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Abstract

In this note we describe a well-founded proof order that entails the decreasing diagrams
technique, i.e., it orders peaks of locally decreasing diagrams above their joining sequences.
We also investigate an extension that promises to be useful for proving confluence modulo.

Unrelated to this proof order we also present an example showing that witnesses for
non-confluence can not always be found by starting from critical pairs alone, even for linear
TRSs.

1 Introduction

In this note we revisit the decreasing diagrams technique [8] for proving confluence. Our
confluence proof is based on a proof order, which we use to prove termination of the proof
transformation system defined by the locally decreasing diagrams. A similar approach is used
in the correctness proof for completion by Bachmair and Dershowitz [2]. The distinguishing
property of a proof order is that proof concatenation becomes a monotone operation, so that
admissibility of a proof transformation P ⇒ Q can be established by comparing P to Q. This
simplifies finding new proof transformations.

This work is also inspired by [6], where Jouannaud and van Oostrom define a well-founded
order on proofs in order to establish that local decreasingness implies confluence. However, it is
not monotone for concatenation, and therefore not a proof order. Hence they have to consider
whole proofs when showing that eliminating a local peak by a locally decreasing diagram results
in a decrease in the proof measure. Another influence comes from Aoto and Toyama [1], who
prove an abstract lemma for confluence modulo by proof rewriting arguments.

The remainder of this paper is structured as follows: In Section 2, we introduce our proof
order abstracted to proof strings. We use this order to re-prove validity of the decreasing
diagrams technique in Section 3. In Section 4, we explore admissible proof transformations that
are helpful for proving confluence modulo, leading to a generalization of a result by Ohlebusch [7].

In Section 5 we depart from the topic of proof orders and proving confluence and turn to
establishing non-confluence. An obvious idea for finding counterexamples to confluence is to
start with critical peaks and try to find reducts which are not joinable. It is well-known that
this is not sufficient for non-left-linear TRSs (Huet, [5]). We give an example that shows that
this approach is insufficient even for linear TRSs.

1.1 Preliminaries

For the whole paper, we fix a set of labels L equipped with a well-founded order �.
Given labels α, γ ∈ L, we define gα = {γ ∈ L | α � γ} and gα, γ = gα ∪gγ.

We use −→ ( à) to denote (symmetric) rewrite relations, with the usual convention that ←−,

←→,
=−→,

∗−→ denote the inverse, symmetric closure, reflexive closure and reflexive, transitive
closure of −→, respectively. Given a family (−→

α
)α∈L and S ⊆ L, we let −→

S
=
⋃
α∈S −→α .

The lexicographic product of strict partial orders >1 and >2 is denoted by >1×lex >2, while
>mul is the multiset extension of >. We use {| and |} as brackets for multisets, e.g., {|α, α, γ|}.
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2 Ordering Proof Strings

This section is devoted to developing our proof order in an abstract setting, where instead of
rewrite proofs we consider only proof strings, abstracting from the objects of abstract rewrite
systems. The resulting proof string order is defined in two stages. First we map proof strings to
nested multisets of pairs. Then we compare these multisets by an order related to the recursive
path order.

Definition 1. We introduce proof strings, an abstract notation for proofs.

• A (proof) step is either a left step ←−α or a right step −→α , where α ∈ L. We define
←→
S = {←−α ,−→α | α ∈ S} for S ⊆ L and use ←→α for variables ranging over steps (←→α ∈

←→
L ),

and α for the corresponding labels. We lift � to steps by letting ←→α � ←→γ iff α � γ.

• A (proof) string is a sequence of steps. The set of all proof strings is denoted by P , and ·
is the concatenation operation on strings. The empty proof is ε.

• The inverse (←→α )−1 of a step←→α is defined by (−→α )−1 =←−α and (←−α )−1 = −→α . This operation
extends to proof strings by ε−1 = ε, (P · ←→α )−1 = (←→α )−1 · P−1.

Remark 1. Together with inverse and concatenation, proof strings form an involutive monoid
(van Oostrom, IWC 2012).

Definition 2. A well-founded order � on strings is a proof string order if string concatenation
and inverse are strictly monotone, i.e., P � Q implies P · R � Q · R, R · P � R · Q and
P−1 � Q−1.

Next we show how proof strings are mapped to nested multisets.

Definition 3. We define operations [·]l, [·]r and [·]m, mapping proof strings to (nested) multisets
of pairs of steps and transformed strings, inductively as follows:

• [ε]l = ∅, [←−α · P ]l = {|(←−α , [P ]m)|} ∪ [P ]l, [−→α · P ]l = [P ]l, collecting left steps and the
transformations of the substring following each left step into a multiset.

