
Efficiently Deciding Uniqueness of Normal Forms and

Unique Normalization for Ground TRSs∗

Bertram Felgenhauer

University of Innsbruck
bertram.felgenhauer@uibk.ac.at

Abstract

We present an almost linear time algorithm for deciding uniqueness of normal forms for ground

TRSs, and a cubic time algorithm for deciding unique normalization for ground TRSs.

1 Introduction

It is known that UN= and UN→ are decidable in polynomial time for ground TRSs. In this
note, we are interested in bounding the exponent of the polynomial, which is of great interest
to implementers. As far as we know, the best previous result for UN= is an almost quadratic
algorithm by Verma et al. [9] with O(||R||2 log ||R||) time complexity, where ||R|| denotes the
sum of the sizes of the sides of R. In Section 3 we present an algorithm that decides UN= in
O(||R|| log ||R|| time. In fact our algorithm is closely related to another algorithm by Verma
[8, Theorem 31], but some care is needed to achieve an almost linear bound.

In the case of UN→ for ground TRSs, Verma [8] and Godoy and Jacquemard [4] have
established that polynomial time algorithms exist, using tree automata techniques. No precise
bound is given by these authors. In Section 4 we will sketch (due to limited space) an O(||R||3)
time algorithm for deciding UN→, based on a rewriting analysis reminiscent of the cubic time
algorithm for confluence in [3].

2 Preliminaries

We assume familiarity with term rewriting and (bottom-up) tree automata, see [1, 2]. Fix a
finite signature Σ. A tree automaton A = (Q,Qf ,∆) consists of a finite set of states Q disjoint
from Σ, a set of final states Qf ⊆ Q, and a set ∆ of transitions f(q1, . . . , qn) → q and ε-
transitions p→ q, where f is an n-ary function symbol and q1, . . . , qn, p, q ∈ Q. A deterministic
tree automaton is an automaton without ε-transitions whose transitions have distinct left-hand
sides (we do not require deterministic tree automata to be completely defined). Note that ∆
can be viewed as a ground TRS over an extended signature that contains Q as constants. We
write →A for →∆, where we regard the transitions as rewrite rules. For a TRS R we define
R− = {r → ` | ` → r ∈ R}. We write t E R if t is a subterm of a side of a rule in R. The
size ||R|| of R is the sum of the sizes of the sides of R. The unique normal forms property
(convertible normal forms are equal) and the unique normalization property (no term reaches
two distinct normal forms) are denoted by UN= and UN→, respectively. For a relation →, →∥
denotes its parallel closure, →! denotes reduction to a normal form, and s↓ denotes a normal
form of s. In particular, s→! s↓.

∗This research was supported by FWF project P27528.

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

3 Deciding UN=

We need some preparation before deciding UN=.

3.1 Currying

Currying allows us to turn an arbitrary TRS into one over constants and a single binary function
symbol, thereby bounding the maximum arity of the resulting TRS.

In order to curry a TRS R, we change all function symbols in Σ to be constants, and add a
fresh, binary function symbol ◦, which we write as a left-associative infix operator. We define

(f(t1, . . . , tn))◦ = f ◦ t◦1 ◦ · · · ◦ t◦n

The curried version of R is given by R◦ = {`◦ → r◦ | `→ r ∈ R}.
For ground systems, currying reflects and preserves UN→ and UN=. For reflection, a direct

simulation argument works (s→R t implies s◦ →R◦ t◦, and s◦ is a R◦-normal form if and only
if s is an R-normal form). For preservation, Kenneway et al. [5] show that UN→ is preserved
by currying for left-linear systems, and that UN= is preserved by currying for arbitrary TRSs.

3.2 Recognizing Normal Forms

With Q = Qf = {[s] | s E R} and ∆ = {f([s1], . . . , [sn])→ [f(s1, . . . , sn)] | f(s1, . . . , sn) E R}
we obtain a deterministic tree automaton that accepts the subterms of R. We modify this
automaton to recognize normal forms. To this end, let ? be a fresh constant and let

Q′ = Q′f = {[s] | s E R and s is R-normal form} ∪ {[?]}
∆′ = {f([s1], . . . , [sn])→ [f(s1, . . . , sn)] | [f(s1, . . . , sn)] ∈ Q′f} ∪

{f([s1], . . . , [sn])→ [?] | f ∈ Σ, [s1], . . . , [sn] ∈ Q′f , f(s1, . . . , sn) 6E R}

The state [?] accepts those R-normal forms that are not subterms of R.

Proposition 1. The automaton NR = (Q′, Q′f ,∆
′) recognizes the R-normal forms over Σ.

3.3 Congruence Closure

Congruence closure (introduced by Nelson and Oppen [6]; a clean and fast implementation can
be found in [7]) is an efficient method for deciding convertibility of ground terms modulo a set
of ground equations R.

