
The Derivational Complexity Induced by the

Dependency Pair Method?

Georg Moser and Andreas Schnabl

Institute of Computer Science, University of Innsbruck, Austria
{georg.moser,andreas.schnabl}@uibk.ac.at

Abstract. We study the derivational complexity induced by the (basic)
dependency pair method. Suppose the derivational complexity induced
by a termination method is closed under elementary functions. We show
that the derivational complexity induced by the dependency pair method
based on this termination technique is the same as for the direct tech-
nique. Therefore, the derivational complexity induced by the dependency
pair method based on lexicographic path orders or multiset path orders
is multiple recursive or primitive recursive, respectively. Moreover for
the dependency pair method based on Knuth-Bendix orders, we obtain
that the derivational complexity function is majorised by the Ackermann
function. These characterisations are essentially optimal.

1 Introduction

In order to assess the complexity of a terminating term rewrite system (TRS
for short) it is natural to look at the maximal length of derivation sequences, as
suggested by Hofbauer and Lautemann in [1]. More precisely, the derivational
complexity function with respect to a terminating TRS R relates the length of
the longest derivation sequence to the size of the initial term. For direct termi-
nation methods a considerable number of results establish essentially optimal
upper bounds on the growth rate of the derivational complexity function. See
e.g. [2,3] for recent results in this direction. However, for transformation tech-
niques like semantic labelling [4] or the dependency pair method [5] the situation
changes drastically. Apart from the trivial case of labelling with �nite models,
only partial results are known. With respect to semantic labelling, [6] establishes
bounds on the derivation length of TRS, when natural numbers are used as la-
bels and termination is shown via the Knuth-Bendix order (KBO). And recently
in [7,8] the derivation length induced by the basic dependency pair method is
investigated. Still in both cases only restricted variants of semantic labelling or
the dependency pair method could be analysed, compare [6,7,8].

In this paper we investigate the derivational complexity induced by the ba-
sic dependency pair method based on reasonably strong base orders. Suppose
the class of derivational complexity functions induced by a direct termination
method is closed under elementary functions. Then we show that the derivational

? This research is partly supported by FWF (Austrian Science Fund) project P20133.

complexity induced by the dependency pair method based on this termination
technique is the same as for the direct technique. More precisely we show that
the derivational complexity of a TRS whose termination is established via the
dependency pair method combined with some base order is triple exponential
in the derivational complexity induced by the base order directly. Moreover, we
present an example which shows that at least two of the three exponentials in
our upper bound can actually be reached.

It should be emphasised that the notion of dependency pair method studied
here amounts to the original technique as introduced by Arts and Giesl [5] (see
also [9]). Consider the following TRS R1 taken from [10]:

1: (x × y) × z → x × (y × z) 3 : (x + y) × z → (x × z) + (y × z)
2 : z × (x + f(y)) → g(z, y) × (x + a)

Due to rule 2, termination of R1 cannot be concluded by the lexicographic
path order (LPO), cf. [10]. On the other hand, termination follows easily by the
dependency pair method based on LPO, if we use argument �ltering.

The gist of our result is that for this standard application of the depen-
dency pair method the derivational complexity induced by LPO directly (which
is multiple recursive, cf. [11]) bounds the derivation lengths admitted by the in-
vestigated TRS R1. From this we can conclude that the derivational complexity
function of R1 is multiple recursive. Analogous results hold if we employ the
multiset path order (MPO) or KBO as base order. Moreover the thus obtained
upper bounds are still tight, which essentially follows from the tight characteri-
sation of the derivational complexity by the indicated base orders [12,11,13].

Note the challenges of such an investigation: In order to estimate the deriva-
tion length of R1 we only consider the derivation length induced by the base
order. This implies that we use an upper bound on the maximal number of
dependency pair steps to bound the length of derivations. It remains open to
what extent such a result holds in general, i.e., beyond the basic dependency
pair method. The challenge of such an endeavour is most prominent if we allow
an iterative use of the dependency pair transformation as for example in the
recursive SCC algorithm (see [9]) or the dependency pair framework (see [14]).
It is well-known that two iterations of the recursive SCC algorithm based on
the subterm criterion (see [15]) su�ce to show termination of (the standard for-
mulation of) the Ackermann function. See also [16] for a like minded example.
Clearly in this context a triple exponential function is by far not su�cient to
bound the di�erence between the derivational complexity of the TRS and the
derivational complexity induced by the base method directly.

The rest of this paper is organised as follows. In Section 2 we present basic
notions and starting points of the paper. Section 3 introduces suitable notions
to trace an implicit dependency pair derivation in a given derivation over a
TRS. Our main result is proved in Section 4, while Section 5 presents the above
mentioned example on the lower bound. Finally, we conclude in Section 6.

2 Dependency Pairs

We assume familiarity with the basics of term rewriting, see [17,18]. Below we
recall the bare essentials of the basic dependency pair method as put forward
in [5], but at least nodding acquaintance with [5] or [9] will prove helpful.

