
Confluence of Term Rewriting:
Theory and Automation

dissertation

by

Bertram Felgenhauer

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

advisor: Univ.-Prof. Dr. Aart Middeldorp

Innsbruck, 3 February 2015

dissertation

Confluence of Term Rewriting: Theory
and Automation

Bertram Felgenhauer (1016683)
bertram.felgenhauer@uibk.ac.at

3 February 2015

advisor: Univ.-Prof. Dr. Aart Middeldorp

mailto:bertram.felgenhauer@uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass
ich die vorliegende Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich
oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche
kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht
als Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract

The topic of this thesis is confluence of first-order term rewriting systems, both
its theory and its automation. Term rewrite systems are a model of computation
in which terms are successively modified by replacing instances of left-hand sides
of equations by the corresponding instance of the right-hand side. Confluence
is an important property of rewrite systems which is intimately connected to
uniqueness of normal forms, and therefore well-definedness of functions. In the
absence of termination, confluence expresses a kind of deterministic behavior:
for any two computations starting at the same initial state, it is always possible
to continue both of them until they reach a common state again. Like most
interesting properties in computer science, confluence is an undecidable property
of term rewrite systems. Therefore, determining whether a system is confluent
is often challenging. Nevertheless, there are automated confluence provers that
attempt to solve this task automatically. The goal of this thesis is to advance
the state of the art of the field of automated confluence proving. To this end,
we extend the theory of confluence in several areas to obtain confluence criteria
that are both powerful and implementable.

Acknowledgments

I owe thanks to many people who made writing this thesis possible. First
and foremost, thanks to my advisor Aart Middeldorp, whose logical rigor and
encyclopedic knowledge has been an inspiration, and whose patience has been
almost inexhaustible. I’m also indebted to the whole Computational Logic group
at Innsbruck whose hospitality and friendly atmosphere made it a pleasure to
work there.

The research described in this thesis was supported by FWF project P22467.

vii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Abstract Reduction Systems . 3
2.2 Term Rewriting . 6

2.2.1 Terms and Contexts . 7
2.2.2 Term Rewrite Systems . 9
2.2.3 Termination . 11
2.2.4 Confluence . 12
2.2.5 Redex Patterns . 14

2.3 Tree Automata . 15

3 Abstract Decreasing Diagrams 17
3.1 Introduction . 17
3.2 Involutive Monoids . 19
3.3 Proof Orders and Confluence . 22

3.3.1 Proof Orders via French Strings 22
3.3.2 A Monotone Order . 24

3.4 Church-Rosser Modulo . 27
3.4.1 Decreasing Diagrams . 27
3.4.2 Incompleteness . 30

3.5 Point-Decreasing Diagrams . 32
3.6 Point-Step Decreasing Diagrams 35
3.7 Commutation and Extended Decreasingness 39
3.8 Conclusion . 40

4 Labeling Diagrams Decreasingly 41
4.1 Introduction . 41
4.2 Labeling Plain Rewrite Steps . 42

4.2.1 Linear TRSs . 44
4.2.2 Left-linear TRSs . 46

4.3 Labeling Parallel Rewrite Steps 56
4.4 Assessment . 64

4.4.1 Interrelationships . 64
4.4.2 Related work . 66

4.5 Implementation . 68
4.6 Conclusion . 70

5 Confluence with Layer Systems 73
5.1 Introduction . 73

ix

5.2 Layer Systems . 74
5.3 Confluence by Layer Systems . 79

5.3.1 Proof Setup . 81
5.3.2 Local Decreasingness of Peaks involving Tall Steps 82
5.3.3 Local Decreasingness of Short Steps 86
5.3.4 Proof of Main Theorems 89

5.4 Applications . 89
5.4.1 Modularity . 90
5.4.2 Layer-Preservation . 90
5.4.3 Quasi-Ground Systems . 91
5.4.4 Currying . 92
5.4.5 Many-sorted Persistence 94

