
Aspects of Layer Systems in IsaFoR∗

Bertram Felgenhauer and Franziska Rapp

Department of Computer Science, University of Innsbruck, Austria
{bertram.felgenhauer|franziska.rapp}@uibk.ac.at

Abstract

We report on an ongoing formalization of layer systems in Isabelle.

1 Introduction

Toyama’s theorem [6, 9] states that confluence is modular, i.e., that the union of two confluent
term rewrite systems (TRSs) over disjoint signatures is confluent if and only if the two TRSs
themselves are confluent. This opens up a decomposition approach to proving confluence, which
is attractive, because different confluence criteria may apply to the constituent TRSs that do
not apply to their union. By adapting the modularity proof, several other results have been
proved. For example, confluence is preserved by currying [5]. Layer systems [3] were introduced
as an abstraction from these proofs, which work by decomposing terms into a maximal top and
remaining aliens. A layer system L is simply the set of allowed tops; for modularity, those are
homogeneous multi-hole contexts, i.e., multi-hole contexts whose function symbols all belong to
the signature of only one of the two given TRSs. At the heart of layer systems lies yet another
adaptation of the modularity proof in [6]. The main results correspond to the if direction of
modularity as stated above. When establishing confluence by layer systems, as remaining proof
obligations, one has to check that a layer system satisfies so called layer conditions, which is
easier than doing a full adaptation of the modularity proof.

This note describes an ongoing effort to formalize layer systems, which, once complete, will
enable certification of confluence proofs based on persistence and currying. In fact, the prospect
of formalization was one of the selling points of layer systems; whereas adapting existing proofs
is convenient on paper, it becomes a burden when done in a formalization; as with any code
duplication in software engineering, it would increase maintenance costs and should therefore
be avoided. We use Isabelle [7] for our formalization1, building on top of IsaFoR [8].

Notation. We use notation from term rewriting. Let F , V be a signature. Then T (F ,V)
is the set of terms over that signature; C(F ,V) is the set of multihole contexts (which may
contain occurrences of an extra constant �, denoting holes.) On multihole contexts, we have a
partial order v which is generated by � v C and closure under contexts. The corresponding
partial supremum operation is denoted by t; intuitively it merges multi-hole contexts.

2 Layer Conditions

Let L be a set of multi-hole contexts, which we intend to use for decomposing terms. We recall
the definitions of a layer system, and (weakly) layered TRSs.

Definition 1 ([3, Definition 3.1]). Let L ⊆ C(F ,V) be a set of multi-hole contexts over F .
Then L ∈ L is called a top of a context C ∈ C(F ,V) (according to L) if L v C. A top is a
max-top of C if it is maximal with respect to v among the tops of C.

∗This work is supported by FWF (Austrian Science Fund) project P27528.
1The theories can be viewed at http://cl-informatik.uibk.ac.at/software/lisa/iwc2017/

B. Accatoli and B. Felgenhauer (eds.); IWC 2017, pp. 63–67

http://cl-informatik.uibk.ac.at/software/lisa/iwc2017/

Layer Systems in IsaFoR Felgenhauer and Rapp

layer system sig

layer system (L1),(L2),(L3)

weakly layered (W) layered (C1),(C2)

Figure 1: Hierarchy of locales.

Definition 2 ([3, Definition 3.3]). Let F be a signature. A set L ⊆ C(F ,V) of contexts is
called a layer system if it satisfies properties (L1), (L2), and (L3). The elements of L are called
layers. A TRS R over F is weakly layered (according to a layer system L) if condition (W) is
satisfied for each ` → r ∈ R. It is layered (according to a layer system L) if conditions (W),
(C1), and (C2) are satisfied. The conditions are as follows:

(L1) Each term in T (F ,V) has a non-empty top.

(L2) If x ∈ V and C ∈ C(F ,V) then C[x]p ∈ L if and only if C[�]p ∈ L.