Let V denote a countably in�nite set of variables and F a signature. The set
of terms over F and V is denoted by T (F ,V). The (proper) subterm relation is
denoted as E (/). The root symbol (denoted as rt(t)) of a term t is either t itself,
if t ∈ V, or the symbol f , if t = f(t1, . . . , tn). The set of positions Pos(t) of a
term t is de�ned as usual. We write p 6 q (p < q) to denote that p is a (proper)
pre�x of q, and p ‖ q if neither p 6 q nor q 6 p. The subterm of t at position p is
denoted as t|p. We write PosF (t) (PosV(t)) for the set of positions p such that
F (V) contains rt(tp). The size |t| and the depth dp(t) of a term t are de�ned
as usual (e.g., |f(a, x)| = 3 and dp(f(a, x)) = 1). To simplify the exposition, we
often confuse terms and their tree representations. I.e., we call a maximal set of
positions B in a term t such that for no q, q′ ∈ B, we have q ‖ q′, a branch of t.

Let R be a �nite TRS over F . We write →R (or simply →) for the induced
rewrite relation. If we wish to indicate the redex position p and the applied
rewrite rule l → r in a reduction from s to t, we write s →p,l→r t. The set
of de�ned function symbols is denoted as D, while the constructor symbols are
collected in C. The n-fold composition of→ is denoted as→n and the derivation
length of a term s with respect to a �nitely branching, well-founded binary rela-
tion → on terms is de�ned as dl(s,→) := max{n | ∃t s →n t}. The derivational
complexity function of R is de�ned as: dcR(n) = max{dl(t,→R) | |t| 6 n}.

In analogy to dcR we de�ne functions tracing the depth or size. The poten-
tial depth of a term s with respect to → is de�ned as follows: pdp(s,→) :=
max{dp(t) | s →∗ t} and the induced depth growth function (with respect to R)
is de�ned as dpgR(n) := max{pdp(t,→R) | |t| 6 n}. The potential size psz(s,→)
of a term s and the size growth function szgR(n) are de�ned similarly.

We recall the central notions of the dependency pair method, see [5,9]. Let
t be a term. We set t] := t if t ∈ V, and t] := f](t1, . . . , tn) if t = f(t1, . . . , tn).
Here f] is a new n-ary function symbol called dependency pair symbol. For a
signature F , we de�ne F] = F ∪ {f] | f ∈ F}. The set DP(R) of dependency
pairs of a TRS R is de�ned as {l] → u] | l → r ∈ R, u E r, rt(u) ∈ D, l 7 u}.

Proposition 1 ([5,9]). A TRS R is terminating if and only if there exists no

in�nite derivation of the form t]1 →∗
R t]2 →DP(R) t]3 →∗

R . . . such that for all

i > 0, t]i is terminating with respect to R.

Proposition 1 gives rise to the dependency pair complexity function:

DPcR(n) := max{dl(t],→DP(R)/R) | |t| 6 n} ,

where we write →DP(R)/R for →∗
R · →DP(R) · →∗

R, cf. [19]. Now, we �x the
notion of basic dependency pair method. An argument �ltering (for a signature
F) is a mapping π that assigns to every n-ary function symbol f ∈ F an argu-
ment position i ∈ {1, . . . , n} or a (possibly empty) list [i1, . . . , im] of argument

positions with 1 6 i1 < · · · < im 6 n. The signature Fπ consists of all function
symbols f such that π(f) is some list [i1, . . . , im], where in Fπ the arity of f
is m. Every argument �ltering π induces a mapping from T (F ,V) to T (Fπ,V),
also denoted by π:

π(t) =


t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

A reduction pair (&,�) consists of a rewrite preorder & and a compatible well-
founded order � which is closed under substitutions. Here compatibility means
the inclusion & · � · & ⊆ �.
Proposition 2 ([5,9]). A TRS R is terminating if and only if there exist an
argument �ltering π and a reduction pair (&,�) such that π(DP(R)) ⊆ � and
π(R) ⊆ &.

Let R be a terminating TRS. In the sequel we show that the derivational
complexity function dcR is bounded triple exponentially in the dependency pair
complexity function DPcR. For that we mainly bound the depth growth function
of R exponentially in DPcR. As the maximal length of a nonlooping derivation
is exponentially bounded in the size of the occurring terms and the latter is
exponentially bounded in their depth, our result then follows. In order to prove
the main step we analyse the shape of a potential derivation over R∪DP(R) in
the light of a given R-derivation. This is the purpose of the next section.

3 Progenitor and Progeny

We introduce a speci�c generalisation of the notion of descendant of a position p
which we call progeny. Recall the de�nition of descendants (see [18, Chapter 4]).
Let A : s →p′,l→r t be a rewriting step, and let p ∈ Pos(s). Then the descendants
of p in t (denoted by p \A) are de�ned as follows:

p \A =


{p} if p < p′ or p ‖ p′,

{p′q3q2 | r|q3 = l|q1} if p = p′q1q2 with q1 ∈ PosV(l),
∅ otherwise

In our situation, we also want to keep track of redex positions, not just of posi-
tions in the context or the substitution of the rewrite rule. This intuition is cast
into the following de�nition.

De�nition 3. Let A : s →p′,l→r t be a rewriting step, and let p ∈ Pos(s). Then
the progenies of p in t (denoted by p
 A) are:

p
 A =


{p} if p < p′ or p ‖ p′,

{p′q3q2 | r|q3 = l|q1} if p = p′q1q2 with q1 ∈ PosV(l),
{p′q2 | r|q2 = l|q1} if p = p′q1 with q1 ∈ PosF (l) \ {ε},
{pq1 | r|q1 6 l ∧ q1 ∈ PosF (r)} if p = p′

×

× +

yx z f

w

t1

×

×x

y +

z f

w

t2

×

×x

g +

y w z a

t3

Fig. 1. A derivation, its progeny relation and redex positions.

