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Abstract This article is concerned with automating the decreasing diagrams
technique of van Oostrom for establishing confluence of term rewrite systems.
We study abstract criteria that allow to lexicographically combine labelings
to show local diagrams decreasing. This approach has two immediate benefits.
First, it allows to use labelings for linear rewrite systems also for left-linear
ones, provided some mild conditions are satisfied. Second, it admits an incre-
mental method for proving confluence which subsumes recent developments in
automating decreasing diagrams. The techniques proposed in the article have
been implemented and experimental results demonstrate how, e.g., the rule
labeling benefits from our contributions.
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1 Introduction

Confluence is an important property of rewrite systems since it ensures unique
normal forms. It is decidable in the presence of termination [14] and implied by
orthogonality [21] or restricted joinability conditions on the critical pairs [12,
15, 19, 20, 24]. Recently, there is a renewed interest in confluence research, with
a strong emphasis on automation. As one application we mention [22], where
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automated confluence tools are employed for proving soundness of abstract
forms of reduction in solving the typing problem.

The decreasing diagrams technique of van Oostrom [16] is a complete
method for showing confluence of countable abstract rewrite systems. The main
idea of the approach is to show confluence by establishing local confluence under
the side condition that rewrite steps of the joining sequences must decrease
with respect to some well-founded order. For term rewrite systems however,
the main problem for automation of decreasing diagrams is that in general
infinitely many local peaks must be considered. To reduce this problem to a
finite set of local peaks one can label rewrite steps with functions that satisfy
special properties. In [17] van Oostrom presented the rule labeling that allows
to conclude confluence of linear rewrite systems by checking decreasingness
of the critical peaks (those emerging from critical overlaps). The rule labeling
has been implemented by Aoto [1] and Hirokawa and Middeldorp [11]. Already
in [17] van Oostrom presented constraints that allow to apply the rule labeling
to left-linear systems. This approach has been implemented and extended by
Aoto [1]. Our framework subsumes the above ideas.

The contributions of this article comprise the extraction of abstract con-
straints on a labeling such that for a (left-)linear rewrite system decreasingness
of the (parallel) critical peaks ensures confluence. We show that the rule la-
beling adheres to our constraints and present additional labeling functions.
Furthermore such labeling functions can be combined lexicographically to ob-
tain new labeling functions satisfying our constraints. This approach allows the
formulation of an abstract criterion that makes virtually every labeling function
for linear rewrite systems also applicable to left-linear systems. Consequently,
confluence of the TRS in Example 1 can be established automatically, e.g., by
the rule labeling, while current approaches based on the decreasing diagrams
technique [1, 11] as well as other confluence criteria like Knuth and Bendix’
criterion or orthogonality (and its refinements) fail.

Example 1 Consider the TRS R (Cops #60)1 consisting of the rules

1 : x+ (y + z)→ (x+ y) + z 6: x× y → y × x
2: (x+ y) + z → x+ (y + z) 7 : s(x) + y → x+ s(y)

3 : sq(x)→ x× x 8: x+ s(y)→ s(x) + y

4: sq(s(x))→ (x× x) + s(x+ x) 9 : x× s(y)→ x+ (x× y)

5 : x+ y → y + x 10: s(x)× y → (x× y) + y

This system is locally confluent since all its 34 critical pairs are joinable.

The remainder of this article is organized as follows. After recalling prelimi-
naries in Section 2 we present constraints (on a labeling) such that decreasing-
ness of the critical peaks ensures confluence for (left-)linear rewrite systems in
Section 3. Three of these constraints are based on relative termination while
the fourth employs persistence. We focus on parallel rewriting in Section 4.

1 COnfluence ProblemS, see http://coco.nue.riec.tohoku.ac.jp/problems/.

http://coco.nue.riec.tohoku.ac.jp/problems/
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The merits of these approaches are assessed in Section 5 by discussing the
relationship to the recent literature. Implementation issues are addressed in
Section 6 before Section 7 gives an empirical evaluation of our results. Section 8
concludes.

This article is an updated and extended version of [31], which presents the
first incremental approach for labeling decreasing diagrams. Besides a number
of small improvements, the article contains three new major contributions:

– Section 3.2.3, presenting a new labeling measuring the contracted redex,
– Section 3.2.4, which uses persistence to enhance the applicability of L-

labelings for left-linear systems,
– Section 4, which studies parallel rewriting to make any weak LL-labeling

applicable to showing confluence of left-linear systems without additional
(relative termination) constraints.

The latter generalizes and incorporates recent findings from [6], which studies
the rule labeling for parallel rewriting.

2 Preliminaries

We assume familiarity with term rewriting [5, 23].
Let F be a signature and let V be a set of variables disjoint from F . By

T (F ,V) we denote the set of terms over F and V . The expression |t|x indicates
how often variable x occurs in term t. Positions are strings of natural numbers,
i.e., elements of N∗+. The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable and as Pos(t) = {ε} ∪ {iq | 1 6 i 6 n and q ∈ Pos(ti)} if
t = f(t1, . . . , tn). We write p 6 q if q = pp′ for some position p′, in which case
q\p is defined to be p′. Furthermore p < q if p 6 q and p 6= q. Finally, p ‖ q
if neither p 6 q nor q < p. Positions are used to address subterm occurrences.
The subterm of t at position p ∈ Pos(t) is defined as t|p = t if p = ε and as
t|p = ti|q if p = iq. We write u E t if u is a subterm of t and s[t]p for the result
of replacing s|p with t in s. The set of function symbol positions PosF (t) is
{p ∈ Pos(t) | t|p /∈ V} and PosV(t) = Pos(t) \ PosF (t). The set of variables
occurring in a term t is denoted by Var(t). We let t|P = {t|p | p ∈ P} if t is a
term and P a set of positions.

A rewrite rule is a pair of terms (l, r), written l → r, such that l is not
a variable and all variables in r are contained in l. A rewrite rule l → r is
duplicating if |l|x < |r|x for some x ∈ V. A term rewrite system (TRS) is a
signature together with a finite set of rewrite rules over this signature. In the
sequel signatures are implicit. By Rd and Rnd we denote the duplicating and
non-duplicating rules of a TRS R, respectively. A rewrite relation is a binary
relation on terms that is closed under contexts and substitutions. For a TRS
R we define →R to be the smallest rewrite relation that contains R. As usual
→=, →+, and →∗ denotes the reflexive, transitive, and reflexive and transitive
closure of →, respectively.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite
relation →R/S = →∗S · →R · →∗S . Sometimes we identify a TRS R with the
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relative TRS R/∅ and vice versa. A TRS R (relative TRS R/S) is terminating
if →R (→R/S) is well-founded. Two relations > and > are called compatible
if > ·> ·> ⊆ >. A monotone reduction pair (>, >) consists of a preorder >
and a well-founded order > such that > and > are compatible and closed
under contexts and substitutions. A reduction pair (>, >) is called simple if
f(s1, . . . , sn) > si for all 1 6 i 6 n. We recall how to prove relative termination
incrementally according to Geser [8].

Theorem 2 A relative TRS R/S is terminating if R = ∅ or there exists a
monotone reduction pair (>, >) such that R∪ S ⊆ > and (R \>)/(S \>) is
terminating. ut

A critical overlap (l1 → r1, p, l2 → r2)µ of a TRS R consists of variants
l1 → r1 and l2 → r2 of rewrite rules of R without common variables, a position
p ∈ PosF (l2), and a most general unifier µ of l1 and l2|p. If p = ε then we
require that l1 → r1 and l2 → r2 are not variants. From a critical overlap
(l1 → r1, p, l2 → r2)µ we obtain a critical peak l2µ[r1µ]p ← l2µ → r2µ and a
critical pair l2µ[r1µ]p ←o→ r2µ.

If l → r ∈ R and p is a position, we call the pair π = 〈p, l → r〉 a redex
pattern, and write lπ, rπ, pπ for its left-hand side, right-hand side, and position,
respectively. We write →π (or →pπ,lπ→rπ) for a rewrite step at position pπ
using the rule lπ → rπ. A redex pattern π matches a term t if t|pπ is an instance
of lπ. If π matches t, there is a unique reduct tπ with t→π tπ.

Let π1 and π2 be redex patterns that match a common term. They are
called parallel (π1 ‖ π2) if pπ1

‖ pπ2
. If pπ2

6 pπ1
and pπ1

\pπ2
∈ PosF (lπ2

) then
π1 and π2 overlap critically; otherwise they are called orthogonal (π1 ⊥ π2).
Note that π1 ‖ π2 implies π1 ⊥ π2. We write P ⊥ Q if π ⊥ π′ for all π ∈ P and
π′ ∈ Q and similarly P ‖ Q if π ‖ π′ for all π ∈ P and π′ ∈ Q. If P is a set of
pairwise parallel redex patterns matching a term t, we denote by t→pp P t′ the
parallel rewrite step from t to t′ by P , where t′ = tπ1···πn if P = {π1, . . . , πn}.
We allow P to be abbreviated to a set of positions in t→pp P t′.

We write 〈A, {→α}α∈I〉 to denote the ARS 〈A,→〉 where → is the union of
→α for all α ∈ I. Let 〈A, {→α}α∈I〉 be an ARS and let > and > be relations
on I. We write→ <α1···αn for the union of→β where β < αi for some 1 6 i 6 n.
We call →α and →β decreasing (with respect to > and >) if

←−
α
· −→
β
⊆ ∗−−→

<α
· =−−→

6β
· ∗−−→

<αβ
· ∗←−−

<αβ
· =←−−

6α
· ∗←−−

<β

An ARS 〈A, {→α}α∈I〉 is decreasing if there exists a preorder > and a well-
founded order > such that > and > are compatible and →α and →β are
decreasing for all α, β ∈ I with respect to > and >.

The following theorem is a reformulation of a result obtained by van
Oostrom [16] (where > is the identity relation). While allowing a preorder >
does not add power, it is more convenient for our purposes.

Theorem 3 Every decreasing ARS is confluent. ut
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Fig. 1: Three kinds of local peaks.

3 Labelings for Rewrite Steps

In this section we present constraints (on a labeling) such that decreasingness
of the critical peaks ensures confluence of linear (Section 3.1) and left-linear
(Section 3.2) TRSs. Furthermore, we show that if two labelings satisfy these
conditions then also their lexicographic combination satisfies them.

For a local peak

t = s[r1σ]p ← s[l1σ]p = s = s[l2σ]q → s[r2σ]q = u (1)

there are three possibilities (modulo symmetry):

(a) p ‖ q (parallel),
(b) q 6 p and p\q ∈ PosF (l2) (critical overlap),
(c) q < p and p\q /∈ PosF (l2) (variable overlap).

These cases are visualized in Figure 1. Figure 1(a) shows the shape of a local
peak where the steps take place at parallel positions. Here we have s→p,l1→r1 t
and u →p,l1→r1 v as well as s →q,l2→r2 u and t →q,l2→r2 v, i.e., the steps
drawn at opposing sides in the diagram are due to the same rules. The question
mark in Figure 1(b) conveys that joinability of critical overlaps may depend
on auxiliary rules. Variable overlaps (Figure 1(c)) can again be joined by the
rules involved in the diverging step. More precisely, if q′ is the unique position
in PosV(l2) such that qq′ 6 p, x = l2|q′ , |l2|x = m, and |r2|x = n then we have
t→m−1

l1→r1 t1, t1 →l2→r2 v, and u→n
l1→r1 v.

Labelings are used to compare rewrite steps. In the sequel we denote the set
of all rewrite steps for a TRS R by ΛR and elements from this set by capital
Greek letters Γ and ∆. Furthermore if Γ = s→p,l→r t then C[Γσ] denotes the
rewrite step C[sσ]→p′p,l→r C[tσ] for any substitution σ and context C with
C|p′ = �.

