
Dependency Graphs, Relative Rule Removal, the Subterm
Criterion and Derivational Complexity∗

Georg Moser
University of Innsbruck

Innsbruck, Austria
georg.moser@uibk.ac.at

Andreas Schnabl
University of Innsbruck

Innsbruck, Austria
andreas.schnabl@uibk.ac.at

Abstract
We study the derivational complexity induced by the dependency pair method, enhanced with the

dependency graph refinement and the subterm criterion, allowing relative removal of rules, for base
orders inducing linear derivational complexity. If relative rule removal is allowed, we get a multiply
recursive upper bound, otherwise the bound is primitive recursive.

1 Introduction

We assume familiarity with term rewriting (see [3, 2, 16]) and the dependency pair method (cf. [1, 6, 7,
8, 17]). Let R be a finite TRS over the set of terms T(F,V) built over the signature F and variables V .
Let D⊆ F denote the set of defined symbols. We use DP(R) and DG(R) to denote the set of dependency
pairs of R and the dependency graph of R, respectively. We use DP problems as defined in [6, 17], and
we write (P,R) to abbreviate DP problems of the shape (P, /0,R,m) (in the notation of [6, 17]).

In this extended abstract, we extend our recent results from [13, 14]. We investigate the derivational
complexity of TRSs whose termination is shown by a restricted set of proof methods. Recall the defini-
tion of the derivation height of a terminating term t with respect to a finitely branching rewrite relation
→, and the derivational complexity function of a terminating TRS R:

dh(t,→) = max{n | ∃t s→n t} dcR(n) = max{dh(t,→R) | |t|6 n}

We show upper bounds on the derivational complexity of TRSs whose termination is proved by the
following, well-known results:

Proposition 1 ([1]). R is terminating iff for each strongly connected component (SCC) P of DG(R), the
DP problem (P,R) is finite.

Proposition 2 ([6]). A DP problem (P,R) is finite iff there exist P′ ⊂ P and a reduction pair (&,�) such
that P\P′ ⊆�, P′∪R⊆&, and the DP problem (P′,R) is finite.

Proposition 3 ([8, 17]). A DP problem (P,R) is finite if there exist P′ ⊂ P and a simple projection π such
that π(l) B π(r) for each dependency pair l→ r in P\P′, π(l) D π(r) for each dependency pair l→ r
in P′, and the DP problem (P′,R) is finite.

To motivate this study, we give two examples that provide a lower-bound on the derivational com-
plexity induced by Propositions 1 and 2, or Propositions 1 and 3.

Example 4. Consider the following TRS R, taken from [11]:

i(x) ◦ (y ◦ z)→ x ◦ (i(i(y)) ◦ z)
i(x) ◦ (y ◦ (z ◦ w))→ x ◦ (z ◦ (y ◦ w))

It is shown in [11] that dcR is not primitive recursive. As already stated in [4], termination can be
easily proved as follows: first, we consider the reduction pair induced by the polynomial algebra A with
◦]A(x,y) = y, ◦A(x,y) = y + 1 and iA(x) = 0, which allows us to remove three of the five dependency
pairs of R by Proposition 2. Next, we apply the reduction pair induced by the polynomial algebra B with
◦]B(x,y) = x, ◦B(x,y) = 0, and iB(x) = x+1 and conclude termination of R.
∗Partly supported by FWF (Austrian Science Fund) project P20133-N15.

1

georg.moser@uibk.ac.at
andreas.schnabl@uibk.ac.at

Complexity of Dependency Graphs Moser and Schnabl

We write �/& to abbreviate the relation &∗ · � ·&∗ (compare [5]). Note that the reduction pairs
employed in Example 4 induce linear derivational complexity, that is, the function dh(t],�/&) grows
only linar in |t|.

Example 5. Consider the following family of TRSs, denoted as R(k), parametrised by k (k > 2), which
encode the k-ary Ackermann function Ackk.

Ackk(0, . . . ,0,n)→ S(n)
Ackk(l1, . . . , lk−2,S(m),0)→ Ackk(l1, . . . , lk−2,m,S(0))

Ackk(l1, . . . , lk−2,S(m),S(n))→ Ackk(l1, . . . , lk−2,m,Ackk(l1, . . . , lk−2,S(m),n))
Ackk(l1, . . . , li−1,S(li),0, . . . ,0,n)→ Ackk(l1, . . . , li,n,0, . . . ,0,n)

Termination of R(k) can be shown by k applications of Proposition 3 with πi(Ack]
k) = i, where πi is the

simple projection used in the ith application of Proposition 3.

