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Abstract
Polynomial interpretations can be used for proving termination of term rewrite systems. In this
note, we contemplate binomial interpretations based on binomial coefficients, and show that they
form a suitable basis for obtaining (weakly) monotone algebras. The main motivation is that
this representation covers examples with negative coefficients like f(x) = 2x2 − x+ 1, and even
some polynomials with rational coefficients like f(x) = x(x− 1)/2 that map natural numbers to
natural numbers.
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1 Introduction

Using well-founded monotone algebras is a general and common method for proving termi-
nation of term rewrite systems. Many algebras have been suggested for this purpose. Here
we are mainly interested in polynomial interpretations (introduced by Lankford, [6]). In [8]
it is shown among other things that polynomial interpretations over the real numbers do
not subsume polynomial interpretations over the natural numbers. Ultimately, the reason
for this surprising result lies in the fact that there are polynomials that are non-negative
for every natural number, but negative when evaluated for some real numbers. The exam-
ple f(x) = x(x− 1)/2 shows that there are polynomials with non-integer coefficients that
nevertheless evaluate to integers at every integer argument. Binomial functions (see below)
capture these polynomials precisely.

We are not the first to use binomial functions this way. Girard et al. [1] extend linear
logic with resources bounded by resource polynomials, which are binomial functions with
non-negative coefficients. In more recent work, Hofmann et al. [4, 3] use resource polynomials
for amortized resource analysis of programs. The observation that binomial functions are
closed under composition is much older. The earliest appearances that we are aware of
originate in the study of nilpotent groups [2] and of recursively equivalent sets [7].

In the remainder of the paper, we exhibit some fundamental properties of binomial
coefficients in Section 2, then sketch binomial interpretations in Section 3. In Section 4, we
compare the power of binomial interpretations to standard polynomial interpretations.

2 Fundamentals

I Definition 1. For n ∈ N (where N is the set of non-negative integers), and x element of
some ring, the falling power, xn, is defined as follows: (This notation is used by Knuth in [5])

x0 = 1 xn = x · (x− 1)n−1

Falling powers are closely related to binomial coefficients. In fact, we can define binomial
coefficients in terms of falling powers.
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2 Binomial Interpretations

I Definition 2. For k ∈ N, the binomial coefficient
(
x
k

)
is defined as

(
x
k

)
= xk

k! .

I Remark. Over some rings, the fraction xk

k! may not have a value for some x. For example,
in the polynomial ring Z[x],

(
x
2
)
does not exist. The fraction may also have several values (if

the ring is not torsion-free). But we will only work over Z or R, where this does not happen.
It is clear from the definition that the binomial coefficient

(
x
k

)
is a polynomial in x of

degree k with rational coefficients. It is well known that
(
x
k

)
∈ Z whenever x ∈ Z.

I Lemma 3. Binomial coefficients satisfy a tremendous number of identities. We exhibit
two of them. (Only (1) is used later, but the second one gives some insight into why binomial
functions are closed under composition.)(

x+ 1
k + 1

)
−
(

x

k + 1

)
=
(
x

k

)
(1)(

x+ y

k

)
=

k∑
i=0

(
x

i

)(
y

k − i

)
(2)

3 Binomial Interpretations

I Definition 4. A monomial over the variables V is a finite product
∏
v∈V ′

(
v
kv

)
such that

V ′ ⊆ V and 0 < kv ∈ N. We write 1 if the product is empty and v for
(
v
1
)
. A binomial function

f over a domain D is a linear combination of monomials, f(v1, . . . , vn) =
∑
m∈M am ·m

where am ∈ D andM is a finite set of monomials over the variables V = {v1, . . . , vn}. We can
evaluate binomial functions in the obvious way, substituting values for the formal variables.

We define a difference operator on binomial functions, justified by the identity (1): We let
∆v

(∑
m∈M am ·m

)
=
∑
m∈M am ·∆vm, where on monomials, ∆v

∏
w∈V

(
w
kw

)
= 0 if v /∈ V

or kv = 0. Otherwise, ∆v

∏
w∈V

(
w
kw

)
=
(
w
k′

w

)
where k′v = kv − 1 and k′w = kw for w 6= v. It is

easy to see that f(v1, . . . , vi + 1, . . . , vn)− f(v1, . . . , vi, . . . , vn) = (∆vif)(v1, . . . , vi, . . . , vn)
for all binomial functions f and variables vi.

It is known that binomial functions over N are closed under addition, multiplication and
composition [1]. In practice, the best way to compute the results of these operations appears
to be to use the identity (∆n

v

(
v
k

)
)(0) = δn,k, where δn,k = 1 if n = k and δn,k = 0 otherwise.