Definition 4 Let R be a TRS. A labeling function ` : ΛR →W is a mapping
from rewrite steps into some set W . A labeling (`,>, >) for R consists of a
labeling function `, a preorder >, and a well-founded order > such that >
and > are compatible and for all rewrite steps Γ,∆ ∈ ΛR, contexts C and
substitutions σ:



6 H. Zankl et al.

s

t u

v

α

δ

β

γ

(a) (parallel)

s

t u

v

α

δ

β

γ
=

(b) (variable-linear)

s

t u

v

α

δ

β

pp

γ

(c) (variable-left-linear)

Fig. 2: Labeled local peaks.

1. `(Γ ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]), and
2. `(Γ ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]).

All labelings we present satisfy > ⊆ >, which allows to avoid tedious case
distinctions, and we assume this property henceforth. We do so without loss
of generality, because ((> ∪>)∗, >) satisfies the conditions of Definition 4 if
(>, >) does.

In the sequel W , >, and > are left implicit when clear from the context and
a labeling is identified with the labeling function `. We use the terminology that
a labeling ` is monotone and stable if properties 1 and 2 of Definition 4 hold.
Abstract labels, i.e., labels that are unknown, are represented by lowercase Greek
letters α, β, γ, and δ. We write s →π

α t (or simply s →α t) if `(s →π t) = α.
Often we leave the labeling ` implicit and just attach labels to arrows. A local
peak t← s→ u is called decreasing for ` if there are labels α and β such that
t α← s →β u, and →α and →β are decreasing with respect to > and >. To
employ Theorem 3 for TRSs, decreasingness of the ARS 〈T (F ,V), {→w}w∈W 〉
must be shown.

In this article we investigate conditions on a labeling such that local peaks
according to (parallel) and (variable overlap) are decreasing automatically. This
is desirable since in general there are infinitely many local peaks corresponding
to these cases (even if the underlying TRS has finitely many rules). There are
also infinitely many local peaks according to (critical overlap) in general, but
for a finite TRS they are captured by the finitely many critical overlaps. Still,
it is undecidable if they are decreasingly joinable [11].

For later reference, Figure 2 shows labeled local peaks for the case (parallel)
(Figure 2(a)) and (variable overlap) if the rule l2 → r2 in local peak (1) is
linear (Figure 2(b)) and left-linear (Figure 2(c)), respectively. In Figure 2(c) the
expression γ denotes a sequence of labels γ1, . . . , γn. In the subsequent analysis
we will always use the fact that the local peaks in Figure 2 can be closed by
the rules involved in the peak (applied at opposing sides in the diagram).
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3.1 Linear TRSs

The next definition presents sufficient abstract conditions on a labeling such that
local peaks according to the cases (parallel) and (variable-linear) in Figure 2
are decreasing. We use the observation that for linear TRSs the (parallel) case
can be seen as an instance of the (variable-linear) case to shorten proofs.

Definition 5 Let ` be a labeling for a TRS R. We call ` an L-labeling (for R)
if for local peaks according to (parallel) and (variable-linear) we have α > γ
and β > δ in Figures 2(a) and 2(b), respectively.

The local diagram in Figure 3(a) visualizes the conditions on an L-labeling
more succinctly. We will use L-labelings also for left-linear TRSs, where no
conditions are required for local peaks different from (parallel) and (variable-
linear). We call the critical peaks of a TRS R Φ-decreasing if there exists
a Φ-labeling ` for R such that the critical peaks of R are decreasing for `.
In the sequel we will introduce further labelings, e.g., LL-labelings and weak
LL-labelings. The placeholder Φ avoids the need for repeating the definition of
decreasingness for these labelings.

The next theorem states that L-labelings may be used to show confluence
of linear TRSs.

Theorem 6 Let R be a linear TRS. If the critical peaks of R are L-decreasing
then R is confluent.

Proof By assumption the critical peaks ofR are decreasing for some L-labeling `.
We establish confluence of R by Theorem 3, i.e., show decreasingness of the
ARS 〈T (F ,V),→R〉 where rewrite steps are labeled according to `. Since R
is linear, local peaks have the shape (parallel), (variable-linear), or (critical
overlap). By definition of an L-labeling the former two are decreasing. Now
consider a local peak according to (critical overlap), i.e., for the local peak
(1) we have q 6 p and p\q ∈ PosF (l2). Let p′ = p\q. Then t|q ← s|q → u|q
must be an instance of a critical peak l2µ[r1µ]p′ ← l2[l1µ]p′ = l2µ→ r2µ which
is decreasing by assumption. By monotonicity and stability of ` we obtain
decreasingness of the local peak (1). ut

We recall the rule labeling of van Oostrom [17], parametrized by a mapping
i : R → N. Often i is left implicit. The rule labeling satisfies the constraints of
an L-labeling.

Lemma 7 Let R be a TRS and `irl(s→π t) = i(lπ → rπ). Then (`irl,>N, >N)
is an L-labeling for R.

Proof First we show that (`irl,>N, >N) is a labeling. The preorder >N and the
well-founded order >N are compatible. Furthermore `irl(s→π t) = i(lπ → rπ)
which ensures monotonicity and stability of `irl. Hence (`irl,>N, >N) is a labeling.
Next we show the properties demanded in Definition 5. For local peaks according
to cases (parallel) and (variable-linear) we recall that the steps drawn at
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opposite sides in the diagram, e.g., the steps labeled with α and γ (β and δ) in
Figures 2(a) and 2(b), are due to applications of the same rule. Hence α = γ
and β = δ in Figures 2(a) and 2(b), which shows the result. ut

Inspired by [11] we propose a labeling based on relative termination.

Lemma 8 Let R be a TRS and `rt(s → t) = s. Then `Srt = (`rt,→∗R,→
+
S/R)

is an L-labeling for R, provided →S ⊆ →R and S/R is terminating.

Proof Let > =→∗R and > =→+
S/R. First we show that (`rt,>, >) is a labeling.

By definition of relative rewriting,> and> are compatible and> is well-founded
by the termination assumption of S/R. Since rewriting is closed under contexts
and substitutions, `Srt is monotone and stable and hence a labeling. Next we
show the properties demanded in Definition 5. The assumption →S ⊆ →R
yields > ⊆ >. Combining α = s = β, γ = u, and δ = t with s→R t and s→R u
yields α = β > γ, δ for local peaks according to (parallel) and (variable-linear)
in Figures 2(a) and 2(b). ut

The L-labeling from the previous lemma allows to establish a decrease with
respect to some steps of R. The next lemma allows to combine L-labelings. Let
`1 : ΛR → W1 and `2 : ΛR → W2. Then (`1,>1, >1) × (`2,>2, >2) is defined
as (`1 × `2,>12, >12) where `1 × `2 : ΛR → W1 × W2 with (`1 × `2)(Γ ) =
(`1(Γ ), `2(Γ )). Furthermore (x1, x2) >12 (y1, y2) if and only if x1 >1 y1 or
x1 >1 y1 and x2 >2 y2 and (x1, x2) >12 (y1, y2) if and only if x1 >1 y1 or
x1 >1 y1 and x2 >2 y2.

Lemma 9 Let `1 and `2 be L-labelings. Then `1 × `2 is an L-labeling.

Proof First we show that `1 × `2 is monotone and stable whenever `1 and `2
are labelings. Indeed if (`1 × `2)(Γ ) > (`1 × `2)(∆) then `1(Γ ) > `1(∆) or
`1(Γ ) > `1(∆) and `2(Γ ) > `2(∆), which for all contexts C and substitutions σ
implies `1(C[Γσ]) > `1(C[∆σ]) or `1(C[Γσ]) > `1(C[∆σ]) and `2(C[Γσ]) >
`2(C[∆σ]) by stability and monotonicity of `1 and `2, which is equivalent to
(`1 × `2)(C[Γσ]) > (`1 × `2)(C[∆σ]). Showing stability and monotonicity of >
is similar. Since the lexicographic product satisfies >12 ⊆ >12 if `1 and `2 are
labelings we conclude that `1 × `2 is a labeling.

Next we show that `1 × `2 satisfies the requirements of Definition 5. If
`1 and `2 are L-labelings then the diagram of Figure 2(b) has the shape as
in Figure 3(a) and 3(b), respectively. It is easy to see that the lexicographic
combination is again an L-labeling (cf. Figure 3(c)). ut

3.2 Left-linear TRSs

For left-linear TRSs the notion of an LL-labeling is introduced. The following
definition exploits that Figure 2(b) is an instance of Figure 2(c).

Definition 10 A labeling ` for a TRS R is an LL-labeling (for R) if
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Fig. 3: Lexicographic combination of L-labelings.

1. in Figure 2(a), α > γ and β > δ,
2. in Figure 2(c), α > γ and β > δ for all permutations of the rewrite steps of
u→pp v, where α > γ means α > γi for 1 6 i 6 n, and

3. in Figure 2(c), α > γ for some permutation of the rewrite steps of u→pp v,
where α > γ means α > γ1 and α > γi for 2 6 i 6 n.

A labeling ` is a weak LL-labeling if the first two conditions are satisfied.

We strengthened the definition of (weak) LL-labelings from [31]. All labelings
proposed in [31] satisfy the stronger conditions. Considering all permutations
in condition 2 of Definition 10 is necessary to ensure that the lexicographic com-
bination of two weak LL-labelings again is a weak LL-labeling (cf. Lemma 14).
Furthermore, this condition facilitates their use for parallel rewriting (Sec-
tion 4).

Remark 11 The L-labelings presented so far (cf. Lemmata 7 and 8) are weak
LL-labelings.

The next theorem states that LL-labelings allow to show confluence of
left-linear TRSs.

Theorem 12 Let R be a left-linear TRS. If the critical peaks of R are LL-
decreasing then R is confluent.

Proof By assumption the critical peaks of R are decreasing for some LL-
labeling `. We establish confluence of R by Theorem 3, i.e., we show decreas-
ingness of the ARS 〈T (F ,V),→R〉 by labeling rewrite steps according to `. By
definition of an LL-labeling local peaks according to (parallel) and (variable-
left-linear) are decreasing. The reasoning for local peaks according to (critical
overlap) is the same as in the proof of Theorem 6. ut

The rule labeling from Lemma 7 is a weak LL-labeling but not an LL-
labeling since in Figure 2(c) we have α = γi for 1 6 i 6 n which does not
satisfy α > γ if n > 1. (See also [11, Example 9].) We return to this problem
and propose two solutions (in Sections 3.2.4 and 4) after presenting simpler
(weak) LL-labelings based on measuring duplicating steps (Section 3.2.1), the
context above the contracted redex (Section 3.2.2), and the contracted redex
(Section 3.2.3).



10 H. Zankl et al.

3.2.1 Measuring duplicating steps

The L-labeling from Lemma 8 can be adapted to an LL-labeling.

Lemma 13 Let R be a TRS. Then `Rd
rt is an LL-labeling, provided Rd/Rnd is

terminating.

Proof By Theorem 2 the relative TRS Rd/Rnd is terminating if and only
if Rd/R is terminating. Hence (`Rd

rt ,>, >) is a labeling by Lemma 8. Here
> =→∗R and > =→+

Rd/R. Since `rt(s→ t) = s, we have α = β in Figures 2(a)

and 2(c). We have > ⊆ >. Hence α > γ and α > δ in Figure 2(a) and, if
l2 → r2 in local peak (1) is linear, also in Figure 2(c) as γ is empty or γ = γ in
this case. If l2 → r2 is not linear then it must be duplicating and hence α > γi
for 1 6 i 6 n. Because α > δ, `Rd

rt is an LL-labeling for R. ut

To combine the previous lemma with the rule labeling we study how different
labelings can be combined.