(L3) If L,N ∈ L, p ∈ PosF (L), and L|p tN is defined then L[L|p tN]p ∈ L.

(W) If M is a max-top of s, p ∈ PosF (M), and s→p,`→r t then M →p,`→r L for some L ∈ L.

(C1) In (W) either L is a max-top of t or L = �.

(C2) If L,N ∈ L and L v N then L[N |p]p ∈ L for any p ∈ Pos�(L).

In Isabelle, we bundle these assumptions in locales [1]. For example, the first three layer
conditions are formalized as follows:

locale layer system sig = fixes F :: ′f sig and L :: (′f , ′v) mctxt set

locale layer system = layer system sig F L for F :: ′f sig and
L :: (′f , ′v :: infinite) mctxt set +
assumes L sig : L ⊆ C
and L1: t ∈ T =⇒ ∃L ∈ L. L 6= MHole ∧ L ≤ mctxt of term t
and L2: p ∈ poss mctxt C =⇒

mreplace at C p (MVar x) ∈ L ←→ mreplace at C p MHole ∈ L
and L3: L ∈ L =⇒ N ∈ L =⇒ p ∈ funposs mctxt L =⇒

(subm at L p, N) ∈ comp mctxt =⇒ mreplace at L p (subm at L p t N) ∈ L

The first locale, layer system sig, is used to define T and C, the set of terms and multi-
hole contexts over F , and the concept of max-tops. Actually max-tops are defined separately
for terms and for multi-hole contexts, because while on paper, multi-hole contexts are just
terms, in IsaFoR they have their own type. In total, four locales are defined, capturing the layer
conditions, cf. Figure 1. Note that condition (W) is not part of the layered locale; it would
be redundant because (C1) implies (W). In Isabelle we have encoded this fact by proving that
layered is a sublocale of weakly layered, as indicated by the dashed arrow.

Using the layer system to decompose terms from the top yields the following notion of rank.

64

Layer Systems in IsaFoR Felgenhauer and Rapp

Definition 3 ([3, Definition 3.6]). Let t = M [t1, . . . , tn] with M the max-top of t. We define
rank(t) = 1 + max{rank(ti) | 1 6 i 6 n}, where max(∅) = 0 (t1, . . . , tn are the aliens of t).

The main theorems of [3] can be stated as follows (we omit [3, Theorem 4.3] to save space).

Theorem 4 ([3, Theorem 4.1]). Let R be a weakly layered TRS that is confluent on terms of
rank one. If R is left-linear then R is confluent.

Theorem 5 ([3, Theorem 4.6]). Let R be a layered TRS that is confluent on terms of rank
one. Then R is confluent.

Within the formalization, Theorem 4 will be established inside the weakly layered locale,
whereas Theorem 5 is expected to hold in the layered locale. The proofs of these main results
correspond to Section 4 of [3], which we have fully formalized up to Lemma 4.18. The section
goes up to Lemma 4.36, so a big chunk remains to be done. Nevertheless, we could already
work on the applications like modularity and currying, because they are merely instantiations
of these locales, which can be established independently of the main results.

3 Currying

Here we consider currying as one application of the layer framework, which we formalized
in Isabelle. Instead of applying functions to several arguments at once, currying introduces
a binary function symbol that is used for applying arguments to functions one by one. In
functional programming, currying turns a function of type A1 × · · · × An → B into one of
type A1 → · · · → An → B, enabling partial application. For term rewriting systems (TRSs)
we introduce a fresh function symbol • to denote application, whereas every other function
symbol becomes a constant. By convention we write fn to denote a function symbol of arity
n. Moreover, we denote the arity of a function symbol f with respect to the signature F by
aF (f). We identify faF (f) with f .

Definition 6. Given a TRS R over a signature F , its curried version Cu(R) consists of rules
{Cu(l) → Cu(r) | ` → r ∈ R}, where Cu(t) = t if t is a variable and Cu(f(t1, . . . , tn)) =
f0 • Cu(t1) • · · · • Cu(tn). Here • is a fresh left-associative function symbol.