• [ε]r = ∅, [P · −→α ]r = {|(−→α , [P ]m)|} ∪ [P ]r, [P · ←−α ]r = [P ]r, collecting right steps and the
transformations of their preceding substrings.

• [P ]m = [P ]l ∪ [P ]r.

Example 2. We have [←−α · −→γ ]m = {|(←−α , [−→γ ]m), (−→γ , [←−α ]m)|} = {|(←−α , {|(−→γ ,∅)|}), {|(−→γ , {|(←−α ,∅)|})|}.
The result of the transformation [·]m grows exponentially in the string length, but it is highly

redundant: each multiset occurring in [P ]m corresponds to a substring of P .

Lemma 4. The definition of [P ]m is symmetric. Formally, we have [P−1]m = ([P ]m)−1 and
[P−1]l = ([P ]r)−1, where the inverse on nested multisets is defined recursively by

s−1 = {|((←→α )−1, t−1) | (←→α , t) ∈ s|}

Proof. By induction on the length of P .

Definition 5. We order these multisets by�⊕, defined inductively: s �⊕ {|(←→γ1 , t1), . . . , (←→γm, tm)|}
if s �⊕ tj for 1 ≤ j ≤ m and s�mul t, where � = �×lex�⊕. Furthermore, we define the proof
string order �• as follows:

P �• Q iff [P ]m �⊕ [Q]m
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Lemma 6. The relations �⊕ and �• are well-founded partial orders.

Proof. We only have to establish that �⊕ is a well-founded order. First we show transitivity, i.e.,
that s �⊕ t �⊕ u implies s �⊕ u, by induction on u. Assume that u = {|(←→η1 , u1), . . . , (←→ηn , un)|}.
Now from t �⊕ u follows t �⊕ ui, hence s �⊕ ui by the induction hypothesis. Furthermore
with � = � ×lex �⊕, we have s �mul t �mul u, and therefore s �mul u by the induction
hypothesis, because the transitivity proofs for ×lex and ·mul only rely on the transitivity for
elements actually present in the pairs respectively multisets. Hence s �⊕ u, as claimed.

Now it remains to show that �⊕ is well-founded. In order to do that, we exhibit a relation
between �⊕ and the recursive path order with custom status as introduced by Ferreira [3]. To
this end, we define a signature F , a mapping [·]t of nested multisets to ground terms over F
and a lifting Λ on relations between terms over F as follows:

• F = P, where each proof string in F has its length as arity.

• [{|(←→α1 , s1), . . . , (←→αn, sn)|}]t = ←→α1 . . .
←→αn([s1]t, . . . , [sn]t), using any order of the multiset

elements.

• s >Λ t, if and only if sλ �mul t
λ, where [←→α1 . . .

←→αn(s1, . . . , sn)]λ = {|(←→α1 , s1), . . . , (←→αn, sn)|}
and � = �×lex >.

It is easy to see that Λ is a term lifting [3, Definition 3.16] and also a status [3, Definition
4.7]. Let �• be the rpo defined by this status, namely: s �• t iff s = ←→α1 . . .

←→αn(s1, . . . , sn),
t =←→γ1 . . .

←→γm(t1, . . . , tm) and

1. si = t or si �• t for some 1 ≤ i ≤ n, or

2. s�• tj for 1 ≤ j ≤ m and s�Λ
• t.

By the properties of rpo [3, Theorem 4.19], �• is well-founded. We conclude that �⊕ is
well-founded by noting that [P ]m �⊕ [Q]m implies [[P ]m]t �• [[Q]m]t, which can be shown by
unfolding the definitions of �⊕, [·]t and �•, using only the second case in the definition of �•.
Note in particular that each application [·]λ reverses one level of the transformation [·]t.
Remark 3. It would be nice to avoid the complications of using a general status for rpo. However,
both the lexicographic and the multiset comparisons are essential, and splitting the signature F
into several levels conflicts with the requirement that if s� f(t1, . . . , tn), then s� ti for all i.

Theorem 7. The order �• is a proof string order.

Proof. By Lemma 6, �• is a well-founded order. To see that string inverse is monotone with
respect to �•, apply Lemma 4 and observe that �⊕ is invariant under inversion of steps.

For concatenation we first prove that it is monotone in the second argument, i.e., Q �• Q′
implies P ·Q �• P ·Q′. We proceed by induction on the length of P . If P = ε, then there is
nothing to prove. Otherwise, there are two cases to consider, P = P ′ ·←−α and P = P ′ · −→α . Their
proofs are very similar, so we only handle the first case here.