The congruence closure consists of two phases. In the first phase, the procedure determines
the congruence classes (hence the name) among the subterms of the given set of equations,
where two subterms s and t are identified if and only if they are convertible, s↔∗R t. We write
[s]R for the convertibility class of s. In the second phase, given two terms u and v, we compute
the normal forms with respect to rules

C = {f([s1]R, . . . , [sn]R)→ [f(s1, . . . , sn)]R | f(s1, . . . , sn) E R}

The terms u and v are R-convertible if and only if u↓C = v↓C . We observe the following.

Proposition 2. If we regard [s]R for subterms s E R as fresh constants, the set C is an
orthogonal, ground TRS whose rules, as transitions of a tree automaton, are deterministic.

2

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

1: compute CR and a representation of NR
2: for all constants c E R that are normal forms do
3: push ([c]R, [c]) to worklist
4: while worklist not empty do
5: (p, q)← pop worklist
6: if seen(p) is defined then
7: return UN=(R) is false
8: seen(p)← q
9: for all transitions p1 ◦ p2 → pr ∈ CR with p ∈ {p1, p2} do

10: if q1 = seen(p1) and q2 = seen(p2) are defined then
11: if there is a transition q1 ◦ q2 → qr ∈ NR then
12: push (pr, qr) to worklist
13: return UN=(R) is true

Figure 1: Deciding UN=(R)

Consequently, we may represent C as a deterministic tree automaton CR = (Q,Qf ,∆) with
Q = Qf = {[s]R | s E R} and ∆ = C. Each state [s]R accepts precisely the terms convertible
to s. Note that the automaton is not completely defined in general: Only terms s that allow a
conversion s↔∗R t with a root step are accepted.

3.4 Checking UN=

Given a ground TRS R, we want to decide UN=(R), that is, whether any two R-convertible
R-normal forms are equal.

First note that if we have two distinct convertible normal forms s ↔∗R t such that the
conversion does not contain a root step, then there are strict subterms of s and t that are
convertible and distinct. Therefore, UN=(R) reduces to the question whether any state of CR,
the automaton produced by the congruence closure of R, accepts more than one normal form.
Let CR ∩NR be the result of the product construction on CR and NR. We can decide UN= by
enumerating accepting runs t→∗CR∩NR (q1, q2) in a bottom-up fashion until either

• we obtain two distinct accepting runs ending in (q1, q2) and (q′1, q
′
2) with q1 = q2, in which

case UN=(R) does not hold; or

• we have exhausted all runs, in which case UN=(R) holds.

Assume thatR is curried. The enumeration of accepting runs can be performed by the algorithm
in Figure 1. The correctness of the procedure hinges on two key facts: First, the automaton
CR ∩NR is deterministic, which means that distinct runs result from distinct terms. Secondly,
the set of R normal forms is closed under subterms, so we can skip non-normal forms in the
enumeration.

Theorem 3. The algorithm in Figure 1 is correct and runs in O(||R|| log ||R||) time.

Proof. We have already argued correctness, so let us focus on the complexity. Let n = ||R||.
First we compute CR using the congruence closure algorithm from [7] in O(n log n) time. While
NR has quadratically many transitions, we can define the transitions as a partial function using
O(n log n) time for preparation and O(log n) time per invocation of the transition function. This
bound relies on currying, for constant size left-hand sides, and on perfect sharing of terms, for
O(log n) subterm tests. This covers line 1 of the algorithm. Lines 2 to 3 take O(n) time. Note

3

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

that lines 8 to 12 are executed at most once per state of CR, i.e., O(n) times. The enumeration
on line 9 can be precomputed in O(n) time, by creating an array of lists of transitions indexed
by the states of CR and adding each transition q1 ◦ q2 → qr ∈ CR to the lists indexed by q1 and
q2 (if q1 6= q2). Because each transition is added to at most two lists, lines 10 to 12 are executed
at most twice per transition in CR, so O(n) times. The check on line 11 takes O(log n) time
per iteration, so O(n log n) time in total. Finally, we note that line 12 is executed O(n) times,
so no more than O(n) items are ever added to the worklist, which means that lines 4 to 7 are
executed O(n) times. Overall the algorithm executes in O(n log n) time, as claimed.

4 Deciding UN→

4.1 Preparation: Flattening, Rewrite Closure, Meetable Constants

To simplify the reachability analysis in the UN→ property, we flatten the ground TRS R, which
we assume to be curried. To this end, we add fresh constants [s] for s E R, and take the rules

E = {f([s1], . . . , [sn])→ [f(s1, . . . , sn)] | f(s1, . . . , sn) E R}

The flattened TRS is R′ = {[`]→ [r] | `→ r ∈ R} ∪ E . This system simulates rewriting by R.

Proposition 4. !
E−← ·→R′ · →

!
E− ⊆ →R ⊆ →

∗
E · →R′ · ∗E←.

In the following, p and q range over [t] with t E R. Following [3, Section 3.2], we define the
rewrite closure F of R′ inductively by the following inference rules:

t E R
[t]→ [t] ∈ F refl

p1 ◦ p2 → p ∈ E p1 → q1 ∈ F p2 → q2 ∈ F q1 ◦ q2 → q ∈ E
p→ q ∈ F

comp

p→ q ∈ R′
p→ q ∈ F base

p→ q ∈ F q → r ∈ F
p→ r ∈ F trans

Proposition 5 ([3, Lemma 3.4]). →∗R ⊆ →∗E∪F · ∗
E∪F−←.