5.5 Order-sorted Persistence . 95
5.5.1 Confluence via Order-sorted Persistence 95
5.5.2 Order-sorted Persistence for Left-linear Systems 96
5.5.3 Variable-restricted Layer Systems 97
5.5.4 Many-sorted Persistence by Variable-restricted Layer Sys-

tems . 103
5.5.5 Order-sorted Persistence by Variable-restricted Layer Sys-

tems . 104
5.6 Related Work . 104

5.6.1 Order-sorted Persistence 105
5.6.2 Modularity . 106
5.6.3 Constructivity . 107

5.7 Conclusion . 108

6 Deciding Confluence of Ground TRSs 109
6.1 Introduction . 109
6.2 Testing Confluence . 110

6.2.1 Flattening . 110
6.2.2 Rewrite Closure . 111
6.2.3 Congruence Closure . 114
6.2.4 Confluence Conditions . 114
6.2.5 Computation of Confluence Conditions 117

6.3 Experiments . 119
6.4 Conclusion . 120

7 Certifying Non-Confluence 121
7.1 Introduction . 121
7.2 State-Compatible Automata . 123

7.2.1 Definitions . 123
7.2.2 Soundness and Completeness 124
7.2.3 Deciding R(L(A)) ⊆ L(A) 126

7.3 Relation to Quasi-Deterministic Automata 127
7.4 Confluence . 130
7.5 Match-Bounds . 132

7.5.1 A Short Introduction to Match-Bounds 132

7.5.2 Adapting Raise-Consistency 133
7.5.3 Quasi-Compatibility . 136

7.6 Conclusion . 137

8 Conclusion 139

Publications 141

Bibliography 142

A CSI – A Confluence Tool 149
A.1 Getting Started . 149
A.2 Features . 149

A.2.1 Processors . 150
A.2.2 The Strategy Language 152

A.3 Experiments . 153

Chapter 1

Introduction

This thesis is concerned with the study and automatic checking of confluence of
first-order term rewrite systems.

First-order term rewriting is a simple but powerful computational model which
underlies much of declarative programming and automated theorem proving.
The objects of study are term rewrite systems, which consist of rules like

f(0, y)→ y f(s(x), y)→ s(f(x, y))

with terms on both the left-hand and right-hand sides of each rule. Such rules
can be use to modify terms. To do so, one instantiates a rule by replacing
the variables x, y, . . . by terms (with equal variables representing equal terms).
Then, if the resulting left-hand side of a rule equals a subterm of the term, we
may replace it by the corresponding right-hand side. Often there are several
possible replacements, in which case we may choose any of them. For example,
underlining the replaced term in each step, f(f(s(0), 0), 0) rewrites to s(0) in
several ways:

f(f(s(0), 0), 0)→ f(s(f(0, 0)), 0)→ f(s(0), 0)→ s(f(0, 0))→ s(0)
f(f(s(0), 0), 0)→ f(s(f(0, 0)), 0)→ s(f(f(0, 0), 0))→ s(f(0, 0))→ s(0)
f(f(s(0), 0), 0)→ f(s(f(0, 0)), 0)→ s(f(f(0, 0), 0))→ s(f(0, 0))→ s(0)

In general, such term rewrite systems can encode arbitrary programs. Given
such a program, several questions present themselves:

1. Does the program terminate?

2. Are the program results reproducible, or can different runs with the same
input end in irreconcilable states?

The corresponding properties are termination and confluence. The latter prop-
erty ensures, in particular, that if a program terminates in a final state, then that
final state is unique. Even in the simple term rewriting model of computation,
all of these properties are undecidable. Nevertheless, much progress has been
made towards establishing termination of term rewrite systems automatically,
and many termination criteria that are useful for automation are known. Since
2006 termination proofs generated by automatic tools can be certified with the
help of theorem provers.