Once the degree d of a unary binomial function f(x) is known, one can compute its coefficients
from f(0), f(1), . . . , f(d). This can be extended to multiple variables by treating a binomial
function in V with v ∈ V as a unary function in v with coefficients that are binomial functions
over V \{v}. The difference operator also plays a crucial role in showing that all integer-valued
(over the integers) polynomials can be expressed by binomial functions, as follows. Let f(v)
be an integer-valued polynomial of degree d > 0. Then (∆vf)(v) = f(v + 1) − f(v) is an
integer-valued polynomial of degree d− 1. The function f can be reconstructed from ∆vf

and f(0), and ultimately from the values fi = (∆i
vf)(0) for 0 6 i 6 d, and we have just seen

that these define a binomial function. In fact, f(v) =
∑d
i=0 fi

(
v
i

)
.

I Definition 5. Let F be a signature where each f ∈ F has an arity ari(f). Furthermore let
V = {v1, v2, . . . } be a countable set of variables. A binomial F-algebra A over a domain D
assigns to each f ∈ F an interpretation fA that is a binomial function over D with variables
{v1, . . . vari(f)}. A binomial F -algebra induces an F -algebra with carrier D by evaluating the
binomial functions.

To use a binomial F-algebra for proving termination of a TRS R, it has to induce a
well-founded monotone algebra that is compatible with R.
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I Theorem 6. Let A be a F-algebra over N. Then A is a well-founded monotone algebra,
provided that for all f ∈ F , fA(v1, . . . , vn) =

∑
m∈M am ·m implies avi

> 1 for 1 6 i 6 n.
Furthermore, for any binomial function f(v1, . . . , vn) =

∑
m∈M am · m over N, we have

f(v1, . . . , vn) > 0 for all possible values of vi ∈ N, if, and only if, a1 > 0.

Proof. Note that over N, all binomial functions are weakly monotone and nowhere negative.
The theorem follows easily from that observation. J

4 Comparison to Polynomial Interpretations

We will show below that neither polynomial interpretations over R nor over N subsume
binomial interpretations. Note that linear binomial interpretations are identical to linear
polynomial interpretations over the integers—the increased power requires higher degree
polynomials. Using the method by Neurauter and Middeldorp [8], which can force weakly
compatible polynomial interpretations to be linear with non-integer coefficients, it is clear
that binomial interpretations do not subsume polynomial interpretations over Q. On the
other hand, if negative coefficients are allowed, binomial interpretations subsume polynomial
interpretations over N with integer coefficients, by way of the identity

xk =
k∑
i=0

i!
{
n

i

}(
x

i

)
where

{
n
i

}
denotes Stirling numbers of the second kind, which are non-negative integers. The

same relation allows us to transform polynomial interpretations with non-negative coefficients
to binomial interpretations with non-negative coefficients.

We adapt an example from [8] to show that binomial interpretations are not subsumed
by polynomial interpretations over R or N. Let R be the following TRS.

s(0)→ f(0) (1) s(f(s(x)))→ h(f(x), g(x)) (6)
s2(0)→ f(s(0)) (2) f(g(s(x)))→ g(g(f(s(x)))) (7)
g(x)→ h(x, h(x, x)) (3) h(s2(x), h(x, x))→ g(x) (8)
s(x)→ h(0, x) (4) s(x)→ h(x, 0) (9)

g(s(x))→ s(s(g(x))) (5) h(f(x), s(g(x)))→ f(s(x)) (10)

I Theorem 7. Termination of the TRS R can be shown by a binomial interpretation.

Proof. We let [0] = 0, [s](x) = x+1, [f](x) = 3
(
x
2
)
+x, [g](x) = 3x+1, [h](x, y) = x+y. These

are strictly monotone functions on N. For compatibility with R, we obtain the following
constraints.

1 > 0 (1) 3
(
x
2
)

+ 4x+ 2 > 3
(
x
2
)

+ 4x+ 1 (6)
2 > 1 (2) 27

(
x
2
)

+ 48x+ 22 > 27
(
x
2
)

+ 36x+ 13 (7)
3x+ 1 > 3x (3) 3x+ 2 > 3x+ 1 (8)
x+ 1 > x (4) x+ 1 > x (9)

3x+ 4 > 3x+ 3 (5) 3
(
x
2
)

+ 4x+ 2 >
(
x
2
)

+ 4x+ 1 (10)

Since these constraints are all satisfied, we conclude that R is terminating. J

I Theorem 8. Termination of R cannot be shown using polynomial interpretations over N
or R+ = {x ∈ R | x > 0}.
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4 Binomial Interpretations

Proof. The argument follows that from [8]. We will first show that regardless of the domain
N or R+, a polynomial interpretation that is compatible with R must assign [f] a quadratic
polynomial with leading coefficient 3

2s0
for some s0 ∈ N, ruling out N as a domain. The

second part of the proof is devoted to showing that [s](x) = x+ δ, where δ is the parameter
defining the well-founded order <δ on R+. Using this fact we will conclude that [f](x) < 0
for some x ∈ R, establishing the claim for the domain R+.