If q ∈ p
A, then we also say that p is a progenitor of q in s. We denote the set of
progenitors of q in s by A
q. For a set P ⊆ Pos(s), we de�ne P
A =

⋃
p∈P p
A.

Note that the distinction between the last two cases corresponds to the exclusion
of rules l] → u] from DP(R) where u / l, see Section 2.

Example 4. Consider the TRS R1 from Section 1 and let t1 = (x × y) × (z +
f(w)), t2 = x × (y × (z + f(w))), and t3 = x × (g(y, w) × (z + a)). We have
the derivation A : t1 → t2 → t3, cf. Figure 1. Redex positions are marked by
circles, the progeny relation is marked by dotted and dashed lines (the two kinds
of lines will be distinguished in Example 15 below). For clarity progeny relations
between variables have been omitted.

Lemma 5. Let R be a TRS, let A : s →R t, let p ∈ Pos(s), and let q ∈ Pos(t).
If q ∈ p
 A and rt(t|q) ∈ D, then rt(s|p) ∈ D and (s|p)] →=

R∪DP(R) (t|q)].

Proof. Suppose that A is s →p′,l→r t. If p < p′ or p ‖ p′, then by de�nition, we
have p = q and thus (s|p)] →=

R (t|q)]. On the other hand, if p = p′, then there
exists q1 ∈ PosF (r) such that q = p′q1. Moreover, t|q 6 s|p. By assumption
rt(t|q) ∈ D and thus we obtain (s|p)] →DP(R) (t|q)]. Finally, if p > p′, then by

de�nition, we have s|p = t|q. Then (trivially) (s|p)] →=
R (t|q)]. ut

Lemma 6. Let A : s →p′,l→r t be a rewriting step. Then for every q ∈ Pos(t),
we have A
 q 6= ∅.

Proof. If q < p′ or q ‖ p′, then A
 q = {q}. If q = p′q1, q1 ∈ PosF (r), and
t|q 6 s|p′ , then A
 q = {p′}. If q = p′q1, q1 ∈ PosF (r), and t|q / s|p′ , then
there is some p1 such that s|p′p1 = t|q, so p′p1 ∈ A
 q. Last, if q = p′q1q2

and q1 ∈ PosV(r), then there is some p1 such that s|p′p1 = t|p′q1 . Therefore,
p′p1q2 ∈ A
 q. ut

De�nition 3 and Lemmata 5 and 6 extend to derivations in the natural way:

De�nition 7. Let A : s →∗ t be a derivation, and let p ∈ Pos(s). Then the
progenies of p in t (also denoted by p
 A) are de�ned as follows:

� If A is the empty derivation, then p
 A = {p}.
� Otherwise, we can split A into A1 : s → s′ and A2 : s′ →∗ t. Then p
 A =

(p
 A1)
 A2.

We say p is a progenitor of q if p ∈ A
 q, which holds if q ∈ p
 A. Moreover,
we have q ∈ P
 A if and only if q ∈ p
 A for some p ∈ P .

The next lemma follows by straightforward induction using Lemmata 6 and 5.

Lemma 8. Let A : s →∗ t be a derivation, and let p ∈ Pos(s), q ∈ Pos(t).
Then the set A
 q of progenitors of q is not empty. Moreover if q ∈ p
 A with
rt(t|q) ∈ D, then rt(s|p) ∈ D and (s|p)] →∗

R∪DP(R) (t|q)].

Using Lemma 8, we can extract derivations over R ∪ DP(R) from a given
derivation in a TRS R using positions connected by the progeny relation.

De�nition 9. Let R be a TRS, let t1, . . . , tn be terms, and let p1, . . . , pn be posi-
tions in t1, . . . , tn, respectively, such that rt(tn|pn) ∈ D, and for all 1 6 i 6 n−1,
we have Ai : ti →R ti+1 and pi+1 ∈ pi
 Ai. Then we call A : (t1|p1)

] →∗
R∪DP(R)

(tn|pn)] the implicit dependency pair derivation with respect to t1, . . . , tn and
p1, . . . , pn. We denote the number of DP(R)-steps in A as DPl(A).

Note that De�nition 9 is well-de�ned, due to Lemma 8.

Example 10 (continued from Example 4). The implicit dependency pair deriva-
tion with respect to t1, t2, t3 and ε, 2, 2 is given as follows:

t]1 →DP(R1) y ×] (z + f(w)) →DP(R1) g(y, w) ×] (z + a) .

Lemma 11. Let A : s →p′,l→r t be a rewriting step. Let q, q′ ∈ Pos(t). If q 6 q′,
then for any p0 ∈ A
 q, there exists p′0 ∈ A
 q′ such that p0 6 p′0.

Proof. According to De�nition 3, there are four cases for q′.

� If q′ < p′ or q′ ‖ p′, then also q < p′ or q ‖ p′. Therefore, A
 q = {q} and
A
 q′ = {q′}.

� If q′ = p′q′1, q′1 ∈ PosF (r), and r|q′1 6 l, then either q < p′, or q = p′q1,
q1 ∈ PosF (r), and r|q1 6 l. We have A
 q = {p0} and A
 q′ = {p′} with
p0 = q or p0 = p′.