Assume that P = P ′ · ←−α . We let � = � ×lex �⊕. We prove by induction on Q that
[←−α ·Q]m �mul [←−α ·Q′]m. Unfolding one level of [·]m, we can relate [←−α ·Q]m to [Q]m:

[←−α ·Q]m = {|(←−α , [Q]m)|} ∪ {|(←−γ , [R]m) | (←−γ , [R]m) ∈ [Q]m|}
∪ {|(−→γ , [←−α ·R]m) | (−→γ , [R]m) ∈ [Q]m|}.

We say that (←−γ , [R]m), (−→γ , [←−α ·R]m) are derived from (←−γ , [R]m), (−→γ , [R]m), respectively.
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We know by assumption that [Q]m �⊕ [Q′]m. Therefore, (←−α , [Q]m) � (←−α , [Q]m) (which
deals with the elements not derived from [Q]m or [Q′]m) and [Q]m �mul [Q′]m. The latter
multiset comparison can be established by comparing various elements of [Q]m and [Q′]m using
equality and�. These comparisons carry over to the derived elements in [←−α ·Q]m and [←−α ·Q′]m:
Let s = (←→γ , [R]m) ∈ [Q]m and t = (←→γ ′, [R′]m) ∈ [Q′]m. If s = t then the derived elements are
also equal. If s� t, there is only one interesting case: γ = γ′, s = (−→γ , [R]m) and t = (−→γ , [R′]m),
with derived elements s′ = (−→γ , [←−α ·R]m) and t′ = (−→γ , [←−α ·R′]m). Since R is a proper subproof
of Q, if [R]m �⊕ [R′]m, we conclude that [←−α · R]m �⊕ [←−α · R]m by the induction hypothesis.
This concludes the proof of [←−α ·Q]m �mul [←−α ·Q′]m.

Therefore, ←−α ·Q �• ←−α ·Q′ by definition and P ·Q �• P ·Q′ by the induction hypothesis.
Monotonicity of concatenation in its first argument now follows because Q �• Q′ implies

P−1 ·Q−1 �• P−1 · (Q′)−1. Inverting both sides yields Q · P �• Q′ · P .

3 Decreasing Diagrams

In this section, use the proof string order of Section 2 to give an alternative proof for the
conversion version of the decreasing diagram technique [8]. First we establish the corresponding
result for proof strings. We let S∗ be the Kleene star of S and S= = S ∪ {ε}.

Lemma 8. The proof strings corresponding to the peaks and joins of locally decreasing diagrams
are decreasing with respect to �•, that is,

1. if P =←−α and Q ∈ ←→gα∗ then P �• Q, and

2. if P =←−α · −→γ and Q ∈ (
←→gα)∗ · (−→γ )= · (←−−→gα, γ)∗ · (←−α )= · (←→gγ)∗ then P �• Q.

Proof. In both cases we show that [P ]m �⊕ [Q]m by induction on the length of Q.

1. We have [Q]m = {|(←→γ1 , t1), . . . , (←→γn , tn)|} for some n,←→γi and ti. By the induction hypothesis,
the multisets ti satisfy [P ]m �⊕ ti, since they correspond to proper subproofs of Q. Because
←−α � ←→γi in the precedence for all i, we conclude that {|(←−α ,∅)|} �⊕ {|(←→γi , ti) | 1 ≤ i ≤ n|},
which is equivalent to our claim, [P ]m �⊕ [Q]m.

2. We have
[P ]m = {|(←−α , {|(−→γ ,∅)|}), (−→γ , {|(←−α ,∅)|})|},

and for some G ∈ (
←→gγ)∗ and A ∈ (

←→gα)∗,

[Q]m = {| . . . , (←−α , [G]m), . . . , (−→γ , [A]m), . . . |}

with the (←−α , [G]m) or (−→γ , [A]m) elements possibly missing. For all elements (←→η , u) ∈ [Q]m,
u = [R]m for a proper subproof R of Q, and therefore [P ]m �⊕ u holds by the induction
hypothesis. All omitted elements are of the shape (←→η , u) with α � η or γ � η, and
compare less to one of (←−α , {|−→γ ,∅|}) or (−→γ , {|←−α ,∅|}) lexicographically. The remaining (up
to two) elements are also dominated by elements of [P ]m: By the first part of the proof,
(←−α , [G]m) is less than (←−α , [−→γ ]m) and (−→γ , [A]m) is less than (−→γ , [←−α ]m).

Theorem 9 ([8, Theorem 3]). We are given a family of abstract rewrite systems (−→
α

)α∈L.

