Lemma 5.4. With that,
polynomial derivation complexity of the TRS under consideration essentially
follows from Lemma 4.17. However, it is possible to find matrix interpretations
such that the entries of products of matrices from such an interpretation still
grow polynomially although the interpretation is not a triangular one. In this
section, we present a complete characterisation of matrix interpretations with
polynomial growth from the recent literature [86, 110, 76]. We start by giving
a generalisation of the above mentioned concepts.

Definition 5.37 (76, Definitions 1 and 9]). Let M be a finite set of matrices
from K94 for some d € N and K € {N,Qj,R{}. The growth function of M,
denoted by growth ,,: N — N, is defined by

growth y (n) = max{||My ... - M,| | M; e M,1<i<n}.

Let A be a matrix interpretation, and M the set of matrices occurring in the
interpretation functions of A. Then we say that A is polynomially bounded
(with degree d) if growth ,,(n) € O(n9).
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As an example, let A be any triangular matrix interpretation of dimension
d. Then by Lemma 5.4, growth ,, is bounded by a polynomial of degree d — 1,
and hence A is polynomially bounded with degree d — 1.

Definition 5.37 gives rise to a simple generalisation of the arguments given in
Section 5.2:

Lemma 5.38 ([76, Lemma 2]). For any strict matriz interpretation A which is
polynomially bounded with degree d, the reduction order > 4 induces polynomial
complezity, and the degree of the polynomial is d + 1.

Lemma 5.39. For any weak matriz interpretation A which is polynomially
bounded with degree d, the reduction pair (=4,>4) induces polynomial com-
plexity, and the degree of the polynomial is d + 1.

Strictly speaking, Definition 5.37 does not capture exactly what is needed to
prove polynomial derivational complexity of TRSs via Lemma 4.17: according
to [76, Example 27], there exist TRSs R and matrix interpretations A such
that A is not polynomially bounded, but for all terms ¢, the evaluation [ag].4(t)
of t is bounded polynomially in |¢|, where ag(xz) = 0 for all € Var(t). How-
ever, it follows by [76, Lemma 29] that any matrix interpretation .4 which is
not polynomially bounded, but satisfies that [ag].4(¢) is bounded polynomially
(with degree d) in |t|, can be transformed into matrix interpretation B which
is polynomially bounded with the same degree d. Moreover, B can be obtained
from A just by stripping away some rows and columns in the interpretation
functions of A. Therefore, we ignore this slight inaccuracy of Definition 5.37.

Polynomial boundedness of matrix interpretations can be characterised using
the joint spectral radius of the matrices occurring in the interpretation func-
tions.

Definition 5.40 ([57, Definition 1.1]). Let M be a finite set of matrices from
K4 for some d € N and K € {N,QS‘,RS‘}. Then the joint spectral radius of
M, denoted by p(M), is defined by

p(M) = lim max{[|M, -...- M||M* | My € M for all 1 <i < k}
—00

Theorem 5.41 ([10, Theorem 1.2], see also [76, Theorem 11]). Let M be a
finite set of matrices from K for some d € N and K € {N, QSF,R(J{}. Then

growth , is bounded by a polynomial if and only if p(M) < 1. More precisely,
if p(M) < 1, then growth \ (n) € O(nd™1).

In general, it is not decidable whether the joint spectral radius of a set of
matrices is at most 1. However, if the domain of the matrix entries is restricted
to N, or any subset of Qar or Rar which contains no element x such that 0 <
x < 1, then this problem becomes decidable in polynomial time. The following
lemma gives rise to a polynomial-time decision procedure for this case:

Lemma 5.42 ([57, Lemma 3.3], see also [76, Lemma 12]). Let M be a finite set
of matrices from K? for some d € N and K € {N, Qg, Rg}. Suppose that for
no entry x of any matrix in M, we have 0 < x < 1. Then p(M) > 1 if and only
if there exists a matrix product N = My - ... - M, such that My,..., M, € M
and Ni; > 1 for some 1 <1 <d.
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Let A be a matrix interpretation and M the set of matrices occurring in A.
Then the criterion exhibited in Lemma 5.42, which is equivalent to p(M) > 1,
essentially coincides with the criterion EDA for weighted automata, which is
defined in [111], and applied for deciding polynomial ambiguity of weighted
automata (and hence, as an alternative means for deciding polynomial bound-
edness of matrix interpretations) in [110, Theorem 5.2] and [76, Theorem 22].
We also call the criterion exhibited in Lemma 5.42 EDA.

It is also decidable in polynomial time whether a matrix interpretation is
polynomially bounded with some specific degree:

Theorem 5.43 ([57, Theorem 3.3], see also [76, Theorem 14]). Let M be
a finite set of matrices from K% for some d € N and K € {N,Qf,R{}.
Suppose that p(M) < 1, and for no entry x of any matriz in M, we have 0 <
x<1. Let 1 <k <d, and let (i1,71),- .., (ik, jr) be k different pairs of indices
such that for each pair (i1, j;), 4 and j; are different and there exist matrix
products N = My - ... - M,, and N' = M’y -...- M',, with My,...M,, € M,
My,.... M,y e M, Nj,;, 21, N;,j, =2 1, and Nj,j, > 1, and | < k implies
N'j s = 1. Then growthy(n) € Q(n*). On the other hand, if there exist no
k different pairs of indices (i1,7j1), ..., (ig, Jr) satisfying the above conditions,
then growth ,,(n) € O(n*~1).

Let A be a matrix interpretation and M the set of matrices occurring in
A. Then the criterion exhibited in Theorem 5.43, which is equivalent to the
property growth ,((n) € Q(n"), essentially coincides with the criterion 1D A
for weighted automata, which is defined in [111], and applied for deciding poly-
nomial ambiguity with degree k of weighted automata (and hence, as an al-
ternative means for deciding polynomial boundedness with degree k of matrix
interpretations) in [110, Proposition 7.4] and [76, Theorem 24]. We also call
the criterion exhibited in Theorem 5.43 IDA,.

Combining all of the above yields the following complexity results for matrix
interpretations:

Corollary 5.44 (compare [76, Theorem 15], [76, Theorem 22], [110, Theorem
5.2]). Let A be a strict matriz interpretation of dimension d, and let M be the
set of matrices occurring in A. If M does not satisfy EDA, then the reduction
order > 4 induces polynomial complexity, and the degree of the polynomial is d.

Proof. Follows by Lemma 5.38, Theorem 5.41, and Lemma 5.42. O

Corollary 5.45. Let A be a weak matriz interpretation of dimension d, and
let M be the set of matrices occurring in A. If M does not satisfy EDA, then
the reduction pair (=4, >.4) induces polynomial complexity, and the degree of
the polynomial is d.

Proof. Follows by Lemma 5.39, Theorem 5.41, and Lemma 5.42. 0

Corollary 5.46 (compare [76, Theorem 16|, [76, Theorem 24], and [110, Propo-
sition 7.4]). Let A be a strict matriz interpretation, and let M be the set of ma-
trices occurring in A. If there exists some k € N such that M satisfies neither
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EDA nor IDAg, then the reduction order > 4 induces polynomial complexity,
and the degree of the polynomial is k.

Proof. Follows by Lemmata 5.38 and 5.42, and Theorem 5.43. O

Corollary 5.47. Let A be a weak matrix interpretation, and let M be the set
of matrices occurring in A. If there exists some k € N such that M satisfies
neither EDA nor 1D Ay, then the reduction pair (Z4,>4) induces polynomial
complexity, and the degree of the polynomial is k.

Proof. Follows by Lemmata 5.39 and 5.42, and Theorem 5.43. O

5.5 Experiments

We have implemented the methods described in this chapter, and tested their
viability to analyse polynomial derivational complexity on version 8.0 of the
Termination Problem Database (TPDB for short), which is used in the annual
international termination competition'. In order to create our testbed from this
database, we used the same restrictions as the complexity category of the ter-
mination competition used to obtain the basic set from which the TRSs used in
the competition were selected: we filtered out duplicate instances of the same
TRS (modulo strategy), and removed all TRSs with relative rewriting prob-
lems, conditional rules, or theory annotations. Moreover, since the derivational
complexity of any duplicating TRS is at least exponential, we ignored these
TRSs, as well. The result is a testbed containing a total of 1855 TRSs.

We briefly sketch our implementation of A-restricted and matrix interpre-
tations; Section 7.3 gives some more details on the implementation of matrix
interpretations: Similar to [16], we build a set of Diophantine constraints which
express all necessary restrictions on the matrix interpretation. Then, we put a
finite upper bound on the values of the variables in the constraints and encode
these constraints as a problem of propositional logic (see [30], but also [27]).
We give the final SAT problem to MiniSAT [25] and use a satisfying assignment
to construct a suitable matrix interpretation.

In order to compare A-restricted interpretations (referred to by CDI), tri-
angular matrix interpretations (TRI), and matrix interpretations which do not
satisfy EDA or IDAy for some k € N (referred to by EDA and IDA, re-
spectively) to other results, we compared them to the match-bound technique
(BOUNDS for short). Note that by Theorem 4.57, match-boundedness implies
linear derivational complexity for linear TRSs. Last, we specifically tested tri-
angular matrix interpretations of dimension 2 (referred to by TRI2), which are
(according to Theorems 5.24 and 5.35) the closest to A-restricted interpreta-
tions. For A-restricted and matrix interpretations, we restricted all coeflicients
to at most 3 (allowing us to use at most 2 bits to encode each coefficient). In
order to obtain the results for CDI, we used the final version of our software
cdiprover3 (see [97] for a system description). For the CDI test, cdiprover3

"http://termcomp.uibk.ac.at/
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was given the following command line arguments:
$ ./cdiprover3 -c deltarestricted -b 3 <file> <timeout>

Here <file> points to the file containing the considered TRS, and <timeout>
is a timeout in seconds given to cdiprover3. For all other tests, we employed
version 1.8 of TcT, which is described in Chapter 7. The strategies (see Sec-
tion 7.2 for an explanation of how to use strategies in T¢cT) used for these tests
are listed in Table 5.1.

All tests were executed on a server equipped with 8 AMD Opteron™ 2.8
GHz dual core processors with 64GB of RAM. We used a timeout of 60 seconds
for each strategy and TRS. The results of the tests are shown in Table 5.22.
The times given in the table are seconds.

As we can see, in absolute numbers, BOUNDS is clearly the strongest of the
analysed techniques. Still, as can be seen from the detailed results page, there
are many systems which can not be handled by BOUNDS, but one of the other
techniques. This is not surprising, since by Theorem 4.57, BOUNDS can only
handle TRSs whose derivational complexity is bounded by a linear function.

On the other hand, as suggested by our results in Section 5.3, the systems
that can be handled by CDI are a strict subset of the problems solved by TRI2.
Due to directly encoding the constraints created by the matrices rather than
handling all the calculations introduced by the parameter functions and the A,
TRI2 is also much more efficient than CDI. This explains why the gap between
CDI and TRI2 is much further than just suggested by Theorem 5.24.

It should be no surprise that TRI2 is weaker than TRI. Other than suggested
by theory, the TRSs handled by TRI2 are not a subset of those handled by
TRI. This is due to timeouts. However, there is only one TRS in the testbed
which could be handled by TRI2, but not by TRI.

Finally, we can see that the numbers of systems handled by TRI, EDA, and
IDA, are not too far from each other. Theoretically, the strategy used for EDA
should be the strongest one, but timeouts (and size of the search space) change
this relationship again.

In total, these results suggest that matrix interpretations, while absolutely
weaker than match-bounds, are still a competitive direct method for proving
polynomial upper bounds on the derivational complexity of TRSs. A combi-
nation of BOUNDS and a strategy based on matrix interpretations seems to
be the best means for that end. Indeed, in the derivational complexity cate-
gory of the latest international termination competition, both techniques were
very prevalent, and they were the most used direct proof techniques in that
competition.

5.6 Conclusion

In this chapter we studied the complexity induced by reduction orders and re-
duction pairs built upon matrix and context dependent interpretations. The

2See http://cl-informatik.uibk.ac.at/users/aschnabl/experiments/thesis/poly/ for
the full experimental evidence, and the used testbeds, tools, and ways to call the tools.
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5.6 Conclusion

Test ‘ Strategy

TRI2 matrix :dim 2 :bound 3 :cert algebraic

TRI fastest

(matrix :dim 1 :bound 3 :cbits 4 :cert algebraic)
(matrix :dim 2 :bound 3 :cbits 4 :cert algebraic)
(matrix :dim 3 :bound 3 :cbits 4 :cert algebraic)
(matrix :dim 4 :bound 3 :cbits 4 :cert algebraic)
(matrix :dim 5 :bound 3 :cbits 4 :cert algebraic)
(matrix :dim 6 :bound 3 :cbits 4 :cert algebraic)
EDA fastest
(matrix :dim 1 :bound 3 :cbits 4 :cert automaton)
(matrix :dim 2 :bound 3 :cbits 4 :cert automaton)
(matrix :dim 3 :bound 3 :cbits 4 :cert automaton)
(matrix :dim 4 :bound 3 :cbits 4 :cert automaton)
(matrix :dim 5 :bound 3 :cbits 4 :cert automaton)
(matrix :dim 6 :bound 3 :cbits 4 :cert automaton)

IDA fastest
(matrix :dim 1 :degree 1

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 2 :degree 1

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 2 :degree 2

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 3 :degree 1

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 3 :degree 2

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 3 :degree 3

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 4 :degree 1

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 4 :degree 2

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 4 :degree 3

:bound 3 :cbits 4 :cert automaton)
(matrix :dim 4 :degree 4

:bound 3 :cbits 4 :cert automaton)

BOUNDS | fastest (bounds :initial minimal :enrichment match)
(bounds :initial perSymbol :enrichment match)

Table 5.1: Strategies used in the experiments of Section 5.5
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O(n) 0O(n?) 0O(n?) O(nF) | avg. succ. time
CDI 0 89 89 89 3.692
TRI2 33 157 157 157 0.464
TRI 66 179 204 210 1.999
EDA 41 151 187 195 3.285
1IDA 53 168 177 177 2.901
BOUNDS | 363 363 363 363 2.038

Table 5.2: Direct termination proof methods as complexity analysers

following diagram provides a condensed view of the studied classes of interpre-
tations, where the right column gives the complexity induced by the respective
reduction orders and reduction pairs. Here the arrows depict set inclusions,
and the dashed arrows refer to the additional restriction on the zero columns
demanded by Theorem 5.35.

Thm 5.24

(matrix (dim. 2) exponential
Thm 5.35 T
TMI \ [ﬂEDA/ﬂIDAk] polynomial
T
Thm 5.24

TMI (dim. 2) oA
- 2

A-restricted

S

} quadratic

Thm 5.35

We want to emphasise the pictured correspondence result: Consider A2-
interpretations and matrix interpretations of dimension 2 without any zero
columns. These interpretations are equivalent for orientability. This corre-
spondence sheds light on the expressivity of matrix interpretations and (signif-
icantly) extends the class of rewrite systems whose compatibility with context
dependent interpretations can be shown automatically. As witnessed by Exam-
ple 5.1, it is sometimes possible to automatically obtain a context dependent
interpretation via the correspondence result, where the direct approach fails.
Further, we have mentioned a full characterisation of matrix interpretations
which are polynomially bounded, and for each & € N, a full characterisation
of matrix interpretations which are polynomially bounded with degree k, by
Middeldorp et al. [76].

The techniques mentioned in this chapter have been implemented. The exper-
imental data shows the viability of the considered subclasses of matrix interpre-
tations for automatically proving polynomial derivational complexity bounds of
TRSs.

What we have not considered in this chapter are multi-step termination
proofs, which often occur in the dependency pair framework, and hence in
the proof output of many modern automatic termination provers. This is the
subject of the next chapter.
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Chapter 6

The Dependency Pair Framework and
Derivational Complexity

The whole is more than the sum
of its parts.

Aristotle

6.1 Introduction

For direct termination proof methods, a considerable number of results estab-
lish essentially optimal upper bounds on the derivational complexity of TRSs
whose termination can be proved by the respective method. In Chapter 4, we
mentioned a number of existing results about commonly used termination proof
techniques. Chapter 5 listed some further such results about direct termination
proof techniques which have been restricted specifically for complexity analysis.

In this chapter, we focus on the dependency pair framework. Beside the
contents of this chapter, some results have been established there, as well, but
all of them consider variations of the original definition of dependency pairs
and/or bound other complexity measures than derivational complexity. For
instance, [44, 45] introduce a notion called weak dependency pairs for proving
upper bounds on the runtime complexity and innermost runtime complexity of
TRSs. The essential syntactic difference between weak dependency pairs and
dependency pairs as specified in Definition 2.47 is that all dependency pairs
based on a rewrite rule are (roughly) merged into a single weak dependency
pair. In [87], a similar variant of dependency pairs is used in order to obtain
upper bounds on the innermost runtime complexity of TRSs. On the other
hand, in [73], the computational (time and space) complexity of functions com-
puted by TRSs whose initial DP problem is completely solved by reduction pair
processors based on certain recursive path orders is investigated. However, at
the same time, compatibility with the weak ordering based on a polynomial
interpretation satisfying certain restrictions (such an interpretation is called a
quasi-interpretation in [73]) is demanded. Finally, in [74], space complexity
bounds are established on TRSs using a generalisation of quasi-interpretations
called sup-interpretations, and fraternities, which share similarities with weak
dependency pairs.

This chapter contains the first investigation into general upper bounds on
the derivational complexity of TRSs whose termination can be proved using
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the original dependency pair method, as described in [2], or its generalisation,
the dependency pair framework (cf. [35, 36, 103], for instance), with the most
fundamental DP processors. Note that by Theorem 2.44, termination of any
terminating TRS can be proved in the dependency pair framework. Therefore,
any meaningful complexity analysis must restrict the set of considered DP pro-
cessors. The investigations of this chapter are focused on the DP processors
outlined in Section 2.4: reduction pair, dependency graph, subterm criterion,
and usable rules processors. Moreover, any finite DP problem (P, R) can be
completely solved by the reduction pair processor (ID?E%7>) or some usable rules

processor <I>5R( for a suitable instance of i), where > is the transitive

—5,>) (
closure of <+p/—x. Hence, all given complexity bounds are parametrised in
the complexity induced by the reduction pairs used by the reduction pair and
usable rules processors in the considered termination proof.

The next examples provide some motivation of our study.

Example 6.1. Consider the TRS Ryor given below:

i(z) o (y o z) = f(z,i(z)) o (i(i(y)) o 2) i(z) =
i(z) o (yo(zow)) — f(z,i(x)) o (20 (yow)) f(z,y) > x

Ruof2 is a variation of a TRS encoding the Ackermann function, introduced
by Hofbauer [50] (also compare [47]), which we call Ruof in Example 6.4 be-
low. Note that the derivational complexity of Rpyom grows at least as fast as
the Ackermann function (this follows by analogy to [50, Proposition 5], also
compare [47, Proposition 5.9]).

Termination of Ryerm can be shown as follows using essentially the basic
dependency pair method described in [2] in conjunction with the reduction pair
based on a KBO, refined by an argument filtering. The set DP(Rpof2) contains
nine dependency pairs:

i(z) of (y o (z0w)

i(x) of (y o (z0w)) — ff(z,i(z))
i(x) of (yo(zow)) = zof (yow)
i(@) of (y o (z0w)) =y ofw

We set 7 to be the argument filtering with 7(f) = 7(f) = =(i¥) = 1, n(i) = [1],
and 7(o) = m(of) = [1,2]. Let (ZKBO(w,wo)s >KBO(w,uwp)) D€ the reduction pair
based on the KBO using the precedence i > o,of and the admissible weight
function (w,wg) with wy = 1, w(o) = w(o) = 1, and w(i) = 0. Then the
initial DP problem (DP(Rpof2), RHof2) is completely solved by the reduction

; T ™
pair (>KBO(w,wo) ’ >KBO(w,wo))‘
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Note that in Example 6.1, the TRS Rpof2 is not compatible with any KBO,
but we solve the initial DP problem by a reduction pair processor based on a
KBO. In order to measure the strength of the basic dependency pair method
(which is the same as completely solving the initial DP problem by a reduction
pair in the notation of the DP framework), we express our inferred complex-
ity bound relative to the induced complexities of the employed reduction pair.
By Theorems 4.32 and 2.52, any reduction pair based on a KBO induces com-
plexity Ack(O(n),0). By Theorem 2.56, the same holds for the reduction pair
(>§BO(w,w0)? >7|'EBO(w,wo))' As shown in Section 6.7 below, due to the presented
termination proof, this is also an upper bound on dcg,, . So at first glance,
it may appear that the dependency pair method does not add any complexity-
theoretic power.

Example 6.2. Let Rac be the TRS defined by the following rules:

Ack(0,y) — s(y) Ack(s(z),s(y)) — Ack(z, Ack(s(z),y))
Ack(s(z),0) — Ack(z,s(0))

The TRS Rack encodes the Ackermann function. Hence its derivational com-
plexity grows faster than any primitive recursive function. Furthermore, it is
easy to see that the derivational complexity of Rack is bounded by a multiply
recursive function.

We now give a termination proof of Rac. The set of dependency pairs of
Rack contains the following rules:

Ack?(s(x),0) = Ackf(z,s(0))  Ack®(s(z),s(y)) — Ack?(z, Ack(s(z),y))
Ackf(s(x),s(y)) = Ackf(s(z),y)

We apply the subterm criterion processor @ilc to the initial DP problem, where
the simple projection m; is defined by m(Ackf) = 1. The resulting set of
DP problems @ig((DP(RACk),RACk)) consists of the single problem (P, Rack),
where P = {Ack®(s(z),s(y)) — Ack®(s(z),y)}. Continuing from (P, Rack), an
application of another subterm processor (I>7ST2C, where 79 is defined by 7o (Ackﬁ) =
2, yields the DP problem (), Rack), which is trivially finite. Thus termination
of Rack follows.

As an alternative termination proof consider the LPO defined by the prece-
dence Ack > s. Then the TRS Rack is compatible with >| pp, hence termination
of Rack follows by Theorem 4.41. Moreover, by Theorem 4.42, dcg,, , is bounded
by a multiply recursive function.

Note the contrast between the high derivational complexity of Rack (as stated
above, it is not primitive recursive) and the apparent simplicity of its first
termination proof: only subterm criterion processors were needed, and two
applications of subterm criterion processors sufficed. Other than Example 6.1,
this gives the impression that even for simple DP processors, the complexity-
theoretic power added by the DP framework is already huge.

So, as shown in Examples 6.1 and 6.2, it seems not at all obvious what the
complexity-theoretic power added by various applications of the DP framework
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is. The results shown in this chapter provide a clearer picture with respect
to that. We establish the following (technical) results about upper bounds on
the derivational complexity of TRSs whose termination is provable in the DP
framework:

1. If we can show termination of a TRS in the DP framework using re-
duction pair (based on reduction pairs which induce multiply recursive
complexity only), dependency graph, and subterm criterion processors in
any combination, then the derivational complexity of the considered TRS
is bounded by a multiply recursive function.

2. If we can prove termination of a TRS by completely solving the DP prob-
lem related to each SCC of the dependency graph of the initial DP problem
by a reduction pair processor (this is essentially the same as the basic de-
pendency pair method of [2] with the dependency graph refinement), then
the derivational complexity of the considered TRS is bounded primitive
recursively in the maximum of the complexities induced by the applied
reduction pairs.

3. For a TRS whose termination is proved by completely solving the initial
DP problem with a reduction pair processor (this is the basic dependency
pair method as described in [2]), its derivational complexity is bounded
double exponentially in the complexity induced by the applied reduction
pair. If the considered TRS is also a SRS, then its derivational complexity
is bounded exponentially in the complexity induced by the reduction pair.

4. Finally, if a usable rules processor can completely solve the initial DP
problem of a TRS, then its derivational complexity is bounded by an
iteration of a function which is elementary in the complexity induced by
the considered reduction pair (this is always primitive recursive in the
complexity induced by the reduction pair).