� If q′ = p′q′1, q′1 ∈ PosF (r), and r|q′1 / l, then A
 q′ = {p′q′2 | q′2 ∈ PosF (l) ∧
r|q′1 = l|q′2}. Three cases from De�nition 3 are applicable for q. Suppose
q < p′, then A
 q = {q}, and q < p′ 6 p′q′2 for any q′2 ∈ PosF (l). If
q = p′q1, q1 ∈ PosF (r), and r|q1 6 l, then A
 q = {p′}. Last, if q = p′q1,
q1 ∈ PosF (r), and r|q1 / l, then A
 q = {p′q2 | q2 ∈ PosF (l) ∧ r|q1 = l|q2}.
We have q′ = qq′3, so for any p′q2 ∈ A
 q, also p′q2q

′
3 ∈ A
 q′.

� Otherwise, q′ = p′q′1q
′
2 with q′1 ∈ PosV(r). Then A
 q′ = {p′q′3q′2 | r|q′1 =

l|q′3}. Except for q ‖ p′, all cases in De�nition 3 can happen for q. Suppose
q < p′, then A
 q = {q}, and q < p′ < p′q′3q

′
2 for any q′3 ∈ PosV(l). If

q = p′q1, q1 ∈ PosF (r), and r|q1 6 l, then A
 q = {p′}. For the next case,
suppose q = p′q1, q1 ∈ PosF (r), and r|q1 / l. Then A
 q = {p′q2 | q2 ∈
PosF (l) ∧ r|q1 = l|q2}. We have q′ = qq′4q

′
2, so for any p′q2 ∈ A
 q, also

p′q2q
′
4q
′
2 ∈ A
 q′. Otherwise, q = p′q′1q2. Then A
 q = {p′q3q2 | r|q′1 = l|q3}.

We have q′2 = q2q
′
4, hence for any p′q3q2 ∈ A
 q, also p′q3q

′
2 ∈ A
 q′.

ut

Note that each position in a term may have several progenitors:

Example 12. Consider the TRS R2 consisting of the single rule f(x, x) → g(x),
and the rewrite step A : f(0, 0) →R2 g(0). Then A
 1 = {1, 2}.

We restrict the progenies and progenitors to a single branch in each term.
The de�nition rests on the idea that for a derivation A : s →∗ t and a main
branch B′ in t it is possible to �nd a main branch B in s such that each position
q ∈ B′ has a (unique) progenitor in B; see the picture below for an illustration:

s t

∗

In the following de�nition, the restriction to the leftmost of all candidate posi-
tions is arbitrary and can be suitably replaced. Note that its second clause is
well-de�ned by Lemmata 8 and 11.

De�nition 13. Let A : t1 →∗ tn denote a derivation built up from the rewrite
steps Ai : ti → ti+1 for i = 1, . . . , n− 1. Then the main branch of each term in
A is inductively de�ned:

� The main branch of tn is the leftmost branch of maximal length in tn.
� Suppose the main branch of ti+1 is denoted as Bi+1, 1 6 i 6 n − 1. Then

consider all branches b in ti such that for every q ∈ Bi+1, the set of pro-
genitors Ai
 q of q has nonempty intersection with b. The leftmost of these
branches is the main branch of ti, denoted as Bi.

The next de�nition specialises progenies and progenitors to the main branch.

De�nition 14. Let A′ : s → t be a rewriting step, let p ∈ Pos(s), and let B and
B′ be branches in s and t. Then the set of main progenies of p in t (with respect
to A′) (denoted as p aB

B′ A′) is de�ned as follows:

p aB
B′ A′ =

{
∅ if p /∈ B

B′ ∩ p
 A′ if p ∈ B

We naturally extend this de�nition to derivations, analogous to De�nition 7. If
the (main) branches B and B′ are clear from context, we write p a A′ instead
of p aB

B′ A′. If q ∈ p a A′, then we also say that p is a main progenitor of q in s
(with respect to A′). We denote the set of main progenitors of q in s by A′ a q.
For a set P ⊆ Pos(s′), we de�ne P a A′ =

⋃
p∈P p a A′.

Example 15 (continued from Example 4). Consider the derivation A again. The
�central� branch of each term in Figure 1 is its main branch, and the dashed
lines denote the main progeny relation.

Lemma 16. Let A : u →∗ s →n t →∗ w be a derivation, and denote A′ : s →n t.
Let B(s) (B(t)) denote the main branch of s (t) in A. Then for any q ∈ B(t),
the main progenitor of q in the branch B(s) is unique, i.e., |A′ a q| = 1.