These examples show that Propositions 1, 2 and 3 admit much higher derivational complexities than
the basic dependency pair method, which (as shown in [13]) only admits a triple exponential upper bound
(for reduction pairs which induce linear derivational complexity).

Still, we can show that the derivational complexity of TRSs whose termination is proved using these
propositions is bounded by a multiply recursive function. In the next section, we give a sketch of this
proof for the case that only Propositions 1 and 2 are applied, where we assume that the reduction pairs
employed induce at most multiple-recursive complexity. Note, however that our approach can be ex-
tended to termination proofs which additionally employ Proposition 3.

2 Proof of the Upper Bound

We start by ordering the (trivial and nontrivial) SCCs of DG(R) by assigning a rank to each of them. Let
P, Q denote two SCCs. We call Q reachable from P if there exist nodes u∈ P, v∈Q and a path in DG(R)
from u to v. For the remainder of this paper, let k be the number of SCCs in DG(R), A the maximum
arity of any function symbol occurring in R, and C := max{2}∪{dp(r) | l→ r ∈ R}. Consider the set of
all bijective mappings from the set of SCCs of DG(R) to {1, . . . ,k} with the property that rk(P) > rk(Q)
whenever Q is reachable from P in DG(R). We fix an arbitrary one of these mappings to be rk. We call
rk(P) the rank of an SCC P. The rank of a position p in a term u such that (u|p)] 6∈ NF(P/R) for some
SCC P is defined by rk(u, p) := max{rk(s→ t) | ∃σ (u|p)]→∗R sσ}, where the rank of a dependency pair
s→ t, denoted by rk(s→ t), is the rank of P such that s→ t ∈ P.

In the following we write Pi for the unique SCC with rank i. Let ` be a natural number (the maximum
number of applications of Proposition 2 for any SCC), and split each SCC Pi of DG(R) into ` (possibly
empty) disjoint parts Pi,1, . . . ,Pi,`. The intuition behind this split is that Pi, j contains the dependency pairs
removed by the jth application of Proposition 2 within SCC Pi. Finally let g be a monotone function over
N with g(0) > 0 and

dh(t],→Pi, j/R∪
⋃`

j′= j+1 Pi, j′
) 6 g(|t|) ,

where 1 6 i 6 k, 1 6 j 6 `. Note that the function g can be inferred from the used reduction pairs.
In the sequel of this section, we show that dcR is multiply recursive whenever the function g is

multiply recursive. To this end, we make use of a simulating TRS R′ (depending on k, A, C, and the
function g). The idea behind R′ is that it can simulate any derivation of R, and can thus be employed to

2

Complexity of Dependency Graphs Moser and Schnabl

show that dcR is multiply recursive. We define the mapping dh] : T(F,V)→ N×Nk as follows:

dh](t, p) =


(i,dh(t],→(Pi,1/R∪

⋃`
j=2 Pi, j)), . . . ,dh(t],→(Pi,`/R))) if t] 6∈ NF(Pi/R)∧ rk(t, p) = i ,

(0, . . . ,0,1) if t] ∈ NF(DP(R)/R)∧ rt(t|p) ∈ D ,
(0, . . . ,0) otherwise .

Note that, if dh](t, p) = (i, i1, . . . , i`) with i > 0, then max{i1, . . . , i`}> 0, as well. We give some intuition
for this definition. Consider an arbitrary SCC Pi, a term t and a position p in t such that rk(t|p) =
i. Suppose that t|p is not in normal form with respect to Pi/R. Then for once, we need to estimate
dh(t],→(Pi, j/R∪

⋃`
j′= j+1 Pi, j′)

) for all j ∈ {1, . . . , `}. On the other hand the case that t|p ∈ NF(DP(R)/R) has

to be accounted for. For any rewrite step applied to t with redex position p, and any position p′ “created”
by that step we have dh](t, p) >lex dh](t, p′) in both cases.

The simulating TRS R′ is based on a mapping tr such that s→R t implies tr(s)→+
R′ tr(t). Given a

term t, tr essentially assigns to each position p of t an A+ `-ary function symbol fi. The index i of fi and
the first ` arguments are used to represent dh](t, p).

Definition 6. Let t = f (t1, . . . , tn) and (i, i1, . . . , i`) = dh](t]). Then the mapping tr : T(R)→ T(R′) is
defined as follows: tr(t) = fi(Si1(0), . . . ,Si`(0), tr(t1), . . . , tr(tn),b, . . . ,b).