Complementing these results, we exhibit examples which show that all of the
above mentioned complexity bounds are essentially optimal. Note that Result 3
is an improvement of the upper bound shown in [80, Section 4] and [82, Section
5].

To exemplify these results, we momentarily focus on reduction pairs based
on matrix interpretations. By Theorem 4.20, any such reduction pair induces
exponential complexity. Let R be a TRS and suppose termination of R has
been established by applying the basic dependency pair method, where matrix
interpretations are used to define the employed reduction pair. According to
Result 3 the derivational complexity function of R is bounded by 23(0(n)), i.e,
triple exponentially in n. On the other hand, if in addition the dependency
graph or usable rules refinement is used, then Results 2 and 4 yield that the
derivational complexity of R is bounded by a primitive recursive function. Fi-
nally, if termination of R is established in the dependency pair framework by
multiple applications of such reduction pair processors, then by Result 1, dcg
is bounded multiply recursively.
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Thus seemingly easy refinements of the dependency pair method like depen-
dency graphs or, more prominently, multi-step termination proofs (which are
typical for the dependency pair framework), may lead to noteworthy speed-ups
of the growth rates of the derivational complexity function of the TRSs whose
termination can be proved. On the other hand if strong techniques (with respect
to the complexity induced by the corresponding reduction pairs) are employed
in conjunction with the dependency pair method, then the derivational com-
plexity of the analysed TRS may only depend on the complexity induced by
the reduction pairs. This is illustrated by Example 6.1, where the employed
reduction pair is based on a KBO. Since the complexity induced by such reduc-
tion pairs is closed under primitive recursion, the inherent complexity-theoretic
power of the basic dependency pair method, even when refined by argument
filtering and either a dependency graph or usable rules, becomes negligible in
comparison.

Finally, the results (in particular, Result 1) given in this chapter can be un-
derstood as negative results: all of them imply multiply recursive complexity
bounds as long as the employed reduction pairs induce multiply recursive com-
plexity. Kindly note that this assumption on the complexity induced by the
used reduction pairs is rather weak, as all classes of reduction pairs which have
currently been mechanised, and whose induced complexity has been analysed,
induce multiply recursive complexity. Using only processors based on such re-
duction pairs, dependency graph processors, and subterm criterion processors,
it is theoretically impossible to prove termination of any TRS whose derivational
complexity is not bounded by a multiply recursive function. Most prominently,
this includes TRSs encoding the well-known Battle between Hercules and the
Hydra [59]. Such TRSs can be found in [21, 106, 23, 78], for example. On
the other hand, our result immediately turns automatic termination provers
into automatic complexity provers, albeit rather weak ones. Furthermore it
provides the basis for further investigations into termination proof techniques
which imply tighter upper bounds on the derivational complexities of TRSs
whose termination they can prove.

Note the challenges of our investigation: in order to estimate the deriva-
tional complexity of a TRS, we only consider the complexities induced by the
employed reduction pairs after roughly limiting the considered classes of DP
processors. This entails that we exploit the upper bound on the maximal num-
ber of dependency pair steps (or even of just certain subsets of the dependency
pair steps) to bound the length of derivations.

The main idea in the proof of Result 1 is the embedding of the considered
TRS into a generic simulating TRS. This embedding is based on the DP pro-
cessors used to establish termination of the considered TRS. The derivational
complexity of the simulating TRS can then be analysed directly. The proofs of
Results 2 and 3 are built up in a similar fashion. However, due to the stricter
assumptions on the considered termination proof, the simulating TRS can be
simplified for these results. As a consequence, it becomes possible to establish
the tighter complexity bounds stated in Results 2 and 3. Finally, the com-
plexity bound given in Result 4 is essentially an iteration of the upper bound
from Result 3. It is established by a close inductive inspection of the mapping

87



6 The Dependency Pair Framework and Derivational Complexity

Ipp(r),r given in Definition 2.59, which is a crucial part of the soundness proof
for usable rules processors. Here, Result 3 is applied once in each inductive
step.

6.2 The DP Framework: a Lower Complexity Bound

For the next two sections, we consider TRSs whose termination can be proved
by the following theorem:

Theorem 6.3. Let R be a TRS such that there exists a proof tree PT of R.
Suppose that each edge label of PT is a reduction pair, dependency graph, or
subterm criterion processor. Then R is terminating.

Proof. By Theorems 2.50, 2.68, and 2.71, reduction pair, dependency graph,
and subterm criterion processors are sound. By assumption, for each inner
node (P,R) of PT, all edges leading from (P,R) to a child node of (P,R)
are labelled by some reduction pair, dependency graph, or subterm criterion
processor ®. Hence, for each node (P,R) of PT, finiteness of all children of
(P,R) implies finiteness of (P,R). By Lemma 2.45, all leaf nodes of PT are
finite. Hence, the root node (DP(R),R) of PT is also finite, and thus, by
Theorem 2.44, R is terminating. O

From the viewpoint of derivational complexity, this is a rather powerful the-
orem: as shown in the next example, there exist TRSs whose termination can
be shown via Theorem 6.3 (using only reduction pairs which induce linear com-
plexity), but whose derivational complexity cannot be bounded by a primitive
recursive function.

Example 6.4. Consider the following TRS Rof, taken from [50, 47]:

i(z)o(yoz)=xo(ii(y)oz) i(z)o(yo(zow))=wo(zo(yow))

It is shown in [50, Proposition 5] that dcg,,, is not primitive recursive as the
system encodes the Ackermann function.

Following Endrullis et al. [27, Example 11] we show termination of Rpyof
employing Theorem 6.3. The dependency pairs of Ryor are:

1

2

3: i(x) of
4 .

5

First, consider the polynomial interpretation A defined by the interpretation

functions o&(x,y) =y, oalz,y) = y+ 1, and ig(z) = 0. An application of

@E;PMA) yields ¢§§A7>A)(({1,2,3,4,5},R)) = {({1,3},R)}, so effectively, it
removes the dependency pairs {2,4,5} from the initial DP problem. Next, we
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apply the reduction pair based on the polynomial interpretation B defined by
the interpretation functions o 5@, y) =, op(x,y) =0, and iB( ) = x+1, which
completely solves the remaining DP problem: we have <I>(> >B)((P,R)) =
{(0,R)}. Putting everything together, we obtain a proof tree which uses only

(IDEfA >4) and @E;P =p)" Thus we conclude termination of R by Theorem 6.3.

Note the following particularity of Example 6.4: On one hand, the deriva-
tional complexity function dcg,, . grows faster than any primitive recursive func-
tion. On the other hand, by Theorem 4.13, both reduction pairs used in the
presented termination proof of Rpyes induce linear complexity. We now go a
step further and show that for any multiply recursive function f, there exists a
TRS R which can be proved terminating by Theorem 6.3 (without even using
any reduction pairs), but whose derivational complexity grows faster than f.

Example 6.5. Let £ > 2 and consider the following schematic rewrite rules over
the signature containing the k-ary function symbol Ack, the unary function
symbol s, and the constant function symbol 0, denoted as Rpet(k). It is easy to
see that for fixed k, the TRS Rpet(k) encodes the k-ary Ackermann function.
Also note that Rpet(2) and the TRS Rack from Example 6.2 coincide.

Acky(0,...,0,0x) — s(lx)
Ackpg (11, . .. (lk 1),0) = Ackg(l1,...,lk—1,s(0))
Ackg (11, .. (lk 1),8(lg)) = Acki(l1, ..., lg—1, Ackg(l1, - .. s(lk—1),lk))
Ackg(ly, ... ,s(li) ,0,1,) = Ackg(l1, -, liy 1k, 0,. .., 0, 1))

Here, the last rule is a schema instantiated for all 1 <7 < k — 2.

Let m; for 1 < i < k be the simple projection defined by m;(Ackg) = i.
Finiteness of (DP(Rpet(k)), Rpet(k)) can be shown by sequentially applying the
subterm criterion processors CI>7TIC, N @,S,g This yields a proof tree using only

the edge labels @3¢, ..., @2? Thus, Rpet(k) is terminating by Theorem 6.3.

Lemma 6.6. For any multiple recursive function f, there exists a TRS R whose
derivational complexity function dcg majorises f. Furthermore termination of
R follows by an application of Theorem 6.3, and the termination proof employs
no reduction pairs.

Proof. By Theorem 2.16, there exists some k € N such that f is bounded by the
k-ary Ackermann function, and hence by dcg,, (x). By Example 6.5, termination
of Rpet(k) follows from Theorem 6.3. O

6.3 The DP Framework: an Upper Complexity Bound

Examples 6.4 and 6.5 show that the lowest possible upper bound on the deriva-
tional complexity of TRSs whose termination can be proved by Theorem 6.3,
even for massive restrictions on the used reduction pairs, is the class of multiply
recursive functions. In this section, we show that this is indeed an upper bound
on the derivational complexity of TRSs from this class, provided that each of
the reduction pairs used in the termination proof induces multiply recursive
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complexity, as well. The next definition formalises this side condition, and also
plays a technical role the proof of the multiply recursive upper bound.

Definition 6.7. Let R be a TRS whose termination is shown via Theorem 6.3,
and PT the proof tree employed by the theorem. Let k be a natural number
such that for any dependency graph processor <I>SG used as an edge label in PT,
the number of SCCs in G is less than or equal to k. Let C be a class of number
theoretic functions such that for every reduction pair processor @?;}) which is
an edge label in PT, the reduction pair (3=, >) induces complexity C. Then we
call a monotone function g: N — N a reduction pair function of PT if it satisfies

g(n) = max({k} U{f(n) | f€C}).

Note that some reduction pair function can often be computed just by inspec-
tion of the reduction pair and dependency graph processors used as edge labels
in PT. Moreover, most of the known reduction pairs (in particular, those re-
duction pairs presented in Chapter 4, and further, all reduction pairs currently
applied by automatic termination provers) induce multiply recursive complex-
ity. Hence, for many proof trees occurring in practise, it easy to find a multiply
recursive reduction pair function.

Example 6.8 (continued from Examples 6.4 and 6.5). Let PTyos be the proof
tree constructed from the termination proof of Ry given in Example 6.4, and
let PTpet(k) be the proof tree constructed from the termination proof of Rpet (k)
given in Example 6.5 for any k& € N. Then the linear function f(n) = n is a
reduction pair function of PThes, since both reduction pairs induce complexity
{f} (this is because both reduction pairs used in PTyos are based on strongly
linear interpretations using only the constants 0 and 1). On the other hand,
for no k € N, the proof tree PTpet(k) uses any reduction pair or dependency
graph processors. Hence, the function g(n) = 0 is a reduction pair function of
PTpet (k).

The remainder of this section is devoted to the proof of the following theorem:

Theorem 6.9. Let R be a TRS whose termination is shown via Theorem 6.3
using a proof tree PT, and suppose that there exists a multiply recursive reduc-
tion pair function of PT. Then dcg is bounded by a multiply recursive function.

The proof of Theorem 6.9 makes use of a combinatorial argument, of which we
present a general overview now. To prove the theorem, we essentially use three
different ideas. First, we exploit the given proof tree PT. We observe that, if we
restrict our attention to termination of single terms, we can essentially focus on
specific branches of the proof tree. Secondly, we define a TRS R simulating
the initial TRS R. Here, “simulating” means that s —x ¢ implies tr(s) —>7J55im
tr(t), where tr denotes a suitable interpretation of terms into the signature of
the simulating TRS Rsjm. The term tr(t) aggregates the termination arguments
for t given by the DP processors in the branch of the proof tree which has been
identified as particularly relevant for ¢ in the first step. Finally, Rem will be
simple enough to be compatible with a LPO. Hence, we employ Theorem 4.42
to deduce a multiply recursive upper bound on dcg,_ , and thus on dcg.

We start the proof of Theorem 6.9 with some preliminary definitions.
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Notation 6.10. For the remainder of this section, we fix a TRS R such that
termination of R follows by Theorem 6.3 using some proof tree PT, and there
exists a multiply recursive reduction pair function of PT. We assume without
loss of generality for PT that no node (P, R) of PT has a child node (P,R) (if
we did have such a node in PT, another proof tree of R could be obtained by
just pruning PT).

For each of the DP processors ® considered here, the following facts are
obvious: (P,R') € ®((P,R)) implies P’ C P and R’ = R. Therefore, we
assume throughout the rest of this section that for each DP problem (P, R),
P C DP(R). In particular, each rule in P has the shape s* — t* for some
s,t € T(F,V). Moreover, (P',R) € ®(P,R)), (P",R) € ®((P,R)), and
P’ # P” imply P’ N'P"” = (). Therefore, each dependency pair can only appear
in a single branch of PT.

We order the SCCs of a dependency graph by assigning a rank to each of
them:

Definition 6.11. Let G be a dependency graph; we order the SCCs of G by
assigning a rank to each of them. Let P and Q denote two distinct SCCs of
G. We call Q reachable from P if there exist nodes u € P, v € Q and a path
in G from u to v. Let Qy,..., 9k be the SCCs of G. Let rkg: {Q1,...,Qr} —
{1,...,k} be an arbitrary, but fixed bijective mapping respecting the topological
ordering of G, i.e. rkg(Q;) > rkg(Q;) whenever Q; is reachable from Q;. We
call rkg(P) the rank of an SCC P in G. The rank of a dependency pair | — r,
denoted by rkg(l — r), is the rank of P in G such that | — r € P. Finally, the
rank of a term t such that t* ¢ NF(P/R) for some SCC P of G is defined by

rkg(t) = max{rkg(I — r) | there exists o such that t* —% lo} .

Observe that rkg(t) need not be defined, although ¢ has a redex at the root
position. This is due to the fact that this redex need not be governed by a
dependency pair. On the other hand, observe that if ¢! ¢ NF(P/R) for some
SCC P of G, then rkg(t) is defined. Furthermore in this case rkg(t) > 0 and
dh(t, Sp/—=x) > 0.

We now change the definition of proof trees to better suit our needs. The
main change is that for dependency graph processors (IDSG, all SCCs of G are
taken into account (not just, as usual, the nontrivial ones). While termination
of trivial SCCs follows trivially, they might still form a bridge between non-
trivial SCCs in a dependency graph, thus crucially increasing the total length
of derivations. Example 6.13 below illustrates this. Moreover, as mentioned
above, we use the proof tree to track its currently relevant part with respect to
showing termination of a given term. This relevant part may very well include
the DP problem belonging to a trivial SCC of a dependency graph.

Definition 6.12. A complexity proof tree PT of R is a tree satisfying:
1. The nodes of PT are DP problems, and (DP(R), R) is the root of PT.

2. For every inner node (P, R) in PT, there exists a sound DP processor ®
such that for each DP problem (Q,R) € ®((P,R)), there exists an edge
from (P,R) to (Q,R) in PT labelled by ®.
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Figure 6.1: Dependency Graph of the DP problem (DP(Rsup), Rsup)

3. Further, suppose that ® is a dependency graph processor @gG. Then
there exists an edge from (P, R) to a leaf (Q,R) (labelled by ®) for every
trivial SCC Q of DG(P, R). Moreover the successors of (P, R) are ordered
from left to right in decreasing order with respect to the function rkg.

The positions of nodes in a complexity proof tree PT are defined as usual
as finite sequences of numbers. We write Greek letters for positions in PT.
It is easy to verify that there is a one-to-one correspondence between proof
trees according to Definition 2.46 and complexity proof trees according to Def-
inition 6.12. We extend the definition of reduction pair functions directly to
complexity proof trees via this correspondence, and hence use Definition 6.7 for
complexity proof trees, as well.

Example 6.13. Consider the TRS Rsyp given by the following set of rewrite
rules:

d(0) =0 e(s(z),y) — e(z,d(y))
d(s(x)) — s(s(d(x))) sup(s(z),e(0,y)) — sup(z,e(y,s(0)))

The dependency pairs DP(Rsyp) of Reyp are:

2: ef(s(x),y) — d(y) 4: sup®(s(z),e(0,y)) — e*(y,s(0))
s(z),y) — e(z,d(y))  5: sup’(s(z),e(0,y)) — sup*(z,e(y,s(0)))

We now prove termination of Reyp by Theorem 6.3. Let G be the dependency
graph DG(DP(Rsyp), Rsup), which is the graph shown in Figure 6.1.

We start by applying the dependency graph processor <I>gG to the initial DP
problem (DP(Rsup), Rsup). The dependency graph G contains the three non-
trivial SCCs {1}, {3}, and {5}, and the two trivial SCCs {2} and {4}. There-
fore, we have (I)SG(DP(RSUP)vRSUP) = {({1}7Rsup)a ({3}7RSUP)7 ({5}7RSUP)}3 S0
there are three smaller DP problems left to be shown finite. For all three
of these remaining DP problems, we use the reduction pair (>_4,>4) based
on the linear interpretation A, which is defined by the interpretation func-
tions sa(x) =+ 1,04 = 0, da(x) = 22, ea(z,y) = 0, supy(x,y) = 0, and
d&(x) = e&(:v,y) = sup&(x,y) = z. For all three DP problems (Q, Reyp) with
G € {{1},13}.{5}}, we have B8P _ (. Ruup)) = {0, Reup}.

From the above considerations, a proof tree of Rs,p, and hence also a com-
plexity proof tree PTg,p of Reyp can be directly constructed. Figure 6.2 shows
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Figure 6.2: A complexity proof tree of Reyp

the complexity proof tree PTs,,, where we make use of a simplified notation for
edge labels. The nodes at positions 11, 31, and 51 are leaves in this proof tree
because they are labelled by the DP problem (0, Reyp), which is trivially finite.
The nodes at positions 2 and 4 are leaves because {2} and {4} are trivial SCCs
of the dependency graph G. The following derivation illustrates the importance
of trivial SCCs in our analysis:

eﬁ(s"H(O),s(O)) —>’€3}U7€sup eﬁ(s(O), s2" (0)) —{2} dﬁ(SQH(O)) _ﬁl}uRsup SQHH(O)

Observe that the step within the trivial SCC {2} connects two subderivations
using the (otherwise unconnected) SCCs {3} and {1}, thus increasing the length
of the total derivation. While the length of each of these subderivations is only
linear in the size of its respective starting term, the length of the total derivation
is exponential in the size of its starting term. In order to capture this behaviour,
we keep track of trivial SCCs in complexity proof trees.

Notation 6.14. For the remainder of this section, we fix PT to be the com-
plexity proof tree corresponding to the proof tree used to prove termination of
R via Theorem 6.3. Further, we fix a multiply recursive reduction pair function
g of PT (by assumption, such a reduction pair function exists). Let d be the
height of PT plus one.

As stated in the proof plan, we now determine which part of the termination
proof is active with respect to a given term. Intuitively, for many terms, only
a part of PT is relevant for showing termination of that particular term. More
specifically, for any term ¢, only a certain subset of the dependency pairs can
be used for rewriting t#. Of these dependency pairs, we view the one occurring
in the leftmost positions of PT (with respect to the order of PT) as the cur-
rent dependency pair. We call the sequence of positions in which the current
dependency pair occurs, the current path of t in PT.

Example 6.15 (continued from Example 6.13). Consider the terms t; =
sup(s(0),e(0,s(0))), t2 = sup(0,e(s(0),s(0))), and t3 = e(s(0),s(0)). We have
the following derivations: t% P DP(Raup) tﬁ2 and t% —DP(Raup) tg. Hence the term
t’i is neither a normal form of {5}/Rs,p nor of {4}/Reyp. Similarly, tg is not a
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Figure 6.3: The relevant parts of PTgp for two terms

normal form of {3}/Rsup or {2} /Reup. Therefore, the parts of PTs,, highlighted
in Figure 6.3 are particularly relevant for ¢; and ts3, respectively. The term tg
is a normal form of DP(Rsup)/Rsup, therefore no part of the complexity proof
tree PTgyp is relevant to show termination for t.

The next definition formalises the relevant parts of a proof tree. As indicated
above, we restrict the notion to a single path. Recall that according to Defini-
tion 6.12, paths in the complexity proof tree PT are ordered from left to right
according to the rank functions rkg for the considered dependency graphs G.

Definition 6.16. The current path CP(t) of a term ¢ in PT is defined as follows.
If t* € NF(DP(R)/R), then CP(t) is the empty path, denoted as (). Otherwise,
for each dependency pair I — r such that ¢* ¢ NF({l — r}/R), consider the
set of nodes whose label contains | — r. By previous observations, each of
these sets forms a path starting at the root node of PT. The set of positions
forming the leftmost of these paths is CP(¢). We use CP;(¢) to project on single
elements of CP(t) = (a1 = €, g, ...,ay): if i > n, then CP;(¢) = L, otherwise
CPZ(t) = Q4.

Example 6.17 (continued from Example 6.15). The current paths of ¢, t2, and
ts are the following: we have CP(t1) = (¢,1), CP(t2) = (), and CP(t3) = (¢, 3).
For t1, the projections on the single elements of the path are the following:
CPl(tl) =€, CPQ(tl) =1, and CPZ(tl) =1 fori> 2.

Using the DP processors applied to the nodes which are referred to in CP(¢),
we now define a complexity measure norm(t), which we assign to ¢t. For each
DP processor, we use whatever value is naturally decreasing in the termination
argument of that processor in order to get the associated measure. Given the
reduction pair function g, an upper bound on norm(t) is easily computable.

Definition 6.18. We define the mapping norm;: T (F,V) — NUT(F,V)U{L}
for i € N as follows: let t € T(F,V) and a = CP;(t).

1. If a = L, we set norm;(t) = 0 if rt(¢) is a defined symbol, and norm;(¢t) = L
otherwise.

2. If « # 1, and (P,R) is the node at position « and a leaf in PT, then
either P = (), or P is a trivial SCC of a dependency graph. In both cases,
we set norm;(t) = dh(tf, Sp/—R).
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3. If a # 1, and (P, R) is the node at position o and an inner node in PT,
then let ® be the label of each edge starting from (P, R):

e If ® is a reduction pair processor with ®((P,R)) = {(Q,R)}, then
we set norm;(t) = dh(t, i>(p\Q)/—>(QU72)).

e If @ is a dependency graph processor @gc, then we set norm;(t) =
rkg(t).

e If & is a subterm criterion processor ®3¢, then we set norm;(t) =
m(th).

We extend the mappings norm; to the norm of a term as follows:
norm(t) = (normy(t),...,normg(t))

The central idea behind the complexity measures used in the mapping norm is
that rewrite steps induce lexicographical decreases in the norm of the considered
term. We now define the according well-founded proper order on the range of
the mappings norm;.

Definition 6.19. We define the following well-founded binary relation > on
NUT(F,V)U{L}. We have a > b if and only if one of the following properties
holds:

1. a e N, b €N, and a > b, where > is the natural strict order on N, or
2.a€T(F,V),beT(F,V),and a>b, or

3. aeT(F,V)and b=0, or

4. aeT(F,V)UNand b= L.

We define >~ to be the reflexive closure of >>.

Moreover, we define another well-founded binary relation » on the same
domain as follows: we have a » b if and only if a > b or a(—g U>)"b with
a,be T(F,V).

We define the relation 7 on tuples: we set (ai,...,aq) 3 (b1,...,bq) if and
only if there exists some 1 < ¢ < d such that a; > b;, and a; » b; or a; = b;
forall 1 <j <.

Finally, let J be the following relation on tuples: (ai,...,aq) 3
if and only if either (a1,...,aq) 3 (b1,...,bq), or for all 1 < ¢ <
a; » b; or a; = b;.

Note that termination of R implies well-foundedness of (—xUr>)". Moreover,
by assumption, R is terminating. It is easy to see that extending (—x U>)"
by > preserves well-foundedness, hence » is well-founded, and it is obviously
a proper order. Consequently, also T and the relative relation 2/ are well-
founded proper orders.