Lemma 14 Let `1 be an LL-labeling and let `2 be a weak LL-labeling. Then
`1 × `2 and `2 × `1 are LL-labelings.

Proof By the proof of Lemma 9 `1 × `2 and `2 × `1 are labelings. The only
interesting case of (variable-left-linear) is when l2 → r2 in local peak (1) is
non-linear, i.e., γ contains more than one element. First we show that `1× `2 is
an LL-labeling. Here labels according to `1 are suffixed with the subscript 1 and
similarly for `2. Recall Figure 2(c). Let us first deal with Definition 10(2). We
have α1 > γ1, β1 > δ1, α2 > γ2 and β2 > δ2, which yields (β1, β2) > (δ1, δ2),
(α1, α2) > (γ1i, γ2i) for all 1 6 i 6 n, by the definition of the lexicographic
product. Next we consider Definition 10(3). By assumption we have α1 > γ1,
and α2 > γ2, which yields the desired (α1, α2) > (γ11, γ21), (α1, α2) > (γ1i, γ2i)
for 2 6 i 6 n. In the proof for `2 × `1 the assumptions yield (β2, β1) > (δ2, δ1)
and (α2, α1) > (γ2i, γ1i) for 1 6 i 6 n for Definition 10(2) and additionally
(α2, α1) > (γ2i, γ1i) for 2 6 i 6 n for Definition 10(3). ut

Remark 15 If `1 and `2 are weak LL-labelings then so are `1 × `2 and `2 × `1.
Furthermore, LL-labelings are also weak LL-labelings by definition. In particular
LL-labelings can be composed lexicographically.

From Theorem 12 and Lemmata 13 and 14 we obtain the following result.

Corollary 16 Let R be a left-linear TRS. If Rd/Rnd is terminating and all
critical peaks of R are weakly LL-decreasing then R is confluent.

Proof By Lemma 13 `Rd
rt is an LL-labeling. By assumption the critical peaks

of R are decreasing for some weak LL-labeling `. By Lemma 14 also `Rd
rt × `

is an LL-labeling. It remains to show decreasingness of the critical peaks for
`Rd
rt × `. This is obvious since for terms s, t, u with s →R t →R u we have
`Rd
rt (s→ t) > `Rd

rt (t→ u). Hence decreasingness for ` implies decreasingness for
`Rd
rt × `. Confluence of R follows from Theorem 12. ut
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We revisit the example from the introduction.

Example 17 Recall the TRS R from Example 1. The polynomial interpretation

+N(x, y) = x+ y sN(x) = x+ 1 ×N(x, y) = x2 + xy + y2 sqN(x) = 3x2 + 1

shows termination of Rd/Rnd. It is easy to check that `irl with i(3) = i(6) = 2,
i(4) = i(10) = 1, and i(l → r) = 0 for all other rules l → r ∈ R establishes
decreasingness of the 34 critical peaks. We consider two selected critical peaks
(where the applied rewrite rule is indicated above the arrow in parentheses).
The peaks

t1 = x+ ((y + z) + w)
(1)←−
0
x+ (y + (z + w))

(1)−→
0

(x+ y) + (z + w) = u1

t2 = s(x)× s(x)
(3)←−
2

sq(s(x))
(4)−→
1

(x× x) + s(x+ x) = u2

can be joined decreasingly as follows:

t1
(2)−→
0
x+ (y + (z + w))

(2)←−
0
u1

t2
(10)−→
1

(x× s(x)) + s(x)
(9)−→
0

(x+ (x× x)) + s(x)
(2)−→
0
x+ ((x× x) + s(x))

(8)−→
0
x+ (s(x× x) + x)

(2)←−
0

(x+ s(x× x)) + x
(5)←−
0

(s(x× x) + x) + x

(1)←−
0

s(x× x) + (x+ x)
(8)←−
0
u2

The next example is concise and constitutes a minimal example to familiarize
the reader with Corollary 16.

Example 18 Consider the TRS R consisting of the three rules

1 : b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(x))

We have Rd = {3} and Rnd = {1, 2}. Termination of Rd/Rnd can be established
by LPO with precedence a ∼ b and f > g. The rule labeling that takes the rule
numbers as labels shows the only critical peak decreasing, i.e., f(g(x, b)) 2←
f(g(x, a))→3 g(f(x), f(x)) and f(g(x, b))→1 f(g(x, a))→3 g(f(x), f(x)). Hence
we obtain the confluence of R by Corollary 16.

Remark 19 Using `irl(·) = 0 as weak LL-labeling, Corollary 16 gives a condition
(termination of Rd/Rnd) such that t →= u or u →= t for all critical pairs
t ←o→ u implies confluence of a left-linear TRS R. This partially answers
one question in the RTA list of open problems #13.2

2 http://www.cs.tau.ac.il/~nachum/rtaloop/problems/13.html

http://www.cs.tau.ac.il/~nachum/rtaloop/problems/13.html
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3.2.2 Measuring the context above the contracted redex

In [17, Example 20] van Oostrom suggests to count function symbols above the
contracted redex, demands that this measurement decreases for variables that
are duplicated, and combines this with the rule labeling. Consequently local
peaks according to Figure 2(c) are decreasing. Below we exploit this idea but
incorporate the following beneficial generalizations. First, we do not restrict
to counting function symbols (which has been adopted and extended by Aoto
in [1]) but represent the constraints as a relative termination problem. This
abstract formulation allows to strictly subsume the criteria from [1, 17] (see
Section 5) because more advanced techniques than counting symbols can be
applied for proving termination. Additionally, our setting also allows to weaken
these constraints significantly (cf. Lemma 27).

The next example motivates the need for an LL-labeling that does not
require termination of Rd/Rnd.

Example 20 Consider the TRS R consisting of the six rules

f(h(x))→ h(g(f(x), x, f(h(a)))) f(x)→ a a→ b

h(x)→ c b→ ⊥ c→ ⊥

Since the duplicating rule admits an infinite sequence, Corollary 16 cannot
succeed.

In the sequel we let G be the signature consisting of unary function symbols
f1, . . . , fn for every n-ary function symbol f ∈ F .

Definition 21 Let x ∈ V. We define a partial mapping ? from terms in the
original signature and positions T (F ,V)× N∗+ to terms in T (G,V) as follows:

?(f(t1, . . . , tn), p) =

{
fi(?(ti, q)) if p = iq

x if p = ε

For a TRS R we abbreviate R?>/R?= by ?(R). Here, for & ∈ {>,=}, R?&
consists of all rules ?(l, p) → ?(r, q) such that l → r ∈ R, l|p = r|q = y ∈ V,
and |r|y & 1.

The next example illustrates the transformation ?(·).

Example 22 Consider the TRS R from Example 20. The relative TRS ?(R) =
R?>/R?= consists of the TRS R?> with rules

f1(h1(x))→ h1(g1(f1(x))) f1(h1(x))→ h1(g2(x))

and the TRS R?= which is empty.

Due to the next lemma a termination proof of ?(R) yields an LL-labeling.
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Lemma 23 Let R be a TRS and `?(s →π t) = ?(s, pπ). Then (`?,>, >) is
an LL-labeling, provided (>, >) is a monotone reduction pair, R?> ⊆ >, and
R?> ∪R?= ⊆ >.

Proof Because (>, >) is a monotone reduction pair, (`?,>, >) is a labeling
for R. Note that monotonicity and stability are with respect to the signature G.
To see that the constraints of Definition 10 are satisfied we argue as follows.
For Figure 2(a) we have α = γ and β = δ because the steps drawn at opposing
sides in the diagram take place at the same positions and the function symbols
above these positions stay the same. Next we consider Figure 2(b), i.e., the
right-linear case. Recall the local peak (1). Again we have β = δ because q < p.
To see α > γ consider the step s→q,l2→r2 u and let q′ be the unique position
in PosV(l2) such that qq′r = p with x = l2|q′ for some position r. If |r2|x = 0
then there is no step and we are done. Otherwise let q′′ be the position in
r2 with |r2|q′′ = x. By construction R?= contains the rule ?(l2, q

′)→ ?(r2, q
′′).

Combining the assumption R?= ⊆ > with monotonicity and stability of `?
yields ?(s, p) > ?(u, qq′′r), i.e., α > γ. Next we consider Figure 2(c) for the
duplicating case. Recall the local peak (1). Again we have β = δ because
q < p. To see α > γ (for any permutation of the steps) consider the step
s→q,l2→r2 u and let q′ be the unique position in PosV(l2) such that qq′r = p
for some position r. Let x = l2|q′ and Q = {q′1, . . . , q′n} with r2|q′i = x. Then
P = {qq′ir | q′i ∈ Q} is the set of descendants of p. By construction R?> contains
all rules ?(l2, q

′)→ ?(r2, q
′
i) for 1 6 i 6 n. Combining the assumption R?> ⊆ >

with monotonicity and stability of `? yields ?(s, p) > ?(u, p′i) for p′i ∈ P . Since
u→pp P v we obtain α > γi for 1 6 i 6 n and hence the desired α > γ. ut

Remark 24 It is also possible to formulate Lemma 23 as a relative termination
criterion without the use of a monotone reduction pair. However, the monotone
reduction pair may admit more labels to be comparable (in the critical diagrams)
because of the inclusions R?> ⊆ > and R?> ∪R?= ⊆ >.

From Lemma 23 we obtain the following corollary.

Corollary 25 Let R be a left-linear TRS and let ` be a weak LL-labeling. Let
`?` denote `× `? or `? × `. Let (>, >) be a monotone reduction pair showing
termination of ?(R). If the critical peaks of R are decreasing for `?` then R is
confluent.

Proof The function `? is an LL-labeling by Lemma 23. Lemma 14 yields that
`?` is an LL-labeling. By assumption the critical peaks are decreasing for `?`
and hence Theorem 12 yields the confluence of R. ut

The next example illustrates the use of Corollary 25.

Example 26 We show confluence of the TRS R from Example 20. Termination
of ?(R) (cf. Example 22) is easily shown, e.g., the polynomial interpretation

f1N(x) = 2x g1N(x) = g2N(x) = x h1N(x) = x+ 1



14 H. Zankl et al.

orients both rules in R?> strictly. To show decreasingness of the three crit-
ical peaks (two of which are symmetric) we use the labeling `? × `irl with
i(f(h(x))→ h(g(f(x), x, f(h(a))))) = 1 and all other rules receive label 0. For
the moment we label a step s→π t with the interpretation of ?(s, pπ). E.g., a
step f(h(b)) → f(h(⊥)) is labeled 2x + 2 since ?(f(h(b)), 11) = f1(h1(x)) and
[f1(h1(x))]N = 2x+2. The critical peak h(g(f(x), x, f(h(a)))) x,1← f(h(x))→x,0 a
is closed decreasingly by

h(g(f(x), x, f(h(a)))) −−→
x,0

c −−→
x,0
⊥ ←−−

x,0
b←−−

x,0
a

and the critical peak h(g(f(x), x, f(h(a)))) x,1← f(h(x)) →2x,0 f(c) is closed
decreasingly by

h(g(f(x), x, f(h(a)))) −−→
x,0

c −−→
x,0
⊥ ←−−

x,0
b←−−

x,0
a←−−

x,0
f(c)

which allows to prove confluence of R by Corollary 25.