We say two constants p and q are meetable if p ∗
E∪F← · →∗E∪F q. In this case we write p ↑ q.

The relation ↑ is dual to ↓ in [3, Section 3.5] and can be computed as follows.

t E R
[t] ↑ [t]

refl
p1 ◦ p2 → p ∈ E p1 ↑ q1 p2 ↑ q2 q1 ◦ q2 → q ∈ E

p ↑ q
comp

q → p ∈ F q ↑ r
p ↑ r transl

p ↑ q q → r ∈ F
p ↑ r transr

4.2 Peak Analysis

Using the rewrite closure, any peak s ∗
R← · →∗R t between normal forms s and t can be

decomposed as
s

∗−−−−→
E∪F−

· ∗←−−−
E∪F

· ∗−−−→
E∪F

· ∗←−−−−
E∪F−

t

If s and t are chosen to be of minimal size, then there must be a root step. Hence, without loss
of generality, there is a constant q such that

s
∗−−−−→

E∪F−
q

∗←−−−
E∪F

· ∗−−−→
E∪F

· ∗←−−−−
E∪F−

t (1)

Note the special case s→∗E∪F− q
∗

E∪F−← t, which implies that any q is reachable from at most

one normal form using rules from E ∪ F−.

4

Efficiently Deciding UN= and UN→ for Ground TRSs B. Felgenhauer

4.3 Checking UN→

The computation consists of several steps. Using the relation ↑, (1) becomes

s
∗−−−−→

E∪F−
q

∗←−−−
E∪F

C[q1, . . . , qn] ↑∥ C[p1, . . . , pn]
∗←−−−−

E∪F−
t (2)

First, we compute the partial function w(q) that maps q to the normal form s with s→∗E∪F−
q, the first part of the conversion (2). If any q is reachable from more than one normal form,
UN→ does not hold. To perform this computation efficiently, we make use of the automaton
NR that recognizes normal forms. The code is similar to Figure 1, lines 2 to 13, but using the
automaton A = (Q,Qf ,∆) given by Q = Qf = {[s] | s E R} and ∆ = E ∪ F− instead of
CR. Because the product automaton is no longer deterministic, we actually have to compute
witnesses and only fail in line 7 if the witnesses are different. Furthermore, in addition to
lines 9 to 12, we need a similar loop processing the ε-transitions (from F−). The latter change
increases the complexity from O(||R|| log ||R|| to O(||R||2).

Secondly, we analyze the right part of the conversion (2). To this end, we compute the
partial function w′(q) that maps q to the normal form t with q ∗

E∪F← · ↑∥ · ∗
E∪F−← t, or to∞ if

there is more than one such normal form. Note that by (2) with C = �, we have w(p) = w′(q)
or w′(q) =∞ whenever p ↑ q and w(q) is defined. Extending the base cases to larger contexts
requires analyzing the q ∗

E∪F← C[q1, . . . , qn] sequence and can be done almost the same way as
the computation of w(q), using E ∪ F instead of E ∪ F−. The complexity of this computation
is still O(||R||2), despite a subtlety: whereas w(q) is updated at most once, each w′(q) may be
updated twice: to record a witness, and to record that there is more than one witness.

The system has the UN→ property if w′(q) = w(q) whenever w(q) is defined. Overall,
the computation is dominated by the computation of the rewrite closure and the meetable
constants, which take O(||R||3) time [3]. Hence, UN→ can be decided in cubic time.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, and M. Tom-
masi. Tree Automata Techniques and Applications. 2007. URL: http://tata.gforge.inria.fr.

[3] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic time. In Proc.
23rd International Conference on Rewriting Techniques and Applications, volume 15 of Leibniz
International Proceedings in Informatics, pages 165–175, 2012.

[4] G. Godoy and F. Jacquemard. Unique normalization for shallow TRS. In Proc. 20th International
Conference on Rewriting Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 63–77, 2009.

[5] R. Kennaway, J.W. Klop, M. Ronan Sleep, and F.-J. de Vries. Comparing curried and uncurried
rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

[6] G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the
ACM, 27(2):356–364, 1980.

[7] R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions. Information and Com-
putation, 205(4):557–580, 2007.

[8] R. Verma. Complexity of normal form properties and reductions for term rewriting problems.
Fundamenta Informaticae, 92(1–2):145–168, 2009.

[9] R.M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewriting problems.
Fundamenta Informaticae, 46(3):257–276, 2001.

5

http://tata.gforge.inria.fr

	Introduction
	Preliminaries
	Deciding UN=
	Currying
	Recognizing Normal Forms
	Congruence Closure
	Checking UN=

	Deciding UN
	Preparation: Flattening, Rewrite Closure, Meetable Constants
	Peak Analysis
	Checking UN