Proof. By De�nition 13, q has at least one main progenitor in s. We show that
there exists at most one by induction on n. For n = 0 the claim is trivial. Hence
assume n > 0 and let A′ : s → t′ →n−1 t. Let B(t′) denote the main branch in
t′ with respect to A. By induction hypothesis there exists a unique position q1

in B(t′) such that (t′ →n−1 t) a q = {q1}. Let A′′ : s →p′,l→r t′ denote the �rst
rewrite step in A′. Suppose q1 < p′ or q1 ‖ p′. Then by de�nition A′′
 q1 = {q1}.
Hence the main progenitor of q in B(s) is unique. On the other hand suppose
q1 = p′q2 with q2 ∈ PosF (r) such that r|q2 6 l. Then A′′
q1 = {p′} and A′ a q is
a singleton as it should be. Now suppose q1 = p′q2 with q2 ∈ PosF (r) such that
r|q2 / l. Then by de�nition A′′
 q1 = {p′p1 | p1 ∈ PosF (l) ∧ l|p1 = r|q2}. Note
that A′ a q = A′′
 q1 ∩B(s), which is again a singleton. Finally, if q1 = p′q2q3

with q2 ∈ PosV(r), then A′′
 q1 = {p′p1q3 | p1 ∈ PosV(l) ∧ l|p1 = r|q2}. As
before, the intersection of the latter set with B(s) is a singleton. Hence the main
progenitor of q in B(s) is unique. This concludes the inductive proof. ut

Lemma 17. We assume the same notation as in Lemma 16. For any p ∈ B(s)
such that rt(s|p) ∈ C∪V, we have |p a A′| 6 1, i.e., the number of main progenies
for a position, whose root is non-de�ned is at most 1.

Proof. By induction on n. It su�ces to consider the case n > 0, so A′ : s →
t′ →n−1 t. Let A′′ : s →p′,l→r t′ denote the �rst rewrite step in A′. If p < p′ or
p ‖ p′, then p a A′′ = {p}. If p > p′, then for any q1 ∈ p
A′′, we have s|p = t′|q1 ,
so again, p
 A′′ ∩ B(t′) is a singleton. In all three cases, the claim follows by
induction hypothesis as rt(s|p) = rt(t|q1). This concludes the proof, as the case
p = p′ is impossible. Otherwise, we derive a contradiction to the assumption
that the root of s|p is not a de�ned symbol. ut

4 Dependency Pairs and Complexity

In this section, we relate the dependency pair complexity and the derivational
complexity of a TRS. As mentioned above the main step is to show that the
depth growth of a TRS is bounded by a single exponential in its dependency
pair complexity. In the sequel, we �x a �nite TRSR and a derivation A : t1 →∗ tn

over R such that B1, . . . , Bn denote the main branches with respect to A. We
can view the main progeny relation as a graph, called progenitor graph. The
nodes of a progenitor graph are pairs (ti, p) representing positions p in terms in
A that are directly a�ected by dependency pair steps. Each edge corresponds
to a dependency pair step (and possibly a number of R-steps) in an implicit
dependency pair derivation. Each connected component of the progenitor graph
is a tree whose height is bounded by the number of dependency pair steps. Using
the exponential relationship between the height of this tree and its number of
leaves, we bound the depth of the �nal term in A exponentially in the length of
the largest implicit dependency pair derivation, entailing our main result.

De�nition 18. The progenitor graph of A is de�ned as follows.

� The nodes are all pairs (ti, p) such that p ∈ Bi, rt(ti|p) ∈ D, and either i = 1
or the single element of (ti−1 → ti) a p and the redex position in the rewrite
step ti−1 → ti coincide.

� There is an edge from (ti, p) to (tj , q) whenever i < j, (ti →∗ tj) a q = {p},
and for all i 6 k < j − 1, the single element of (tk →∗ tj) a q and the redex
position in the rewrite step tk → tk+1 do not coincide.

Note that, due to the de�nition of the set of nodes in a progenitor graph,
the single element of (tj−1 → tj) a q and the redex position in the rewrite step
tj−1 → tj do coincide in the second clause of De�nition 18.

Example 19. Consider the derivation A from Example 4 again. Its progenitor
graph is shown below:

(t1, ε)

(t1, 1)

(t2, ε)

(t2, 2) (t3, 2)

Lemma 20. If there is an edge from (ti, p) to (tj , q) in G, then there is a deriva-
tion (ti|p)] →∗

R (tj−1|p1)
] →DP(R) (tj |q)].

Proof. By de�nition, q ∈ p a (ti →∗ tj). Therefore, by Lemma 8, we have the
implicit dependency pair derivation A′ : (ti|p)] →∗

R∪DP(R) (tj |q)]. We have

(tj−1 → tj) a q = {p1}, where by de�nition p1 is the redex position of the step
tj−1 → tj . Therefore, the last step of A′ is a DP(R)-step (see also the last clause
of De�nition 3). Note that for i 6 k < j− 1, the single element of (tk →∗ tj) a q
and the redex position in tk → tk+1 do not coincide. Hence, if there are rewrite
steps before the last step, these are R-steps and the lemma follows. ut

The next lemma shows, when specialised to the conditions in the �rst clause
of De�nition 18, that only nodes which do not contribute to the branching of
the progenitor graph, are left out by the de�nition.

Lemma 21. Let p ∈ Bi and q ∈ Bj such that i < j and (ti →∗ tj) a q = {p}. If
for all i 6 k 6 j − 1, the single element of (tk →∗ tj) a q and the redex position
in the rewrite step tk → tk+1 do not coincide, then p a (ti →∗ tj) = {q}.