Remark 6.20. Actually, T is a restriction of !, where only decreases with
respect to > are considered to be “strict decreases”. This restriction is neces-
sary because Lemma 6.33.1 would not hold if J was replaced by the reflexive
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closure of »!°*. This means that [83, Lemma 4.15.1)] is incorrect. However,

as shown throughout this section, the restricted “lexicographic order” 1 and
Lemma 6.33.1 are still sufficient to prove the main result.

Lemma 6.21. Let s and t be terms such that s ing t. Foralll <i<d, if
CP;(s) = CP;(t), and norm;(s) = norm;(t) or norm;(s)(—xr U >)"norm;(t) with
s,t € T(F,V), then either CP;11(t) = L, or CP11(s) = CPi11(2).

Proof. Let a = CP;(s) = CP4(t).

1. If @« = L, then CP;;1(s) = CP;4+1(t) = L, as well, so the lemma holds in
this case.

2. If « # 1, and (P,R) is the node at position a and a leaf in PT, then
either P = (), or P is a trivial SCC of a dependency graph. Again,
CPZ‘_H(S) = CPZ‘_H(t) = 1.

3. If o # L, and (P,R) is the node at position o and an inner node in PT,
then let ® be the label of each edge starting from (P, R):

e If & is a reduction pair or subterm criterion processor, let {(Q,R)} =
®((P,R)), i.e. (P,R) only has a single child node. As a = CP;(s) =
CP;(t), neither s* nor t* is a normal form of <+p/—%. Since s* —x tf,
s% can only be a normal form of % g/—x if t# is one, as well. If ¢* is
indeed a normal form of <o/, then CP;;1(t) = L. Otherwise,
CPZ'_H(S) = CPi_H(t) = «al.

e Now assume that ® is a dependency graph processor QSG. Since
norm;(s),norm;(t) € N in this case, the assumptions imply that
norm;(s) = norm;(t). Hence, rkg(s) = rkg(t). Therefore, by the
definition of CP and the order on the children of «, we know that
CPit1(s) = CP;4+1(¢t). Thus the lemma is shown.

O]

Lemma 6.22. For any terms s and t such that s =g t, we have norm(s) J
norm(t).

Proof. We can assume that rt(¢) is a defined symbol. Otherwise, norm;(¢t) = L
for all 1 < i < d, and hence norm(t) = (L,..., 1), so the lemma would be
trivial. As rt(s) = rt(t), rt(s) is also defined. Hence, s* =S5 tf.

We now show the following by induction on d — i:

Claim 6.23. If for all 1 < j < i, we have either norm;(s) = norm;(t) or
norm;(s)(—xr U>)Tnorm;(t) with s,t € T(F,V), then we also have

(norm;(s),...,normg(s)) 3 (norm;(t),...,normg(t)) .
Clearly, this claim implies the lemma, so the remainder of this proof is devoted

to this claim. Applying Lemma 6.21 i — 1 times reveals that CP;(¢) is either L
or the same as CP;(s). We perform case distinction on CP;(t).
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1. If CP;(t) = L, then (norm,(t),...,normg(t)) = (0,...,0). Since rt(s) is a
defined function symbol, we have norm;(s) # L for all j € N. Thus the
claim follows immediately.

2. If CP;(s) = CP;(t) = o, &« # L, and (P, R) is the node at position a and
a leaf in PT, then either P = (), or P is a trivial SCC of a dependency
graph. Then CP;;(s) = CP;41(t) = L, and (norm;;1(s),...,normy(s)) =
(norm;1(t),...,normy(t)) = (0,...,0). Moreover, we have norm;(s) =
dh(sf, Sp /=) = dh(tf, Sp/—r) = norm,(t), so the claim holds.

3. If CP;(s) = CP;(t) = a, « # L, and (P, R) is the node at position «
and an inner node in PT, then let ® be the label of each edge starting
from (P, R). We proceed to show that norm;(s) » norm;(¢) or norm;(s) =
norm;(t) by case distinction on ®.

e If ® is a reduction pair processor with ®((P,R)) = {(Q,R)}, then
because of s* —x ¥, we have the inequality dh(sf, Z>7>\Q/—>Qu7g) >
dh(t#, i)p\g/—)gu’]z). Thus norm;(s) » norm;(t) or norm;(s) =
norm;(t) obtains.

e If ® is a dependency graph processor @gG, then for each SCC P;
in G, s' can only be a normal form of P;/R if t* is one, as well.
Therefore, we have norm;(s) » norm;(t) or norm;(s) = norm;(t) in
that case, too.

e If ® is a subterm criterion processor ®3¢, then norm;(s) = 7(s*) —3
7(t*) = norm;(t), and hence norm;(s) » norm;(t) or norm;(s) =
norm;(t).

So, regardless of which DP processor ® is, we have norm;(s) » norm;(t)
or norm;(s) = norm;(t). If norm;(s) > norm;(t), then the claim fol-
lows by Definition 2.7. On the other hand, if norm;(s) = norm;(¢) or
norm;(s)(—r U>)"norm;(t) with s,t € T(F,V), then the claim holds by
induction hypothesis.

O]

The following lemma extends Lemma 6.22 to root steps s —sg t. However,
in this case, we do not consider only the root position of ¢, but all positions
that were “created” by the rewrite step. So essentially, we show that such
a step causes a decrease in 7 from s to subterms of ¢. The restriction on
positions p below takes care of the Dershowitz condition (cf. Definition 2.47) in
the definition of dependency pairs and the substitution of the applied rewrite
rule.

Lemma 6.24. For any terms s and t such that s S5 t, we have norm(s) >
norm(t|,), and hence norm(s) J norm(t|,) for all p € Pos(t) such that t|, 4 s.

Proof. For this proof, we fix p, and let u = t|,. We can assume that rt(u) is
a defined symbol. Otherwise, norm(u) = (L,..., L), but norm(s) 3 (0,...,0)
(note that rt(s) is defined), so the lemma would be immediate. Hence, we have
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st i>Dp(R) uf using some dependency pair I — 7. Let j be the greatest number
between 1 and d such that CP;(s) # L, the node at position CP;(s) is (Q,R),
and Q contains [ — r. Note that such a number exists: since s’ i>DP(R) uf, we
have CP;(s) = e. By definition, the node at position € in PT is (DP(R),R), and
DP(R) contains [ — r. Let o = CP;(s). We distinguish whether CP;(u) = .
This determines whether the strict part of the lexicographic decrease must
happen at index j or at an earlier index.

First, suppose CP;(u) = «, so we have CP;(s) = CP;(u). Since CP is a
tree, this implies CP;(s) = CP;(u) for all 1 < ¢ < j. We show that for all
1 < i < j, norm;(s) >~ norm;(u) holds, and norm;(s) > norm;(u). From
these two properties, the lemma follows. In order to show them, we fix some
1<i<j. Let B =CPi(s) = CPi(u).

1. If the node at position S is a leaf of PT, then ¢ = j, and Q is a trivial
SCC of a dependency graph. By assumption, | — r € Q. Therefore,
dh(sf, So/—r) > dh(uf, S o/—r), and thus norm;(s) > norm;(u).

2. If the node (P,R) at position § is an inner node of PT, let ® be the
label of each edge starting from (P, R). Obviously, @ C P, and therefore
Il — r € P. Regardless of which processor @ is, the semantics of ® imply
that norm;(s) >~ norm;(u). Moreover, if i = j, then norm;(s) > norm;(u)
follows. In more detail:

e If @ is a reduction pair processor, then let {(P',R)} = ®((P,R)).
Recall that [ — r € P, so the inequality dh(Sﬁ,i)'p\’p//—)Plun) >
dh(uﬁ,;'p\'pl/—}p’/un) follows, and thus norm;(s) >~ norm;(u). If
i = j, then by definition of j, I — r is contained in P\ P’. It follows
that norm;(s) > norm;(u) in that case.

o If ® is a dependency graph processor QBG, then by definition of
rkg, we have rkg(s) > rkg(l — r) > rkg(u). Hence, norm;(s) >~
norm;(u). If i = j, then the equality rkg(s) = rkg(l — r) is impossi-
ble: otherwise, the node at position CP;41(s) would have to be of the
shape (Q',R) with | — r € @', which contradicts the definition of j.
Thus, rkg(s) > rkg(l — r) > rkg(u) and hence norm;(s) > norm;(u)
in that case.

e If ® is a subterm criterion processor ®>¢ with ®((P,R)) = {(P',R)},
then 7(s*) > 7(uf), and hence norm;(s) >= norm;(u). If i = j, then
by definition of j, I — 7 € P\ P’, and hence 7(s*) > 7(u) and
norm;(s) > norm;(u) in that case.

In all cases, it follows that for all 1 < i < j, norm;(s) >~ norm;(u) holds, and
norm;(s) > norm;(u). This concludes the case where CP;(u) = .

Now suppose CP;(u) # a. Then let i be the greatest number between 1 and j
such that CP;(s) = CP;(u) = 8. As (3 is a proper prefix of «, the node (P, R) at
position ( is an inner node of PT. Let ® be the label of each edge starting from
(P,R). Using the arguments from above, we see that norm; (s) >~ norm; (u)
for all 1 < i < i. We now show that norm;(s) > norm;(u) or norm;;1(s) >
norm;41(u) holds.
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1. If ® is a reduction pair or subterm criterion processor, then by our as-
sumptions, CP;1(s) = 1. Since 8 has only one child in this case, and
by assumption CP;y1(u) # CP;41(s), this implies CP;y1(u) = L. Thus,
norm;+1(s) > 0 = norm;41(u).

2. If ® is a dependency graph processor, then norm;(s) # norm;(u), since
CPit1(s) # CPit+1(u) by assumption. Thus norm;(s) > norm;(u).

In both cases, it follows that norm(s) 3 norm(u), which is what we wanted to
show. O

Up to now, we have shown that norm decreases lexicographically under rewrit-
ing. For rewrite steps whose redex position is at the root, this decrease is even
strict. In order to turn this into an upper bound on dcg, we still have to do some
work: we also have to consider the norms of all proper subterms of a considered
term, and the range of norm is not suitable for direct complexity analysis yet:
the order 1 on the range of norm is almost a lexicographic product, and the
order » on the single coordinates still contains the rewrite relation —g itself.
We now solve these problems by lifting the range of norm to the term level and
simulating derivations of R at that level.

Notation 6.25. For the rest of this section let A be the maximum arity of any
function symbol occurring in R, and C' = max{dp(r) |l — r € R}.

Depending on PT, d, A, C, and g, we now define a TRS Rgjm which simulates
R and is compatible with a LPO. The simulating TRS Rgjm is based on a
mapping tr (see Definition 6.30 below) such that s — ¢ implies tr(s) —>7J55im
tr(t). Given a term t, tr employs a d + A-ary function symbol f. The first d
arguments of f are used to represent norm(t); the last A arguments of f are used
to represent tr(t’) for each direct subterm ¢’ of ¢.

In the simulation, we often have to recalculate the first d arguments of
each f. Due to the definition of norm, we know that for each term ¢t and
1 < i < d, either norm;(t) € N and norm;(t) < g(|t|), or norm;(t) € T(F,V)
and norm;(t) < ¢, or norm;(t) = L. We use a unary function symbol choice
such that choice(tr(¢)) rewrites to the representations of g(|t|), tr(#') for each
immediate subterm ¢’ of ¢, and L. In particular, we often use terms of the
shape choice(f(0,...,0,21,...,24)) in the definition of Rem, so we define an
abbreviation for terms of this shape below.

The main tools for achieving the simulation of a root rewrite step s — t are
rules which build the new f symbols for the positions in ¢ “created” by the step.
These are at most (C' + 1) - A many new positions, and each proper subterm
of s may be duplicated at most that many times. As a very simple example, if
d=3, A=1, and C = 1, this behaviour is simulated by rules of the following
shape, where N is an abbreviation defined in Notation 6.26 below:

f(ui,s(u2),us, z) — f(uy, ug, N(x),f(us,uz, N(x),x))
f(ur, f(v1,v2,v3,9), us, x) — f(ur,y, N(z), f(u1,y, N(z), 7))
f(ug, f(vi,v2,v3,9),us, x) — f(u1,0, N(z),f(u1,0, N(x), z))
z) — f(

f(u1,0,us, ur, L, N(x),f(ui, L, N(x),z))
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We use similar rules for decreases of u; or ug with respect to the ordering >.
We introduce another abbreviation in order to represent the right-hand sides
of these rules concisely.

Notation 6.26. We use the abbreviation N(z1,...,24) to represent the term
choice(f(0,...,0,21,...,24)). Further, we make use of the following abbrevia-
tion MF¥ (for i € {1,...,d} and k € N):

M?(ul,...,ui,xl,...,mA) =f(uy,...,u;, N(x1,...,24),21,...,24)
Mi’““(ul,...,ui,a:l,...,a:A)
=f(uy,...,u;, N(MF(up, ... w21, . 24)), MF(uy, .. ug, 21, ..., 24))

Hereuj (j € {1,...,i}) and zj» (j' € {1,..., A}) denote variables and we write ¢
to denote t, ..., t, where the number of repetitions of ¢ follows from the context.

Consider the reduction pair function g of R. Since g is assumed to be a mul-
tiply recursive function, it is an easy exercise to define a TRS R, = (employing
the constructors s, 0) that computes the function g: one can simply define g
using only initial functions, composition, primitive recursion, and k-ary Ack-
ermann functions, and directly turn the resulting definition of g into rewrite
rules. So we obtain a TRS R, and a defined function symbol g such that
g(s"(0)) —>;k2, s90)(0) for all n € N. Moreover, if defined this way, R’ is
compatible with a LPO > po such that the precedence > of the LPO includes

g>s>0.

Definition 6.27. Consider the following (schematic) TRS Rgjm, where 1 <
d and 1 < j < A. In order to save (horizontal) space, we use & as a shorthand
for x1,...,x4 here.

1@': f(ul,...,ui_l,s(ui),uiﬂ,...,ud,a_c')—>Mc(u1, ..,ui,a_c’)
21'73': f(ul,...,ui_l,f(vl,...,Ud,gj’),ui+1,...,ud,a_c')—>Mc(u1, ..,ui_l,yj,f)
3@': f(ul,...,ui_l,f(vl,...,Ud,gj’),ui+1,...,ud,a_c')%Mc(ul, ..,ui_l,O,f)
(

. C iR
4;: f(ul,...,ui_l,O,qu,... dy L —)M ul, .. ui_l,J_,x)

5;: size(f(ug, ..., uq,

Rl
~—
X
-~

—
o,
N
BN
8
.

N

( )

(0
flug, ..., uq, @

10, 107+
M h(z) — F(N@).7)
12: z — f(N(c),c)
13, choice(f(u1, . .., uq, ¥)) = x;
14: choice(z )—>g(Slze( )
15: choice(x) —
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These rules are augmented by R/

<im defining the function symbol g. The sig-
natures of Réim and Rem \Rgim are disjoint with the exception of g and the

constructors s and 0.

Note that Rsm depends only on the proof tree, the constants d, A, C, and the
reduction pair function g. The rules 1,—4; are the main rules for the simulation
of the effects of a single rewrite step s S tin Rem. These rules simulate
the case that norm;(s) > norm;(t|,) for all p € Pos(t) such that ¢, 4 s, and
norm; (s) >~ normy (t|,) for all 1 < i’ < 4. They are also responsible for creating
the at most (C' 4 1) - A® many new positions and copies of each subterm of
s in t. The rules 5,8 define a function symbol size, that is, size(s) reduces
to a numeral s”(0) such that n > [s|. The rules 9-10; make sure that any
superfluous positions and copies of subterms created by the rules 1,—4; can be
deleted. The rules 11 and 12 guarantee that the simulating derivation can be
started by a term whose size is not greater than the size of the starting term
in the original derivation (see Lemma 6.36 below). The rules 13;-15 define the
function symbol choice introduced in the abbreviations MZC , and N. Loosely
speaking, choice(t) is an upper bound of norm;(t) with respect to >>.

Lemma 6.28. The derivational complezity of Rsim is bounded by a multiply
recursive function.

Proof. By our construction, the TRS R. . computing g can be shown termi-

nating using an LPO > po such that the precedence > of the LPO contains
g > s > 0. It is easy to check that extending this precedence by

h,z > f > choice > g,size > x4 >s,0,c, L

makes the whole TRS Rgm compatible with this LPO. Therefore, by Theo-
rem 4.42, dcgr,,  is bounded by a multiply recursive function. O

Notation 6.29. For the remainder of this section, let Fn, denote the signature
of Rsim .

In the following sequence of lemmata, we show that the TRS Ry indeed
simulates R as requested.

Definition 6.30. The mapping tr: 7(F,V) — T (Fsim,V) is defined by the
following equation:

tr(t) t iteey
r =
f(normy(¢)*, ..., normy(t)*,tr(t1), ..., tr(tn),c) if t = f(t1,...,tn)

*

Here the operator (-)* is defined as follows:

1 ifu=_1
u* = qs%0) ifueN
tr(u) ifueT(F,V)
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Definition 6.31. We define an equivalence ~ on T (Fgm, V). We have s ~ t if
and only if one of the following properties holds:

1. s=t,or

2. s = f(ui,...,uq,81,...,84), t = f(v1,...,v4,t1,...,ta), and s; = t; for
all 1 <7 < A.

Lemma 6.32. For all terms s and t with tr(s) ~ t, we have size(t) =% s™(0)

for some m > |s|.

sim

Proof. We show the lemma by induction on |s|. If s € V, then |s| = 1 and
size(s) rewrites to s(0) by rule 6. Hence, the lemma follows in this case.

Now assume that s = f(s1,...,8,). Then t = f(uq,...,uq,t1,...,tn,C),
where tr(s;) ~ t; for all 1 < j < n. If |s|] = 1, then the lemma follows
since size(t) —r,,, s(0) by applying rule 6. Otherwise, suppose |s| > 1. Then
fix 1 < j < n such that |s;| is maximal. By induction hypothesis, we have
size(t;) *X}Esim s (0) for some m; > |s;|. Hence, by applying rules 5;, 7, and 8,
we obtain size(t) =g, Xa(size(t;)) =%, *a(s™(0)) =%, s4™3(0). Due to
A -mj > |s|, the lemma follows. O

Lemma 6.33. The following properties of Rsim hold:

1. If s = f(uj,...,u},5), t = tr(t') = f(vf,...,v},5), and (u1,...,uq) 3
(v1,...,vq), then s — R t-

2. For any terms s = tr(s') and t = tr(t'), s’ S t' implies s —>74isim t.

3. If a —»xr b and tr(a) —>;isim tr(b), then for any n-ary function symbol
f€F, we have s = tr(f(t1,...,a,...,tn)) —>7‘§sim tr(f(te, ..., b, itn)).

Proof. We show these items by mutual induction on dh(s, —»%, U ). Note
that by Lemma 6.28, Rsm terminates, and hence —x_ U D> is well-founded.

1. In order to show Property 1, observe that it suffices to show the following
items for all 1 <i < dand 1< j< A (compare Definition 6.19):

o f(wy,...,s(w;),...,wg,7T) _>7+€sim M?(wy, ..., w;, T)
o f(wi,...,wi—1,f(w),...,wh,¥),..., wg, )

—)%gsim M?(’u)l, e ,wi_l,yj,:i’)
o f(wy,...,wi—1,tr(a),...,wy, %)

—ﬁzsim f(wi, ..., wi—1,tr(b),...,wq, &) whenever a —x b
o f(wl,...,wi,l,O,. . .,wd,:f:') —>7J£sim Mlo(wl, . ,’wifl,J_,f)
o f(wi,...,wi—1,f(w),...,wh,¥),..., wa, )

—);gsim Mio(wl, . ,wi_l,O,a?)

The first, second, fourth and fifth items follow directly by applying rules
107 and 1;4; of Reim- The third item follows by applying items 2 and 3
of the induction hypothesis.
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2. We now show Property 2. Let | — 7 be the rewrite rule, and o the
substitution applied in the step s’ =g t'. Let (vi,...,v,) = norm(s).
Since [ is not a variable, we have | = f(l1,...,l,). By Lemma 6.24, we
have norm(s’) 2 norm(#'|,) for all p € Pos(t’) such that |, 4 s’. Let i
be the greatest number such that 1 < i < d, and for some p € Pos(t’)
with |, 4 s/, we have v; > norm;(t'|,), and v; = norm;(¢/[,) for all 1 <
J <. If v; and norm;(t'|,) are both contained in N, then s has the shape
f(vy,...,s"(0),..., v}, tr(lho), ..., tr(l,0),¢), and we can apply rules 1;
and 10; to obtain Midp(r) (vf, ... 0f 1,s%H0),tr(lho), . . . tr(lyo),©). (We
show the rest of the proof only for this case. On the other hand, if v;
and norm;(t'|,) are both contained in 7 (F,V) or norm;(t'|,) € {0, L}, we
proceed by analogy using rule 2;;, 3;, or 4; instead of 1;). Note that
because of v; > norm;(t'|,) and norm;(t’|,) € N we certainly have v; > 0.
We now show the following claim by side induction on dp(u).

Claim 6.34. For every term u such that v < r, we have the derivation
M (g, oty s H0), tr(10), - tr(1,0),©) <, tr(uo).

i—1

Note that since r < r, showing this claim suffices to conclude Property 2
of the lemma. Hence, the remainder of this proof is devoted to the proof
of the claim. We perform case distinction on w.

Suppose v <1 I. Then there exists some j € {1,...,n} with v < ;. Using
rule 107, we get

MW (3, v, sTH0), tr(10), - tr(1n0),©) =k, tr(ljo) .

)

Further applications of rule 10, for some values of j' yield tr(ljo) —%_
tr(uo), which concludes the first case.

Now suppose that u < [. Since variables occurring in u also occur in r and
hence in [, the condition u < [ implies that w is not a variable. Hence,
u = h(ug,...,up). Let norm(uo) = (wi,...,wg). By side induction
hypothesis and employing rule 10; dp(u) — 1 — dp(u;) many times, we
obtain for all 1 < j < m

MPPO s, vk, s TH0), tr(10), s tr(1,0),€) =, tr(ujo) .
By combining this with A — m many applications of rule 9, we obtain

MOt s 7N0), tr(ha), . . tr(ln0),€) =

7

f(vf,...,s"10), N(tr(lyo), ..., tr(l,0),C), tr(u10), . .., tr(un,o),<) .

Recall that by Lemma 6.24, we have (v1,...,vq) 3 (w1,...,wq). More-
over, by the definitions of norm and g, for all ¢ < j < d, either w; € N and
w; < g(|uol), or w; € T(F,V) and wj < uo, or w; = L. In either case, it
is easy to check that N(tr(u10),...,tr(umo),...,€) =r,, w; such that
w’; >~ wj. Therefore, we obtain

sim

MPO L ur s N0, tr(lho), . tr(lno),©)

Ry F(V1, v, s~ 10), Wiy, wi,tr(uo),. .., tr(umo), )
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such that w;- >~ wj for all i < j < d. Observe that (vi,...,vi—1,v; —
Lw q,...,wy) 2 (wi,...,wg). Therefore, item 1 of the induction hy-
pothesis yields

f(of, ..., s H0), wiy, ... Wy, tr(uio), ... tr(upo), ) =%, tr(uo) ,
and the claim and thus Property 2 follow.

3. We now prove Property 3. Let norm(f(t1,...,a,...,ty)) = (v1,...,0q).
Then the term tr(f(t1,...,a,...,t,)) has the shape

f(v],...,v5,tr(t1),... tr(a),...,tr(ty),<) .
By assumption,

Fur, .ol te(t), . tr(a), . ., tr(ty), ©)
Sk fl,. v tr(t), . tr(b), . tr(t), )

Let norm(f(t1,...,b,...,tn)) = (w1,...,wg). We have (vi,...,vq) 3
(wi,...,wq) by Lemma 6.22. By item 1 of the induction hypothesis,

sim

f(v],...,vq,tr(ty), ... tr(b),...,tr(ty),<)
R FWT, - wy, tr(ty), ... tr(D), ... tr(t,),C)
:tr(f(tla--'vb""vtn))7

concluding Property 3 and the lemma.