Currying is useful for deciding properties such as confluence [2] or termination [4]. For
analyzing confluence by currying, the following result is important.

Theorem 7. Let R be a TRS. If R is confluent, then Cu(R) is confluent.

This result was proved by Kahrs [5]. Rather than working directly with Cu(R), Kahrs works
with the partial parametrization of R, which is given by PP(R) = R ∪ UF , where UF is the
set of uncurrying rules for F (see Definition 8). Confluence of PP(R) and Cu(R) are closely
related, cf. Lemma 9.

Definition 8. Given a signature F , the uncurrying rules UF are rules fi(x1, . . . , xi) • xi+1 →
fi+1(x1, . . . , xi+1) for every function symbol f ∈ F and 1 6 i < aF (f).

Lemma 9 ([5, Proposition 3.1]). Let R be a TRS. Then Cu(R) is confluent if PP(R) is.

Hence in order to prove Theorem 7 it suffices to prove that PP(R) is confluent. To this end,
we make use of Theorem 5. Hence we need to show that PP(R) is layered according to some
set of layers L and confluent on terms of rank one. First of all we have to define a suitable set

65

Layer Systems in IsaFoR Felgenhauer and Rapp

of layers. We choose L = L1 ∪L2 where L1 is the smallest extension of V� = V ∪{�} such that
fm(s1, . . . , sm) • sm+1 • · · · • sn ∈ L1 for all f ∈ F , 1 6 m 6 n 6 aF (f) and s1, . . . , sn ∈ L1,
and L2 = {x• t | x ∈ V� and t ∈ L1}. This definition realizes a separation between well-formed
terms (L1), whose UF -normal form contains no • symbol, and ill-formed terms (L2), whose
UF -normal form contains exactly one • symbol at the root. As required for condition (L1),
variables and holes are treated interchangeably.

Whereas for Lemma 9 we could follow the lines of the paper proof, the formalization of the
fact that PP(R) is layered according to L turned out to be much more tedious. First of all, we
found it convenient to define functions that compute the max-top of a term, since the abstract
definition of max-tops in the layer framework is not really suitable for proofs in Isabelle.

Definition 10. The following function checks whether the number of arguments applied to the
first non-• function symbol f is at most the arity aF (f) according to the original signature F

check(t,m) =

false if t ∈ V
check(t1,m+ 1) if t = t1 • t2
aF (f) > m+ n if t = fn(t1, . . . , tn)

Let F• = F ∪ {•}. The max-top mtCu of a term t ∈ T (F•,V) with respect to L is defined as

mtCu(t) =

t if t ∈ V
f(mt1(t1, 0), . . . ,mt1(tn, 0)) if t = f(t1, . . . , tn) and (check(t, 0) or t1 ∈ V)

� •mt1(t2, 0) otherwise (in which case t = t1 • t2)

Here mt1(t,m) computes the max-top of t with respect to L1, where m is the number of already
applied arguments:

mt1(t,m) =

t if t ∈ V
mt1(t1,m+ 1) •mt1(t2, 0) if t = t1 • t2 and check(t,m)

f(mt1(t1, 0), . . . ,mt1(tn, 0)) if t = f(t1, . . . , tn), f 6= • and check(t,m)

� otherwise

Note that there is some redundancy, since the check function does the same counting several
times. However the definition is easier like this.

After proving the correctness of mt1 and mtCu, the main difficulty was the proof of condition
(C1) for L and PP(R). We sketch a constructive proof here, since this gives the best intuition
and is also easiest to formalize in our opinion. In order to establish (C1), we need to analyze a
rewrite step s = C[lσ]p → C[rσ]p with p a function position of the max-top M of s; our goal is
to obtain a rewrite step M = D[lσ′]p → D[rσ′]p. The following two lemmas allow pushing the
computation of the max-top (using mt1) all the way to the substitution σ.