By definition of α > γ (cf. Definition 10) we observe that the definition
of ?(R) can be relaxed. If l2 → r2 with l2|q′ = x ∈ V and {q′1, . . . , q′n} are
the positions of the variable x in r2 then it suffices if n − 1 instances of
?(l2, q

′)→ ?(r2, q
′
i) are put in R?> while one ?(l2, q

′)→ ?(r2, q
′
j) can be put in

R?= (since the steps labeled γ in Figure 2(c) are at parallel positions we can
choose the first closing step such that α > γ1). This improved version of ?(R)
is denoted by ??(R) = R??> /R??= . We obtain the following variant of Lemma 23.

Lemma 27 Let R be a TRS. Then (`?,>, >) is an LL-labeling, provided (>, >)
is a monotone reduction pair, R??> ⊆ >, and R??> ∪R??= ⊆ >. ut

Obviously any ??(R) inherits termination from ?(R). The next example
shows that the reverse statement does not hold. In Section 6 we show how the
intrinsic indeterminism of ??(R) is eliminated in the implementation.

Example 28 Consider the TRS R from Example 1. The TRS R?> consists of
the rules

sq1(x)→ ×1(x) sq1(s1(x))→ +1(×1(x)) ×1(x)→ +1(x)

sq1(x)→ ×2(x) sq1(s1(x))→ +1(×2(x)) † : ×1(x)→ +2(×1(x))

sq1(s1(x))→ +2(s1(+1(x))) † : ×2(y)→ +1(×2(y))

sq1(s1(x))→ +2(s1(+2(x))) ×2(y)→ +2(y)

while R?= consists of the rules

+1(x)→ +1(+1(x)) +1(x)→ +2(x) +1(x)→ +1(s1(x))

+2(+1(y))→ +1(+2(y)) +2(y)→ +1(y) +2(s1(y))→ +2(y)

+2(+2(z))→ +2(z) ×1(x)→ ×2(x) ×2(s1(y))→ +2(×2(y))

+1(+1(x))→ +1(x) ×2(y)→ ×1(y) ×1(s1(x))→ +1(×1(x))

+1(+2(y))→ +2(+1(y)) +1(s1(x))→ +1(x)

+2(z)→ +2(+2(z)) +2(y)→ +2(s1(y))
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Let R?† denote the rules in R?> marked with †. Termination of ?(R) cannot be
established (because R?† is non-terminating) but we stress that moving these
rules into R?= yields a valid ??(R) which can be proved terminating by the
polynomial interpretation with

sq1N(x) = x+ 2 ×1N(x) = ×2N(x) = x+ 1

that interprets the remaining function symbols by the identity function. We
remark that Corollary 25 with the labeling from Lemma 27 establishes conflu-
ence of R. Since all reductions in the 34 joining sequences have only + above
the redex and +1N(x) = +2N(x) = x, the `? labeling attaches x to any of these
steps. The rule labeling that assigns i(3) = i(6) = 2, i(4) = i(10) = 1, and 0 to
all other rules shows the 34 critical peaks decreasing.

3.2.3 Measuring the contracted redex

Instead of the labeling `?, which is based on the context above the contracted
redex, one can also use the contracted redex itself for labeling.

Lemma 29 Let R be a TRS and `4(s →π t) = s|pπ . Then (`4,>, >) is a
weak LL-labeling, provided (>, >) is a monotone reduction pair with R ⊆ >.

Proof Because (>, >) is a monotone reduction pair, (`4,>, >) is a labeling
for R. To see that the constraints of Definition 10 are satisfied we argue as
follows. For Figure 2(a) we have α = γ and β = δ. For Figure 2(c) we have
α = γ1 = · · · = γn (since the same redex is contracted) and β > δ by the
assumption R ⊆ > and monotonicity and stability of >. ut

The following definition collects the constraints, such that variable overlaps
can be made decreasing.

Definition 30 For a TRS R let R4 = {l→ x | l→ r ∈ R and |r|x > 1}.

Due to the next result a termination proof of R4/R enables a weak LL-
labeling to establish confluence.

Corollary 31 Let R be a left-linear TRS and let ` be a weak LL-labeling. Let
(>, >) be a simple monotone reduction pair showing termination of R4/R. If
the critical peaks of R are decreasing for `4 × ` then R is confluent.

Proof Note that `4 × ` is a weak LL-labeling (cf. Remark 15), which shows
the peaks in Figure 2(a) and Figure 2(b) decreasing. For the duplicating case
of Figure 2(c) we inspect the labels with regard to `4. Consider the local
peak (1). Clearly, β = l2σ and α = l1σ. Since γi = α, we want to establish
β > α. To this end let q′ ∈ PosV(l2) such that qq′r = p and x = l2|q′ . Note
that l2 → x ∈ R4 because we are in the duplicating case. Hence the relative
termination assumption gives l2 > x, and l2σ > xσ is obtained by stability. Now
as xσ|r = l1σ the desired β > α follows from simplicity of the reduction pair
since l2σ > xσ > l1σ. Combining `4 lexicographically with a weak LL-labeling
` into `4 × ` maintains decreasingness. ut
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Remark 32 Note that the labeling `4 × ` from Corollary 31 is not an LL-
labeling. The point is that there are multiple ways of ensuring decreasingness
of Figure 2(c). For LL-labelings, we use α > γ, while in Corollary 31, β > γi
for 1 6 i 6 n does the job. This is also the reason why `× `4 cannot be used in
Corollary 31. Consider the TRS with the rules 1 : f(x)→ g(x, x) and 2 : a→ b.
Let `rl be the rule labeling attaching the rule numbers as labels. Then the
variable overlap is not decreasing for `rl × `4.

We demonstrate Corollary 31 on the TRS from Example 18.

Example 33 Consider the TRS from Example 18. The polynomial interpretation

gN(x, y) = 2x+ 2y + 1 aN = bN = 0 fN(x) = x2

establishes relative termination of {f(g(x, a))→ x}/R and shows the critical
peak decreasing when labeling steps with the pair obtained by the interpretation
of the redex and the rule labeling, i.e., t = f(g(x, b)) 0,2← f(g(x, a))→(2x+1)2,3

g(f(x), f(x)) = u for the peak and t→0,1 f(g(x, a))→(2x+1)2,3 u for the join.

3.2.4 Exploiting Persistence

In this section we show how to exploit persistence of confluence [3,7] to enhance
the applicability of L-labelings to certain duplicating left-linear TRSs. Com-
pared to Sections 3.2.1–3.2.3, where variable overlaps were closed decreasingly
by a relative termination criterion, here persistence arguments are employed
to avoid reasoning about variable overlaps at duplicating variable positions at
all. To this end we recall order-sorted TRSs.

Definition 34 Let S be a set of sorts equipped with a partial order ≤. A
signature F and a set of variables V are S-sorted if every n-ary function
symbol f ∈ F is equipped with a sort declaration α1 × · · · × αn → α where
α1, . . . , αn, α ∈ S and every variable x ∈ V has exactly one sort α ∈ S. We
write S(f) = α, S(f, i) = αi for 1 6 i 6 n, and S(x) = α, respectively. We let
Vα = {x ∈ V | S(x) = α} and require that Vα is infinite for all α ∈ S. The set
of S-sorted terms, TS(F ,V), is the union of the sets Tα(F ,V) for α ∈ S that
are inductively defined as follows: Vα ⊆ Tα(F ,V) and f(t1, . . . , tn) ∈ Tα(F ,V)
whenever f ∈ F has sort declaration α1 × · · · × αn → α and ti ∈ T≤αi(F ,V)
for all 1 6 i 6 n. Here T≤α(F ,V) is the union of all Tβ(F ,V) for β ≤ α.

The notion of S-sorted terms properly extends many-sorted terms. Indeed,
if we let ≤ be the identity relation then T≤α(F ,V) = Tα(F ,V), which means
that the i-th argument of f in an S-sorted term must have sort S(f, i).

Definition 35 We extend S(·) and S(·, ·) to S-sorted terms t and non-root
positions of t. If t = f(t1, . . . , tn) then S(t) = S(f), S(t, i) = S(f, i), and
S(t, ip) = S(ti, p) for p 6= ε. If t = x ∈ V then S(t) = S(x).
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Example 36 Let S = {0, 1, 2} with 0 ≤ 1 and consider the sort declarations
f : 1 → 2 and x : 0. Then t = f(x) ∈ TS({f}, {x}), S(t) = 2, S(t, 1) = 1, and
S(t|1) = 0 ≤ 1.

One easily observes that S(t, p) defines the maximal sort induced by the
context t[�]p: a term t[u]p is S-sorted if and only if u ∈ T≤S(t,p)(F ,V). Conse-
quently, we have S(t|p) ≤ S(t, p) for all non-root positions p of t.

We are particularly interested in the case where rewriting restricted to
S-sorted terms coincides with ordinary rewriting with initial terms restricted
to S-sorted ones. This property is captured by S-compatible TRSs.

Definition 37 A TRS R is S-compatible if for every rule l → r ∈ R there
exists a sort α ∈ S such that l ∈ Tα(F ,V) and r ∈ T≤α(F ,V), and S(l, p) =
S(l|p) for all p ∈ PosV(l).

The following lemma is well-known (e.g. [27]) and easy to prove.

Lemma 38 If R is S-compatible then TS(F ,V) and T≤α(F ,V) for every α ∈ S
are closed under rewriting by R. ut

The following result is a special case of [7, Theorem 6.2].

Theorem 39 An S-compatible left-linear TRS R is confluent on T (F ,V) if
and only if it is confluent on TS(F ,V). ut

Example 40 Consider the duplicating TRS R with rules

1 : f(a)→ f(b) 2 : f(x)→ g(f(x), f(x))

Recall that L-labelings (in particular, rule labelings) that are not LL-labelings
are not applicable to non-linear TRSs because the variable overlap diagram
(Figure 2(c)) is not decreasing. Let S = {0, 1} with the following sort declara-
tions:

x : 0 a : 0 b : 0 f : 0→ 1 g : 1× 1→ 1

The TRS R is S-compatible and hence we may restrict rewriting to S-sorted
terms without affecting confluence by Theorem 39. This has the beneficial
effect that variable overlaps are ruled out. To see how, note that no sub-
terms of sort 1 can appear inside terms of sort 0. Consider the left-hand
side f(x) of R. We have S(f(x), 1) = 0, so that any term substituted for x
must have sort 0. Further note that both left-hand sides have sort 1. Con-
sequently, no rule application may be nested below f(x) → g(f(x), f(x)) and
hence variable overlaps are ruled out. Therefore, we may use L-labelings
to show confluence of R even though R is not linear, and in fact the rule
labeling which takes the rule numbers as labels allows us to join the sole (mod-
ulo symmetry) critical peak t = f(b) 1← f(a)→2 g(f(a), f(a)) = u decreasingly:
t→2 g(f(b), f(b)) 1← g(f(b), f(a)) 1← u.
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Formally, we define TEα(F ,V) = {t | t E t′ for some t′ ∈ T≤α(F ,V)}, to
capture which terms may occur as subterms of terms of sort α or below.

Theorem 41 Let R be a left-linear S-compatible TRS such that the variable
l|p occurs at most once in r whenever l → r ∈ R and l′ → r′ ∈ R with
l′ ∈ TES(l,p)(F ,V) for some p ∈ PosV(l). Then R is confluent if all its critical
peaks are L-decreasing.

Proof By Theorem 39 we may restrict rewriting to S-sorted terms. The proof
follows that of Theorem 6, except in the analysis of local peaks, where right-
linearity of R is used, which is not among our assumptions. Instead, we
argue as follows: Since R is left-linear, any local peak has the shape (par-
allel), (critical overlap), or (variable-left-linear). In the latter case, the step
s→q,l′→r′ t is nested below s→p,l→r u, and it is easy to see that this implies
l′ ∈ TES(l,q′)(F ,V) for some variable position q′ of l such that pq′ 6 q. Conse-
quently the variable x = l|q′ occurs at most once in r by assumption, and the
parallel step (which contains one rewrite step for every occurrence of x in r) is
empty or a single step, resulting in a decreasing diagram. ut

As a refinement of Theorem 41, instead of ruling out duplicating (variable-
left-linear) overlaps completely, we can also add additional constraints on the
labeling for the remaining variable overlaps.