Proof. We show the lemma by induction on j−i. If i = j then the claim trivially
holds. Otherwise, the derivation ti →∗ tj can be split to ti → ti+1 →∗ tj . Let
p′ be the redex position in ti → ti+1. If p ‖ p′, p < p′, or p > p′, then as in
Lemma 17, |p a (ti → ti+1)| 6 1, and the lemma follows by induction hypothesis.
The last case is again impossible, since by assumption, p and p′ do not coincide.

ut

From now on, let G be the progenitor graph of A. In the next lemmata, we
show the properties which allow us to bound dp(tn) in the height of G. First, we
prove that almost each position in Bn is �covered� by a node in G. Next, we show
that each node in G can only cover c positions in Bn, and �nally, we show that
the branching factor of G is at most c, where c := max{2}∪{dp(r) | l → r ∈ R}.

Lemma 22. For every q ∈ Bn, there either exists p ∈ B1 such that rt(t1|p) ∈
C∪V and A a q = {p}, or there exists a node (ti, p) in G where q ∈ p a (ti →∗ tn)
and for any successor node (tj , p1) of (ti, p) in G, we have q /∈ p1 a (tj →∗ tn).

Proof. By Lemma 16, A a q = {p} for some p ∈ B1. If rt(t1|p) ∈ C ∪ V, the �rst
alternative of the lemma holds. If rt(t1|p) ∈ D, then (t1, p) ∈ G. Therefore, there
exists a maximal natural number k such that (tk, p2) ∈ G and q ∈ p2 a (tk →∗ tn)
for some p2 ∈ Bk, so the second alternative of the lemma holds for (tk, p2). ut

Lemma 23. For every node (ti, p) in G, there are at most c many positions
q ∈ Bn such that q ∈ p a (ti →∗ tn), but for any successor node (tj , p1) of
(ti, p), we have q /∈ p1 a (tj →∗ tn).

Proof. If there is no i 6 k < n such that the redex position of the step tk → tk+1

and an element of p a (ti →∗ tk) coincide, then it follows from Lemma 21 that
|p a (ti →∗ tn)| 6 1. Otherwise, let k be the smallest number such that k > i
and p a (ti →∗ tk) = {p2}, where p2 is the redex position of tk → tk+1. By
De�nitions 3 and 14, |p2 a (tk → tk+1)| 6 c. For each p3 ∈ p2 a (tk → tk+1), if
rt(tk+1|p3) ∈ D, then (tk+1, p3) is a successor node of (ti, p), and the condition
q /∈ p3 a (tk+1 →∗ tn) is violated for any main progeny q of p3. On the other hand,
if rt(tk+1|p3) ∈ C∪V, then by Lemma 17, |p3 a (tk+1 →∗ tn)| 6 1. Thus, in total,
there are at most c many elements in p a (ti →∗ tn) meeting our assumption. ut

The following example illustrates the role of Lemma 23.

Example 24. Let R3 be the TRS consisting of the single rewrite rule

d(S(x)) → S(S(d(x))) .

Let t1 = d(S(S(0))), t2 = S(S(d(S(0)))), and t3 = S(S(S(S(d(0))))). We have the
derivation A : t1 → t2 → t3 and the following progenitor graph:

(t1, ε) (t2, 11) (t3, 1111)

Note that G leaves out all function symbols S above the d in each term. However,
by Lemma 23, the number of positions in the last term of A which are hidden
in this way is only linear in the size of the progenitor graph.

Lemma 25. Every node in G has at most c many successor nodes.

Proof. Let (ti, p) be a node in G. If there is no i 6 j < n such that the redex
position of the step tj → tj+1 and an element of p a (ti →∗ tj) coincide, then
(ti, p) has no successor node, so the claim holds. Otherwise, let j be the smallest
number greater than i such that p a (ti →∗ tj) = {q}, where q is the redex
position of tj → tj+1. By De�nitions 3 and 14, |q a (tj → tj+1)| 6 c. Hence,
(ti, p) has at most c many successor nodes. ut

Now we are ready to prove our main lemma.

Lemma 26. For every �nite and terminating TRS R, there exists a constant C

such that for all terms s, we have pdp(s,→R) 6 |s|·2C·max{dl((s′)],→DP(R)/R)|s′Es}.

Proof. We show the lemma by proving that for any derivation A : s →∗
R t, there

exists a derivation A′ : (s′)] →∗
R∪DP(R) (t′)] with s′ E s and dp(t) 6 |s|·cDPl(A′)+2

(recall c = max{2} ∪ {dp(r) | l → r ∈ R}). Let k be the number of de�ned
symbols in the main branch of s. The main branch of t consists of dp(t) + 1
many positions, all of which have to ful�l one of the two properties outlined in
Lemma 22. By Lemma 17, the �rst case applies to at most dp(s) + 1− k many
positions, so for the dp(t) − dp(s) + k other positions, the second case applies.
By Lemma 23, each node in the progenitor graph G of A can cover at most c

many of those positions, so G has to contain at least dp(t)−dp(s)+k
c many nodes.

There are k many connected components (trees) in G, hence the largest one of
them contains at least

dp(t)− dp(s) + k

kc
,

many nodes. Let d be the smallest natural number such that

dp(t)− dp(s) + k

kc
6 cd−1 .

By Lemma 25, this means that there exists a leaf in the largest tree of G whose
distance from the root is at least d − 2: recall that any c-ary tree of height

d − 3 has at most cd−2−1
c−1 6 cd−2 many nodes (here the height of a tree is the

number of edges on the longest path from the root to a leaf). Moreover, by
Lemma 20, this path in the graph induces a derivation A′ : (s′)] →∗

R∪DP(R) (t′)]

with DPl(A′) > d− 2 and s D s′. Reformulating the inequality above yields

dp(t) 6 k · cd + dp(s)− k 6 (dp(s) + 1) · cd 6 |s| · cd ,

so A′ is indeed the derivation we are looking for. ut

The main factor of the faster growth of dp(tn) compared to the height of G
is the di�erence between the height and the size of G. This becomes apparent in
our next example, where G is a full binary tree.