Lemma 6.35. For any terms s and t, s =g t implies tr(s) —>?,Lzsim tr(t).
Proof. Easy consequence of Lemma 6.33.2 and 6.33.3. O

Lemma 6.35 yields that the length of any derivation in R can be estimated by
the length of the corresponding derivation in Ry, where the correspondence
is established by the mapping tr. However, since a term ¢ may be considerably
smaller than the corresponding term tr(¢), we cannot bound dcg in dcg_  yet.
In order to fill this gap, we make use of the following lemma.

sim

Lemma 6.36. For any ground term t, we have h%®)(z) =% tr(t).

sim

Proof. We proceed by induction on dp(¢). If dp(¢) = 0, then ¢ is a constant.
Rule 12 yields the rewrite step z =g, f(N(C),€). Let norm(t) = (vi,...,vq).
By the definition of norm and g, for all 1 < ¢ < d, we have either v; € N
and v; < ¢g(1), or v; € T(F) and v; < ¢, or v; = L. In all three cases, it is
easy to check that N(¢) =g, v, for some v} with v >~ v;. Hence, we obtain

sim

z —>7'gsim f(vi*, ..., v/}, ) such that (v{,...,v) 3 (v1,...,v4). By Lemma 6.33.1,
f(of*, ..., v}, Q) —R.. f(vi,...,v3,€) =tr(t), hence the lemma follows.

Assume dp(t) > 0, so t has the shape f(t1,...,t,). Then rule 11 yields the
rewrite step

h¥P0)(2) —rg,, (N (hdPO-1(z)), hp(O-1(z)) .
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Using rules 11 and 101, we obtain hdP()=1(z) R hdP(t)(z) for all 1 < j < n,

and by induction hypothesis, hdP(t)(z) —>"7isim tr(tj). Therefore,

PO (z) =k F(N(tr(tr), ... tr(tn), ©),tr(t1), ..., tr(tn), ) .

Let norm(t) = (v1,...,v4). By the definition of norm and g, for all 1 < i < d,
we have either v; € N and v; < g(|t]), or v; € T(F) and v; < ¢, or v; = L. In all
three cases, it is easy to check that N(tr(t1),...,tr(tn),€) =R, v;* for some v}
with v} >~ v;. Hence, we obtain

sim

hdp(t) (z) —>}; f(oy", ... 05, tr(t1),. .., tr(t,), )

sim

such that (vi,...,v}) 3 (v1,...,vq). By Lemma 6.33.1,

f(uf", ... v tr(ty), ..., tr(t,),©) —>§k35im f(vl,... vp,tr(ty), ... tr(ty),C) = tr(t) ,
thus the lemma follows. O

Now we can prove the main result of this section, Theorem 6.9.

Theorem. Let R be a TRS whose termination is shown via Theorem 6.3 using
a proof tree PT, and suppose that there exists a multiply recursive reduction pair
function of PT. Then dcg is bounded by a multiply recursive function.

Proof. Let Rgim be the simulating TRS for R, as defined over the course of this
section. Due to Lemma 6.28, dcgr,,  is multiply recursively bounded. Let ¢ be
a ground term. By Lemmata 6.35 and 6.36, we have the following inequalities:

dh(t,—r) < dh(tr(t), =z, ) < dh(h®PO(z), 5p_ )

Note that [h9P(®)(z)] < |¢|. Hence for all n € N, we have dcg(n) < deg,,, (n).
Thus, dcg is bounded by a multiply recursive function. O

For the general class of TRSs whose termination can be shown via Theo-
rem 6.3 using a proof tree PT with a multiply recursive reduction pair function
g, no better upper complexity bound than in Theorem 6.9 can be given, even if g
is a constant function. This is demonstrated in Example 6.5: by Lemma 6.6 for
any multiply recursive function f, there exists a k such that dcg,,  (x) dominates
[, and dcg,, () terminates by Theorem 6.3. Moreover, the proof tree based on
the termination proof exhibited in Example 6.5 has a constant reduction pair
function.

In fact, termination proofs by Theorem 6.3, even when restricted to proof
trees with constant reduction pair functions, characterise the class of multiply
recursive functions (if we lift the notion of characterisation from sets of reduc-
tion orders, as in Definition 2.38, to more general termination theorems). Let
f be any multiply recursive function. Then f can be defined using only initial
functions, composition, primitive recursion, and k-ary Ackermann functions.
Let R be the TRS over F and V constructed directly from this definition.
Then termination of R can be proved as follows: first, we apply the depen-
dency graph processor (I)BE(DP(R),R) to the initial DP problem (DP(R),R). By
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inspection of the definitions of initial functions, composition, primitive recur-
sion, and k-ary Ackermann functions, we see that all resulting DP problems
have the shape (Q,R) with @ = {hf(s(y),x1,...,2n) — h¥(y,21,...,2,)} for
some h € F, or Q@ = DP(Rpet(k)) for some k € N, where Rpet(k) is defined
as in Example 6.5. Whenever the first alternative holds for the DP problem
(Q,R), it can obviously be completely solved by the subterm criterion proces-
sor ®3¢ with w(hf) = 1. If the second alternative holds for (Q,R), then its
finiteness can be shown by a sequence of applications of subterm criterion pro-
cessors, as in Example 6.5. For any combination of such DP problems resulting
from the application of q)BS(DP(R),R)’ termination of R by Theorem 6.3 follows.
Moreover, the constant function g(n) = k, where k is the number of SCCs in
DG(DP(R),R), is a reduction pair function of the resulting proof tree.

6.4 Dependency Graphs: a Lower Complexity Bound

In the previous section, we have shown a general multiply recursive upper bound
on the derivational complexity of TRSs whose termination can be proved by
Theorem 6.3, as long as there exists a multiply recursive reduction pair function
for the proof tree based on the considered termination proof. We now try
to obtain better complexity bounds by weakening the considered termination
theorem. Specifically, we consider termination proofs whose proof trees have
strictly limited height and restrictions on the applied DP processors. In this
section, we consider the following termination theorem:

Theorem 6.37. Let R be a TRS such that there exists a proof tree PT of R.
Suppose that each edge label of PT is a reduction pair or dependency graph
processor. Moreover, whenever an edge starting from (P, R) is labelled by a
reduction pair processor (I)E{:k)’ suppose that @?:7>)((73,7€)) ={(0,R)}. Then
R s terminating.

Proof. Direct consequence of Theorem 6.3. O

This theorem is significantly weaker than Theorem 6.3. Any considered proof
tree PT (assuming that PT contains no “useless applications of DP processors”,
i.e. edges with label ® starting from a node (P,R) such that ®((P,R)) =
{(P,R)}) is limited to at most height 2. Generally, here a dependency graph
processor is applied to the DP problem at the root of PT, and a reduction
pair processor (which completely solves the respective DP problem) is applied
to each of the children of the root. Still, for any primitive recursive function
f, there exists a TRS whose termination follows by Theorem 6.37, but whose
derivational complexity grows faster than f. This is demonstrated in the next
example.

Example 6.38. Consider the following family of TRSs, denoted as Ryof(l), and
parametrised by | € N. Each TRSs Rof(l) is a labelled version of Hofbauer’s
TRS Ruof [50, 47], which we have used in Example 6.4.

i(w) o (y ok—1 2) = z o (i(i(y)) ok-1 2) 2
i(7) ok (y ok—1 (2 ok—2 w)) — T 0ok (2 01 (Y o2 W)) 3
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For all m,n > 0, set

— i2(n+1) (e)

tm,n = Om+2 (e Om+1 ( .. (e o1 e) .. )) .

Then dh(tmn, =R 1)) = Ack(m,n), whenever [ > m+2. This follows from [47,
Proposition 5.9]. Hence, for every primitive recursive function f there exists
some [ such that dcg,, ;) dominates f.

On the other hand, consider the following termination proof of Ryef(l). The
dependency pairs DP(Ruof (1)) of Ruof(l) are the following rules:

Lg: i(2) of (y ox—1 2) = 2 o, (i(i(y)) ox-1 2) 2< k<!
2%: i() o (y or1 Hu<l<y>>oilz 2< k<
3k i(x) oi (y op—1 (z 0p_2 w)) = @ oi (zog—1 (yop—ow)) 3<k<I
g i(x) 02 (y op—1 (2 op_o w)) — 2 o?{il (y op_2 w) 3<k <
Be:i(x) of (y op—1 (2 op—p w)) = y of_,w 3<k<I

We apply the dependency graph processor <IJDG), where G is the dependency
graph of the initial DP problem. We have @gG((DP(’RHOf(Z)),RHOf(l))) =
{({1k, 3}, Ruof(1)) | 3 < k < 1} U{({l2},Ruof(l))}. Each of the resulting
k — 1 DP problems is completely solved by the reduction pair processor based
on the strongly linear interpretation A. The interpretation A is defined by the
following interpretation functions, where k ranges between 1 and I:

(Oz;)A(m)n) =m  (op)alm,n)=0  ig(m)=m+1

Putting everything together, we obtain a proof tree which uses only <I> and

<I>(R/PA - - Thus we conclude termination of RHof (1) by Theorem 6.37.

Note the contrast between the derivational complexities of the TRSs Ruof()
and the complexity induced by the reduction pair (>4, > 4): for every primitive
recursive function f, there exists some [ € N such that dcg,, ;) grows faster
than f. On the other hand, the identity function f(n) = n is a reduction pair
function of each of the proof trees constructed from the termination proofs of
the TRSs Ryof(1).

Remark 6.39. In [80, Section 6] it was falsely claimed that the derivational
complexity of a TRS whose termination can be proved by Theorem 6.37 would
have an upper bound which is elementary in the complexity of any reduction
pair function of a proof tree for that TRS based on a termination proof by
Theorem 6.37. Example 6.38 clearly contradicts this claim.

6.5 Dependency Graphs: an Upper Complexity Bound

Example 6.38 shows that the lowest possible upper bound on the derivational
complexity of TRSs whose termination can be proved by Theorem 6.37 is the
class of primitive recursive functions. In this section, we show that the deriva-
tional complexity of TRSs from this class is indeed bounded primitive recur-
sively in any reduction pair function of a proof tree for that TRS based on a
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termination proof by Theorem 6.37. We prove the following theorem in the
remainder of this section:

Theorem 6.40. Let R be a TRS whose termination is shown via Theorem 6.37
using a proof tree PT, and let g be a reduction pair function of PT. Then dcr
is bounded by a function which is primitive recursive in g.

The proof of Theorem 6.40 uses essentially the same ideas as the proof of
Theorem 6.9: based on the mapping norm as defined in Definition 6.18, we define
a TRS Rpgsim simulating the initial TRS R. Again, the simulation is based
on a suitable interpretation trpg, i.e. s =% t implies trpg(s) _>;<2D<;s;m trpg ().
Finally, we can simply prove an upper bound on the derivational complexity of
RpGsim in order to obtain an upper bound on dcg.

However, we want to show a tighter complexity bound than in Section 6.3
here. Therefore, a termination proof of Rpgsim by an LPO combined with
Theorem 4.42 is not sufficient for the objective of this section. The main in-
gredients of the simulation, trpg and Rpgsim, need to differ from the mapping
tr and the TRS R, used in the proof of Theorem 6.9. This finally allows us
to give a termination proof of the simulating TRS which is much simpler from
a complexity-theoretic point of view than the termination proof given in the
proof of Lemma 6.28.

Notation 6.41. For the remainder of this section, we fix a TRS R such that
termination of R follows by Theorem 6.37 using some complexity proof tree
PT. We assume without loss of generality for PT that the edges labelled by
a dependency graph processor are exactly those edges starting from the root
node, and fix @gG to be that processor.

We fix a reduction pair function g of PT. Let k be the number of (trivial and
nontrivial) SCCs in G, A the maximum arity of any function symbol occurring
in R, and C = max{dp(r) |l = r € R}.

Due to our assumptions on PT, for any term ¢, the norm of ¢ has the shape
(u1,u2,u3) with u; € {L,0,1,...,k}, up € NU{L}, and ug € {0, L}. This
simplifies the simulation of derivations in R considerably. Moreover, note that
whenever norm(s) 2 norm(t) for some terms s and ¢, the lexicographic decrease
must happen in one of the first two components: if normg(s) > norms(t), then
norms(s) = 0 and norms(t) = L. Since norm;(u) = L and normg(u) = L if and
only if norms(u) = L for all terms u, we also have normi(s) > norm;(¢) and
norma(s) > norms(t) in that case. Thus, we have:

norm(s) 2 norm(t) = (normy(s), norma(s)) 3 (normy(t), norma(t))

_
norm(s) J norm(t) = (normy(s), norms(s)) 3 (normy(t), normay(t)) .

Moreover, note that on this restricted range of norm, the orders 7 and >*
coincide.

Based on these simplifying assumptions, we now build the interpretation
trpg and the simulating TRS Rpgsim- Given a term t, trpg employs a 1 + A-
ary function symbol f;. The index i of f; and the first argument of f; are used
to represent normi(t) and norms(t), respectively; the last A arguments of f;
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are used to represent trpg(t’) for each direct subterm ¢ of t. Analogous to
Definition 6.27, we use some abbreviations.

Notation 6.42. We make use of the following abbreviation MZJ (for j € N and
i€{0,...,k}):

M2 (u,xq,. .., x4) =fi(u,z1,...,24)
MZ-]H(u,xl, cooswa) = filu, MY (u, 21, ... ), .o, MY (u, 21, ... 24))
We write ¢ to denote ¢, ..., t, where the number of repetitions of ¢ follows from

the context.

Consider the reduction pair function g of R. If g is computable, then it is an
easy exercise to define a terminating TRS Rp¢ g, (employing the constructors s
and 0) which computes the function g (i.e. g(s"(0)) —>;‘2,DGSim s9(n) (0)) such that
dCR'D o is primitive recursive in g [38]. Moreover, if g is primitive recursive,
we assume that Ry, 1S constructed as follows: define g using only initial
functions, composition, and primitive recursion, and directly turn the resulting
definition of g into rewrite rules.

Definition 6.43. Consider the following (schematic) TRS Rpgsim, where 0 <
i<dand1<j<A.

1;: fi(s(u )1:1,...,xA)—>M (u,x1,...,24)

2 fivi(u,z1,...,x4) — fi(s(g(size(fo(0, z1,...,24)))), x1,...,TA)
3ij:  size(fi(u,z1,...,24)) = xa(size(x;))

4: size(x) — s(0)

5: atse)) (% 4(2))

6: x4(0)—0

7i fi(u,z1,...,24) = ¢
8i: fi(u,z1,...,24) = x5

9: h(z) = fi(s(g(size(fo(0,7)))), T)

10: z — f(s(g(size(fo(0,T)))), )

These rules are augmented by a TRS R, defining the function symbol g.
The signatures of Rjy¢m a0d RpGsim \ Rpgsm are disjoint with the exception
of g and the constructors s and 0.

The rules of Rpgsim match the rules of Rgm (see Definition 6.27) in spirit.
The rules 1,-2; are the main rules for the simulation of the effects of a single step
s =g tin Rpgsim- Similar to rules 1,—4; of Rem, they execute the lexicographic
decrease of the norm of s, and are responsible for creating the at most (C+1)-A®
many new positions and copies of each subterm of s in ¢. The rules 3; ;—6 define
the function symbol size, just as the rules 5;-8 of Rejm do. The rules 7;-8; ; make
sure that any superfluous positions and copies of subterms can be deleted , see
rules 9-10; of Rgim. Finally, the rules 9 and 10 guarantee that the simulating
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derivation can be started with a suitably small initial term, similar to rules 11
and 12 of Rejm.

Analogous to Section 6.3, the derivational complexity of Rpgsim can be anal-
ysed directly. However, due to the lower complexity bound we would like to
show, this analysis is more involved than the proof of Lemma 6.28, therefore
the proof of the following lemma is deferred to Sections 6.5.1 and 6.5.2 below.

Lemma 6.44. The derivational complezity of Rpgsim S bounded by a function
which is primitive recursive in g.

Notation 6.45. For the remainder of this section, let Fpgsim denote the sig-
nature of RpGsim-

In the following, we show that the TRS Rpgsim indeed simulates R as re-
quested.

Definition 6.46. The mapping trpg: T (F,V) — T (FpGsim, V) is defined by
the following equation:

t ifteVy
trpg(t) = . .
fnorml(t)(normg(t) ,trpg (tl), ..., trpg (tn), C) ift = f(tl, R ,tn)
Here we understand f; to be fy. Moreover, the operator (-)* is defined as follows:
N 0 ifu=_1
u =
sutl(0) ifueN

Definition 6.47. We define an equivalence ~pg on 7 (Fpgsim, V). We have
s=pgt if and only if one of the following properties holds:

1. s=t,or
2. s="fi(u,s1,...,84), t ="Fy(v,t1,...,ta), and s; = t; for all 1 < j < A.

Lemma 6.48. For all terms s and t with trpg(s) ~pg t, we have size(t) —>7J5DG i
s"(0) for some m = |s|.

Proof. Analogous to Lemma 6.32, using rules 3; ;6 from Rpgsim in place of
rules 5;-8 from Rejm. O

Lemma 6.49. The following properties of Rpgsim hold:

1. If s = fi(u*,81,...,84), t = trpg(t’) = fy(v*,s1,...,84), and (i,u) 3
(i',v), then s =% .t

+

2. For any terms s = trpg(s') and t = trpg(t'), s =g t' implies s > Rocy

3. If a >R b and trpg(a) —>7J§Dcsim trpg(b), then for any n-ary function sym-
bol f € F, tng(f(tl, s A ,tn)) _>7—§DGsim tng(f(tl, co,b .l ,tn)).

Proof. We prove the three items in succession.
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1. In order to show Property 1, observe that it suffices to show the following
items for all 1 < ¢ < d (compare Definitions 6.19 and 6.46). Also note
that our identification of fy and f; poses no problem, since norm;(t') = L
implies normg(¢') = L, and norm;(¢') # L implies normy(t') > L.

o fi(s(u),z1,...,24) —>7—2DGsim filu,z1,...,24)
b i+1(u,$1, . '71:14)
—>;§Dcsim fi(s(g(size(fo(0, 21,...,74)))), T1,-..,2A)

The first item follows directly by applying rules 1; and 8;1 of Rpgsim-
The second item follows by a single application of rule 2; from Rpg sim-

2. We now show Property 2. Let [ — r be the rewrite rule and o the
substitution applied in the step s’ < t'. Let i = normy(s’) and m =
normg(s’). Since [ is not a variable, we have | = f(l1,...,l,). Hence,
trpg(lo) = fi(s™H1(0), trpg(l10), . . ., trpg(l,0),€). Since s’ is a redex, we
have i > 0 and m > 0. By rules 1; and 8; 1, we have

trog(lo) =k M7 (s™(0), trpg(110), - .., trpg (1n0), ) -

We show the following claim by induction on dp(u).

Claim 6.50. We have M;™")(s™(0), trpg(110), ..., trpG(1n0), €) =y .
trpg(uo) whenever u < r.

Since r < r, showing the claim suffices to conclude Property 2 of the
lemma. Hence, the remainder of this proof is devoted to showing the
claim. We perform case distinction on wu.

Suppose u < I. Then there exists some j € {1,...,n} with u < ;. Using
rule 8; 1, we get

Mdp(u) (sm(o)’ trDG (llO’), e 7trDG (l’no-)76) _>j;zDGsim trDG(l]U) ’

2

Further applications of rule 8y j for some values of 7' and j' then yield
trpg(1jo) =Ry, troc(uo), which concludes the first case.

Now suppose that u < [. Since variables occurring in u also occur in
r and hence in [, the condition v 1 [ implies that u is not a variable.
Hence, u = h(uy,...,uy). Let i’ = normy(uo) and m’ = normg(uo). By
induction hypothesis and employing rule 8;; dp(u) — 1 — dp(u;), many
times, we have for all 1 < j < n’

MM (sm(0), trpg (1), - - - s trpg (1n0), €) — Rocam trDG(UW0) -

By combining this with A — n/ many application of rule 7;, we obtain

Mdp(u) (s™(0),trpg(l10), - .., trpg(lno),©)

(2

—>%DGsim fi(s™(0), trpg(u10), ..., trpg(uy o), <) .
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By Lemma 6.24, we have norm(s’) 3 norm(uo), and therefore (i, m) 3
(i, m'). By Property 1, we have

fi(Sm(O), trpg (ula), ..., trpg (un/J), E) —>%Desim trpg (UU) ,
so the claim and thus Property 2 follow.

3. We now prove Property 3. Let i = normy(f(t1,...,a,...,t,)) and m =
norma(f(t1,...,a,...,t,)). Further, let ' = normy(f(t1,...,b,...,tp))
and m’ = norma(f(t1,...,b,...,t,)). By assumption,

fi(m,trpg(t1), - - ., trpg(a), . . ., trpg(tn))
_>7—;DGsim fi(m’ troe <t1)7 s ’trDG(b)a cee ,tng(tn)> :

By Lemma 6.22, we have (i,m) 3 (i,m'). Therefore, by Property 1, it
follows that

fi(m,trpg(t1), ..., trpg(b), ..., trpg(tn))
—Rocan fir (M troG(t1), .. trpg(b), . . ., trpg(tn)) -
Again, we conclude Property 3 and thus the lemma.
O
Lemma 6.51. For any terms s and t, s —g t implies trpg(s) _>7J5D<;sim trpg(t).
Proof. Easy consequence of Lemma 6.49.2 and 6.49.3. O
Lemma 6.52. For any ground term t, we have h4®)(z) —>7J5Dcsim trpg(1).

Proof. We proceed by induction on dp(t). If dp(t) = 0, then ¢ is a constant. Rule
10 yields the rewrite step z =Ry, fx(s(g(size(fo(0,€)))),C). Let i = normy(t)
and m = normg(t). By definition, we have k£ + 1 > 4, g(1) + 1 > m, and
s(g(size(0,2))) —>7J%DG51m s9(D+1(0). By Lemma 6.49.1, we have

fi(s"41(0),©) Sog g fils™ ) = trog (1)

hence the lemma follows.
Now assume dp(t) > 0, so t has the shape f(t1,...,t,). Then rule 9 of Rpgsim
yields the rewrite step

09P0(2) g, F(s(&(5i22(fo (0, WP 1(2)))), WP -1(2))

Using rules 9 and 8,1, we obtain h4P(*)~1(z) > Rocan hdP(ti)(z) for all 1 < j < n,
and by induction hypothesis, hdP(t)(z) _>:IEDGsim trpg(tj). Therefore,

hdP(®) (2)
koo R(s(g(size(fo(trpg(t1), - - -, trpg(tn), ©)))), trog (t1), - - -, trog (), ) -

Let ¢ = normi(t) and m = normy(t). By definition, we have k + 1> i, g(Jt|) +
1 > m, and s(g(size(fo(trpg(t1), - - -, troc(tn),€)))) %%Dcsim s +1(0) = m/* for
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some m’ > [t|. Since by definition, (k,m') 3 (i, m), it follows by Lemma 6.49.1
that

fr(s™ T1(0), trpg(t1), - - -, trog (), ©)

—)%DGsim fi(Sm—H, trpG(t1),...,trpg(tn),€) = trpg(t) ,
concluding the lemma. O
Now we can prove the main result of this section, Theorem 6.40.

Theorem. Let R be a TRS whose termination is shown via Theorem 6.37
using a proof tree PT, and let g be a reduction pair function of PT. Then dcg
is bounded by a function which is primitive recursive in g.