For the first part, we can treat both domains N and R+ simultaneously, as follows. When
working over R+, we use >δ as well-founded order and > as compatible quasi-order to obtain
a well-founded monotone algebra, where a >δ b iff a > b+δ and δ > 0 is a fixed real numgber.
Over N, the well-founded order and quasi-order are > and >, respectively. If we let δ = 1
over N, then >δ = >, and the two definitions of the orders coincide.

Assume that we are given polynomials [0] = z, [s] = s, [f] = f , [g] = g and [h] =
h with coefficients in R (Z) for domain R+ (N). Furthermore let these polynomials be
strictly monotone with respect to >δ over the domain and compatible with R. To establish
compatibility with the rules, we evaluate both sides of all rules and compare the resulting
polynomials. First consider rules (7) and (5), and compare the degrees of both sides: We have
deg(f) deg(g) > deg(g)2 deg(f) and deg(g) deg(s) > deg(s)2 deg(g), from which we conclude
that deg(g) = deg(s) = 1 (note that because of strict monotonicity, none of the polynomials
can be constant). So g(x) = g1x+ g0 and s(x) = s1x+ s0 for some g1, s1 > 1 and g0, s0 > 0.
Furthermore by comparing the leading coefficients of (5), namely g1s1 > s2

1g1 we see that
s1 = 1. Next we find constraints on h. To that end, consider (3). Since the left-hand side
evaluates to a linear polynomial, so must the right-hand side. Therefore, we may assume that
h(x, y) = hxx+ hyy + h0 where hx, hy > 1 and h0 > 0. By comparing leading coefficients
of (4) and (9) we find that s1 > hx and s1 > hy, i.e., hx = hy = 1. Using these values, we
can find a lower bound on s0 from the compatibility of (9), namely s0 > z0 + h0 + δ, which
implies s0 > δ > 0. Finally we find a bound on the degree of f . Using (10) we conclude that
x+ 2s0 + h0 > f(x+ s0)− f(x) Because s0 > δ > 0, the degree of f(x+ s0)− f(x) is one
less than that of f(x), and since the left-hand side is linear, f can at most be quadratic. To
summarize, we can express z, s, f , g and h as follows.

z = z0 s(x) = x+ s0 f(x) = f2x
2 + f1x+ f0

g(x) = g1x+ g0 h(x, y) = x+ y + h0

We also know that z0, f0, g0, h0 > 0 and s0 > δ. Next we compare the leading coefficients in
(3,8). For (3), we get g1 > 3, while for (8), 3 > g1. Therefore, g1 = 3.

Now let us determine f2. From compatibility of (6) we find that f2x
2 + (2f2s0 + f1)x+

O(1) >δ f2x
2 + (f1 + g1)x + O(1), where O(1) stands for a constant term not containing

x. From this we conclude that 2f2s0 > g1. Similarly from compatibility (10) we have
f2x

2 +(f1 +g1)x+O(1) >δ f2x
2 +(2f2s0 +f1)x+O(1), which implies g1 > 2f2s0. Therefore,

f2 = g1
2s0

= 3
2s0

. In particular, no polynomial interpretation over N can exist, because s0 and
f2 cannot both be integers.

Therefore, from now on, we assume that we are given a polynomial interpretation over R.
Our next step will be to determine s0. We already know that s0 > δ. By strict monotonicity,
we must have f(δ)− f(0) > δ, which is equivalent to f2δ + f1 > 1. Now consider (2). We
have z0 + 2s0 − δ > f2(z0 + s0)2 + f1(z0 + s0) + f0 > f2s0(z0 + s0) + (1 − f2δ)(z0 + s0).
Therefore, s0 − δ > f2(z0 + s0)(s0 − δ) > f2s0(s0 − δ) = 3

2 (s0 − δ), which implies δ > s0,
from which we conclude that s0 = δ. Using (4), this implies z0 + h0 6 0, i.e., z0 = h0 = 0.
Then, from (1), we conclude that f0 = 0. Finally, we consider (2) once more. Compatibility
now implies 2δ − δ > 3

2δ + f1δ, or − 1
2 > f1. This, however, leads to a contradiction, since



Bertram Felgenhauer 5

f( δ6 ) = 3
2δ ·

δ2

62 + f1
δ
6 6 1

24δ −
1

12δ < 0 lies outside the domain R+. J

5 Conclusion

We have described an extension of polynomial interpretations with integer coefficients using
binomial coefficients. These binomial interpretations arise naturally as a characterization of
integer-valued polynomials with integer arguments and rational coefficients. We have also
shown that binomial interpretations are not subsumed by polynomial interpretations over
the real numbers.

As future work, we plan to incorporate binomial interpretations into TTT2.
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