Here we write Sn(0) as abbrevation for S(· · ·(S(0))) (n times S). Note that if f is a constant, that is,
t = f , then tr(t) = fi(Si1(0), . . . ,Si`(0),b, . . . ,b). To simplify the presentation, we compress sequences
of b to b. Similarly, we use x for sequences of x.

The main tool for achieving the simulation of a rewrite step s→R t are rules which create the proge-
nies (as defined in [13]) of the redex position p of the step. The set of progenies of p contains at most
AC+1 many elements, and each proper subterm of t|p may be duplicated at most that many times. In
order to write down the right hand sides of these rules concisely for arbitrary A and C, we make use of
some abbreviations. We define the shorthand~x for (x1, . . . ,xA). Moreover, we define MC

i (n1, . . . ,n`,~x) as
follows:

M0
i (n1, . . . ,n`,~x) := fi(n1, . . . ,n`,~x)

M j+1
i (n1, . . . ,n`,~x) := fi(n1, . . . ,n`,M

j
i (n1, . . . ,n`,~x), . . . ,M

j
i (n1, . . . ,n`,~x))

We also define following abbreviation X(~x): X(~x) = g(size(0, . . . ,0,~x)).
Finally, we are in the position to present the rules of the simulating TRS R′.

Definition 7. Consider the following (schematic) TRS R′, where i ∈ {0, . . . ,k}, i′ ∈ {1, . . . ,k}, j ∈
{1, . . . , `}, and j′ ∈ {1, . . . ,A}.

1i, j : fi(n1, . . . ,n j−1,S(n j),n j+1, . . . ,n`,~x)→MC
i (n1, . . . ,n j,X(~x), . . . ,X(~x),~x)

2i′ : fi′(n1, . . . ,n`,~x)→ fi′−1(X(~x), . . . ,X(~x),~x)
3i, j′ : size(fi(n1, . . . ,n`,~x))→ dA(size(x j′))

4: size(b)→ S(0)

5: dA(S(x))→ SA(dA(x))))
6: dA(0)→ 0

7: f0(n1, . . . ,n`,~x)→ b

8i, j′ : fi(n1, . . . ,n`,~x)→ x j′

9: f(x)→ fk(X(x), . . . ,X(x),x)

10: z→ fk(X(b), . . . ,X(b),b)

3

Complexity of Dependency Graphs Moser and Schnabl

These rules are augmented by rules defining the function symbol g, that is, we choose some finite
TRS R′′ (employing disjoint defined function symbols with the exception of g) such that S and 0 are
constructor symbols, and the unique normal form of g(Sn(0)) is Sg(n)(0) (with respect to R′′).

Recall that it is not difficult to define a suitable TRS R′′, whenever g is computable. Moreover,
whenever g is a primitive recursive function, it is possible to give such a TRS R′′, whose termination can
be shown by the lexicographic path order (LPO).

We motivate the rules of R′. The rules 1i, j are the main rules for the simulation of the effects of a
single step s→R t in R′. One rewrite step in s with redex position p creates at most AC+1 many new
positions p′ with dh](t, p) >lex dh](t, p′), and the subterms of t|p are duplicated at most AC+1 times.
Observe that a decrease in the jth argument of fi may “reset” the value of arguments j + 1 to `, which
explains the occurrence of the values X(~x) on the right hand side of these rules. The rules 2i′ simulate
that each of the new positions q created by s→ t might be of rank j (i′ > j). The rules 3i, j′–6 define
the function symbol size, that is, size(s) reduces to a numeral Sl(0) such that l > |s|. The rules 7–8i, j′

make sure that any superfluous positions and copies of subterms created by the rules of type 1i, j can be
deleted. Finally, the rules 9 and 10 guarantee that the simulating derivation can be started with a small
enough initial term (see also the second part of Lemma 8 below). Recall that the function dcR′ bounds
the relationship between |t| and dh(t,→R′), and in general it is not the case that |tr(s)| 6 |s|, hence we
need the second part of Lemma 8.

Lemma 8. For any ground terms s and t, s→R t implies tr(s)→+
R′ tr(t). Moreover, for any ground term

t, we have f |t|−1(z)→+
R′ tr(t).