Definition 42 Let ` be a weak LL-labeling for an S-compatible TRS R. We
call ` persistent if whenever rules l→ r, l′ → r′ ∈ R satisfy l′ ∈ TES(l,p)(F ,V)
for some p ∈ PosV(l), either |r|l|p 6 1 or β > γ in Figure 2(c) for all resulting
variable overlaps with l′ → r′ below l→ r. We call R persistent LL-decreasing
if there is a persistent, weak LL-labeling ` such that all critical peaks of R are
decreasing with respect to `.

Theorem 43 Let R be a left-linear TRS. If the critical peaks of R are persis-
tent LL-decreasing then R is confluent.

Proof The proof follows along the lines of the proof of Theorem 41. In the case
of a duplicating variable-left-linear overlap, the additional constraints ensure
that the resulting diagram is decreasing. ut

Example 44 Suppose we extend the TRS from Example 40 with the rule a→ b,
using the same sorts:

1 : f(x)→ g(f(x), f(x)) 2 : f(a)→ f(b) 3 : a→ b

Theorem 41 is no longer applicable, because rule 3 may be nested below rule 1,
which is duplicating. However, by the preceding remark, any rule labeling with
`irl(1) > `irl(3) will make the corresponding variable overlaps decreasing.

Remark 45 Note that Theorem 43 does not subsume Theorem 41, because
the former demands a weak LL-labeling whereas the latter requires only an
L-labeling. If we were to restrict the L-labeling and weak LL-labeling conditions
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to those variable overlaps that are consistent with the sort declarations, then
Theorem 43 would subsume Theorem 41. We chose not to do so because all
our labelings are weak LL-labelings.

The following example shows that considering order-sorted instead of many-
sorted signatures is beneficial.

Example 46 Consider the duplicating TRS R given by the rules

1 : h(a, a)→ f(a) 2 : f(a)→ a 3: f(x)→ h(x, x)

Furthermore, let S = {0, 1} with 1 > 0 and take the sort declarations

h : 0× 0→ 1 f : 0→ 1 a : 0

Considering only S-sorted terms, no rule can be nested below the duplicating
rule f(x)→ h(x, x). Basically, there is one critical peak, h(a, a) 3← f(a)→2 a,
which is decreasingly joinable as h(a, a) →1 f(a) →2 a by the rule labeling
(using rule numbers as labels), and confluence follows by Theorem 41. Due to
the rule f(a)→ a, any many-sorted sort declaration for R must assign the same
sorts to a and the argument and result types of f. Therefore, f(x) → h(x, x)
may be nested below itself, and Theorems 41 and 43 would fail in connection
with the rule labeling.

4 Labelings for Parallel Rewriting

In this section, rather than labeling individual rewrite steps, we will label
parallel rewrite steps instead. This is inspired by the parallel moves lemma,
which says that any peak t←pp s→pp u of two non-overlapping parallel rewrite
steps can be joined in a diamond as t→pp · ←pp u, and diamonds are comparatively
easy to label decreasingly, as we saw in Section 3.1.

The main problem is to label parallel steps such that variable overlaps
are decreasing. The multiset of the single steps’ labels does not work since
{α} 6>mul {α, . . . , α}. Hence we use sets to label parallel steps which we denote
by capital Greek letters. Sets of labels are ordered by the Hoare preorder of
(>, >), which we denote by (>H , >H) and is defined by

Γ >H ∆ ⇐⇒ Γ 6= ∅ ∧ ∀β ∈ ∆ ∃α ∈ Γ (α > β)

Γ >H ∆ ⇐⇒ ∀β ∈ ∆ ∃α ∈ Γ (α > β)

For readability we drop the subscript H when attaching labels to rewrite steps
as in →pp <Γ .

Example 47 Let > denote the natural order on N. Then {1} >H {0, 1} and
{1} >H {1, 1, 1} = {1} but {5, 4} 6>H {5, 3}.

The following lemma states obvious properties of Hoare preorders which
we implicitly use in the sequel.
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Lemma 48 Let (>H , >H) be a Hoare preorder.

1. If (>, >) is a monotone reduction pair then (>H , >H) is a monotone
reduction pair.

2. If Γ ⊇ Γ ′ then Γ >H Γ ′.
3. If Γ >H Γ ′ and ∆ >H ∆′ then Γ ∪∆ >H Γ ′ ∪∆′.
4. If Γ >H Γ ′ and ∆ >H ∆′ then Γ ∪∆ >H Γ ′ ∪∆′. ut

As we have seen in Section 3.2, constructing LL-labelings is quite a bit
harder than constructing L-labelings, because of the duplicated steps in the
(variable-left-linear) case (Figure 2(c)). Here, we use weak LL-labelings for
labeling single and parallel rewrite steps. Throughout this section we assume a
given left-linear TRS R, and a weak LL-labeling ` with corresponding labeling
function for parallel steps `‖, as introduced in the following definition.

Definition 49 We lift a weak LL-labeling ` to parallel steps t →pp P t′ as
follows. For each π ∈ P , we have a rewrite step t→π tπ. We label t→pp P t′ by
`‖(t→pp P t′) = {`(t→π tπ) | π ∈ P}.

So a parallel rewrite step is labeled by the set of the labels of the single steps
making up the parallel step. We indicate labels along with the step, writing
t→pp PΓ t′.

The next example shows that the labels change when decomposing a parallel
step into a sequence of single steps, i.e., the label of the parallel step may be
different from the union of labels of the single steps. However, the proof of
Lemma 51 reveals that for weak LL-labelings the labels never increase when
sequencing a parallel step.

Example 50 Consider the rule a → b and the extension of the source la-
beling `(s → t) = s to parallel steps. Then f(a, a) →pp {f(a,a)} f(b, b) but
f(a, a) →pp {f(a,a)} f(b, a) →pp {f(b,a)} f(b, b). Clearly {f(a, a)} 6= {f(a, a), f(b, a)}.
This effect is intrinsic to labelings that take the context of the rewrite step
into account. On the other hand, the rule labeling gives f(a, a) →pp {1} f(b, b)
and f(a, a)→pp {1} f(b, a)→pp {1} f(b, b) with {1} = {1, 1}, because the labels are
independent of the context.

The following lemma is the key to show that even for parallel rewriting
overlaps due to Figure 2(a) (parallel) and Figure 2(c) (variable-left-linear) are
decreasing.

Lemma 51

1. Let t1
P
Γ←pp s→pp

Q
∆ t2 with P ‖ Q. Then there is a term u such that s→pp P∪QΓ∪∆ u

and t1 →pp Q∆′ u P
Γ ′←pp t2, where Γ >H Γ ′ and ∆ >H ∆′.

2. Let s→pp s′ and σ(x)→pp σ′(x) for all x ∈ V, so that there are parallel rewrite

steps sσ′ PΓ←pp sσ →pp Q∆ s′σ. Then sσ′ →pp Q∆′ s′σ′ Γ ′←pp s′σ and Γ >H Γ ′,
∆ >H ∆′. Furthermore, if σ(x) = σ′(x) for all x ∈ Var(s′|Q) then sσ →pp Σ
s′σ′ for some Σ ⊆ Γ ∪∆.
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Fig. 4: Weak LL-labeling applied to parallel steps.

Proof 1. First note that since P ‖ Q, a term u with s→pp P∪Q u exists. We have

`‖(s
P∪Q−−−→pp u) = {`(s π−→ sπ) | π ∈ P ∪Q}

= {`(s π−→ sπ) | π ∈ P} ∪ {`(s π−→ sπ) | π ∈ Q}

= `‖(s
P−→pp t1) ∪ `‖(s Q−→pp t2) = Γ ∪∆

by definition. To establish t1 →pp Q∆′ u P
Γ ′←pp t2, we use induction on |P |+ |Q|. We

consider several base cases. If |P | = 0 or |Q| = 0 then the result follows by
definition of parallel rewriting. If |P | = |Q| = 1 the result follows from the fact
that ` is a weak LL-labeling, Definition 10(1) (Figure 2(a)). For the induction
step, assume without loss of generality that |P | > 1 and let P = {π} ]P ′. The
proof is illustrated in Figure 4. The parallel P -step can be decomposed into a
π-step and a P ′-step. Since {π}, P ′ ⊆ P , the labels are less than or equal to Γ .
Then we apply the induction hypothesis to the peaks

i. sP
′ P ′

6Γ
←pp s→pp {π}

6Γ
sπ yielding sπ →pp P ′

6Γ
t1,

ii. sπ {π}

6Γ
←pp s→pp Q∆ t2 yielding t2 →pp {π}6Γ tπ2 and sπ →pp Q

6∆
tπ2 ,

iii. sP
′ P ′

6Γ
←pp s →pp Q∆ t2 yielding t2 →pp P

′

6Γ
tP
′

2 , which we merge with t2 →pp {π}6Γ tπ2
to obtain t2 →pp P6Γ u, noting that the union of two sets from 6Γ is again in

6Γ , and finally
iv. t1

P ′

6Γ
←pp sπ →pp Q

6∆
tπ2 yielding t1 →pp Q6∆ u.

2. The existence of parallel rewrite steps sσ′ →pp s′σ′ and s′σ →pp s′σ′ follows
easily from the definition of parallel steps. We establish Γ >H Γ ′ and ∆ >H ∆′

by induction on |Q|. The reasoning for the induction step (|Q| > 1) is very
similar to the induction step in item 1, cf. Figure 5(a): Taking Q = {π}]Q′, we
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π

6∆

pp Q ′6∆
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∆
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Fig. 5: Weak LL-labeling applied to nested parallel steps.

split sσ →pp Q∆ s′σ into sσ →pp {π}

6∆
sπσ and sσ →pp Q

′

6∆
sQ
′
σ. We apply the induction

hypothesis to the peaks

i. sσ′ PΓ←pp sσ →pp
{π}

6∆
sπσ yielding sσ′ →pp {π}

6∆
sπσ′ and sπσ →pp 6Γ s

πσ′,

ii. sσ′ PΓ←pp sσ →pp
Q′

6∆
sQ
′
σ yielding sσ′ →pp Q

′

6∆
sQ
′
σ′, which can be merged with

sσ′ →pp {π}

6∆
sπσ′ to obtain sσ′ →pp Q

6∆
s′σ′, and finally

iii. sπσ′ 6Γ←pp sπσ →pp
Q′

6∆
s′σ yielding s′σ →pp 6Γ s′σ′, where sπσ →pp Q

′
6∆

s′σ is

obtained from part 1 of this lemma applied to sQ
′
σ Q′

6∆
←pp sσ →pp {π}

6∆
sπσ.