Example 27. Consider the TRS R4 consisting of the single rewrite rule

f(S(x), y) → f(x, f(x, y)) .

Let t1 = f(S(S(0)), 0), t2 = f(S(0), f(S(0), 0)), t3 = f(0, f(0, f(S(0), 0))), and
t4 = f(0, f(0, f(0, f(0, 0)))). We have the derivation A : t1 → t2 → t3 → t4. The
progenitor graph of A is shown below.

(t1, ε) (t2, ε)

(t2, 2)

(t3, ε)

(t3, 2)

(t4, 22)

(t4, 222)

Perhaps counter-intuitively in the context of the dependency pair method, the
connected component of G with the greatest height need not be the component
with the root (t1, ε). All that is left to show is that the derivational complexity
of a �nite and terminating TRS is bounded double exponentially in its depth
growth. This can be achieved by two easy observations.

Lemma 28. Let R be a �nite and terminating TRS. Then there exists a con-
stant C such that for every term t, we have

dl(t,→R) 6 22C·pdp(t,→R)

Proof. We show that there exist constants D and E, such that for all terms t,
the inequalities psz(t,→R) 6 2D·pdp(t,→R) and dl(t,→R) 6 2E·psz(t,→R) hold.

1. For any term t, we have |t| 6 kdp(t)+1, where k is the maximum arity of any
function symbol in the signature. This proves the �rst inequality.

2. On the other hand, by assumption the signature F of R is �nite. Moreover
without loss of generality the considered derivation in R is ground. Hence
we can build only 2E·m di�erent terms of size at most m, where E depends
only on F . This proves the second inequality. ut

Based on Lemmata 26 and 28 we obtain our main theorem.

Theorem 29. For any �nite and terminating TRS R, dcR(n) 6 22n·2O(DPcR(n))

.

An order � on terms is G-collapsible for a TRS R if s →∗
R∪DP(R) t and s � t

implies G(s,�) > G(t,�) for a mapping G into N. Let (&,�) be a reduction pair
for R. Then (&,�) is called collapsible if there is a mapping G such that � is
G-collapsible for R.

Theorem 30. Let R be a �nite TRS, let (&,�) be a collapsible reduction pair
with π(R) ⊆ & and π(DP(R)) ⊆ � for some argument �ltering π. Assume there
exists a class of number-theoretic functions C closed under elementary functions
and for some f ∈ C, and any term t, G(π(t]),�) 6 f(|t|). Then dcR ∈ C.

Proof. By assumption there exists a mapping G that binds the number of de-
pendency pair steps in any π(R) ∪ π(DP(R))-derivation. Thus

dl(π(t]),→π(DP(R))/π(R)) 6 G(π(t]),�) 6 f(|t|) . (1)

Moreover it is easy to see that for any derivation in R ∪ DP(R), there is a
derivation in π(R) ∪ π(DP(R)) which contains the same number of dependency
pair steps. Hence, we obtain

dl(t],→DP(R)/R) 6 dl(π(t]),→π(DP(R))/π(R)) .

Combining this with (1) and Theorem 29 we obtain dcR(n) 6 22n·2a·f(n)

. By
assumption the complexity class C is closed under elementary functions. In par-
ticular there exists g ∈ C such that dcR(n) 6 g(n). Thus the theorem follows. ut

5 The Lower Bound

By Theorem 29, the derivational complexity of a TRS R is bounded triple ex-
ponentially in its dependency pair complexity. This yields an upper bound. The
following TRS establishes a double exponential lower bound.

Example 31. Consider the following TRS R5, extending the TRS R4:

1: f(S(x), y) → f(x, f(x, y)) 2 : f(0, x) → c(x, x)

We show that R5 has linear dependency pair complexity, but admits deriva-
tions of double exponential length. Let F 0

m(x) = x, Fn+1
m (x) = f(Sm(0), Fn

m(x)),
C0(x) = x, and Cn+1(x) = c(Cn(x), Cn(x)). Now, consider the starting term
F 1

n(0). As can be easily seen, this term rewrites to F 2n

0 (0) in 2n − 1 steps using
rule 1. Now, we can use rule 2 and an outermost strategy to reach C2n

(0) in
22n −1 steps, so dcR5 is at least double exponential. On the other hand consider
DP(R5):

3: f](S(x), y) → f](x, f(x, y)) 4 : f](S(x), y) → f](x, y)

We de�ne a (very restricted) polynomial interpretationA as follows: f]
A(x, y) = x,

SA(x) = x+1, fA(x, y) = cA(x, y) = 0A = 0, whereR5 ⊆ &A and DP(R5) ⊆ >A,
and (&A, >A) forms a reduction pair. Thus DPcR5 is at most linear.

Note that from the proof of Theorem 29 one can distill the following three
facts, where each of them is responsible for one of the exponentials in the upper
bound:

� The number of leaves in a progenitor graph may be exponential in its height.
� The size of a term may be exponential in its depth.
� The number of terms of size n is exponential in n.