Proof. Let Rpgsim be the simulating TRS for R, as defined over the course
of this section. By Lemma 6.44, dcgr,..,, is bounded by a function which is
primitive recursive in g. Let ¢ be a ground term. Due to Lemmata 6.51 and 6.52,
we have the following inequalities:

dh(t, —®) < dh(trpg(?), _>RDGsim) < dh(hdp(t) (2), _>RDGsim)

Note that [h9®)(z)| < |¢|. Hence for all n € N, we have dcg(n) < degpe.., (1)-
Thus, dcg is bounded primitive recursively in g. O

The result given in Theorem 6.40 is essentially optimal for the class of TRSs
whose termination can be shown via Theorem 6.37. As demonstrated in Ex-
ample 6.38, for every primitive recursive function f, there exists some [ € N
such that dcg,, ;) grows faster than f, and Ruof (1) terminates by Theorem 6.37
using a proof tree which has a linear reduction pair function.

6.5.1 Complexity of the Simulating TRS: First Proof

In the above proof of Theorem 6.40, one issue remains open up to now: we
have postponed the proof of Lemma 6.44, which asserts an upper bound on the
derivational complexity of the simulating TRS Rpgsim- In the sequel, we give
two different proofs. The first proof only manages to prove a slightly weaker
lemma, but we still exhibit it because sticks closer in spirit to the ideas of
Section 6.3, and particularly to the proof of Lemma 6.28. On the other hand,
the second proof is a direct proof of Lemma 6.44.

The remainder of this subsection is devoted to the first of these two proofs.
This proof shows the following slightly weaker variant of Lemma 6.44:

Lemma 6.53. If g is primitive recursive, then the derivational complexity of
Rbcsim s bounded by a primitive recursive function.

The crucial observation in the proof of Lemma 6.28 was that Rgm is com-
patible with a LPO. The TRS Rpgsim is compatible with a LPO, as well, as
long as g is a multiply recursive function. However, this alone is not sufficient
to conclude that dcr,,, is primitive recursive.
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Theoretically, Theorem 4.38, which shows that compatibility of a TRS with
a MPO is sufficient to conclude that its derivational complexity is primitive
recursive, would be a remedy. Of course, neither R nor Rpgsim iS compati-
ble with a MPO; the crucial difference of LPOs from MPOs (the lexicographic
comparison of function arguments, compare Clause 3 of Definition 4.40, rather
than a multiset comparison, as in Clause 3 of Definition 4.35) is essential for
orienting rules 1,—4; of Rsm, and for orienting the family of rules 1; of Rpgsim-
In rules 1;,—4;, the strict part of the lexicographic decrease may occur in any
of the first d argument positions of f, where d is the depth of the considered
complexity proof tree plus one. On the other hand, all complexity proof trees
considered in this section have height 2. Moreover, the range of normy is fi-
nite (it is {1,0,1,...,k}), hence trpg(t) encodes norm;(t) in the index i of the
function symbol f; rather than its first argument position (which would be anal-
ogous to what tr does). As a result, in the orientation of the family of rules 1; of
Rbcsim by a suitable LPO, the strict decrease in the lexicographic comparison
of function arguments always occurs in the first argument position of f;. This
is roughly akin to simple nested recursion, a recursion schema which is syntac-
tically slightly more liberal than primitive recursion. It has been shown that
the primitive recursive functions are closed under simple nested recursion [89],
so it is to be expected that “LPOs with lexicographic decreases only in the first
argument position” induce primitive recursive complexity, as well. Indeed, in
an unpublished manuscript [112], Weiermann formally introduced such a sub-
class of LPOs called generalised ramified lexicographic path orders (GRLPOs
for short) and showed that any GRLPO induces primitive recursive complexity.

We give the definition of GRLPOs and recapitulate the main result of [112].
We start with an auxiliary concept used in Definition 6.55 below.

Definition 6.54 ([112]). Let > be a binary relation on a subset of 7 (F,V)
for some signature F and some set of variables V, and > a precedence on F.
Let f € F and s € T(F,V). We define F<f = {g € F | f > g}. Moreover,
we inductively define 7(F<f U {f(=<s)},V) as the smallest subset of T(F,V)
satisfying the following conditions:

e VCT(F U{f(=9)}V)

o if f > hand t1,...,tym € T(FS U{f(=s)},V), then h(t1,...,tm) €
T(FSU{f(=5)},V)

o if ty,....,t, € T(FTU{f(=s)},V) and s = t1, then f(t1,...,t,) €
T(FTU{f(=9)}V)

Definition 6.55 ([112]). Based on a precedence > over some signature F, we
define an auxiliary relation > g, over 7 (F,V) for some set of variables V as
follows. We have s >4 t if one of the following alternatives holds:

1. s = f(s1,...,5n) such that s; >4 t for some 1 <i < n

2. s = f(s1,...,8,) and t = h(t1,...,ty) such that f > h and s >gpy
foralll<i<m
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3. s=f(s1,...,8,) and t = f(t1,...,t,) such that either

a) there exists i € {2,...,n} such that for all 1 < j < i — 1, we have
85 =tj, 8i >grlpo’ t;, and for all i4+-1 < j < n, we have t; € T(f<f’ V)
and Var(t;) C Var(s), or

b) 81 >gipor t1, and t; € T(F< U {f(<gipors1)},V) and Var(t;) C
Var(s) forall 2 <i<n

Here >g41p0 denotes the reflexive closure of >gpy. We set s >0 ¢ if and
only if there exist terms s, ¢’ € T(F,V) and a substitution o such that s = §'o,
t=1to, and 8 >gipo t'.

Theorem 6.56 ([112, Theorem 2.3(5,6) and Theorem 3.1]). Let R be a TRS
and > a precedence. If R is compatible with >g1p0, then R is terminating, and
dcr is bounded by a primitive recursive function.

Proof Sketch. First, it is shown that s >, ¢ implies s > po t for all terms
s and t. Then termination of R follows by Theorem 4.41. In order to prove
the complexity bound on R, based on >41,, and R, a well-founded monotone
algebra (A, >y) with the following properties is defined: the carrier of A is N,
>y is the usual order on N, for every function symbol f € F, the interpreta-
tion function f4 is primitive recursive, and R is compatible with the resulting
reduction order > 4. O

Using Theorem 6.56, we can now show the lemma we wanted to show:

Lemma. If g is primitive recursive, then the derivational complexity of RpGsim
is bounded by a primitive recursive function.

Proof. Since g is primitive recursive, by assumption, the TRS Ry, 15 de-
fined by a translation of initial functions, composition, and primitive recursion
into rewrite rules. It is straightforward to check that all instances of the def-
inition schemata for initial rules, composition, and primitive recursion can be
oriented by a GRLPO. Hence, Rp¢g, i compatible with a GRLPO > gyp.
Moreover, the precedence > of the GRLPO includes g > s > 0. If we extend
this precedence by

h,z>fi1 >f; > g,size > x4 >5,0,c

for all 0 < i < k, then the whole TRS Rpgsim is compatible with >gp,. Thus
by Theorem 6.56, dcr,,, is bounded by a primitive recursive function. O

6.5.2 Complexity of the Simulating TRS: Second Proof

The proof of Lemma 6.53 presented in Section 6.5.1 above has its merits as the
logical extension of the complexity proof of Rgjm in Lemma 6.28. However, it
also has some shortfalls: it crucially relies on results which - to our best knowl-
edge - can only be found in an unpublished paper, and, with Lemma 6.53, it
produces a weaker result than Lemma 6.44. Hence, in the sequel we give an al-
ternative proof of an upper bound of Rpgsim, resulting in a proof of Lemma 6.44.
Recall Lemma 6.44:
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Lemma. The derivational complexity of Rpgsim 1S bounded by a function which
18 primitive recursive in g.

The proof of this lemma is based on the same principle as the proofs of
Theorems 4.38, 4.42, and 6.56 given in [48, 113, 112] are. We define a well-
founded monotone algebra (A, >y) with carrier N\ {0} such that >y is the
usual strict order on N, each interpretation function f4 is primitive recursive
in g, and R is compatible with the resulting reduction order >y 4. Since for
each term ¢, the interpretation [a]4(t) is primitive recursive in g and |¢|, and
each rewrite step s —gpc., ¢ implies [a]a(s) >n [@]a(t), it then follows that
dcRpeqm 1S primitive recursive in g.

Some interpretation functions of A make use of a family of fast growing
functions, which is defined below. This definition is parametrised in some nat-
ural number d. The exact value of the parameter d will become clear below.
To simplify the notation we assume that the function g is primitive recursive.
Otherwise Definition 6.57 has to be replaced by a function hierarchy that is
parametrised in g.

Definition 6.57. Let d > 2 be some given natural number. We define:
Fo(m)=d™™  Fpp1(m) =F 1 (m) .

The following properties of the family of functions {F,, | n € N} are straight-
forward to verify.

Lemma 6.58. Let n, m, a, and b be natural numbers.
1. Fpla) 2 d* > d-a > a.
2. If a > b, then Fp(a) > F,(b).
3. Ifn>m and a > 1, then F,(a) > Fp,(a).
4. Fp(a+b) =2 Fp(a)+band Fry(a+1) > 2-Fp(a).
5. Each function F,, is primitive recursive.

6. For every m-ary primitive recursive function f, there exists a number
k such that for all my,...,m, € N, we have Fx(max{my,...,m,}) >
f(ml, c. ,mn).

Lemma 6.59 ([47, Lemma 2.19]). Let (A, >y) be a well-founded monotone
algebra with a subset of N as carrier such that >y is the usual strict order on
N. Let R be a TRS which is compatible with the resulting reduction order >N 4,
and let p be a strictly monotone unary function on N such that for oll f € F,
we have

p(n) = fa(n,...,n) for alln e N .

Then for all n € N, we have deg(n) < p™(0).
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We start the construction of the well-founded monotone algebra (A, >y),
whose carrier we define to be N\ {0}, by giving the interpretation function of
the function symbol g, which defines the reduction pair function g on the term
rewriting level. By definition g € Fpgsim, and we assume that ¢ is primitive
recursive. The rules Rp¢g,, defining g constitute a (terminating) subset of
RbGsim, see Definition 6.43. A complication in the definition of g4 is that
the TRS Rp¢ggm has only been defined implicitly above. However, following
the construction in [48], we conclude the existence of a well-founded monotone
algebra (A’, >) such that Rpy¢ g, is compatible with >y 4/, and g is primitive
recursive. More specifically, we can assume that there exists some ¢ € N such
that g4/ (n) = Fy(n), and that sg(n) =n+1and 04 = 1.

Preparing the definition of the well-founded monotone algebra (A, >y), we
define the interpretation functions g4, s4, and 04 as follows:

ga(n) =Fu(n)  sa(n)=n+1  0x4=1

Next, we give the mappings associated with the function symbols f; (0 < ¢ <
k). Let d > max{C + 2,3 - A + 2}.

dn1.(C+1
fian,x1,...,x4) = F€+2i( + )(n—l—ajl—l—...—{—:L‘A)

Before we continue the definition of (A, >y) we give two auxiliary results.
Let a be an arbitrary assignment. For any variable x, let T abbreviate [o] 4(x).

Lemma 6.60. For every i € N, there exists some ¢ € N such that for each

assignment o, we have Fg(m+Z1 + ... +Za) = [a]a(fi(n,z1,...,24)).
Proof. By definition [a] 4(fi(n, z1,...,24)) = F(Zj;;'(cﬂ)(ﬁ +T1+ ... +Ta).

We set p = £ + 2i and abbreviate T; + ... + T4 as T. Recall that the carrier
of A is defined to be N\ {0}, so for every variable z, we have a(x) > 1. Due
to Lemma 6.58.1 and 6.58.3, and the assumption on d, we have Fi(7 + Z) >
AT > 72 4 > " (C 4 1) 4T for m > 1. We obtain:

Fpra(m+7) > Fppi o Fpi(n+7)
> Fpr10Fi(m+7)
> Fpia (A" (C+ 1) +7)
> FZW+1~(C+1)+1(dﬁ+1 (C+1)+7)

> FH O (7 4 7).
Hence the lemma follows by setting ¢ = p + 2. O

Lemma 6.61. For every assignment «, every 0 < ¢ < k and every 0 < j < C
we have

A2 [ .
Floo U@+ o+ Ta) = [0]a(M] (0,21, ... ) -
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Proof. We fix i and proceed by induction on j. Set p = £+ 2i. Suppose j = 0,

then we have M/ (n,x1,...,24) =fi(n,z1,...,24). We obtain
FI @4+ 4+ 7a) > FO O @z 4+ 7g)

= [a]a(fi(n,21,...,24)) ,

where we use Lemma 6.58.1 together with the fact d > C' + 1.
Now we consider the case j > 0. We abbreviate T + ...+ T4 as T.
Fo U (@ + 7)
2 Fgﬁ+2'j+dﬁ+27dﬁ+l+l(ﬁ + f)
A" T2 4+dP T (d— D)+ (= | =
F, ( (m+7)

425y gt o
> Fg Jj+d (C+1)+1(n + .T)

= F" O o o FET (7 4 )

FI - CD (@ A F 7 (7 + 7))

fia(@, [ a(MI (i, ey, a)), o [ a(MI T (2, . wa))
= [a]a(M! (n, 1, ..., 24))

Here we frequently use Lemma 6.58.1 and 6.58.2 together with the assumptions
d>C+2andd>3-A+2. The induction hypothesis is applied A times in
the seventh line. O

2
Z

We complete the definition of (A, >y) as follows:
ca=3 sizeqg(n) =n+2 Xaan)=(A+1)-n+1

2
el (CHD) 14 Am)+2)+2

ha(n) = iy, CEEFT DAL A n)+2) +1+ A-n)

d2.(C+1)
dFZ(FZ (1+3'A)+2)+2.(C+1)

2.
24 = Fiyo, (Fe(Fy (143 4) +2) +143- 4)

Now we are ready to show the main lemma of this subsection.

Lemma 6.62. Let (A, >y) be the well-founded monotone algebra defined over
the course of this subsection. Then Rpgsim S compatible with >N 4.

Proof. As mentioned above, we assume that the reduction pair function g is
primitive recursive. Otherwise, a straightforward extension of Definition 6.57
suffices to prove the more general lemma.

By construction, all rules from Rp ¢, are strictly oriented by the reduction
order > 4 based on (A, >y). Moreover, it is straightforward to check that each
of the rules 3; ;~10 is strictly oriented by >4, so we restrict our attention to
the families of rules 1; and 2;. We abbreviate T +... + T4 as T.

We start by considering the rule 1; for some arbitrary, but fixed ¢. Using
Lemmata 6.58.2 and 6.61, we obtain for any assignment «:

[a]a(fi(s(n),z1,...,24)) = FZE:'(CH)(ﬁ +1+7)

d"t2.(C+1) — | —
Foioi ©* )(”er)

= [a]A(Mz’C(n’ Z1y-- -, -TA))
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Now we consider the rule 2; for some arbitrary, but fixed i. We set p = ¢ + 21,
hence p+2 = ¢+ 2(i + 1). Recall that we previously assumed d > C +2 > 2.
For any assignment «, we obtain:

[a]a(fir1(n,21,...,74))
drti.(c —
=F,9 ( JrD(n +7)
d-(C+1)

2 FpraoFpppof, 5 " (n+7)
> Fpi20F,400 Fgﬁ+2.(c+1)(ﬁ +7)
> Fpra o F o IO 4

o Ld2.(C+1),. , _
d(F3oFp A+2)+2, (o4 1)

>Fy oFfoFy O (143)
2
FoFd O (14m) 42) 42 2.
> CDEFT A7) +2) +147)

= (o] a(fi(s(g(size(fo(0, 1, ...,24))),1,...,24)))

In lines 4, 5, and 6 we apply slight variants of the proof of Lemma 6.60, and in
line 7 we use Lemma 6.58.4. Moreover, we make frequent use of Lemma 6.58.1,
6.58.2, and 6.58.3 here. O

With this result, Lemma 6.44, which we initially wanted to show, easily
follows:

Lemma. The derivational complexity of Rpgsim 1S bounded by a function which
18 primitive recursive in g.

Proof. Let (A, >n) be the algebra constructed over the course of this subsection.
By Lemma 6.62, the TRS Rpgsim is compatible with the resulting reduction
order >y 4. Moreover, all interpretation functions of A are primitive recursive
in g. Hence, by Lemma 6.59, dcr,. ., is primitive recursive in g, as well. O

6.6 The Basic Dependency Pair Method: a Lower
Complexity Bound

Now we investigate an even more restricted version of the dependency pair
framework. Naturally, we are able to prove even lower complexity bounds for
TRSs whose termination can still be shown by these restricted means. Specifi-
cally, we consider the following termination theorem:

Theorem 6.63. Let R be a TRS such that there exists a proof tree PT of R.
Suppose that every edge starting from a non-leaf node (P, R) of PT is labelled
by a reduction pair processor @E;P’}), and @?;H completely solves (P,R). Then
R is terminating.

Proof. Direct consequence of Theorem 6.3. O

Any proof tree PT considered by Theorem 6.63 has at most height 1. This is
essentially the most basic version of the dependency pair method, as described
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in [2, Section 2.2]: in the notation of this thesis, only a single reduction pair
processor, which completely solves the initial DP problem, is applied.

However, even though only a single reduction pair is used to show finiteness
of the initial DP problem (and hence termination of the underlying TRS R), the
derivational complexity of R may still be well beyond the complexity induced
by that reduction pair.

Example 6.64. Consider the TRS Rgeyp consisting of the following rules:
1: f(s(z)) — s(f(f(x))) 2: f(x) — cons(x, x)

The derivational complexity of Rgexp is at least double exponential. This can
be seen as follows: let C'(x) be a shorthand for the term cons(z,z). Consider
the family of terms f(s"”(0)) parametrised by n € N. As can be easily seen,
the n'" term of this family rewrites to s®(f2"(0)) in 2" — 1 steps using rule 1.
Now we can use rule 2, reducing outermost redexes first, to reach s”(C?"(0)) in
22" — 1 steps. Thus dcg 4o 15 at least double exponential.

On the other hand consider the following termination proof of Rgex, by The-
orem 6.63: the set of dependency pairs of Rgexp consists of the two rules

ff(s(z)) = fF(f(x))  fH(s(x)) = () .
Let A be the strongly linear interpretation defined by

fh(m) =fa(m)=m  sa(m)=m+1  consg(m,n)=04=0.

RP
(Za>a
problem (DP(Rgexp); Rdexp). This results in a proof tree PT which uses only

@?EA SA) Hence, Ryexp is terminating by Theorem 6.63. Moreover, the identity

function g(n) = n is a reduction pair function of PT.

Then the resulting pair processor & ) completely solves the initial DP

Note the contrast between dcgr,, and the complexity induced by the re-
duction pair (>4, >4): the derivational complexity of Rgexp is at least double
exponential. On the other hand, by Theorem 4.13, the reduction pair (=4, >4)
induces linear complexity.

As shown in the next example, even for SRSs this difference can be at least
exponential.

Example 6.65. Consider the SRS Reyp, which is a restriction of Rgexp con-
sisting of the single rewrite rule

f(s(z)) = s(f(f(2))) -

Consider the family of terms f(s™(0)). As can be easily seen, the n'® term of this
family rewrites to s™(f*" (0)) in 2" — 1 steps. Thus dcg,,, is at least exponential.

On the other hand, termination of Rexp can be shown by Theorem 6.63, using
essentially the same proof tree as the termination proof of Rgeyp in Example 6.64
above. Again, the identity function g(n) = n is a reduction pair function of
this proof tree.
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6.7 The Basic Dependency Pair Method: an Upper
Complexity Bound

In Example 6.64, we exhibited a TRS which terminates by Theorem 6.63, but
whose derivational complexity grows at least double exponentially faster than
the complexity induced by the employed reduction pair. In this section, we
show that this is the worst possible behaviour for this class of TRSs. More
precisely, we prove the following theorem:

Theorem 6.66. Let R be a TRS whose termination is shown via Theorem 6.63
using a proof tree PT, and let g be a reduction pair function of PT. Then dcg
1s bounded double exponentially in g. More specifically, we have

der(n) < (A + 1)ZCH)7 2 ngn

where A is the mazimum arity of any function symbol in the signature of R,
but at least 1, and C = max{dp(r) |l - r € R}.

In order to show that this theorem holds, we follow the ideas we used to
prove Theorems 6.9 and 6.40 in Sections 6.3 and 6.5 once again: based on
the mapping norm and a suitable interpretation trpp, we define a TRS Rpp sim
simulating the initial TRS R. Finally, we can simply prove an upper bound on
the derivational complexity of Rppsim in order to obtain an upper bound on
dCR.

However, the complexity bound we want to show in this section is consid-
erably smaller than in both of the Sections 6.3 and 6.5. Therefore, simple
syntactic means such as LPOs or GRLPOs (compare Section 6.5.1) are not
useful for proving a good upper bound on the complexity of Rppsim- Instead,
similar to Section 6.5.2, we construct a well-founded monotone algebra (A, >y)
with a subset of N as carrier such that >y is the usual order on N and Rppsim
is compatible with the resulting reduction order >y 4.

Notation 6.67. For the remainder of this section, we fix a TRS R such that
termination of R follows by Theorem 6.63 using some proof tree PT.

Let g be a reduction pair function of PT, A the maximum arity of any function
symbol occurring in R, but at least 1, and C' = max{dp(r) |l = r € R}.

The simple structure of PT extends to the range of the norm function. For any
term ¢, the norm of ¢ has the shape (uj,u2) with u; € NU{ L}, and ug € {0, L}.
Moreover, whenever norm(s) 1 norm(t) for some terms s and ¢, we also have
normi(s) > normi(t), because norm;(u) = L if and only if normg(u) = L for
all terms u. In order to write down the rules of Rppsm concisely, we again use
some abbreviations.

Notation 6.68. We make use of the following abbreviation M7 (for j € N):

MO(u,z1,...,x4) = flu,21,...,24)
M, xy, . xn) = Flu, MY (w2, za), .o, M (w21, ..., 24))
We write ¢ to denote ¢, ..., ¢, where the number of repetitions of ¢ follows from

the context.
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Definition 6.69. We define the following (schematic) TRS Rpp sim, where 1 <
j< A

f(s(u)axla"'va) — Mc(u7x1a"'7xz4)
2: fu,z1,...,24) = ¢
3 flu,21,...,24) = x;

The rules of Rppsim are essentially a subset of the rules of Rpgsim given in
Definition 6.43. The labels ¢ from the function symbols f; have been stripped.

In contrast to Lemmata 6.28 and 6.44, we are not able to show anymore
that the derivational complexity of Rppsm is low enough in order imply The-
orem 6.66. Due to rule 1, the interpretation function of f in the constructed
well-founded monotone algebra must grow at least exponentially in its first ar-
gument. Therefore, there exist families of terms whose interpretations can not
be bounded elementarily in their sizes. However, this problem does not occur
for the terms we are really interested in (the range of the translation function
trpp): for any of these terms, the first argument of any f symbol has the shape
s"(0) for some n € N. Thus we just prove an upper bound on the derivation
heights of terms in the range of trpp.

Notation 6.70. For the remainder of this section, let Fppsm denote the sig-
nature of Rppsim-

Definition 6.71. The mapping trpp: 7 (F,V) — T (Fppsim, V)) is defined by
the following equation:

trop(t) = t iftey
PP fnormy (8)*, trop (1), + - trop(tn),©) iE £ = F(t1, ..., tn)

* is defined as follows:

. {0 ifu=1
u =

Here, the operator (-)

sutl(0) ifueN
We now construct a well-founded monotone algebra (A, >y). We define the
carrier of A to be N\ {0}, and >y to be the usual strict order on N. Finally,

the interpretation functions of A are

falu,21,...,24) = (A+ 1) () 4. 4 12,)
sa(n)=n+1 Oq=1 ca=1.

Given an assignment «, we use T to abbreviate [a] 4(z) for any variable z.