This concludes the induction step. If |Q| = 0, there is nothing to show, so
only the base case |Q| = 1 remains. Note that because R is left-linear, we
may assume without loss of generality that s is linear. Therefore, every rewrite
step of sσ →pp P sσ′ can be performed by modifying σ. For P ′ ⊆ P , we write
σP
′

for the substitution τ that satisfies sσ →pp P ′ sτ , and proceed by induction
on |P |. For the induction step (|P | > 1), the argument is again almost the
same as before, cf. Figure 5(b). Let P = {π} ] P ′. We split sσ →pp PΓ sσ′ into

sσ →pp {π}

6Γ
sσπ and sσ →pp P ′

6Γ
sσP

′
. Next we apply the induction hypothesis to

the peaks

i. sσπ {π}

6Γ
←pp sσ →Q

∆ s′σ yielding sσπ →Q

6∆
s′σπ and s′σ →pp 6Γ s

′σπ,

ii. sσP
′ P ′

6Γ
←pp sσ →Q

∆ s′σ yielding s′σ →pp 6Γ s
′σP

′
, which can be merged with

s′σ →pp 6Γ s
′σπ to obtain s′σ →pp 6Γ s

′σ′, and finally

iii. sσ′ P ′

6Γ
←pp sσπ →Q

6∆
s′σπ yielding sσ′ →Q

6∆
s′σ′, where sσπ →pp P ′

6Γ
sσ′ is

obtained from part 1 of this lemma applied to sσπ {π}

6Γ
←pp sσ →pp P ′

6Γ
sσP

′
.

This concludes the induction step. If |P | = 0 then there is nothing to show.
Finally, if |P | = |Q| = 1, then we are left with a parallel or variable overlap,
and we conclude by Definition 10(1) or 10(2), respectively. This concludes the
proof that Γ >H Γ ′ and ∆ >H ∆′. Now if σ(x) = σ′(x) for all x ∈ Var(s′|Q),
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then s′σ →pp P ′ s′σ′ satisfies P ′ ‖ Q. Performing the same rewrite steps on
sσ, we obtain a parallel rewrite step sσ →pp P ′ s′′ with P ′ ⊆ P and therefore
Γ ′′ = `‖(sσ →pp P ′ s′′) ⊆ `‖(sσ →pp P sσ′) = Γ . Finally, using the first part of this
lemma, we can combine the two parallel steps from sσ into a single one,

sσ →pp P
′∪Q

Γ ′′∪∆ s′σ′ with Σ = Γ ′′ ∪∆ ⊆ Γ ∪∆ as claimed. ut

Only Definition 10(1) was used in the proof of Lemma 51(1). This fact can
be exploited for an alternative characterization of weak LL-labelings.

Corollary 52 Let ` be a labeling. Then ` is a weak LL-labeling if and only if

1. in Figure 2(a), α > γ and β > δ, and
2. in Figure 2(c), β > δ and {α} >H `‖(u→pp v).

Proof Assume that ` is a weak LL-labeling. The first condition of this lemma
is identical to Definition 10(1). For the second condition, β > δ follows from
Definition 10(2). To establish {α} >H `‖(u →pp P v), we need to show that
α > `(u→pp π uπ) for all π ∈ P . For each π, we can arrange that `(u→pp π uπ) = γ1
by choosing u→pp π uπ as the first step in the permutation of u→pp v, and then
α > γ1 follows from Definition 10(2), establishing the claim.

Next assume that ` satisfies the conditions of this lemma. Then the condition
of Definition 10(1) holds. To show the conditions of Definition 10(2), note that
β > δ holds by assumption. Consider the parallel rewrite step u →pp P v and
a permutation π1, . . . , πn of P . We can decompose u →pp P v into u = u0 →π1

γ1
u1 →π2

γ2 · · · →
πn
γn un = v. By Lemma 51(1) applied to the peaks

· {πi}←−−−

6 {α}
pp u

{π1,...,πi−1}−−−−−−−−→

6 {α}
pp ui−1

we obtain ui−1 →pp {πi}6 {α} ui, i.e., {α} >H {γi}, which is equivalent to α > γi.

Hence α > γ. ut

The following lemma is used to reduce the number of parallel peaks that
have to be considered in the proof of Theorem 56.

Lemma 53 Let s→pp ∗

<Γ
· →pp

6∆
· →pp ∗

<Γ∆
t and s→pp ∗

<Γ
· →pp

6∆
· →pp ∗

<Γ∆
u be two

rewrite sequences such that all rewrite steps in the sequence to t are at or below
a position p and the rewrite steps in the sequence to u are parallel to p. Then
the two rewrite sequences can be merged into s→pp ∗

<Γ
· →pp

6∆
· →pp ∗

<Γ∆
u[t|p]p.

Proof Let the two sequences be s→pp ∗

<Γ
t1 →pp 6∆

t2 →pp ∗<Γ∆ t and s→pp ∗

<Γ
u1 →pp 6∆

u2 →pp ∗<Γ∆ u. Using Lemma 51(1) repeatedly, we can derive a sequence

s
∗−−→

<Γ
pp u1[t1|p]p −−→

6∆
pp u2[t2|p]p

∗−−−→

<Γ∆
pp u[t|p]p

which establishes the claim. ut

In order to perform a critical pair analysis for parallel rewrite steps, we
need parallel critical pairs [9, 26].
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Fig. 6: Part of the proof of Theorem 56.

Definition 54 Let l → r be a rule in a TRS R and P be a non-empty set
of pairwise parallel redex patterns such that every π ∈ P critically overlaps
with l. By choosing variants of rules from R appropriately, we may assume
that the sets Var(lπ) for π ∈ P and Var(l) are pairwise disjoint. Assume that
the unification problem {l|pπ ≈ lπ | π ∈ P} has a solution and let σ be a most
general unifier. Then there is a unique term lP such that lσ →pp P lP . We call
lP ←pp o→ rσ a parallel critical pair, and lP ←pp lσ → rσ a parallel critical peak.

Note that every standard critical pair also is a parallel critical pair. The
following lemma states how critical pair analysis for a peak consisting of a
parallel and a root rewrite step is done. It is a straightforward extension of
[9, Lemma 4.7].

Lemma 55 Let R be a left-linear TRS and t P←pp s→π u with pπ = ε. Then
either P ⊥ π or there are substitutions σ →pp σ′ and a parallel critical pair
t′ ←pp o→ u′ such that t = t′σ′ P\P

′←pp t′σ P ′←pp s→ u′σ = u with P ′ ⊆ P . ut

Note that left-linearity is essential for the substitutions σ and σ′ to exist
in Lemma 55. We are now ready to state and prove the main theorem of this
section.

Theorem 56 A left-linear TRS R is confluent if all its parallel critical peaks
t PΓ←pp s→∆ u can be joined decreasingly as

t
∗−−→

<Γ
· −−→

6∆
pp · ∗−−−→

<Γ∆
· ∗←−−−

<Γ∆
v

Q←−−

6Γ
pp · ∗←−−

<∆
u

such that Var(v|Q) ⊆ Var(s|P ).
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Proof We show that →pp is decreasing, which implies confluence of R. Let
t PΓ←pp s→pp

Q
∆ u. It suffices to show that

t
∗−−→

<Γ
· −−→

6∆
pp · ∗−−−→

<Γ∆
· ∗←−−−

<Γ∆
· ←−−

6Γ
pp · ∗←−−

<∆
u (2)

Below we show that (2) holds whenever P = {π} or Q = {π} with pπ = ε.

Then for all p ∈ min {pπ | π ∈ P ∪ Q}, t P
Γ←pp s →pp Q∆ u induces a peak

t|p P
′

Γ0
←pp s|p →pp Q

′

∆0
u|p, where P ′ = {π} or Q′ = {π} for some π with pπ = ε. So

for each p, we obtain a joining sequence for t|p and u|p of shape (2). By the
monotonicity of labelings, this results in joining sequences

s[t|p]p
∗−−→

<Γ
· −−→

6∆
pp · ∗−−−→

<Γ∆
· ∗←−−−

<Γ∆
· ←−−

6Γ
pp · ∗←−−

<∆
s[u|p]p

which are mutually parallel since the positions p ∈ min(P ∪Q) are mutually
parallel. By repeated application of Lemma 53 those sequences can be combined
into a single sequence of the same shape.

In order to show (2) for P = {π} or Q = {π} with pπ = ε, assume without
loss of generality that Q = {π}. If P ⊥ π then s = lπσ and, because lπ is linear,
there is a substitution σ′ with t = lπσ

′ and σ(x) →pp σ′(x) for all variables
x ∈ V. We conclude by Lemma 51(2). Otherwise P and π overlap, and by
Lemma 55, there are a parallel critical peak t′ P

′←pp s′ → u′ and substitutions
σ, σ′ such that σ →pp σ′ and t = t′σ′ P\P

′

6Γ
←pp t′σ P ′

6Γ
←pp s′σ = s→ε

∆ u′σ = u with
P ′ ⊆ P . This case is illustrated in Figure 6. By assumption there are u′′, v and
v′ with Var(v|Q′) ⊆ Var(s|P ′) such that we can join t′ and u′ decreasingly, and
consequently, using the stability of labelings we obtain

t′σ
∗−−→

<Γ
· −−→

6∆
pp · ∗−−−→

<Γ∆
v′σ

∗←−−−

<Γ∆
vσ

Q′←−−

6Γ
pp u′′σ

∗←−−

<∆
u′σ = u

Furthermore, making repeated use of Lemma 51(2),

t = t′σ′
∗−−→

<Γ
· −−→

6∆
pp · ∗−−−→

<Γ∆
v′σ′

∗←−−−

<Γ∆
vσ′ ←−−

6Γ
pp vσ

Notably, the step vσ →pp 6Γ vσ′ is obtained from s′σ →pp 6Γ s′σ′ by passing
through the rewrite sequence s′σ → u′σ →∗ u′′σ →pp vσ. We have σ(x) = σ′(x)
for x ∈ Var(s|P ′) for otherwise s→pp Γ t would not be a parallel step. Together
with Var(v|Q′) ⊆ Var(s|P ′), the parallel steps u′′σ →pp 6Γ vσ and vσ →pp 6Γ vσ′

can be combined into a single →pp 6Γ step by Lemma 51(2). Thus we can join t
and u decreasingly with common reduct v′σ′, completing the proof. ut

To conclude the section we demonstrate Theorem 56 on two examples. Both
are based on rule labeling.

Example 57 Consider the TRS R consisting of the following five rules with
labels 2 > 1 > 0:

a −→
1

b b −→
0

a f(a, a) −→
1

c f(b, b) −→
2

c h(x) −→
0

h(f(x, x))



26 H. Zankl et al.

There are six parallel critical peaks that can all be joined decreasingly as
required by Theorem 56:

f(b, a)←−−
{1}
pp f(a, a) −−→

{1}
c : f(b, a) −−→

{0}
f(a, a) −−→

{1}
c

f(a, b)←−−
{1}
pp f(a, a) −−→

{1}
c : f(a, b) −−→

{0}
f(a, a) −−→

{1}
c

f(b, b)←−−
{1}
pp f(a, a) −−→

{1}
c : f(b, b) −−→

{0}
pp f(a, a) −−→

{1}
c

f(a, b)←−−
{0}
pp f(b, b) −−→

{2}
c : f(a, b) −−→

{0}
f(a, a) −−→

{1}
c

f(b, a)←−−
{0}
pp f(b, b) −−→

{2}
c : f(b, a) −−→

{0}
f(a, a) −−→

{1}
c

f(a, a)←−−
{0}
pp f(b, b) −−→

{2}
c : f(a, a) −−→

{1}
c

Therefore, R is confluent.

Example 58 Let R be the TRS (Cops #62) consisting of the (labeled) rules

x− 0 −→
0
x 0− x −→

0
0 s(x)− s(y) −→

0
x− y

0 < s(x) −→
0

true x < 0 −→
0

false s(x) < s(y) −→
0
x < y

gcd(x, 0) −→
0
x gcd(0, x) −→

0
x gcd(x, y) −→

1
gcd(y,mod(x, y))

if(true, x, y) −→
0
x if(false, x, y) −→

0
y

mod(x, 0) −→
0
x mod(0, x) −→

0
0

mod(x, s(y)) −→
1

if(x < s(y), x,mod(x− s(y), s(y)))

There are 12 critical pairs, 6 of which are trivial. One easily verifies that the
remaining 6 pairs can be joined decreasingly, using the order 1 > 0. Hence
the confluence of R follows from Theorem 56. Even though R lacks proper
parallel critical pairs, none of the other results in this paper applies. Note that
the preconditions for Corollaries 16, 25, and 31 are not satisfied as Rd/Rnd,
?(R), and R4 are non-terminating (due to the rules with label 1). Finally,
persistence cannot rule out variable overlaps (of the duplicating mod rule below
the variable x) and hence Theorems 41 and 43 based on the rule labeling fail.