When the research described in this thesis started, confluence of term rewrit-
ing systems had received far less attention than termination, even though the

1

1 Introduction

property is of similar practical importance: where termination allows us to con-
clude that a given (possibly non-deterministic) algorithm will always terminate,
confluence implies that the algorithm has consistent behavior; in particular, if
the algorithm terminates on some given input, it will always yield the same
result. At the time there was one automated confluence prover (ACP [6]) and
no effort towards certification. Now, four years later, there are four tools in
development for first-order term rewrite systems, namely ACP, CoLL,1 Saigawa,2
and our own tool CSI [78]. A number of important techniques for proving
confluence and nonconfluence can be certified using the certifier CeTA [72].

Despite the automation background, the main contributions of this thesis are
of theoretical nature. After some preliminaries in Chapter 2, we will explore
the decreasing diagrams technique in Chapter 3. This technique can establish
confluence of abstract reduction systems, which are rewrite systems whose objects
have no structure (unlike terms, which may be regarded as trees.) We present a
novel proof of this known result, and show that the new proof method allows the
technique to be generalized, for example to Church-Rosser modulo. After this
purely theoretical result, Chapter 4 is devoted to making the decreasing diagrams
technique applicable to term rewrite systems, and furthermore, how the resulting
criteria can be automatically applied. In Chapter 5 we revisit the famous result
that confluence is a modular property for term rewrite systems, and related
results. We develop a framework, called layer systems, to capture common proof
ideas. For automation, the most useful result will be that introducing types
(with subtypes) into a TRS preserves confluence in many cases. As a result,
many TRSs can be split into several smaller TRSs whose confluence can be
analyzed separately. In Chapter 6 we present a cubic time algorithm for deciding
whether a term rewrite system without variables (a ground term rewrite system)
is confluent. This is of purely practical interest; it was already known that
confluence for ground term rewrite systems is decidable in polynomial time.
Chapter 7 is concerned with certification of non-confluence using tree automata
techniques. Finally, Chapter 8 presents conclusions and future work.

1http://www.jaist.ac.jp/˜s1310032/coll/
2http://www.jaist.ac.jp/project/saigawa/

2

http://www.jaist.ac.jp/~s1310032/coll/
http://www.jaist.ac.jp/project/saigawa/

Chapter 2

Preliminaries

In this chapter we introduce basic notions of abstract rewriting, term rewriting,
and tree automata, which are used throughout this thesis. Readers interested
in studying these subjects are referred to [8, 70] for term rewriting and [13] for
tree automata.

2.1 Abstract Reduction Systems
We consider abstract reduction systems, which are directed graphs with objects
as nodes and transitions as edges. Their semantics is that from each object,
it is possible to perform reductions to successor objects. In this way, one can
model arbitrary computations in a very abstract way. Typically the objects are
endowed with further structure; we will consider terms as objects in Section 2.2.

Definition 2.1. An abstract reduction system (ARS) or rewrite relation is a
pair 〈A,→〉, where A is a set of objects, and → ⊆ A×A is a binary relation on
objects. We write←, ↔, →n, →=, →+, →∗ for the inverse of→, the symmetric
closure of →, the n-th power of →, the reflexive closure of →, the transitive
closure of → and the reflexive transitive closure of →, respectively.

Note that →0 is the identity relation. We often omit the set of objects and
talk of a relation → as a rewrite relation. In addition to →, we use other
arrows like ⇒, ⇀, etc. to denote abstract reduction systems, with their mirror
image (⇐, ↼, etc.) denoting their inverse. Symmetric symbols like ⊢⊣ may
denote symmetric rewrite relations. Abstract reduction systems induce rewrite
sequences.