Lemma 6.72. For all j € N and assignments o, we have

o] A(M (u, 21, w4)) < (A+ DECTDCTD (3 44 3y)
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Proof. We show the lemma by induction on j.
Suppose j = 0. We have

[Oé]A(MO(u, Llyew- ,CL'A)) = [Q}A(f(u, T1,--- 7:EA))
= (A+ 1) (@) + .. +Ta)
= (A+ 1)) L 4 3y),

hence the base case is concluded.
Now assume the inductive case that j > 0. Then we have

[a]A(Mj(u,ml,...,xA))
= [ a(Flu, M7 Y u, 1, .. 20), ..., MP w2y, ... 2 4))
= (A4 1) A ) a(MI N u, 21, .., 24))
<(A+ 1)(2~C+2)U CA-(A+ 1)(2~0+2)ﬂ~(2.j—1) @14 +TA)
(A+

< 1)(2.C+2)u.(2.j+1) . (fl +... +fA) )
Here we apply the induction hypothesis in line 4. O

Lemma 6.73. For any term t and assignment «, we have
[a]a(trop(1)) < (A + k)GCT2TTEI
where k = max({1} U {a(z) | z € Var(t)}).

Proof. We prove the lemma by induction on |¢t|. If ¢ € V), then |¢t| = 1 and
[ala(trop (1) = alt) <k < (A4 k)P,

so the lemma holds in this case.
Now suppose that ¢ has the shape f(¢1,...,¢,). Then we have

[a]a(trop(t)) = [a]a(f(normy (2)", trop(t1), - . ., trop(tn), ©))
< (A—|— 1)(2.C+2)9(|t|>+2 ) (A —n+ i(A-i- k)(2.0+2)g(‘ti|)+2.|ti|+|ti‘)
i=1
< (A—|— 1)(2.C+2)g(ltl>+2+1 ) i(A‘f’ k)(2‘C+2)g(‘til)+2‘|tiH‘|ti‘
=1

<(A+ k)(2.0+2)9<|t\>+2+1 . ﬁ(A + k)(2~C+2)9(It\>+2-\ti|+\ti|
i=1
= (A+ k)(2-0+2)9<|t\>+2+1 (A+ k)(2-C+2)9<|t‘)+2-(|t|71)+(\t|71)

_ (A—|— k)(2.0+2)9(|t\)+2.‘t|+|t| .

In the second line, we applied the induction hypothesis n times, and the fact
that g(t) >~ normy(t), and hence [a]4(normy(¢)*) < g(|t]) + 2. O
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6 The Dependency Pair Framework and Derivational Complexity

Lemma 6.74. For every term t, we have
dh(trpp (1), —Rop ) < (A + 1)ZCH2DT 11

Proof. 1t is easy to see that rules 2 and 3; of Rppsim are strictly oriented by
>n4. Lemma 6.72 makes it obvious that rule 1 is strictly oriented by >4, as
well. Therefore, dh(trpp(t), > Rppan) < [l a(trpp(t)) for all assignments « (in
particular, for the assignment ag with ag(z) = 1 for all € Var(t)), compare
Lemma 4.8. By Lemma 6.73, we have [ap] 4(trpp(t)) < (A+1)(2'C+2)g(‘t|)+2'|t‘+|t‘,
thus the lemma follows. O

Now that we have established an upper bound on the length of certain deriva-
tions in Rppsim, we show that Rppsim indeed simulates R, and that this simu-
lation is established by the mapping trpp.

Lemma 6.75. The following properties of Rppsim hold:

1. If s = f(u*,s1,...,84), t = trpp(t’) = f(v*,81,...,54), and u > v, then
Sé%DPsim t

2. For any terms s = trpp(s') and t = trpp(t'), s Sr t' implies s —>7+szsim t

3. If a »x b and trpp(a) —>7';Dpsim trpp(b), then for any n-ary function sym-
bol f € F, trpp(f(t1,...,a,...,tn)) —>7§Dpsim trop(f(t1, ..., b, ..., tn)).
Proof. We prove the three items successively.

1. In order to show Property 1, observe that u > v implies u* = s%(0)
and v* = s*(0) for some a,b € N with a > b. Therefore, it suffices to
show f(s(u),z1,...,24) —>7JEDP5im f(u,z1,...,24). This follows directly by
applying rules 1 and 31 of Rppsim-

2. We now show Property 2. Let | — r be the rewrite rule and o the
substitution applied in the step s’ <% t'. Let m = norm;(s’). Since [ is
not a variable, [ has the shape f(l1,...,l,). Therefore, we have trpp(lo) =
f(s™*1(0),trpp(l10), . .., trpp(lno),€). Since s’ is a redex, it follows that
m € N. By rules 1 and 3,

trop(lo) =k, M%) (s™(0),trpp(110), .. ., trop(ln0), ) -
We show the following claim by induction on dp(u).

Claim 6.76. We have M) (s™(0), trpp(l10), . .., trpp(l,0),C) > Ropam
trpp(uo) whenever u < r.

Since r < r, showing the claim suffices to conclude Property 2 of the
lemma. Hence, the remainder of this proof is devoted to showing the
claim. We perform case distinction on wu.

Suppose u <1 [. Then there exists some j € {1,...,n} with u < ;. Using
rule 31, we get

M (s™(0), trpp(110), - . ., trpp(1n0),€) —Rpp... trop(Ljo) -
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Some potential further applications of rule 3; for some values of j’ then
yield trpp(ljo) =%, trop(uo), which concludes the first case.

Now suppose that u < [. Since variables occurring in u also occur in
r and hence in [, the condition u < [ implies that u is not a variable.
Hence, u = h(uy,...,u,). Let m’ = norm;(uc). By induction hypothesis,
employing rule 3; E;ﬂ:l dp(u) — 1 —dp(u;j) many times, and rule 2 A —n’
times, we obtain

Mdp(w) (s™(0),trpp(l10), - .., trpp(ln0),T)

—>>7k3DPsim f(Sm(O), ter(ula), R ,ter(un/U),E) .

By Lemma 6.24, we have norm(s’) 2 norm(uo), and therefore m > m/.
Due to Property 1,

f(Sm(O), ter(ula), - ,ter(un/a),E) _>,7?‘DPsim tI’DP(UO') ,
so the claim and thus Property 2 follow.

. We now prove Property 3. Let m = normy(f(t1,...,a,...,t,)) and m’ =
normy(f(t1,...,b,...,tn)). By assumption,

f(m, ter(tl), ... ,ter(a), ... ,ter(tn))
—)%Dpsim f(m, ter(tl), - ,ter(b), S ,tI’Dp(tn)) .

By Lemma 6.22, we have m >~ m/. Hence, using Property 1, we obtain

f(m, trop(t1), ..., trop(b), ..., trop(tn))
—)j;szsim f(m/, ter(tl), ... ,ter(b), ... ,ter(tn)) .

Property 3 and thus the lemma follow.

O]

Lemma 6.77. For any terms s and t, s —g t implies trpp(s) —>7+2Dpsim trop(t).

Proof. Easy consequence of Lemma 6.75.2 and 6.75.3. O

Now we can prove the main result of this section, Theorem 6.66.

Theorem. Let R be a TRS whose termination is shown via Theorem 6.63
using a proof tree PT, and let g be a reduction pair function of PT. Then dcg
1s bounded double exponentially in g. More specifically, we have

dCR(n) < (A + 1)(2~C+2)9<n)+2,n+n .

where A is the mazximum arity of any function symbol in the signature of R,
but at least 1, and C' = max{dp(r) |l - r € R}.
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Proof. Let Rppsim be the simulating TRS for R, as defined over the course of
this section, and trpp the corresponding mapping on terms. By Lemma 6.74,
we have

dh(trpp (1), —Ropgn) < (A + 1)ECHT 1

for all terms t. Moreover, due to Lemma 6.77, we have the inequality
dh(t —)R) dh(ter(t), _>RDPsim) .
Thus, the theorem follows. O

Note that with the assumptions of Theorem 6.66, a double exponential upper
bound (as given by Theorem 6.66) is the lowest theoretically possible bound on
dcr. As demonstrated in Example 6.64, there exists such a proof tree of Ryexp
with a linear reduction pair function, but dcg,,,, is at least double exponential.

Remark 6.78. In [80, Section 4] and [82, Section 5], only a triple exponential
complexity bound was shown for TRSs whose termination can be proved by
Theorem 6.63. It was left as an open problem whether this upper bound can be
improved to a double exponential one. Theorem 6.66 solves this open problem
in the positive.

Corollary 6.79. For any terminating TRS R and term t, we have

#< N
dh(t, —r) < (A + 1)@ ORI gy
where A is the mazximum arity of any function symbol in the signature of R,
but at least 1, and C' = max{dp(r) |l - r € R}.

Proof. Since R is assumed to be terminating, the pair of orders (=%, >), where
> is the tran81t1ve closure of —>Dp / —R, is a reduction pair. The reduction
(51,,>) completely solves the initial DP problem (DP(R),R),
so termination of R follows by Theorem 6.63. Due to Lemma 6.77, we have
dh(t,—r) < dh(trpp(t), > Rppa)- Inspection of the proofs of Lemmata 6.73
and 6.74 yields

pair processor ®RP

dh(trop (), 2 Rppam) < (A + 1)(2.C+2)[Q]A(norm1(t) [t )

and clearly, [a]4(normy(t)*) < dh(#f, —>Dp(R /—Rr)+2, where aq is the assign-
ment such that ag(x) = 1 for every variable x € Var(t). Thus, the corollary
follows. O

6.7.1 String Rewriting

If we restrict our attention to SRSs whose termination can be proved by Theo-
rem 6.63, the upper bound in Theorem 6.66 can be improved significantly. The
goal of this subsection is to show the following theorem stating this improved
bound:
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Theorem 6.80. Let R be a SRS whose termination is shown via Theorem 6.63
using a proof tree PT, and let g be a reduction pair function of PT. Then dcg
1s bounded exponentially in g. More specifically, we have

der(n) < (2-C+2)9M 2 n 41,
where C'= max{dp(r) |l - r € R}.

In order to show Theorem 6.80, we can reuse the lion’s share of the proof
of Theorem 6.66. Specifically, we can employ the simulating TRS Rppsim,
the mapping trpp, and the main result about the simulation of R by Rppsim
(Lemma 6.77). However, due to the assumption that R is a SRS, the constant
A is fixed to be one. Therefore, we construct a new well-founded monotone
algebra (B, >y), which allows us to replace Lemma 6.74 by a stronger result.
We set the carrier of B to N\ {0}, and define >y to be the usual strict order
on N. The interpretation functions of B are the following:

fp(u, ) =(2-C+2)"+2  sgn)=n+1 0p=1 cg=1
Given an assignment «, we use T to abbreviate [a]g(x) for any variable z.
Lemma 6.81. For all j € N and assignments o, we have
[)p(M (u,2)) < (2-C+2)"-(2-j+1)+T

Proof. We show the lemma by induction on j.
Suppose j = 0. We have

[a]s(M°(u,2)) = []s(F(u.2)) = (2- C+2)7- (2-0+ 1) + 7

concluding the base case.
Now assume the inductive case that j > 0. Then we have

[a] (M (u, x)) = [a]s(f(u, M7~} (u, 2)))
= (2-C+2)" + [a]p(M? ™ (u, 7))
<@ C+2)"+(2-C+2)%-(2-j-1)+7
<2 C+2"- 2 j+1)+T

Here we applied the induction hypothesis in line 3. O
Lemma 6.82. If R is a SRS, then for any term t and assignment o, we have
la]s(trop(t)) < (2 C + K+ 1902 41,

where k = max({1} U {a(z) | z € Var(t)}).
Proof. We prove the lemma by induction on |t|. If £ € V), then |t| = 1 and
[a]s(trop(t)) = a(t) <k < (2-C +k+1)9W+2 41

so the lemma holds in this case.
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If t is a constant function symbol, then
[]s(trop(t)) = [als(f(normy (t)*,¢)) < (2- C +2)9W+2 41|

entailing the lemma again.
Finally, suppose that ¢ has the shape f(¢1). Then we have

[a]s(trop(t)) = [e]s(f(normy (£)", trop(t1)))
<@2-C+k+1)9DF2 L (2.0 4 k+1)9H=DF2 (1 —1) +1
<(2-CH+k+1)90HD+2 g 41

In the second line, we applied the induction hypothesis and the fact that
g(t) >~ normy(t), and hence [a] 4(normy(t)*) < g(|t]) + 2. O

Lemma 6.83. If R is a SRS, then for every string t, we have
dh(trpp(t), 2 Rppam) < (2-C+ 2)g(|t|)+2 -t +1

Proof. 1t is easy to see that rules 2 and 31 of Rppsim are strictly oriented by
>np- Lemma 6.81 makes it obvious that rule 1 is strictly oriented by >yg, as
well. Therefore, dh(trpp(t), 2 Rpp.n) < [@)B(trpp(t)) for all assignments « (in
particular, for the assignment ag with ap(z) = 1 for all = € Var(t)), compare
Lemma 4.8. By Lemma 6.82, we have [ag]4(trpp(t)) < (2-C +2)90D+2 . |¢] 4-1,
thus the lemma follows. O

This is sufficient for proving the main theorem of this subsection, Theo-
rem 6.80.

Theorem. Let R be a SRS whose termination is shown wvia Theorem 6.63
using a proof tree PT, and let g be a reduction pair function of PT. Then dcg
18 bounded exponentially in g. More specifically, we have

der(n) < (2-C+2)9W+2 . p 41,
where C'= max{dp(r) |l - r € R}.

Proof. Let Rppsim be the simulating TRS for R and trpp the corresponding
mapping on terms. By Lemma 6.83, we have

dh(trpp(t), = Rppan) < (2- C +2)9UD+2 ¢ 41
for all terms ¢. Moreover, due to Lemma 6.77, we have the inequality
dh(t, —r) < dh(trpp(t), = Rpp ) -
Thus, the theorem follows. O

Note that for SRSs whose termination is proved via Theorem 6.63, the com-
plexity bound given by Theorem 6.80 cannot be improved to anything lower
than exponential. As shown in Example 6.64, there exists a proof tree of Rexp
of the shape specified in Theorem 6.63 with a linear reduction pair function,
but dcg,,, is at least exponential.
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Corollary 6.84. For any terminating SRS R and term t, we have
dh(t, —g) < (2 C + 2)¢hE Zoper) /2R)F2 Ly 41
where C'= max{dp(r) |l - r € R}.
Proof. Analogous to Corollary 6.79. O

6.8 Usable Rules: a Lower Complexity Bound

In the previous sections, we have analysed the derivational complexity of TRSs
whose termination can be proved by a proof tree using reduction pair, depen-
dency graph, and subterm criterion processors. A natural question that has
been left open up to now is how the complexity bounds in Theorems 6.9, 6.40,
and 6.66 change if usable rules processors are allowed in place of reduction pair
processors in the assumptions of those theorems. We cannot transfer the proof
ideas from the last sections to usable rules processors: given a usable rules pro-
cessor @52?(?’}) and a DP problem (P,R) with @55#7”((73,72)) ={(P,R)}
and P # P’, it is easy to give an upper bound on DPcp\pr prigsue, for many
instances of the reduction pair (3=, >). Hence, it seems intuitive to base an
extension of the functions norm; in Definition 6.18 to usable rules processors on
this measure. However, since R is often not a subset of P UU U C,, such an
extension of the definition of norm; would destroy the proof of Lemma 6.22. In
general, we can not even bound DPcp\pr pryr in DPepy\pr pruyue, -

Example 6.85. Let g be an arbitrary, but fixed computable function. Consider
the DP problem (P,R), where P consists of the single rule

ff(s(z)) — fi(x) ,

and R is a terminating TRS not containing the symbol f# such that for all n € N,
we have g(s"(0)) —7% s9((0) (by Turing-completeness of term rewriting, such a
TRS R exists). Then URg(P) = (). Let A be the strongly linear interpretation
defined by the following interpretation functions:

fim)=m  sa(m)=m+1  calmn)=m+n

R
(>a,>4)
(P,R). Moreover, by Theorem 4.13, the applied reduction pair (>4, >4) in-

duces linear complexity, hence DPcp ¢, is bounded by a linear function. On the
other hand, DPcp r grows as least as fast as g, as witnessed by the family of

derivations f#(g(s"(0))) —7 f4(s9(™(0)) —>%(n) f#(0) parametrised by n € N.

Then the usable rules processor ‘I’(%)J completely solves the DP problem

Based on this example, we can see that that it is generally impossible to
bound DPcp\pr prug in DPep\pr pruyue, by any computable function. However,
if we only consider a restricted setting, such an analysis might become feasible
again. In this spirit, we now consider TRSs whose termination can be shown
by the following theorem, which is essentially Theorem 6.63, the most simple
of the previously considered termination theorems, transferred to usable rules
Processors:
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Theorem 6.86. Let R be a TRS such that there exists a proof tree PT of R.
Suppose that every edge starting from a non-leaf node (P, R) of PT is labelled by
a usable rules processor ‘bg{i%}), and q)glt?(kk) completely solves (P,R). Then
R is terminating.

Proof. Analogous to Theorem 6.3, using soundness of usable rules processors
(cf. Theorem 2.65). O

The complexity theoretic strength of Theorem 6.86 compared to its “reduc-
tion pair processor version”, Theorem 6.63, is still considerable, as witnessed
by the next examples.

Example 6.87. Consider the TRS Repin given by the following set of rules:

d(0) =0 e(0,z) = x
d(s(x)) = s(s(d(x))) e(s(z),y) —e

The dependency pairs of Repin are the following rules:

(z,d(y))

d(s(x) = d¥(z)  e(s(x),y) = a,d(y)  E(s(a)y) = d¥(y)

The following two rules are contained in URg . (DP(Repin)):

d(0) =0 d(s(z)) — s(s(d(z)))

In order to give an upper complexity bound, we now construct a weakly mono-
tone algebra (A, >, >) with carrier N, where > and > are the usual weak and
strict orders on N, respectively. The interpretation functions of A are

e&(m,n):2m-(n+1)+1 d&(m):m da(m)=2-m
04=0 sa(m)=m+1 calm,n)=m+n.

It is easy to check that URgz,,, (DP(Rebin)) UCc is compatible with > 4, and that
DP(Rebin) is compatible with > 4. Moreover, for any term ¢ € T (F U {c}), the
value [a] 4(#%) is double exponentially bounded in |¢|. Thus, we obtain a double
exponential upper bound on DPCDP(Rebin)alJRRebin(DP(Rebin))'

On the other hand both DPcpp(r,,;.) Ro and der,,,, are clearly at least super-
exponential functions. The first is witnessed e.g. by the family of starting terms
e?(E™(0),s(0)), where E(z) is a shorthand for e(z,s(0)). The second is witnessed
by the family of starting terms E™(0), for instance.

Remark 6.88. Note that in Example 6.87 it is essential that arbitrary starting
terms, as for example E* (0), are considered by the definition of derivational
complexity. If we restricted the starting terms to basic terms, then the results
from Section 6.7 would directly extend to Theorem 6.86. This is a consequence
of [44, Lemma 16].

We can generalise Example 6.87 from a double exponential function to prim-
itive recursion by employing the Ackermann function.

130



6.9 Usable Rules: an Upper Complexity Bound

Example 6.89. We employ a unary notation for the Ackermann function: we
write Ack;(z) instead of Ack(i,z). Consider the following family of schematic
TRSs Raack(l), parametrised by [ € N. Here we assume 0 < i < [.

Acko(z) — s(z) 1(0,z) — Ack;(x)
Ack;41(0) — Ack;(s(0)) I(s(z),y) = I(z, Acki(y))
ACki+1(S(l')) — ACkZ(ACkZJrl(:E))

Note that URg, 1) (DP(Raack(l))) contains only the rules in the left column.
We define a weakly monotone algebra (A, >, >) with carrier N, where > and >

are the usual weak and strict orders on N. We set the interpretation functions
of A to

(Ack;) 4(m) = Ack;(m) ca(m,n) =m+n
(Ack?) 4(m) = Ack;(m) + i sa(m)=m+1
I (m,n) = Ack™ L (n) +m + 1+ 1 04=0

It is easy to check that URg_ (1) (DP(Raack(l))) U Ce is compatible with > 4,
and that DP(Raack(l)) is compatible with > 4. Moreover, for any term ¢ €
T(FU{c}), the value [a] 4(#*) is bounded by Ack?, ;(O([¢|)). On the other hand
the derivational complexity of Raack(!) is bounded from below by Ack;12(2(n)),
as witnessed by derivations starting from the family of terms F*(0), where F(x)
is a shorthand for I(x,s(0)).

As we can see from Example 6.89, the complexity induced by the reduction
pair used in the termination proof of R,k (1) belongs to level [ + 1 of the hier-
archy of Ackermann functions with fixed first argument, while the derivational
complexity of Raack(l) belongs at least to level I + 2 of that hierarchy.

6.9 Usable Rules: an Upper Complexity Bound

In this section, we investigate the upper bound on the derivational complexity
of TRSs whose termination can be proved by Theorem 6.86, depending on the
complexity induced by the reduction pair of the usable rules processor employed
in the considered termination proof. Examples 6.87 and 6.89 suggest that this
upper bound might be an iteration of the function obtained from Theorem 6.66.
We show that this intuition is indeed correct. The remainder of this section is
devoted to the proof of the following theorem:

Theorem 6.90. Let R be a TRS whose termination is shown via Theorem 6.86

using a proof tree PT, and let <I>5RE> ) be the label of every edge starting from

the root of PT. Moreover, let g: N — N be a strictly monotone function such
that (3=, >) induces complezity {g}. Then we have

ch(n) < Gn+1 (1)

for some function G which is elementary in g.
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As argued in the previous section, in order to prove Theorem 6.90, it is not
sufficient to simply extend the proof principle we used in Sections 6.3, 6.5,
and 6.7 to show Theorems 6.9, 6.40, and 6.66, respectively. Rather, we do a
close study of the correctness proof of Theorem 2.65 (compare [43, Section 3]).

The main ingredient of the correctness proof of Theorem 2.65 is the def-
inition of the interpretation Zpp(r)r, cf. Definition 2.59. According to the
proof of [43, Theorem 20|, any DP(R) U R-derivation starting from a term ¢
can be transformed into a DP(R) U URR (DP(R)) U Ce-derivation starting from
Ipp(r),r(t). Therefore, estimating |Zpp(r) = (t)| is the key to the connection be-
tween DPcpp(r) r and DPcpp(r) urg (DP(R))uc.- Suppose there exists a function
f that bounds dh(t?;DP(R)/_)URR(DP(R))UCS) in ‘t‘ Then dh(t,;Dp('R)/—)R)
can be bounded in [t| by f(|Zppr)r(t)])-

However, the difficulty of this estimation lies in the following mutual depen-
dence between the definition of the interpretation Zpp(g) and the derivation
heights. On one hand, we bound dh(t, ;DP(R)/%R) in [t| by f(|Zpper),r(1)])-
On the other hand, Zpp(g)r(t) depends on dh(t,—r) since dh(t, —»z) deter-
mines the number of recursive calls of the shape order({Zppr)r(u) [ t = u})
in the definition of Zpp(r) (). In the remainder of this section we show how
this mutual dependence can be resolved.

Notation 6.91. For the rest of this section, we fix a TRS R such that termi-
nation of R follows by Theorem 6.86 using some proof tree PT where the label

of each edge starting from the root of PT is CI)Zl/J{R(> o)

Let g: N — N be a strictly monotone function (note that this implies g(n) >
n) such that (3=, =) induces complexity {g}, and let £ = max{A, B,2-C} + 3,
where A is the maximum arity of all function symbols, but at least 1, B is
the number of rules in R, and C' is chosen such that it is larger than the size
of any right-hand side of any rule in R, and hence also larger than the depth
of any right-hand side and the number of occurrences of any variable on any
right-hand side.

Definition 6.92. Let h: N x N — N be the function satisfying the following
recursive definition:

E-(n+1) ifm=0
h(m,n) =< E-h(m —1,0) ifm>0andn=0
E-h(m—-1,n)+FE-m-h(E-m,n—1) otherwise

The next two lemmata estimate the size ‘IDP(R),R(t” of the interpretation
Ipp(r),r(t) in the size of ¢ and dh(t, —r).