5 Assessment

In this section we relate the results from this article to each other (Section 5.1)
and to the recent literature [1, 11] (Section 5.2).

5.1 Interrelationships

The main results for left-linear systems presented in this article can be divided
into three classes. Those that require relative termination as a precondition
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Fig. 7: Interrelationships.

(Corollaries 16, 25, and 31), those exploiting persistence (Theorems 41 and 43),
and those considering parallel rewriting (Theorem 56). Figure 7(a) demonstrates
that these three classes are incomparable. The same holds when focusing on
the results relying on relative termination, cf. Figure 7(b). Note that the
regions where only one class is applicable can be populated with examples
using Toyama’s celebrated modularity result [25], e.g., the disjoint union (after
renaming function symbols) of the TRSs in Examples 62 and 63 can only
be handled by the approach based on relative termination. We discuss the
interrelationships in more detail below.

First we observe that Corollaries 16, 25, and 31 subsume Theorem 6 since
the preconditions of the corollaries evaporate for linear systems. The inclusion
is strict since Theorem 6 cannot deal with the rule f(x)→ g(x, x), while all the
corollaries can. Furthermore, Theorem 6 is subsumed by Theorem 41, which, if
restricted to weak LL-labelings, is subsumed by Theorem 43.

The following three examples show that Corollaries 16, 25, and 31 are
pairwise incomparable in power (for an overview see Figure 7(b)).

Example 59 Consider the TRS R consisting of the following rules

f(h(x))→ k(g(f(x), x, f(h(a)))) f(x)→ a a→ b

k(x)→ c b→ ⊥ c→ ⊥

This TRS has one critical peak (modulo symmetry). Since Rd/Rnd is non-
terminating, Corollary 16 does not apply. For Corollary 25 observe that ?(R)
is terminating using the interpretation h1N(x) = x+ 1 and the identify function
for all other function symbols. To show decreasingness we use the labeling
`? × `irl with i(f(x)→ a) = 1 and all other rules receive label 0. The critical
peak t = a x,1← f(h(x))→x,0 k(g(f(x), x, f(h(a)))) = u is closed decreasingly
by t →x,0 b →x,0 ⊥ x,0← c x,0← u. Corollary 31 also applies since the
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polynomial interpretation with hN(x) = 3x + 1 and interpreting all other
function symbols by the sum of its arguments establishes termination of
R4/R. When taking the identity for ` in Corollary 31 the critical peak t =
a 3x+1← f(h(x))→3x+1 k(g(f(x), x, f(h(a)))) = u can be closed decreasingly by
t→0 b→0 ⊥ 0← c 2x+1← u.

Example 60 It is easy to adapt the TRS from Example 18 such that ?(R)
becomes non-terminating. Consider the TRS R

1: b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(g(x, c)))

for which termination of Rd/Rnd is proved by LPO with precedence f > g and
a ∼ b > c. Corollary 16 applies since the rule labeling establishes decreasingness
of the critical peak t = f(g(x, b)) 2← f(g(x, a)) →3 g(f(x), f(g(x, c))) = u by
the join t →1 f(g(x, a)) →3 u. Note that f1(g1(x)) → g2(f1(g1(x))) ∈ R?> is
non-terminating and hence Corollary 25 does not apply.3 For Corollary 31
the (above) termination proof establishes termination of R4/R and `4 in
combination with the rule labeling (taking rule numbers as labels) labels the
critical peak t = f(g(x, b)) a,2← f(g(x, a)) →f(g(x,a)),3 g(f(x), f(g(x, c))) = u
decreasingly since t→b,1 f(g(x, a))→f(g(x,a),3 u.

Example 61 Consider the TRS consisting of the rules

a(a(c))→ a(b(a(c))) b(x)→ h(x, x)

The TRS R has no critical peaks and is terminating by the following matrix
interpretation over N2:

aN2(x) =

(
1 1
1 2

)
x +

(
0
3

)
hN2(x,y) =

(
1 0
0 0

)
x +

(
1 0
0 0

)
y

bN2(x) =

(
2 0
0 0

)
x +

(
2
0

)
cN2 =

(
0
0

)
Hence also Rd/Rnd is terminating, and by Corollary 16 the TRS R is confluent.
Corollary 25 also applies since ?(R) is terminating. The derivation a(a(c))→
a(b(a(c))) →R4 a(a(c)) → · · · shows that R4/R is non-terminating, so
Corollary 31 does not apply.

Note that any simple monotone reduction pair showing termination of
Rd/Rnd will also establish termination of R4/R, because if l→ x ∈ R4 then
there is a rule l→ r ∈ Rd that duplicates x, whence l > r > x. Hence it is no
surprise that Example 61 used a matrix interpretation of dimension 2.

Furthermore, the results on relative termination are incomparable with
those on persistence and those based on parallel rewriting. To this end observe
that the first rule of Example 44 violates all preconditions of Corollaries 16,
25, and 31 but Theorems 43 and 56 apply. Note that Theorem 43 based on

3 We remark that it is easy to extend this example such that also ??(R) is non-terminating;
just consider the rule f(g(x, a))→ g(f(x), g(f(g(x, c), f(g(x, c))))).



Labelings for Decreasing Diagrams 29

arbitrary weak LL-labelings subsumes Corollaries 16 and 25, since they produce
LL-labelings which may be used to close problematic variable peaks decreasingly
even without persistence. However, if restricted to the rule labeling the following
TRS cannot be handled using persistence while each of the Corollaries 16, 25,
and 31 as well as Theorem 56 succeeds.

Example 62 Consider the TRS consisting of the rules

1 : f(x, y, a)→ f(x, x, b) 2 : f(f(x, y, b), z, c)→ x

which is orthogonal. Since a most general sort assignment cannot exclude
variable overlaps of the first rule with itself, Theorem 43 can only succeed
when used in combination with an LL-labeling. Note that all preconditions for
Corollaries 16, 25, and 31 are satisfied and due to the lack of critical overlaps
they are decreasing. For the same reason Theorem 56 applies.

The final example shows that Theorem 56 does not subsume the plain
version for linear TRSs (because of the variable condition).

Example 63 Consider the linear TRS consisting of the single rule

(x+ y) + z → (z + y) + x

Note that all steps are labeled the same, because they use the same rule. There
is only one (parallel) critical peak, ((z + y) + x) + u ← ((x + y) + z) + u →
(u+z)+(x+y), which may be joined as ((z+y)+x)+u→ ((x+y)+z)+u←
(u+ z) + (x+ y). Confluence of R can be established by Theorem 6 using the
rule labeling from Lemma 7. On the other hand, trying to use Theorem 56 fails
for this joining sequence, because Var(((z+ y) +x) +u) 6⊆ Var((z+ y) +x). All
other ways of joining the critical peak fail to be decreasing because they require
more than one parallel rewrite step from ((z + y) + x) + u or (u+ z) + (x+ y),
e.g. ((z + y) + x) + u→ ((x+ y) + z) + y → (y + z) + (x+ y).

5.2 Related work

In this section we relate our results to [1, 11].
To compare our setting with the main result from [11] we define the critical

pair steps CPS(R) = {s → t, s → u | t← s→ u is a critical peak of R}. Fur-
thermore let CPS′(R) be the critical pair steps which do not give rise to trivial
critical pairs.

Theorem 64 ([11, Theorem 3]) A left-linear locally confluent TRS R is con-
fluent if CPS′(R)/R is terminating.

Using the weak LL-labeling `
PCPS′(R)
rt , from Theorem 56 we obtain the

following corollary. Here PCPS′(R) are the parallel critical pair steps which do
not give rise to trivial parallel critical pairs.
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Corollary 65 A left-linear TRS R whose parallel critical pairs are joinable is
confluent if PCPS′(R)/R is terminating.

Proof We need to show that the relative termination assumption eliminates
the variable condition in Theorem 56. If PCPS′(R)/R is terminating then for
any (non-trivial) parallel critical peak t PΓ←pp s→∆ u we obtain t→∗

<Γ
· ∗

<∆
← u,

hence Q can be chosen to be empty and ∅ = Var(v|∅) ⊆ Var(s|P ) trivially
holds.4 ut

We stress that despite the fact that the preconditions in Corollary 65 require
more (implementation) effort to check than those in Theorem 64, in theory
Corollary 65 subsumes Theorem 64. To this end observe that termination of
PCPS′(R)/R is equivalent to termination of CPS′(R)/R. Furthermore joinabil-
ity of the parallel critical pairs is a necessary condition for confluence just as
local confluence is.

Due to the flexibility of the `Srt labeling we can also choose S to be (a subset
of) the critical diagram steps CDS(R) = {s → ti, s → uj | t0 ← s → u0 is a
critical peak in R, t0 →∗ tn = um

∗← u0, 0 6 i 6 n, and 0 6 j 6 m}. Using
CDS(R) allows to detect a possible decrease also somewhere in the joining
part of the diagrams.5 This incorporates (and generalizes) the idea of critical
valleys [18]. However, we remark that our setting does not (yet) follow another
recent trend, i.e., to drop development closed critical pairs (see [10,18]). We
leave this for future work.

Next we show that Corollary 25 generalizes the results from [1, Sections 5
and 6]. It is not difficult to see that the encoding presented in [1, Theorem 5.4]
can be mimicked by Corollary 25 where linear polynomial interpretations over
N of the shape as in (1)

(1) fiN(x) = x+ cf (2) fiN(x) = x+ cfi

are used to prove termination of ?(R) and `? × `rl is employed to show LL-
decreasingness of the critical peaks. In contrast to [1, Theorem 5.4], which
explicitly encodes these constraints in a single formula of linear arithmetic, our
abstract formulation has the following advantages. First, we do not restrict to
weight functions but allow powerful machinery for proving relative termination
and second our approach allows to combine arbitrarily many labelings lexico-
graphically (cf. Lemma 14). Furthermore we stress that our abstract treatment
of ?(R) allows to implement Corollary 25 based on ??(R) (cf. Section 6) which
admits further gains in power (cf. Example 1 as well as Section 7).

The idea of the extension presented in [1, Example 6.1] amounts to using
`rl × `? instead of `? × `rl, which is an application of Lemma 14 in our setting.
Finally, the extension discussed in [1, Example 6.3] suggests to use linear
polynomial interpretations over N of the shape as in (2) to prove termination

4 The condition that {s→ t | u← s→ t is a critical pair}/R is terminating also eliminates
the variable condition.

5 In [31] we employed the strictly weaker system where all steps of the join (e.g., ti → ti+1)
are used whereas here we use s→ ti+1.
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of ?(R). Note that these interpretations are still weight functions. This ex-
plains why the approach from [1] fails to establish confluence of the TRSs in
Examples 18 and 20 since a weight function cannot show termination of the
rules f1(g1(x))→ g1(f1(x)) and f1(h1(x))→ h1(g1(f1(x))), respectively.

Note that both recent approaches [1, 11] based on decreasing diagrams fail
to prove the TRS R from Example 1 confluent. The former can, e.g., not cope
with the non-terminating rule ×1(x) → +0(×1(x)) in R?> (cf. Example 28)
while overlaps with the non-terminating rule x+ y → y + x ∈ R prevent the
latter approach from succeeding. In contrast, Examples 17 and 28 give two
confluence proofs based on our setting.