Definition 2.2. Let 〈A,→〉 be an ARS. Then s → t is called a rewrite step,
with source s and target t. An A-rewrite sequence is a sequence of objects
s0, . . . , sn ∈ A such that

s0 −→ s1 −→ · · · −→ sn

We abbreviate this situation as s0 →∗ sn. The object sn is called a descendant
(or successor) of s0; s0 is a predecessor of sn. In the case of n = 1 we talk
about immediate successors and predecessors. We also say that s0 reaches sn,
and that sn is reachable from s0. If s has no immediate successors then s is a
normal form. Rewrite sequences may also be infinite, in which case we have
s0, s1, · · · ∈ A and si → si+1 for all i ∈ N:

s0 −→ s1 −→ · · · −→ si −→ si+1 −→ · · ·

3

2 Preliminaries

a b c d

Figure 2.1: An abstract reduction system.

s

t u

v

∗ ∗

∗ ∗

(a) Confluence.

s

t u

v

∗ ∗

(b) Local confluence.

· ·

· ·

∗

∗

∗

∗

(c) CR modulo.

Figure 2.2: Confluence properties of ARSs.

Two objects s and t are joinable, s ↓ t, if s→∗ · ∗← t. They are convertible if
there is a conversion s↔∗ t.

Example 2.3. Let A = {a, b, c, d} and → = {(b, a), (b, c), (c, b), (c, d)}. Then
〈A,→〉 is an ARS, which is depicted in Figure 2.1. In this ARS, we have a→∗ a,
and a is reachable from c because c→ b→ a. The objects a and d are distinct
normal forms. Therefore, a and d are not joinable. However, a and b are
convertible, because a← b→ c→ d.

Rather than individual objects and rewrite sequences, we are usually interested
in global properties of ARSs.

Definition 2.4. Let 〈A,→〉 be an ARS. Then → is

• terminating if it admits no infinite rewrite sequences,

• confluent if whenever t ∗← s →∗ u, then there is an object v such that
t→∗ v ∗← u. Using relation algebra, → is confluent if

∗←− · ∗−→ ⊆ ∗−→ · ∗←−

• locally confluent if
←− · −→ ⊆ ∗−→ · ∗←−

• Church-Rosser (CR) if
∗←→ ⊆ ∗−→ · ∗←−

Two ARSs ⇀, ⇁ commute if
∗
↼− · ∗−⇁ ⊆ ∗−⇁ · ∗↼−

If B ⊆ A then → is terminating (confluent, locally confluent, Church-Rosser)
on B if →∩B × B is terminating (confluent, locally confluent, Church-Rosser).

4

2.1 Abstract Reduction Systems

a b c d1

3

1

2

1

Figure 2.3: A labeled abstract reduction system.

Confluence is often depicted as a diagram as in Figure 2.2(a). In light of
that picture, t ∗← s→∗ u is called a peak (and t← s→ u a local peak), and
t→∗ v ∗← u a valley.

Example 2.5. Recall the ARS 〈A,→〉 from Example 2.3. It is not terminating,
because there is an infinite rewrite sequence alternating between b and c:

b −→ c −→ b −→ · · ·

It is not confluent, because a and d are not joinable, but connected by the peak
a← b→ c→ d. For the same reason, the ARS is not Church-Rosser. However,
it is locally confluent, because both local peaks a← b→ c and b← c→ d are
joinable in a valley: we have a← b← c and b→ c→ d.

Lemma 2.6 (Newman’s lemma [52]). Let 〈A,→〉 be a terminating ARS. Then
〈A,→〉 is confluent if and only if it is locally confluent.

Remark 2.7. The “only if” direction is not part of Newman’s original lemma.
But it is trivial, because confluence implies local confluence.

The main property of interest for this thesis is confluence. One of the
most powerful criteria for establishing confluence of abstract rewrite systems is
van Oostrom’s decreasing diagrams technique [62], which will be the topic of
Chapter 3. It is based on labeled ARSs.