Observe that for an optimal example, we would have to utilise all three criteria,
while the just given TRS R5 utilises only the �rst two criteria. At this point, it
seems impossible to enumerate enough terms of exponential depth and double
exponential size so that this is possible. Hence, we conjecture that the upper
bound given in Theorem 29 can be improved to double exponential.

6 Conclusion

In this paper we have shown that the derivational complexity of a TRS R is
bounded triple exponentially in its dependency pair complexity. Moreover we
have presented an example showing that the relationship is at least double ex-
ponential. Furthermore, we conjecture that the upper bound can be improved
to a double exponential bound.

The basic dependency pair method [5] forms the basis of our investigations.
In particular we allow argument �ltering for the dependency pairs. A similar
result can be shown for dependency graphs, but we need to replace the triple
exponential correspondence by an even faster growing (but still elementary)
correspondence, as shown in the extended version of this paper [20]. Future
work will concentrate on establishing better bounds for the studied variants,
and analysing the derivational complexity induced by further re�nements of the
dependency pair method.

To summarise the contribution of this paper, we apply Theorem 30 to three
well-studied simpli�cation orders: LPO, MPO and KBO. Recall that the deriva-
tional complexity induced by LPO or MPO is multiple recursive or primitive
recursive, respectively, cf. [11,12]. Clearly these function classes are closed under
elementary functions. Hence by Theorem 30 we obtain that the derivational com-
plexity induced by the basic dependency pair method based on LPO (MPO) is
multiple recursive (primitive recursive). On the other hand for a TRS R compat-
ible with KBO we have that dcR belongs to Ack(O(n), 0), cf. [13]. Thus applying
the theorem in the context of KBO yields that the derivational complexity func-
tion induced by the dependency pair method based on KBO is majorised by
the Ackermann function. Recall that in all three cases the bounds are tight
(see [11,12,13]) and using the same examples, we obtain tightness of the here
established bounds.

To conclude, we consider a version of the Ackermann function, introduced
by Hofbauer [21] in a slightly simpler way, which we denote as R6.

i(x) ◦ (y ◦ z) → f(x, i(x)) ◦ (i(i(y)) ◦ z) i(x) → x

i(x) ◦ (y ◦ (z ◦ w)) → f(x, i(x)) ◦ (z ◦ (y ◦ w)) f(x, y) → x

Note that R6 is not simply terminating and the derivational complexity of R6

dominates the Ackermann function. (The latter follows by the same argument
as in [21].) However, termination can be shown easily by the basic dependency
pair method in conjunction with argument �ltering and KBO.

There are nine dependency pairs. For the argument �ltering π, we set π(f) =
π(f]) = π(i]) = 1, π(i) = [1], and π(◦) = π(◦]) = [1, 2]. To apply Proposition 2 we
use the reduction pair (>π

KBO, >π
KBO) induced by the admissible weight function

w with w0 = 1, w(◦) = w(◦]) = 1, and w(i) = 0, together with the precedence
i � ◦, ◦]. Hence, by Theorem 30 the derivational complexity of R6 belongs to
Ack(O(n), 0) and this bound is optimal, compare [13].

Acknowledgements. The second author would like to thank Dieter Hofbauer for
his hospitality, and fruitful discussions about a draft of this paper, during the
his stay in Kassel.

References

1. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Proc. 3rd RTA. Volume 355 of LNCS. (1989) 167�177

2. Koprowski, A., Waldmann, J.: Arctic termination . . . below zero. In: Proc. 19th
RTA. Volume 5117 of LNCS. (2008) 202�216

3. Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In: Proc. 28th FSTTCS.
Volume 08004 of Dagstuhl Seminar Proceedings. (2008) 304�315

4. Zantema, H.: Termination of term rewriting by semantic labelling. FI 24(1,2)
(1995) 89�105

5. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS
236(1,2) (2000) 133�178

6. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Proc.
13th LPAR. Volume 4246 of LNCS. (2006) 75�89

7. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Proc. 4th IJCAR. Volume 5195 of LNCS. (2008) 364�379

8. Hirokawa, N., Moser, G.: Complexity, graphs, and the dependency pair method.
In: Proc. 15th LPAR. Volume 5330 of LNCS. (2008) 652�666

9. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. IC
199(1,2) (2005) 172�199

10. Dershowitz, N.: Termination dependencies. In: Proc. 6th WST. Technical Report
DSIC-II/15/03, Universidad Politecnica de Valencia (2003) 27�30

11. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path orderings imply multiply recursive derivation lengths. TCS 139(1,2) (1995)
355�362

12. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105(1) (1992) 129�140

13. Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. TCS
269(1,2) (2001) 433�450

14. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, University of Aachen (2007)

15. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
IC 205 (2007) 474�511

16. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(3) (2008) 195�220

17. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

18. TeReSe: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2003)

19. Geser, A.: Relative Termination. PhD thesis, Universität Passau (1990)
20. Moser, G., Schnabl, A.: The derivational complexity induced by the dependency

pair method. CoRR abs/0904.0570 (2009)
21. Hofbauer, D.: Termination Proofs and Derivation Lengths in Term Rewriting

Systems. PhD thesis, Technische Universität Berlin (1992)

	The Derivational Complexity Induced by the Dependency Pair Method
	Georg Moser and Andreas Schnabl