Lemma 8 yields that the length of any derivation in R can be estimated by the maximal derivation
length with respect to R′. It remains to verify whether R′ has multiply recursive derivational complexity.
Whenever g is a multiply recursive function (hence also whenever g is a linear function), it can be
encoded by a set of LPO-orientable rules, and then R′ can be oriented by LPO. Then by [19] dcR′ is
bounded by a multiply recursive function.

Theorem 9. Let R be a TRS whose termination is provable by Propositions 1 and 2. Moreover, assume
that for any reduction pair (&,�) used in any application of Proposition 2, there exists a multiply
recursive function g such that dh(t,�/&) 6 g(|t|) for all terms t. Then dcR is bounded by a multiply
recursive function.

For the special case that ` = 1 (which means that in each SCC of DG(R), exactly one application of
Proposition 2 is needed, which removes all dependency pairs in that SCC at once), the general ramified
lexicographic path order (GRLPO), a restricted version of LPO which has been introduced by Weier-
mann in [18], can be used instead of LPO in the above argument. Then by [18], dcR′ is bounded by a
primitive recursive function.

With some modifications, the considerations made in this paper can be extended to additionally allow
the use of Proposition 3 in the termination proof of R. Our main result remains the same for this setting:

Theorem 10. Let R be a TRS whose termination is provable by Propositions 1, 2 and 3. Moreover,
assume that for any reduction pair (&,�) used in any application of Proposition 2, there exists a multiply
recursive function g such that dh(t,�/&) 6 g(|t|) for all terms t. Then dcR is bounded by a multiply
recursive function.

This concludes that termination by the restricted version of the DP framework outlined by Proposi-
tions 1, 2 and 3 induces multiply recursive derivational complexity. This constitutes a first, but important,
step towards the analysis of the (derivational) complexity induced by the DP Framework. In this context

4

Complexity of Dependency Graphs Moser and Schnabl

it seems important to emphasise that currently no reduction pairs are known which induce non-multiply
recursive complexities for finite TRSs.

This leads us to the conjecture that for termination proofs (within the DP framework) based on any
of the currently known DP processors the induced derivational complexity of the initial TRS will be
multiple-recursive. As a corollary to the conjecture we would obtain a proof that none of the techniques
underlying current termination provers is in theory powerful enough to prove termination of Dershowitz’s
system TRS/D33-33, aka the Hydra battle rewrite system (see [3, 12]).

Future work will concentrate on this conjecture as well as an analysis of the DP framework from the
point of view of runtime complexity analysis (see [9, 10, 15]).

References
[1] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer Science,

236(1,2):133–178, 2000.
[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, pages 245–319. Elsevier Science, 1990.
[4] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination of term rewriting.

Journal of Automated Reasoning, 40(3):195–220, 2008.
[5] A. Geser. Relative Termination. PhD thesis, Universität Passau, 1990.
[6] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques for

automated termination proofs. In Proc. 11th LPAR, volume 3452 of LNAI, pages 301–331, 2005.
[7] N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information and Computation,

199(1,2):172–199, 2005.
[8] N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features. Information and

Computation, 205:474–511, 2007.
[9] N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair method. In Proc.

4th IJCAR, volume 5195 of LNCS, pages 364–379, 2008.
[10] Nao Hirokawa and Georg Moser. Complexity, graphs, and the dependency pair method. In Proc. of 15th

LPAR, volume 5330 of LNCS, pages 652–666, 2008.
[11] D. Hofbauer. Termination Proofs and Derivation Lengths in Term Rewriting Systems. PhD thesis, Technische

Universität Berlin, 1992.
[12] G. Moser. The Hydra Battle and Cichon’s Principle. AAECC, 20(2):133–158, 2009.
[13] G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair method. In Proc.

20th RTA, volume 5595 of LNCS, pages 255–269, 2009.
[14] G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair method, 2010. Draft.

Available at http://cl-informatik.uibk.ac.at/users/aschnabl.
[15] Georg Moser. Proof theory at work: Complexity analysis of term rewrite systems. CoRR, abs/0907.5527,

2009.
[16] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press, 2003.
[17] R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD thesis, University of

Aachen, 2007.
[18] A. Weiermann. A termination ordering for primitive recursive schemata, 1995. Preprint.
[19] A. Weiermann. Termination proofs for term rewriting systems with lexicographic path orderings imply

multiply recursive derivation lengths. Theoretical Computer Science, 139(1,2):355–362, 1995.

5

http://cl-informatik.uibk.ac.at/users/aschnabl

	Introduction
	Proof of the Upper Bound