Definition 2.8. Let L be a set of labels, A a set of objects and →α ⊆ A×A
a relation for each α ∈ L. Then 〈A, (→α)α∈L〉 is a labeled abstract reduction
system. For subsets M ⊆ L, we let

−→
M

=
⋃
α∈M

−→
α

Finally we let → = →L for the unlabeled ARS underlying the labeled ARS
(→α)α∈L.

Example 2.9. We give a labeled ARS whose underlying ARS is that of Exam-
ple 2.3. To this end, let A = {a, b, c, d} as before, L = {1, 2, 3} and

−→
1

= {(b, a), (b, c), (c, d)} −→
2

= {(c, b)} −→
3

= {(b, c)}

This labeled ARS is depicted in Figure 2.3. Note that both b→1 c and b→3 c;
the relations →α are not required to be disjoint.

In the setting of decreasing diagrams, L is equipped with a well-founded order
> ⊆ L× L, which is used to compute subsets M ⊆ L based on labels.

5

2 Preliminaries

Definition 2.10. Let > ⊆ L×L be a quasiorder and α, β ∈ L. Then we define

<α = {α′ ∈ L | α > α′} <αβ = <α ∪ <β

Definition 2.11. Let L be a set of labels equipped with a well-founded order
>, and (→α)α∈L be a labeled ARS. If for every local peak u α← · →β v can be
joined decreasingly, i.e.,

u
∗←→

<α
· =−→
β
· ∗←−→

<αβ
· =←−
α
· ∗←→

<β
v

then (→α)α∈L is locally decreasing.

Example 2.12. We continue Example 2.9. Let L be equipped with the order
3 > 2 > 1. Then <1 = ∅, <3 = {1, 2} and <12 = {1}. Consequently,

−→

<3
= {(b, a), (b, c), (c, b), (c, d)} −−→

<12
= {(b, a), (b, c), (c, d)}

The example labeled ARS is not locally decreasing, because the local peak

a←−
1
b −→

1
c

cannot be joined decreasingly. Note that this local peak is distinct from

a←−
1
b −→

3
c

which can be joined decreasingly by a 1← b 2← c.

It is well known that locally decreasing ARSs are confluent. A proof of this
fact can be found Chapter 3.

Next we present two useful facts about confluence of ARSs.

Lemma 2.13. An ARS is confluent if and only if it is Church-Rosser.

As a final concept for abstract rewriting we consider rewriting modulo, which is
concerned with pairs of relations→ and ⊢⊣, where ⊢⊣ is symmetric. A systematic
discussion of rewriting modulo can be found in [56].

Definition 2.14. Let → and ⊢⊣ be rewrite relations on the same set of objects.
Let ⇔ =↔∪ ⊢⊣. We say that → is Church-Rosser modulo ⊢⊣ if

∗⇐⇒ ⊆ ∗−→ · ∗⊢−−⊣ · ∗←−

For rewriting modulo, we distinguish between local peaks ← · → and local
cliffs ← · ⊢⊣ or ⊢⊣ · →, with the visual idea that ⊢⊣ steps are horizontal like in
Figure 2.2(c).

2.2 Term Rewriting
Term rewrite systems are particular abstract reduction systems where the objects
are terms and the rewrite steps are induced by certain rewrite rules. First we
introduce terms.

6

2.2 Term Rewriting

2.2.1 Terms and Contexts
Definition 2.15. A signature (F ,V) consists of a set F of function symbols
and a countably infinite set of variables V disjoint from F , where each function
symbol f ∈ F has an associated arity arity(f) ∈ N. Functions with arity 0
are called constants. The set of terms over (F ,V) is T (F ,V), which is defined
inductively by

• v ∈ T (F ,V) if v ∈ V, and

• f(t1, . . . , tn) ∈ T (F ,V) if f ∈ F , n = arity(f) and ti ∈ T (F ,V) for
1 6 i 6 n.