Lemma 6.93. The following properties of h hold:
1. The function h is well-defined and strictly monotone in each argument.
2. For all m, n, we have E < h(m,n).

3. For any term t, we have |Ipp(r)r (t)| < h(|t], dh(t,—R)).
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Proof. Properties 1 and 2 are obvious, so we only show Property 3. We proceed
by induction on the lexicographic order over the pair (dh(t, —x),|[t]). If t is a
variable, then |t| = 1 and dh(¢, ) = 0. We have

| Zopr) R ()] = 1 < E? = A(1,0)

so Property 3 follows in this case. If ¢ has the shape f(t1,...,t,) with ¢ €
UTR(DP(R)), then

Zopr)R(H)] =1+ Z\IDP

<1+ Z h(|ts], dh(t;, —r))
i=1
<1+ A-h(|t| —1,dh(t,—Rr))
< E-h(|t] — 1,dh(t, —Rr))
< h(|t], dh(t, —R)) .
Property 3 follows. Here we applied the induction hypothesis n times in the

second line. Now assume that ¢ has the shape f(t1,...,t,), t ¢ UTR(DP(R)),
and dh(t,—x) = 0. Then we have

Topr)R(t) = c(f (Zopr),R(t1); - - - Top(r).R (tn)), nil)
and hence, in analogy to the previous case,

Zop(r),R ()] = 3+Z\IDP R)R (L)
=1

+ A-h(|t] — 1,dh(t, —Rr))

<3
< h([t],dh(t,—Rr)) .

Again, Property 3 follows. Finally, we consider the case where ¢ has the shape
f(t1,...,tp) with t ¢ UTR(DP(R)) and dh(¢, —%) > 0. We obtain

| Zop(r R(t)|

=924 Z|IDP ti)| + lorder({Zppr)r(w) | t == u})l

<2+ Z|IDP )+ 14 B[t - (1 +max{|Zpp(r)r (v)| | t =R u})

3+ A “h([t| = 1,dh(t,=R)) + B [t|- (1 + h(C - |t| + C,dh(t, —=x) — 1))
E-h(|t| — 1,dh(t, =) + E - |t| - h(E - |t|,dh(t, =) — 1)
h([t], dh(t, —=)) -

N IN

In the third line we use the fact that any term ¢ has at most B - |t| many
reducts. In the fourth line, we apply the induction hypothesis and the fact that
lu| < C - t| + C whenever t =5 u. O
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Lemma 6.94. There exists some d € N such that for all m,n € N, we have
h(m,n) < 924 (mant)

Proof. First, we show by induction on the lexicographic order over (n,m) that
h‘(m7 n) < (E (m+ 1))(m+1).E2‘”+1' For m = 07 we have h(07 n) = F < EEznle‘
If m > 0 and n = 0, then

h(m,0) = E-h(m—1,0)< E-(E-m)™F <(E-(m+1))m+)E

Here we applied the induction hypothesis in the first inequality. Finally, we
consider the case that m,n > 0:

h(m,n)=E-h(m—1,n)+E-n-h(E-m,n—1)
<(E-(m+ )™ E" 4 (B (m 4 1)) 2 )BT
1

(B (m A )P S (B (o 1)) PR O

(B 1))
< (E - (m + 1)) 0Bt

Here we applied the induction hypothesis twice in the second line.
It is easy to see that for suitable d we have (E - (n + 1))FD-E*" <

924D s the lemma follows. O

Notation 6.95. For the remainder of this section, let d be the minimum num-

ber such that h(m,n) < 227" o1 all myn € N. We set H(m,n) =

227" e define G N — N, based on the mapping g, as follows:

G(m) = g(1+ A~ H(m, (A+ 1)@ C+" Hmim))
Lemma 6.96. We have dh(t, “pp(r)/—=) < GI(1).

Proof. We show the lemma by induction on #!. If t! = ¢ is a variable, the lemma
is trivial since dh(#f, ;DP(R)/_}R) =0, but G(1) > 0. Now we assume the case
where ¢! has the shape fH(ty,...,t,). Obviously, there exist no rule [ — r € R
and substitutions ¢ and 7 such that t*o —% I7, hence t* € UTg(DP(R)). Due
to Definition 2.59 in conjunction with Lemma 6.93 there exists some 1 <7 < n
such that

| Zop(r) R ()] < 14 A-h([t:], dh(ti, %)) -

By Corollary 6.79, we have

dh(ed, = ya——
dh(t;, ) < (A+ 1)FCH2T TR

Combining this with Lemma 6.94, we obtain

dn(ef, = /e )42
h(|ts], dh(ti, —r)) < H([ti], (A + 1)@+ )y
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6.9 Usable Rules: an Upper Complexity Bound

As mentioned above, any DP(R)UR-derivation starting from t* can be trans-
formed into a DP(R) U URR (DP(R)) U Cc-derivation starting from Zpp(g)r (t)-
Thus, we also have dh(#!, i>Dp(R)/—>R) < g(|IDp(R)7R(tﬁ)\). In sum we obtain:

dh(t*, Sppir)/—r) < 9(Zop(r) = (1))
< g(1 4 A-h(|t;], dh(t;, —x)))

dn(e?, = JR I
(1 A H(Jt], (A 1)@ O k)

G(max{[ti],dh(t}, Spp(r)/—R)}) -

NN
Q

It is easy to verify that |t;] < Gl4l(1) < GI=1(1). Moreover, by induction
hypothesis, we have dh(tg,;Dp(R)/—VR) < Gl(1) < GIM=1(1). From this the
lemma follows. O]

Now we are ready to show the main theorem of this section, Theorem 6.90:

Theorem. Let R be a TRS whose termination is shown via Theorem 6.63
using a proof tree PT, and let @5'% ) be the label of every edge starting from
the root of PT. Moreover, let g: N — N be a strictly monotone function such

that (%=, >) induces complezity {g}. Then we have
der(n) < G"TLH(1)
for some function G which is elementary in g.

Proof. Let G be the homonymous function defined throughout the course of
this section. By Corollary 6.79 and the definition of G, for every term ¢, it
follows that

It is easy to verify that || < G(1). Moreover, by Lemma 6.96, we have
dh(#, Sppr)/—r) < G!*(1). Thus, the theorem follows. O

Given a reduction pair (=,>) such that Theorem 6.63 using the reduction
pair processor (I)F:k) can only prove termination of TRSs whose derivational
complexity is bounded by some function g, Theorem 6.90 asserts that the deriva-
tional complexity whose termination can be proved by Theorem 6.86 using a
usable rules processor of the shape @5??# is bounded (roughly) by the itera-
tion of g. Moreover, Examples 6.87 and 6.89 illustrate that this upper bound
can indeed be reached.

For instance, if the reduction pair (3=, >) is based on a polynomial interpre-
tation, then g is bounded by an elementary function, and hence, Theorem 6.86
using @5?(%}) can only prove termination of TRSs whose derivational complex-
ity is bounded by a superexponential function. As another example, if (=, >)
is based on a LPO, then both g and the iteration of g are bounded by multiply

recursive functions.
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6.10 Experiments

In this section, we report on experiments indicating what portion of the proofs
produced by modern automatic termination provers are covered by the results
of this chapter. To this end, we have employed version 1.07 of the automatic
termination prover TyTy by Korp, Sternagel, Zankl, and Middeldorp [64], which
has been (and still is) the second most powerful, and by far the fastest tool in
the standard TRS category of the annual international termination competition
for several years. As in Section 5.5, we used version 8.0 of the TPDB. However,
in contrast to Section 5.5, we experiment with a termination prover rather than
complexity provers in this section, hence we did not exclude duplicating TRSs
from our tests. The resulting testbed contains a total of 3070 TRSs. Moreover,
for the same reason, we did not ignore strategy annotations in the input files
when feeding them to TTTo.

Our tests are based on the T7Ty termination competition strategy for stan-
dard termination of TRSs. We compare the performance of T1T5 on the selected
testbed for the competition strategy of T7Ty (which we call COMP) and restric-
tions of this strategy such that only techniques covered by the main theorems
of this chapter are used. In all restricted strategies, we kept all techniques
for creating reduction orders and reduction pairs used by TTs intact: polyno-
mial interpretations, matrix interpretations, arctic interpretations, LPOs, and
KBOs. By the results listed in Chapter 4, all reduction orders and reduction
pairs based on these techniques induce multiply recursive complexity. In order
to make TTy satisfy the assumptions of Theorem 6.9, we removed everything
from the COMP strategy except all applications of reduction pairs, dependency
graph and subterm criterion processors, and Theorem 2.44 (we call this strat-
egy MREC). Another strategy (DG) further removes all applications of subterm
criterion processors from the strategy, and restricts all applications of reduction
pair processors to completely solve the DP problems they are applied to. This
corresponds to the assumptions of Theorem 6.40. A further restriction of DG
(which we call DP) eliminates all applications of dependency graph processors
in the strategy. This conforms to the assumptions of Theorem 6.66. Next, we
extend DP to allow the reduction pair processors to only consider the usable
rules of the given DP problem. This strategy (which we name UR) corresponds
to the assumptions of Theorem 6.90. Finally, we extend MREC by allowing
some preprocessing steps in COMP (before the application of Theorem 2.44)
where other known results about upper bounds on the derivational complexity
of TRSs are applied. This final strategy (which is more liberal than MREC,
but more restricted than COMP) is called TOTAL. In particular, TOTAL al-
lows uncurrying of applicative systems (which preserves and reflects derivational
complexity modulo a constant factor by the results of [114]), removal of rules by
proving relative termination based on a reduction order (using [51], it follows
that the derivational complexity of a TRS is primitive recursive in the complex-
ity induced by the employed reduction order, and the derivational complexity of
the remaining TRS), and direct termination proofs by match-bounds (which as-
sert linear upper complexity bounds by Theorem 4.57). Techniques considered
by TOTAL, but not by COMP, are RFC-match-bounds (a more sophisticated
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6.10 Experiments

# termination proofs | avg. succ. time
COMP 1402 4.263
DP 564 2.264
UR 605 2.134
DG 691 2.805
MREC 1041 3.223
TOTAL 1250 4.405

Table 6.1: The power of various termination theorems in the dependency
pair framework whose corresponding complexity bounds have been
analysed

version of the techniques described in Section 4.4), semantic labeling (see [116])
with very simple models, a more complex way of applying uncurrying, and
applications of usable rules processor which are more liberal than allowed by
Theorem 6.90.

Akin to the tests of Section 5.5, all tests were executed on a server equipped
with 8 AMD Opteron™ 2.8 GHz dual core processors with 64GB of RAM. We
used a timeout of 60 seconds for each strategy and TRS. The results of the tests
are shown in Table 6.1'. The times given in the table are seconds.

By design, COMP is the most powerful termination proving strategy in this
experiment, since all other strategies are essentially restrictions of COMP. Also,
it does not come as a surprise that TOTAL is the second most powerful of
the considered strategies: out of all strategies which consider only termination
proof techniques whose applicability guarantees a multiply recursive complexity
bound, it includes the highest number of techniques. Finally, note that the
ranking of the remaining strategies (MREC, DG, UR, and DP) is in line with
the respective complexity bounds shown in Chapter 6.

The experimental results show how far-reaching this chapter’s theorems are
in the context of the current state of automatic termination analysis. Out of the
systems whose termination can be proved by Tyly using its termination com-
petition strategy, about 89% have a derivational complexity function which is
provably bounded multiply recursively (or by an even tighter bound, depending
on the used termination proof), using the current knowledge we have about up-
per bounds on the derivational complexity of TRSs (encoded into the TOTAL
strategy). For 74% of the systems handled by TyTp, even Theorem 6.9 in com-
bination with all knowledge we currently have about the complexity induced by
reduction pairs suffices, see the results for the strategy MREC. Even the weaker
theorems of Chapter 6 (Theorems 6.40, 6.90, and 6.66) are still applicable to
about half of those TRS, as shown by the results for the strategies DG, UR,
and DP.

The high number of TRSs successfully handled by the TOTAL and MREC
strategies (relative to the number of systems handled by COMP) confirms the

!See http://cl-informatik.uibk.ac.at/users/aschnabl/experiments/thesis/mrec/ for
the full experimental evidence, the testbed, and the used strategies.
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presumption that the DP processors considered in Theorem 6.9 are not only
the most fundamental, but also the most important ones. Moreover, note that
the way Theorem 6.9 was proved in Section 6.3 above exhibited that the ter-
mination proofs considered in the assumptions of Theorem 6.9 are essentially
the lexicographic combination of a number of (individually) rather simple well-
foundedness arguments. The experimental results fortify the idea that this
might be the case for more (if not all currently known and automated) DP
processors.

6.11 Conclusion

In this chapter, we have investigated the derivational complexity of TRSs whose
termination can be proved by various restrictions of the dependency pair frame-
work, cf. Theorems 6.3, 6.37, 6.63, and 6.86.

We have established the following results: firstly, if finiteness of the initial
DP problem (DP(R),R) based on a TRS R is proved using reduction pairs
which induce multiply recursive complexity, dependency graphs, and applica-
tions of the subterm criterion in an arbitrary combination, then the derivational
complexity of R is bounded by a multiply recursive function, cf. Theorem 6.9.
Secondly, if finiteness of (DP(R), R) is proved by a reduction pair for each SCC
of (a sound approximation of) its dependency graph, then the derivational com-
plexity of R is bounded primitive recursively in the complexity induced by the
“worst” of the used reduction pairs. Thirdly, if finiteness of (DP(R),R) can
be proved by a single reduction pair, then the derivational complexity of R is
bounded double exponentially in the complexity induced by the reduction pair.
This upper bound can be improved to a single exponential one if R is a SRS.
Finally, if finiteness of (DP(R),R) can be proved by a single reduction pair
employing the usable rules refinement, then the derivational complexity of R is
bounded by the iteration of a function which is elementary in the complexity
induced by the reduction pair (this is still primitive recursive in the complexity
induced by the reduction pair). For all of these results, we have presented ex-
amples which show that the stated upper bounds on the derivational complexity
of the considered TRS are essentially optimal.

We have chosen to present our results in terms of derivational complexity as
this simplifies the comparison to well-known results in this area. However, as
mentioned in Chapter 1, derivational complexity is not the only measure of the
complexity of a TRS suggested in the literature. Still, our results can be easily
extended to runtime complexity, and yield upper bounds on the complexity of
computing the function encoded by the considered TRS on a Turing Machine.
By definition of derivational and runtime complexity, it is immediate that all
upper bound results hold as well if we would study the runtime complexity
of a TRS. Furthermore, the runtime complexity of a TRS is an invariant cost
model [19] and thus it is straightforward to rephrase our results in terms of
the complexity of the function computed by the TRS in question. Let f be
a function computable by a TRS R and let g denote a bounding function
that grows at least linearly. Suppose the runtime complexity of R is bounded
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by g(n). Then there exists a Turing machine running in time polynomial in
g(n) that computes f [6]. Thus our results also characterise the complexity of
functions computed by rewrite systems, whose termination has been shown by
the dependency pair method together with natural refinements.

From the original viewpoint of derivational complexity analysis, as an analysis
of the strength of termination methods, the implications of our results are easy
to state. For example, our results imply that the technically simple refinement
of the basic dependency pair method by dependency graphs greatly increases the
strength of the method. On the other hand, our results also provide limitations
on the strength of the studied techniques.

Example 6.97. Consider the following TRS Rtou, which was introduced by
Touzet in [105].

s(b()) = b(s(s(s(x))))  s(u(xz)) = s(s(x))  s(b(s(x))) = b(t(x))
b(u(z)) — b(s(x)) t(b(x)) = b(s(x)) t(s(x)) = t(t(x))
t(b(s(x))) — u(t(b(z))) t(u(x)) = u(t(z))

As shown in [105], this TRS encodes the Ackermann function. Therefore, its
derivational complexity is not a primitive recursive function.

Our results imply that any successful termination proof of Rte, has to em-
ploy techniques that go beyond the basic dependency pair method and simple
refinements such as argument filterings, dependency graphs, and usable rules.
Very recently, Sternagel and Middeldorp presented in [101] an automatic ter-
mination proof of Ryo,. Based on our work it is indeed no surprise that crucial
ingredients of this proof are a proof tree of nontrivial depth and reduction pair
or usable rules processors which do not completely solve the DP problems they
are applied to. The TRSs shown in the next example make this point even
clearer.

Example 6.98. Consider the following TRS Rper, which was introduced by
Dershowitz in [21]:

h(z,e(z)) — h(c(x),d(z,xz))
d(z,g(0,0)) — e(0)
d(z,g(7,y)) — gle(r),d(z,y))
d(c(2), g(g(2,9),0)) — g(d(c(2), g(x, y)), d(2, g(z. y)))

gle(z),e(y)) — e(g(z,y))

A variant of Rper, which has been presented in [23], for instance, is the following
TRS Rper:

h(e(z),y) — h(d(z,y),s(y))
d(g(0,2),y) — e(x)
d(g(z,y),2) — g(d(z,2),e(y))
d(g(g(0,2),y),0) — e(y)
d(g(g(0,2),y),s(2)) — g(e(z),d(g(g(0, ), ), 2))
ge(x),e(y)) — e(g(z, y)
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It has been shown in [23] that Rper faithfully simulates the Battle between
Hercules and the Hydra (cf. [59]), and hence, the derivational complexity of
Rperz grows far faster than any multiply recursive function, and termination
of Rper> can not be proved in Peano arithmetic. The related TRS Rpe, has
been used as a problem for the international termination competition. While it
has been noted in [23] that due to a mistake, Rpe, does not faithfully simulate
the Hydra Battle in all cases, no automatic termination prover could affirm
termination of Rper. However, manually created termination proofs of both
Rper and Rperp have been exhibited in [23, 78].

Another related TRS we would like to mention is the following TRS Rtou2
by Touzet, taken from [106]:

o(z) — o(](x))
o(J(x)) — [(e(e(x))) H(0,z) — o(x)
o(H(H(0,1),2)) = ¢! (y, 2) o(H(H(H(0,),y),2)) = (2,9, 2)
o(c(z,y)) = c'(z, H(z,y)) o((2,y,2)) = (x,H(z,y), 2)
My, 2) = o(2) A (z,y,2) = o(H(y, 2))
[(o(x)) = o([(z)) o(z) >

It has been shown in [106] that Ryo,p faithfully simulates the Hydra Battle for
Hydrae up to a certain depth. Consequently [106, Corollary 1], the derivational
complexity of Rrouo is not multiply recursive. A manually created termination
proof of Ryoy2 is given in [106].

It follows from our results that it is theoretically impossible to give termina-
tion proofs of Rperp and Rou2 (and probably of Rper, as well) by any of the
termination theorems discussed in this chapter. This conclusion extends to any
other proof trees for which a result similar to Theorem 6.9 can be shown.

However, we have only analysed a few of the currently known DP processors
(though arguably the fundamental, and as demonstrated in Section 6.10 above,
the most important ones), and for one class of these processors (the usable rules
processors), only a very basic way of applying them in termination proofs was
considered. It remains open how far our results extend to termination proofs
by proof trees which are not captured by the theorems analysed in this chapter.

To the author’s best knowledge, all reduction pairs currently used in modern
automatic termination provers such as AProVE or Tyl induce multiply recur-
sive complexity. Moreover, we have seen in our analysis in this chapter that the
analysed DP processors essentially rely on rather simple termination arguments
which are then combined by iteration (as shown in the analysis of the usable
rules processor, where the length of a derivation starting from an “unusable
term” t is essentially bounded by the combined lengths of at most |¢| deriva-
tions starting from “usable terms”) or lexicographically (as in the termination
argument underlying the joining of DP processors into a proof tree, which is
illustrated by the order 1 on the range of the norm function). Other existing
DP processors (see [103], for instance) do not seem fundamentally different in
that regard. For instance, consider usable rules processors without the restric-
tions imposed in the assumptions of Theorem 6.90. Even though Example 6.85
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demonstrates that usable rules processors cannot be directly integrated into
the proof scheme we built in Section 6.3, these processors still conceptually
follow the just outlined principles of lexicographic combination and iteration
(note that the dependency pairs based on the rules ignored by a usable rules
processor are still considered elsewhere in the proof tree).

It would not at all appear as a surprise to us if the following held true:

Conjecture 6.99. Let R be a TRS whose termination can be proved in the DP
framework using any proof tree which can be currently (at the time of the sub-
mission of this thesis) be obtained automatically by a termination prover. Then
the derivational complexity of R is bounded by a multiply recursive function.

Should this conjecture be true, then for instance, none of the existing au-
tomated termination proof techniques would in theory be powerful enough to
prove termination of Rper2, Rtou2, possibly Rper, any other term rewriting
formalisations of the Hydra Battle, and finally any TRS whose derivational
complexity can not be bounded by any multiply recursive function.
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Chapter 7

Tyrolean Complexity Tool

He who loves practise without
theory is like the sailor who boards
ship without a rudder and
compass and never knows where
he may cast.

Leonardo da Vinci

In this chapter, we describe the Tyrolean Complexity Tool (T¢T for short),
which has been developed jointly by Martin Avanzini, Georg Moser, and the
author of this thesis. It is a tool for automatically proving upper bounds on
the derivational, innermost derivational, runtime, and innermost runtime com-
plexity of TRSs, specialised to polynomial upper bounds. In order to derive
these upper bounds, T¢cT uses a set of suitably restricted termination proof tech-
niques. In particular, the techniques described in this thesis which can be used
to infer polynomial upper bounds on the derivational complexity of TRSs are
implemented in TcT. The tool is available online at

http://cl-informatik.uibk.ac.at/software/tct/ .

The current release version of T¢T is 1.8, therefore all information in this chapter
pertains to version 1.8 of T¢T. It is the fully revamped successor of the tool Tcly,
which is an automatic complexity prover built upon the termination prover T1To
(see [64]). TcT is free software! and licensed under the GNU Lesser General

Public License?.

7.1 General Design

The tool TcT is fully written in Haskell, and consists of approximately 16,000
lines of code. About 18% of that code is devoted to encoding various con-
straints imposed by the proof techniques, such as monotonicity of the interpre-
tation functions in a well-founded or weakly monotone algebra, or compatibility

'Here, the term “free software” is understood as defined by the Free Software Foundation at
http://wuw.gnu.org/philosophy/free-sw.html.

2See http://www.gnu.org/licenses/1gpl.html for the text of the license, and http: //www.
gnu.org/licenses/gpl.html for the text of the GNU General Public License, which the
text of the GNU Lesser General Public License refers to.

3http://www.haskell.org
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7 Tyrolean Complexity Tool

of a reduction order with a given TRS, into satisfiability problems in proposi-
tional logic (SAT). A further 17% provides functionality for handling terms and
rewriting. For the actual termination and complexity proof techniques, 38% of
the code is used. The final 27% of the code deals with the control flow of
the program, provides facilities for input, output, and parallel proof attempts,
and establishes convenient general interfaces for the proof techniques. All the
functionality described above is divided into the following packages:

parfold: This small package provides a basic parallelism interface, which allows
the tool to conveniently try out multiple proof techniques for a given TRS
in parallel.

glogic: This package implements fundamental functionality for handling for-
mulae in propositional logic. Moreover, it provides a convenient interface
for creating propositional formulae from constraints over domains such as

N or A.

termlib: This package serves the data structures and functionality for handling
terms, TRSs, and rewrite steps. This is also where the most important
input routines (the parsing of a TRS, from a file in either a plain text or
an XML format) are defined.

tct: This is the main package, and it holds the largest portion of the code of
TcT. It contains the implementation of all proof techniques which are used
by the tool for inferring upper complexity bounds.

Moreover, it contains the encodings of strategies, processors, and proofs.
Here, strategies are essentially directives which dictate which techniques
should be used in what order for proving a complexity bound on the con-
sidered TRS. Processors are essentially executable version of basic com-
plexity proof techniques. Conceptually (but not always factually), they
are comparable to the equally named DP processors from the dependency
pair framework. Finally, proofs are created when processors are success-
fully applied. They contain all necessary information for reconstructing a
successful series of applications of processors.