Assume that all local peaks can be joined decreasingly, i.e., for all α, γ ∈ L,

←−
α
· −→
γ
⊆ ∗←→

gα
· =−→
γ
· ∗←−−→

gα,γ
· =←−
α
· ∗←→

gγ

Then −→
L

=
⋃
α∈L−→α is Church-Rosser.
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Proof. We map each rewrite proof to the string obtained by considering just the directions and
labels of the proof steps in the proof, mapping s←−

α
t to ←−α and s −→

α
t to −→α . If the rewrite proof

has a local peak, then we can replace it by the corresponding joining sequence from a decreasing
diagram. The strings P , corresponding to the local peak, and Q, for the joining sequence, satisfy
[P ]m �• [Q]m by Lemma 8. By monotonicity (Lemma 7), this comparison extends to the whole
proof string. Because �• is well-founded, this process must terminate in some normal form.
This normal form will be a valley proof that is equivalent to the original rewrite proof.

4 Towards Church-Rosser Modulo

In this section we sketch two approaches to deal with confluence modulo by mapping proofs to
proof strings. The first approach is to use the previously developed order directly. The second
approach is to extend the proof strings by introducing symmetric proof steps, α, and incorporate
them into the definitions of �•. Due to space constraints, we can only sketch it below. There
are many notions of confluence modulo (see [7]). We use the following one.

Definition 10. Let → and à be abstract rewrite relations, where à is symmetric. We say

that → is Church-Rosser modulo
∗
à if

(↔∪ à)∗ ⊆ ∗−→ ·
∗
à · ∗←−.

In the proof transformation setting, this means that whenever we have a subproof ← · →,

à · → or ← · à, we must be able to replace it by a different subproof.
First we sketch how one can use the order from Section 2 directly. Then all proof steps in à

must be directed and labeled. In that case, in addition to removing local peaks (except those
between à steps, i.e., from à · à) one also has to eliminate subproofs of the shape −→

α
· −→
γ

whenever −→
α

is a à step and −→
γ

is a → step. The following lemma shows that any proof in

∗←→
gα
· =−→
γ
· ∗←−−→

gα,γ
is a suitable replacement in this case.

Lemma 11. If P = −→α · −→γ and Q ∈ (
←→gα)∗ · (−→γ )= · (←−−→gα, γ)∗, then P �• Q.

Proof. Similar to Lemma 8.
We have not yet investigated this approach in detail. In this note, Lemma 11 only serves as

a point of reference to show that introducing undirected proof steps is useful.
So let us turn to the second approach. We extend the order �• by introducing undirected

proof steps: Let α denote an undirected proof step that is symmetric: (α)−1 = α. For [·]m, in
addition to [·]l and [·]r, we need an operation [·]u that collects these undirected proof steps. So
we define

• [ε]l = ∅, [←−α · P ]l = {|(←−α , [P ]m)|} ∪ [P ]l, [−→α · P ]l = [P ]l, [α · P ]l = [P ]l,

• [ε]r = ∅, [P · −→α ]r = {|(−→α , [P ]m)|} ∪ [P ]r, [P · ←−α ]r = [P ]r, [P · α]r = [P ]r,

• εu = ∅, [α · P ]u = {|(α,∅)|} ∪ [P ]u, [←−α · P ]u = [P ]u, [−→α · P ]u = [P ]u, and

• [P ]m = [P ]l ∪ [P ]r ∪ [P ]u.

Variables ←→α can now equal α. Correspondingly we define
←→
S = {←−α ,−→α , α | α ∈ S}. Even with

these changed notions (which result in extended definitions for �⊕ and �•), Theorem 7 and
Lemmata 4, 8 and 11 remain valid. The following lemma shows how one can eliminate subproofs
of the shape α · −→γ .
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Lemma 12. Let P = α · −→γ . The following statements are true.

1. If Q ∈ (
←−−−−→
gα ∩gγ)∗ · (−→γ )= · (←→gγ)∗ · α · (←→gγ)∗ then P �• Q.

2. If Q ∈ (
←→gα)∗ · (−→γ )= · (←−−→gα, γ)∗ then P �• Q.

Proof. Similar to Lemma 8.
Lemma 12 adds some flexibility over Lemma 11 (where we use a directed α step instead of

the undirected one), at the cost of reduced flexibility for eliminating peaks ←−α · −→γ (where again
we use a directed α step, but this time pointing left, cf. Lemma 8).