6 Implementation

In this section we sketch how the results from this article can be implemented.
Before decreasingness of critical peaks can be investigated, the critical

pairs must be shown to be convergent. For a critical pair t ←o→ u in our
implementation we consider all joining sequences such that t →6n · 6n← u
and there is no smaller n that admits a common reduct. While in theory
longer joining sequences might be easier to label decreasingly, preliminary
experiments revealed that the effort due to the consideration of additional
diagrams decreased performance.

To exploit the possibility for incremental confluence proofs by lexicographi-
cally combining labels (cf. Lemmata 9 and 14) our implementation considers
lists of labels. The search for relative termination proofs (and thus the labelings)
is implemented by encoding the constraints in non-linear (integer) arithmetic.
Below we describe how we combine existing labels (some partial progress) with
the search for a new labeling to show the critical peaks decreasing. Note that
labelings use different domains (natural numbers, terms), and, even worse,
different orders (matrix interpretations, LPO, etc.). The crucial observation for
incremental labeling is that neither the actual labels nor the precise order on the
labels have to be recorded but only how the labels in the join relate to the labels
from the peak. We use the following encoding. Let the local peak have labels
t α← s→β u. Then a step v →γ w is labeled by the pair (◦α, ◦β) where ◦α and
◦β indicates if α ◦α γ and β ◦β γ, respectively. Here {◦α, ◦β} ⊆ {>,>, ?} and ?
means that the labels are incomparable, e.g., f(x) ?g(y) in LPO or 2x+1?x+2
for (matrix) interpretations.6 Decreasingness as depicted in Figure 8(a) can
then be captured by the conditions shown in Figure 8(b), where ◦ can be
replaced by any symbol.

It is straightforward to implement Corollary 16. After establishing termina-
tion of Rd/Rnd (e.g., by an external termination prover) any weak LL-labeling
can be tried to show the critical peaks decreasing. In [1, 11] it is shown how
the rule labeling can be implemented by encoding the constraints in linear
arithmetic. Note that when using weak LL-labelings the implementation does

6 Our previous implementation (reported in [31]) had a bug, as it did not track incomparable
labels properly.
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α β

<α
∗

6β
=

<α
β

∗

<β

∗

6α=

<α
β∗

(a) Decreasingness.

∗(>
, ◦)

(◦,>
)

=

∗

(>
, ◦)

or
(◦, >

)

∗
(◦
, <

)

(6
, ◦

)=

∗
(<
, ◦

)
or

(◦
, <

)

(b) Encoding of decreasingness.

Fig. 8: Encoding the order on the labels.

not have to test condition 2 in Definition 10 since this property is intrinsic to
weak LL-labelings.

We sketch how to implement the labeling `Srt from Lemma 8 as a relative
termination problem. First we fix a suitable set S, i.e., the critical diagram
steps (see Section 5). Facing the relative termination problem S/R we try
to simplify it according to Theorem 2 into some S ′/R′. Note that it is not
necessary to finish the proof. By Theorem 2 the relative TRS (S \ S ′)/R is

terminating and hence by Lemma 8 `
S\S′
rt is an L-labeling. Let > =→∗R and

> = →+
(S\S′)/R. Since > and > can never increase by rewriting, it suffices

to exploit the first decrease with respect to >. Consider a rewrite sequence
v1 →R v2 →R · · · →R vl. Take the smallest k such that v1 → vk+1 ∈ S but
v1 → vk+1 /∈ S ′. Then vi →(>,>) vi+1 for 1 6 i 6 k and vi →(>,>) vi+1 for
k < i < l. If no such k exists set vi →(>,>) vi+1 for 1 6 i < l. We demonstrate
the above idea on an example.

Example 66 Consider the following TRS R from [4]:

I(x)→ I(J(x)) J(x)→ J(K(J(x))) H(I(x))→ K(J(x)) J(x)→ K(J(x))

We show how the critical peak H(I(J(x)))← H(I(x))→ K(J(x)) can be closed de-
creasingly H(I(J(x)))→(>,>) K(J(J(x)))→(>,>) K(J(K(J(x)))) (6,6)← K(J(x))
by `Srt. Let S be the TRS consisting of the critical diagram steps from the
above diagram, i.e.,

H(I(x))→ H(I(J(x))) H(I(x))→ K(J(J(x)))

H(I(x))→ K(J(x)) H(I(x))→ K(J(K(J(x))))

The interpretation HN(x) = JN(x) = KN(x) = x and IN(x) = x + 1 allows to
“simplify” termination of the problem S/R according to Theorem 2. Since the
rules that reduce the number of I′s are dropped from S (and R), those rules
admit a decrease in the labeling.
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The abstraction works similarly for the labelings `? and `4 from Lemmata 23
and 29, respectively.

Finally, we explain why ??(R) need not be computed explicitly to implement
Corollary 25 with the labeling from Lemma 27. The idea is to start with ?(R)
and incrementally prove termination of R?>/R?= until some S1/S2 is reached.
If all left-hand sides in S1 are distinct then they must have been derived from
different combinations (l, x) with l→ r ∈ R and x ∈ Var(l).7 Hence they are
exactly those rules which should be placed in R?=. We show the idea by means
of an example.

Example 67 We revisit Example 1 and try to prove termination of ?(R). By an
application of Theorem 2 with the interpretation given in Example 28 the prob-
lem is termination equivalent to R†/R?=. By another application of Theorem 2
the same proof can be used to show termination of (R?> \ R?†)/(R?= ∪R?†)
which is a suitable candidate for ??(R) since the rules in R?† have different
left-hand sides.

We have also implemented Theorems 41 and 43. The requirements of
Theorem 41 can be checked effectively by the following characterization of
t ∈ TEα(F ,V):

Remark 68 The condition t ∈ TEα(F ,V) holds if and only if t is S-sorted and
S(t) (≤ ∪ /1)

∗
α, where the relation /1 on sorts relates argument types to result

types: S(f, i) /1 S(f) for all function symbols f ∈ F of arity n and 1 6 i 6 n.

We only implemented the simplest case of Theorem 43, where ` is a rule
labeling. First, using Remark 68, we determine for which rules l → r ∈ R,
l′ → r′ ∈ R, it is possible to nest l′ → r′ below a duplicating variable of l→ r.
We add constraints i(l→ r) > i(l′ → r′) to our constraint satisfaction problem
for the rule labeling. The hard work is done by an SMT solver.

To postpone the expensive computation (and labeling) of parallel critical
pairs as long as possible we implemented Theorem 56 according the following
lazy approach. We first find ordinary weak LL-labelings for the critical diagrams,
as described earlier in this section. Only if confluence cannot be established by
considering this weak LL-labeling for (non-parallel) critical peaks, we generate
parallel critical peaks together with joining sequences. Finally, we check whether
the weak LL-labeling joins all resulting diagrams (critical and parallel critical)
decreasing as per Theorem 56. This check is also responsible for combining
single steps into a parallel one for the joining sequence. We confess that this
implementation for Theorem 56 is somewhat opportunistic but allows to reuse
partial progress (the weak LL-labeling) while postponing parallel critical pairs
as long as possible.

7 When computing ?(R) the implementation renames variables such that (`, x) uniquely
identifies a rule `→ r.
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method pre CR(`rl) CR(`rt) CR

Theorem 6 69 42 36 44

Theorem 41 92 46 40 48

Theorem 43 92 53 – –

Corollary 16 65 47 40 49

Corollary 25? 66 48 41 50

Corollary 25?? 69 51 43 53

Corollary 31 65 47 41 49

Theorem 56 92 55 55 57

Table 1: Experimental results for 92 left-linear TRSs.

7 Experiments

The results from the article have been implemented and form the core of the
confluence prover CSI [30]. For experiments8 using version 0.4 of the tool we
considered the current 276 TRSs in Cops. In the experiments we focus on the
149 systems which have been referenced from the confluence literature. From
these systems 92 are left-linear. Our experiments have been performed on a
notebook equipped with an Intel R© quad core processor i7-2640M running at a
clock rate of 2.8 GHz and 4 GB of main memory.

For 3 systems not even local confluence could be established within a time
limit of 60 seconds. All other tests finished within this time limit.

Table 1 shows an evaluation of the results from this article. The first column
indicates which criterion has been used to investigate confluence. A ? means
that the corresponding corollary is implemented using ?(R) whereas ?? refers to

??(R). The column labeled pre shows for how many systems the precondition
of the respective criterion is satisfied, e.g., for Theorem 6 the precondition is
linearity while for Corollary 16 the precondition is termination of Rd/Rnd. The
columns labeled CR(`) give the number of systems for which confluence could
be established using labeling `. (For Corollary 25 implicitly `? is also employed.
Similarly Corollary 31 employs `4.) The column labeled CR corresponds to
the full power of each result, i.e., when the lexicographic combination of all
labelings is used.

From the table we draw the following conclusions. On this test bed the
labeling function `rl can handle more systems than `rt when considering single
steps but for parallel rewriting both labelings succeed on equally many systems.
Still, in both settings most power is obtained when using all labelings. In practice
the study of parallel rewriting (Theorem 56) is beneficial. This suggests that
the preconditions to obtain weak LL-labelings are severe.

For reference in Table 2 we compare the power of the confluence provers
participating in the Confluence Competition (CoCo),9 i.e., ACP [4], CSI [30],
and saigawa [11, 13].

8 Details available from http://cl-informatik.uibk.ac.at/software/csi/labeling2.
9 http://coco.nue.riec.tohoku.ac.jp

http://cl-informatik.uibk.ac.at/software/csi/labeling2
http://coco.nue.riec.tohoku.ac.jp
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tool CR not CR

ACP 63 22

CSI 67 20

saigawa 53 12∑
68 22

Table 2: Comparison with other tools on 92 left-linear TRSs.

– ACP is a powerful confluence prover which implements numerous confluence
criteria from the literature. Its distinctive feature is the strong support for
problems with AC semantics [2].

– CSI gains most of its power from the labeling framework presented here.
In addition it implements development closed critical pairs [19] and persis-
tence [7]. Recently, the techniques introduced in [2] and [13] have also been
integrated.

– saigawa also heavily exploits relative termination, remarkably also to analyze
confluence of non-left-linear systems [13].

From Tables 1 and 2 we conclude that our framework admits a state-of-the-
art confluence prover for left-linear systems.

8 Conclusion

In this article we studied how the decreasing diagrams technique can be
automated. We presented conditions (subsuming recent related results) that
ensure confluence of a left-linear TRS whenever its critical peaks are decreasing.
The labelings we proposed can be combined lexicographically which allows
incremental proofs of confluence and has a modular flavor in the following
sense: Whenever a new labeling function is invented, the whole framework gains
power. We discussed several situations (Examples 1, 18, 20, 60) where traditional
confluence techniques fail but our approach easily establishes confluence.

We have also considered parallel rewriting resulting in a significantly more
powerful approach. We leave the study of→◦ and the integration of development
closed critical pairs as in [10,18] as future work.

Recently confluence by decreasing diagrams (for abstract rewrite systems)
has been formalized in the theorem prover Isabelle/HOL [28, 29]. Since the
generated (incremental) labeling proofs are often impossible to check for humans
it seems a natural point for future work to also formalize the labeling framework
to enable automatic certification of confluence proofs. Since our setting is based
on a single method (decreasing diagrams) while still powerful it offers itself as
a perfect candidate for future certification efforts.

Acknowledgments We thank the anonymous reviewers for providing many
helpful and detailed comments.
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