Lemma 11. Let s be a term and p the hole position of context C such that C[s]p ∈ T (F•,V)
and p ∈ PosF•(mt1(C[s], j)). Then there exists a context D and a natural number k such that
mt1(C[s], j) = D[mt1(s, k)], and mt1(C[t], j) = D[mt1(t, k)] for any term t ∈ T (F•,V) having
the same number of missing arguments as s.

Lemma 12. Let t ∈ T (F ,V). Then mt1(t · σ, 0) = mt1(t, 0) · σ′ with σ′ = (λx.mt1(x, 0)) ◦ σ.

66

Layer Systems in IsaFoR Felgenhauer and Rapp

Using these two lemmas, we can obtain the desired rewrite step from M by the following
computation, where for simplicity we only consider the case M ∈ L1 and l→ r ∈ R:

M = mtCu(s) = mt1(C[l · σ], 0)
11
= D[mt1(l · σ, k)]

12
= D[mt1(l, 0) · σ′] = D[l · σ′]

→p,`→r D[r · σ′] = D[mt1(r, 0) · σ′] 12
= D[mt1(r · σ, k)]

11
= mt1(C[r · σ], 0)

The uses of the previous two lemmas are indicated above the equalities. Note that the number
of missing arguments of r is the same as for l, so we can use Lemma 11 in both directions.
Furthermore k = 0, because mt1(l ·σ, k) = � otherwise, so the rewrite step would not take place
at a function position of M . Hence Lemma 12 is applicable. Furthermore, we use mt1(l, 0) = l
(mt1(r, 0) = r), using that l (r) is well-formed. If C = �, r is a variable and check(r ·σ) is false,
mt1(C[r · σ], 0) = �. Otherwise, the max-top of C[r · σ] is equal to mt1(C[r · σ], 0).

4 Conclusion

We have presented some aspects of a formalization of layer systems in Isabelle. Let us conclude
with some statistics. In [3], the setup of the layer systems and the proof of the main results
up to Lemma 4.18 spans approximately 150 lines of text. The corresponding formalization is
about 3000 lines in length, corresponding to a de Bruijn factor of about 20. The section on
currying in the original paper [3, Section 5.4], containing the proof of Theorem 7, covers about
80 lines (including 2 intermediate results in Kahrs [5]). Whereas only 9 definitions were needed
to prepare for the proof, in the Isabelle formalization 24 definitions (abbreviations counted half)
and 122 lemmas were necessary. Overall the formalization spans about 3200 lines of Isar code,
which implies a de Bruijn factor of approximately 40. This high factor may be due to the fact
that many case distinctions on the shape of terms were necessary and counting the number of
applied arguments was tedious. Moreover, the formalization distinguishes terms from multi-hole
contexts and hence several conversions between those types were necessary. Since the ultimate
goal of our formalization effort is the certification of confluence proofs exploiting currying, we
plan to finish the formalization of the layer framework and formalize further applications, most
notably persistence of many-sorted TRSs.

References

[1] C. Ballarin. Locales: A module system for mathematical theories. JAR, 52(2):123–153, 2014.

[2] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic time. In Proc. 23rd
RTA, volume 15 of LIPIcs, pages 165–175, 2012.

[3] B. Felgenhauer, A. Middeldorp, H. Zankl, and V. van Oostrom. Layer systems for proving conflu-
ence. ACM TOCL, 16(2:14):1–32, 2015.

[4] N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination. In Proc. 15th LPAR, pages
667–681, 2008.

[5] S. Kahrs. Confluence of curried term-rewriting systems. JSC, 19(6):601–623, 1995.

[6] J.W. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. Modularity of confluence: A simplified
proof. IPL, 49:101–109, 1994.

[7] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[8] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. 22nd
TPHOLs, volume 5674 of LNCS, pages 452–468, 2009.

[9] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. JACM,
34(1):128–143, 1987.

67

	Introduction
	Layer Conditions
	Currying
	Conclusion