Theorem 13. Let L be a set of labels equipped with a well-founded order �. Furthermore, let
(−→
α

)α∈L and ( à
α

)α∈L be families of abstract rewrite relations, where each à
α

is symmetric. If

←−
α
· −→
γ
⊆ ∗⇐⇒

gα
· =−→
γ
· ∗⇐=⇒

gα,γ
· =←−
α
· ∗⇐⇒

gγ

and à
α
· −→
γ
⊆
(

∗⇐===⇒
gα∩gγ

· =−→
γ
· ∗⇐⇒

gγ
· à
α
· ∗⇐⇒

gγ

)
∪
(
∗⇐⇒

gα
· =−→
γ
· ∗⇐=⇒

gα,γ

)
,

for all α, γ ∈ L, where ⇐⇒
α

=←−
α
∪ à

α
∪ −→

α
, then −→

L
is Church-Rosser modulo

∗
à
L

.

Proof. The proof proceeds in the same way as that of Theorem 9: Whenever a given rewrite
proof contains a peak of the shapes ←−

α
· −→
γ

, à
α
· −→
γ

, or ←−
γ
· à
α

, we can find a replacement proof

by assumption. Considering the corresponding proof strings, the replacement is smaller than the
peak with respect to �•. This extends to the whole strings by monotonicity. By well-foundedness
of �•, this process will terminate. It is easy to see that the resulting normal forms are of the

shape
∗−→
L
·
∗
à
L
· ∗←−
L

, which establishes Church-Rosser modulo.

Corollary 14 (Main Theorem of [7]). Let L be a set of labels equipped with a well-founded order
�. Furthermore, let (−→

α
)α∈L be a family of abstract rewrite relations and à be a symmetric

relation. Then −→
L

is Church-Rosser modulo
∗
à, if for all α, γ ∈ L

←−
α
· −→
γ
⊆ ∗−−→

gα
· =−→
γ
· ∗−−−→

gα,γ
·
∗
à · ∗←−−−

gα,γ
· =←−
α
· ∗←−−

gγ

and à · −→
γ
⊆ ∗−−→

gα
·
∗
à · ∗←−−

gα
· =←−
α
.

Proof. Apply Theorem 13 using L′ = L ∪ {⊥} with α � ⊥ for all α ∈ L as labels, and label all

à steps by ⊥.
As another instance of Theorem 13 we can obtain a key lemma for abstract Church-Rosser

modulo from [1]:

Corollary 15 ([1, Lemma 2.1]). Let (−→
α

)α∈L and ( à
α

)α∈L be families of abstract rewrite

relations, where each à
α

is symmetric. Then −→
L

is Church-Rosser modulo
∗
à
L

, if for all α, γ ∈ L,

←−
α
· −→
γ
⊆ ⇐=⇒

gα,γ
and à

α
· −→
γ
⊆ ⇐=⇒

gα,γ
.
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5 A Note on Witnesses for Non-Confluence

In this section we present an example of a linear, non-confluent TRS whose critical pairs are
nevertheless deeply joinable. Two terms s, t are deeply joinable if any reducts s→∗ s′, t→∗ t′
are joinable. The example shows that when looking for witnesses for non-confluence, it does not
suffice to look at reducts of critical pairs alone; some smarter technique is required in general.

Example 4. The TRS R consists of the rules

f(u(O), u(y))→ A O→ u(O) u(x)→ x f(x, y)→ f(x, u(y))

f(v(x), v(O))→ B O→ v(O) v(x)→ x f(x, y)→ f(v(x), y)

This TRS is not confluent since A ∗
R← f(O,O) →∗R B. There are 12 critical pairs, but they

originate from only 4 different sources. We consider each possible source in turn.

1. f(u(O), u(y)) (5 critical pairs). By induction we can show that any term reachable from
f(u(O), u(y)) is either equal to A or has shape f({u, v}∗(O), u∗(y)}), which in turn can be
reduced to A. Therefore, all the corresponding critical pairs are deeply joinable.

2. f(v(x), v(O)) (5 critical pairs). This is analogous to the previous case, swapping the
arguments of f and the roles of u and v.

3. f(x, y) (1 critical pair). From this source, we can reach only terms of shape f(v∗(x), u∗(y)),
which can all be rewritten to f(x, y).

4. O (1 critical pair). We can rewrite O to {u, v}∗(O), all of which reduce back to O.

Therefore, all critical pairs of R are deeply joinable as desired.

It has been pointed to the author that R is E-overlapping [4]. It is an interesting question
whether this can be avoided. Note, however, that existence of E-overlaps is undecidable.

Acknowledgments. The author is grateful to the anonymous reviewers for constructive
feedback on this paper, to Vincent van Oostrom for sharing and discussing related work on
involutive monoids, and to Aart Middeldorp and Harald Zankl for fruitful discussions.
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