This package contains the most important output routines of TcT, since
proofs form the main object of its output. Furthermore, this main package
includes the routines which govern the main control flow of TcT.

7.2 Usage

TcT can be obtained by either downloading an immediately runnable binary
(compiled for 32-bit GNU/Linux), or compiling its source code using Haskell’s
cabal? package manager. Both the binary and the source code are available
from the website of TcT, which is listed above. The tool is invoked in the
following way:

$ ./tct <option>* <file>

“http://www.haskell.org/cabal/
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Here every instance of <option> should be a command line flag, and <file>
should point to a file containing the TRS which T¢T should consider. The TRS
can be given in either the plain text format or the XML format used for the
annual international termination competition®. Invoking

$ ./tct --help

produces a list of available command line flags. In the following, we focus on
the flags -a <kind>, -s <strategy>, and -S <file>, which directly influence
how TcT searches for a proof. The flag ~a <kind> specifies whether TcT should
find an upper bound on the derivational complexity, the innermost derivational
complexity, the runtime complexity, or the innermost runtime complexity of
the given TRS. This is indicated by the values dc, idc, rc, or irc of <kind>,
respectively. The same information can also be given in the input file; if it is
given both in the -a flag and the input file, then the information given by the -a
flag takes priority. Alternatively, <kind> may take the values dc!, idc!, rc!,
and irc!, which make TcT throw an error and exit in the case that the -a flag
and the information given in the input file conflict. The flags -s <strategy>
and -S <file> specify the strategy TcT should use when trying to prove a
complexity bound for the given TRS. A strategy is written as a string, which
can either be given directly as an argument to the -s flag, or be contained in
a file which is specified by the argument of the -S flag. A strategy is defined
by giving the name of a processor, followed by lists of optional and positional
arguments for that processor, i.e., a strategy is specified in the following way:

<name> <optarg>* <posarg>*

The number and types of optional and positional arguments are specific to
the particular processor. The types of arguments can be (depending on the
respective processor) natural numbers, strings from a given enumeration, (sub-
)strategies, Booleans (denoted as On or 0ff), a list of any of those types, or
the option type associated with any of those types (i.e. either none or any
value from the given type, which is mapped to the Maybe data type of Haskell).
Every processor has a fixed list of types of positional arguments it takes. Every
instance of <posarg> consists of exactly a value of the type demanded in the
respective position, setting that positional argument to the given value. Every
processor also has a list of optional arguments it may take, each given by an
identifier, a type, and a default value of that type. Every instance of <optarg>
has the shape <ident> <value>, where <ident> is an identifier of an optional
argument, and <value> is a value of that argument’s type. For each optional
argument of a processor, if an instance of <optarg> using its identifier <ident>
is given, then it is set to the corresponding <value>. Otherwise, it is set to its
default value. A list of processors and the optional and positional arguments
taken by them is available through the -1 option of TcT. Finally, any substrategy
<strat> can be given a timeout (after which it aborts and gives up) of n seconds
by writing [n] <strat>.

5The plain text TRS format is given at http://www.lri.fr/~marche/tpdb/format.html,
and the XML format is available at http://www.termination-portal.org/wiki/XTC_
Format_Specification.
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Example 7.1. The processor poly of TcT, which is used for finding polynomial
interpretations, takes no positional arguments. However, it takes the following
optional arguments:

e The argument :kind fixes the subclass of polynomial interpretations that
should be applied. Its range of values is the enumeration of strings
stronglylinear, linear, simple, simplemixed, and quadratic. Here,
the values stronglylinear and linear refer to strongly linear and lin-
ear interpretations as in Definition 4.5, respectively. The values simple,
simplemixed, and quadratic refer to other shapes of polynomial inter-
pretations (see [100]), which use polynomials of higher degree. The default
value is stronglylinear.

e The argument :bound, whose range of values is the set of natural numbers,
specifies an upper bound on all coefficients occurring in the interpretation
functions of a produced polynomial interpretation. Internally, a suitable
polynomial interpretation is found by encoding the constraints for mono-
tonicity of the interpretation functions and compatibility of the given TRS
with the resulting reduction order into a satisfiability problem in proposi-
tional logic using an encoding along the lines of what is described in [30],
also compare [27] for a similar encoding for matrix interpretations. Due
to this encoding, it is necessary to fix an upper bound on the coefficients
a priori. The default value of :bound is 3.

e The argument :bits, whose range is the option type associated with the
natural numbers, plays a similar role as the :bound argument. Its default
value is none. If it is not set to none, i.e., it is set to some natural number
n, then it overwrites the value of :bound by 2" — 1. In other words, it
provides an easy way for setting the range of the values of coefficients of
the searched interpretation to “whatever can be expressed by n bits”.

e The argument :cbits, whose range is the option type associated with
natural numbers, provides a more implicit upper bound on the coefficients
in the produced interpretation. If it is not set to none, it restricts the
number of bits used in any coefficient occurring in [a]4(t) for any term ¢
such that ¢t <[ or ¢t < r for some rule [ — 7 in the considered TRS. The
default value of :cbits is none.

e The argument :uargs determines whether the usable arguments refine-
ment, an optimisation of polynomial (and matrix) interpretations for run-
time complexity analysis (see [46]), should be used if applicable. It ranges
over the Booleans, and its default value is On.

Then, for instance, the strategy poly :bits 5 :uargs 0ff tries to find a
strongly linear interpretation whose interpretation functions do not contain any
coefficients larger than 31. There are no additional constraints on the values of
the coefficients, and the usable arguments refinement is not used, even if it is
applicable.
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7.2 Usage

Other processors in TcT for direct proofs include matrix and bounds for ma-
trix interpretations and match-bounds, respectively. Two more processors we
would like to mention here are fastest and best, because they allow more
than just a single strategy to be applied to the given TRS. Both of these pro-
cessors take a list of strategies as their only positional argument, and no op-
tional arguments. This list of strategies is executed in parallel. The processor
fastest then waits for the first of these strategies which successfully produces
a proof, and returns it. On the other hand, the processor best waits until all
substrategies finish running, and finally returns the best result given by them
(i.e. the lowest successfully inferred complexity bound). Finally, we mention the
strategy if <strategy> then <strategy> else <strategy>, whose syntax,
as can be seen, differs from the general syntax given above. It first applies the
substrategy given to the if, which is typically a check for a simple syntactic
property of the current problem. If it is successful, then the substrategy next to
the then is applied subsequently. Otherwise, the substrategy next to the else
is used.

The output of T¢T is divided into two parts. The first line gives a short
summary of the result produced by TcT. It is either YES(?,X), for some class of
functions X, or it is MAYBE, NO, or ERROR. Here YES(?,X) means that TcT could
successfully prove that the class of functions X is an upper complexity bound
for the TRS under consideration. In the place of the ’?’, a lower bound (if
available) should be output according to the semantics fixed by the complexity
division of the termination competition®. However, no techniques for proving
lower complexity bounds for TRSs are implemented in TcT yet. The answer
MAYBE means that the given strategy has been exhausted, but no proof of a
complexity bound could be found. The answer NO is currently only given when
the processor fail is explicitly called in the given strategy. Finally, ERROR
indicates that some unexpected error occurred while TcT was running.

The second part of the output given by TcT is devoted to substantiating the
initial answer unless the verbosity of TcT is set to the minimum via the -v
flag. If the initial answer was YES(?,X), then the details of the proof, and
possibly some information about decisions made by the strategy (depending on
the verbosity level set via the -v flag) are given. If the initial answer was MAYBE
or NO, then details of the proof attempt, and (if existing) the part of the proof
that was successfully constructed are given. Finally, if an ERROR was shown,
then the second part of the output provides some more concrete information
about the error which occurred.

Example 7.2. Consider the call of TcT shown in Figure 7.1. In this call, we
try to obtain a bound on the derivational complexity (this is expressed by the
flag —a dc) of the TRS contained in the file TRS/SK90/2.11.trs (this is a TRS
from the TPDB, which can be obtained from the termination competition web-
site), which defines addition and subtraction of natural numbers in unary no-
tation. The strategy fastest (matrix :dim 1) (matrix :dim 2) (matrix
:dim 3) (matrix :dim 4) tells TcT to try using matrix interpretations in or-
der to prove a complexity bound. Short of :dim, no optional arguments are

See http://www.termination-portal.org/wiki/Complexity:Rules
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given to any of the matrix processors, so mostly the default way of applying
the matrix processor is chosen (also see the information given by ./tct -1,
or, more specifically, by ./tct -1 matrix): TcT tries to apply Corollary 5.44
in order to infer complexity bounds, and the matrix entries in the interpre-
tation function may not be greater than 3. Moreover, the dimension of the
matrix interpretation should be between 1 and 4, and interpretations of all four
dimensions should be searched in parallel.

From the first line of the given answer (YES(?,0(n"2))), we can see that
TcT managed to prove that the derivational complexity of the given TRS is
bounded by a polynomial of degree 2. Below, we can see a review of the proof
obligation, and the details of the proof that led to the quadratic bound. The
found matrix interpretation is defined by giving its interpretation functions.
This interpretation has dimension 2, so the second of the four substrategies
given to the fastest processor was the first to produce a complexity bound.
Due to the nature of the fastest processor, it is in principle unknown which
of the other three substrategies would have produced a result, and whether
the resulting complexity bound would have been tighter than the quadratic one
given here. It is straightforward to check that the interpretation also satisfies all
demands made by the other (default-valued) arguments of the matrix processor:
the set of matrices used in the interpretation does not satisfy the property
EDA, and only 0, 1, 2, and 3 are used as matrix entries. However, note that
incidentally, this interpretation is also a triangular matrix interpretation, so in
this case, Theorem 5.5 would yield the same complexity bound as Corollary 5.44.

7.3 Specific Implementation Details

In this section, we discuss some implementation details of TcT for two of its
most important direct termination and complexity proof techniques: polyno-
mial interpretations and matrix interpretations. As mentioned above, suitable
interpretations are found by using a SAT encoding. We now discuss this ap-
proach, and some peculiarities, of TcT in more detail.

When T¢T searches for a polynomial or matrix interpretation, in a first step,
the general shape of the interpretation is fixed. This is in accordance with the
method for automatically finding polynomial interpretations described in [16].
For polynomial interpretations, the shape is fixed by the :kind argument for
the corresponding processor in TcT. On the other hand, the shape of matrix
interpretations in TcT is always the linear one exhibited in Definition 4.14. All
coefficients of the polynomials (respectively, all matrix entries) are represented
by existentially quantified variables. If the range of potential values of some
variable is known to be restricted to a single value (this is the case for the
zeroes in triangular matrices), then this variable is never created; instead, that
single value is immediately inserted in its place. Moreover, some values (such
as the coefficients of a strongly linear interpretation, or the main diagonal of a
triangular matrix) are known to be restricted to be at most 1. These variables
are then annotated with this restriction, which simplifies the SAT encoding
later on. Let A be a polynomial or matrix interpretation whose coefficients (or
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$ ./tct -a dc -s "fastest (matrix :dim 1) (matrix :dim 2) (matrix \
:dim 3) (matrix :dim 4)" TRS/SK90/2.11.trs
YES(?,0(n"2))

We consider the following Problem:

Strict Trs:
{ -G&), sy)) -> -(x, y)
, —(x, 00)) -> x
, —(00O, y) -> 00
, t(s(x), y) -> s(+(x, y))
, +(00), y) -> y}
StartTerms: all
Strategy: none

Certificate: YES(?7,0(n"2))
Proof:

We have the following EDA-non-satisfying matrix interpretation:
Interpretation Functions:

o) = [o0]
[0]
+(x1, x2) = [1 3] x1 + [1 0] x2 + [1]
[0 1] [0 1] [o]
s(x1) = [1 0] x1 + [o0]
[0 1] [1]
-(x1, x2) = [1 1] x1 + [1 0] x2 + [3]
[0 1] [0 0] [0]

Hurray, we answered YES(?7,0(n"2))

Figure 7.1: Sample input and output

matrix entries) are kept abstract as just described, and let X be the set of all
such variables occurring in A.

In order to make Theorem 4.15 (respectively, Theorem 4.6), and hence The-
orem 4.19 or 5.5, or Corollary 5.44 or 5.46 (respectively, Theorem 4.10, 4.11,
or 4.12) applicable, generally two sets of constraints need to be satisfied, see [16,
30]. First, all interpretation functions need to be strictly monotone in all ar-
guments in order to make the interpretation a well-founded monotone algebra.
For matrix interpretations, this is ensured by demanding that the upper left
entry of each matrix is at least 1 (compare Theorem 4.15). For polynomial
interpretations, we demand for every function symbol f of arity n, and every
1 < i < n that the polynomial f4(z1,...,z,) contains a monomial a - z;, and
that the constraint a > 1 is satisfied. Other ways to enforce strict monotonicity
of polynomial interpretation functions (which are not yet implemented in T¢cT)
are given by Neurauter et al. in [85].

Second, one needs to make sure that the given TRS is compatible with the
resulting reduction order. This means that for each rule [ — r in the given
TRS, the constraint

o Va [a]4() > [ala(r)
must hold, where > is the order accompanying the considered algebra. If A
is a polynomial interpretation, then [a]4(l) and [a]4(r) are polynomials over
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{a(v) | v € Var(l)} and X. If A is a matrix interpretation of dimension d, then
[a] 4(]) and [a] 4(r) are both vectors of polynomials over {a(v) | v € Var(l)} and
X, so the constraint can be broken down into a list of d polynomial inequalities
in that case. As for instance done in [16], we use the (incomplete) criterion
of absolute positivity in order to solve these inequalities: we demand that for
every power product of variables from {a(v) | v € Var(l)} occurring in [a]4(1)
or [a]4(r), the coefficient of that power product in [a]4(l) is at least as great
as its coefficient in [« 4(r). This leaves a set of Diophantine constraints, i.e. a
set of polynomial inequalities with only existentially quantified variables.

In general, the satisfiability of Diophantine constraints is undecidable [75].
However, putting an upper bound on the values of the variables makes the
problem decidable. This restricted problem is transformed into a satisfiability
problem in propositional logic by essentially performing all arithmetic opera-
tions on the bit-vector level (this approach is known as bit blasting). Examples
for such encodings of this problem in propositional logic can be found in [30, 27].
An alternative approach would be to solve the Diophantine constraints directly,
as described in [16].

In the following, we sketch the propositional logic encoding used by TcT. The
data structure for propositional formulae used in the qlogic package of TcT is
represented by the following grammar:

o=z N\o....o] | \[6,....8] |0 6| 06— ¢|ite(d,0,0)
| maj(¢, ¢, ¢) | odd(¢, 6, ¢) |~ | T | L

Here z is a propositional variable, /\ and \/ are conjunction and disjunction
lifted to arbitrary numbers of arguments, and <>, —, 1, and T are the usual
logical operators for equivalence, implication, contradiction, and tautology, re-
spectively. The semantics of the ternary logical operators ite, maj, and odd are
defined by the following equivalences:

ite(z,y,2) = (—zVy)A(xVz) maj(z,y,z) = (xVy)A(xVz)A(yV=2)
odd(z,y,2) = (xVyVz)A(xV-yV-z)A(-zVyV-z)A(-zV-yVz)

We use these operators in our propositional language (which are more than in
the propositional languages exhibited in [30, 27]) in order to express the logical
constraints created by the encoding of addition and multiplication over natural
numbers more concisely.

Using this structure for propositional formulae, TcT encodes operations over
natural numbers on the propositional level. In order to simulate addition and
multiplication, we use the encoding from [27, Section 7.6], which produces no
overflow on their own (rather, we increase bit widths before additions and mul-
tiplications as needed), and introduces new helper variables in order to avoid an
exorbitant blowup of the formula. Equality and inequality of natural numbers
are essentially encoded according to [30, Section 3].

The number of bits used to encode the variables in the Diophantine con-
straints is given by the :bound and :bits arguments of the poly and matrix
processors. The number of bits for encoding results of additions and multiplica-
tions is determined by computing the maximum possible result of the operation,
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taking into account the maximum possible values of variables (see [30, Section
5]). An additional upper bound on these bit widths may be given by the :cbits
argument of the poly and matrix processors.

In order to solve the resulting satisfiability problem, TcT employs the SAT
solver MiniSat [25]. Since MiniSat expects its input in conjunctive normal form,
TcT transforms the formula into this shape using the Plaisted-Greenbaum ex-
tension of Tseitin’s transformation [90]. In order not to treat equal subformulae
twice, we keep a record of all subresults while performing the transformation.
Moreover, as a further optimisation, while building the logical constraints for a
polynomial or matrix interpretation, TcT keeps them separated into two parts.
The first part consists of simple, globally valid constraints (“side conditions”),
independent of the polarity of the current working context; for instance, this
includes the defining equivalences for fresh variables. The second part is the
actual working constraint. Only after T¢cT finishes building the constraints, it
connects these parts by a conjunction, thus bringing the initial formula closer
to a conjunctive normal form, and hence reducing the number of new variables
introduced by Tseitin’s transformation.

This concludes the high-level description of the way monotonicity and com-
patibility constraints for polynomial and matrix interpretations are handled in
TcT. The issue of ensuring that the resulting reduction order induces polynomial
complexity remains. For strongly linear interpretations and triangular matrix
interpretations, already the shapes of the interpretations certify polynomial
complexity bounds. On the other hand, for matrix interpretations for which
Corollary 5.44 or 5.46 is applicable, the condition EDA (respectively I DAy, for
some specified k& € N) is encoded directly into propositional logic. Here, we
essentially follow the encoding presented in [76, Section 6.1].
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Chapter 8
Conclusion

Now this is not the end. It is not
even the beginning of the end. But
it is, perhaps, the end of the
beginning.

Winston Churchill

In this thesis, we showed that many termination proofs of TRSs can be used to
show not only termination of the respective TRS, but also an upper bound on its
derivational complexity. To that end, we investigated both existing termination
proof methods as used in automatic termination provers, and restricted termi-
nation proof methods specifically crafted for proving low complexity bounds.

In Chapter 3, we set the stage by specifying the hardness of deciding whether
the derivational complexity of a given TRS is bounded by some fixed class of
number-theoretic functions. Unsurprisingly, we found this problem to be highly
undecidable in general. Its exact position in the arithmetical hierarchy is similar
to, but not exactly the same as the position of deciding termination of a given
TRS.

Chapter 4 initiated the theme of determining an upper bound on the deriva-
tional complexity of TRSs such that some specific proof technique may suffice
to establish their termination. In this chapter, we listed a number of well-known
direct termination proof techniques, and the corresponding known complexity
results. This listing illustrated that existing direct termination proof techniques
are already (complexity-wise) well-investigated, motivating us to focus on ter-
mination proof techniques specifically crafted for complexity analysis and the
dependency pair framework for the rest of the thesis.

We discussed the first of these two items, techniques custom-made for deriva-
tional complexity analysis, in Chapter 5. In this chapter, we considered context
dependent interpretations, a variant of polynomial interpretations, and various
restrictions of matrix interpretations. Other than polynomial and matrix in-
terpretations, their counterparts in termination analysis, the reduction orders
and reduction pairs based on these techniques induce polynomial complexity.
Moreover, despite the apparent difference between these techniques, we showed
a connection between two interesting (with respect to mechanisability) sub-
classes of context dependent interpretations and matrix interpretations. Ex-
perimental evidence suggested that some restriction of matrix interpretations
should indeed be one of the main methods for proving polynomial upper bounds
on the derivational complexity of TRSs automatically.
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8 Conclusion

Chapter 6 contains our complexity analysis of the dependency pair frame-
work. We took the, as indicated by our experiments, most important DP pro-
cessors (which are at the same time the most simple and fundamental ones),
and considered termination proofs using various combinations of these proces-
sors. For each of the considered combinations, we gave an upper bound on
the derivational complexity of TRSs whose termination can be proved by it.
Every such upper bound was parametrised only in the complexity induced by
the reduction pairs used for any reduction pair or usable rules processors in the
considered termination proof. These upper bounds showed the gradual increase
of the derivational complexity of TRSs whose termination can be proved when
more termination proof techniques are considered. The by far most significant
such increase is caused by allowing the “relative removal” of dependency pairs
through the use of (reduction pair and subterm criterion) processors which do
not completely solve the DP problems they are applied to. Finally, this chap-
ter showed that a large portion of the TRSs whose termination can currently
be proved terminating by automatic tools can also be proved to have multiply
recursively bounded derivational complexity due to our analysis. Actually, all
things shown in this chapter point toward the conjecture that every TRS whose
termination can currently be proved fully automatically has multiply recursively
bounded derivational complexity.

Finally, in Chapter 7, we described the tool T¢cT, which is an automatic prover
for upper bounds on the derivational, innermost derivational, runtime, or inner-
most runtime complexity of TRSs. It specialises in polynomial bounds, which
is the complexity class generally viewed as feasible (and we view the primary
objective of an automatic complexity prover to be the provision of feasible com-
plexity bounds). In particular, all variants of matrix interpretations described
in Chapter 5 have been implemented in TcT. We gave a general overview of
TcT, demonstrated how to use it, and went more into detail about the imple-
mentation of matrix interpretations (and polynomial interpretations, which are
implemented in a similar way as matrix interpretations).

Of course, this work is still far away from concluding all research on deriva-
tional complexity of term rewriting. Rather, it paved the way for several new
possible avenues of research, of which we would like to point out some. All
methods to obtain upper bounds on the derivational complexity of TRSs we
investigated were based on termination proof techniques. However, the equiva-
lence of deciding these bounds and nontermination in the arithmetical hierarchy
suggests that this might not be the only sensible approach. For instance, an
inference system for the deduction of resource bounds (the considered resource
is not fixed a priori; it may be time, but it may be anything else, too) in a
functional programming language has been described in [56, 55, 54].

Another path for future work is the restriction of existing termination proof
techniques in order to obtain low complexity bounds. In this thesis, we have
discussed such variants of polynomial and matrix interpretations for deriva-
tional complexity analysis, but restricting other termination proof techniques
in a similar way is imaginable, as well. There exist several such results for
complexity measures of term rewriting other than derivational complexity. For
instance, restrictions of MPOs exist for runtime complexity analysis [5] and
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implicit complexity analysis [71]. A restriction of LPOs for exponential upper
bounds on the runtime complexity is described in [4]. A variant of the basic de-
pendency pair method for runtime complexity analysis [44, 45], and a variant of
the dependency pair framework for innermost runtime complexity analysis [87]
exist, as well.

It also remains to check whether Conjecture 6.99 holds true. While Sec-
tion 6.3 provided a complexity bound for the dependency pair framework using
the (as suggested by Section 6.10) most important DP processors, and Sec-
tion 6.11 argued why these results should “morally” extend to other currently
known DP processors, it still has to be shown whether this is indeed the case.
We do not think that it will be possible to do this in the modular manner of
bounding DPcp z in {DPcg s | (Q,S) € ®((P,R))} for each DP processor ®.
This is because of DP processors which prove only finiteness of DP problems,
but not well-foundedness of the underlying relative rewrite relation, such as the
match-bounds (see Example 4.59), subterm criterion, and usable rules proces-
sors (see Example 6.85). Rather, we believe that, as for our simulating TRSs,
the whole termination proof needs to be considered at once, and modularity
can be expressed by something akin to the norm; functions.

The complexity bounds contributed by this thesis were the result of combi-
natorial arguments. It might have merit to try and reconstruct these results
(or further-reaching results) using proof-theoretic means, as done in [12] for
Theorems 4.38 and 4.42. This could also be an alternative way of obtaining
complexity bounds for other DP processors or restrictions of direct termination
proof techniques.

Finally, in this thesis, we focused on upper bounds on the derivational com-
plexity of TRSs. Another field of interest would be to investigate ways of
obtaining lower complexity bounds, i.e. of proving that a certain class of func-
tions is mot an upper complexity bound. First steps in this direction have been
made by Hofbauer and Waldmann [53].
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