Example 2.16. Let the signature (F ,V) be defined by F = {c, f, g} and
V = {x, y, z, . . . }, with arities 0 for c, 1 for f and 2 for g. Some example terms
from T (F ,V) are

t1 = x t2 = c t3 = g(f(f(x)), g(x, y)) t4 = g(c, f(c)) t5 = g(x, y)

Definition 2.17. A term is ground if it does not contain variables. The set
of ground terms over F is denoted by T (F). A term is linear if every variable
occurs at most once in the term. It is flat if it is a variable, or a function
symbol applied to constants or variables. Let root(t) be the root symbol of t, i.e.,
root(t) = v if t = v ∈ V and root(t) = f if t = f(t1, . . . , tn) for f ∈ F . Given a
term t ∈ T (F ,V) define Var(t) and Fun(t) by

• Var(t) = {v}, Fun(t) = ∅ if t = v ∈ V, and

• Var(t) =
⋃

16i6n Var(ti) and Fun(t) = {f} ∪
⋃

16i6nFun(ti) if t =
f(t1, . . . , tn) for f ∈ F .

Example 2.18. We continue Example 2.16. The terms t2 and t4 are ground
terms, and all listed terms except t3 are linear. The flat terms are t1, t2 and t5.
We have root(t3) = g, Var(t3) = {x, y} and Fun(t3) = {f, g}.

Definition 2.19. Positions are strings of natural numbers. The empty string
is denoted by ε. If p = p′q then p′ is a prefix of p, written p′ 6 p, and we let
p\p′ = q. The position p′ is a strict prefix of p if p′ 6 p and p′ 6= p. If neither
p′ 6 p nor p 6 p′, then the positions p’ and p′ are parallel, p ‖ p′. A set of
position P is pairwise parallel if for p, q ∈ P , p ‖ q or p = q. Given a term
t ∈ T (F ,V) its set of positions Pos(t) and the subterm t|p at position p ∈ Pos(t)
are defined by

• Pos(t) = {ε} if t = v for v ∈ V,

• Pos(t) = {ε} ∪ {ip | 1 6 i 6 n, p ∈ Pos(ti)} if t = f(t1, . . . , tn) for f ∈ F ,

• t|ε = t, and t|ip = ti|p if t = f(t1, . . . , tn) for f ∈ F .

If P ⊆ Pos(t) then we let t|P = {t|p | p ∈ P}. For X ⊆ F ∪ V we let
PosX(t) = {p ∈ Pos(t) | root(t|p) ∈ X, and |t|X = |PosX(t)|. For x ∈ F ∪ V
we let Posx(t) = Pos{x}(t) and |t|x = |t|{x}. Let s, t ∈ T (F ,V) be terms and
p ∈ Pos(s). We denote by s[t]p the result of replacing the subterm of s at
position p by the term t. Formally,

7

2 Preliminaries

• s[t]ε = t, and

• s[t]ip = f(t1, . . . , ti[t]p, . . . , tn) if s = f(t1, . . . , tn) and f ∈ F .

This operation is extended to sets of pairwise parallel positions P as follows: If
P = {p1, . . . , pn} we let s[tp]p∈P = s[tp1]p1 . . . [tpn]pn .

Example 2.20. We continue Example 2.18. The positions of t3 are Pos(t3) =
{ε, 1, 11, 111, 2, 21, 22}. The set Posx(t3) = {111, 21} indicates the occurrences
of x in t3. We have 1 < 11, 21 ‖ 22, and 21\2 = 1. The set {1, 21, 22} consists of
pairwise parallel positions. Furthermore, t3|11 = f(x), and t3[t2]1 = g(c, g(x, y)),
and for P = {1, 2}, t3[tp]p∈P = g(x, c).

Definition 2.21. A substitution is a function σ : V → T (F ,V) mapping
variables to terms, such that its domain dom(σ) = {v ∈ V | σ(v) 6= v} is finite.
For a term t and substitution σ, tσ denotes the term obtained by replacing all
variables v in t by σ(v):

• tσ = σ(v) if t = v ∈ V, and

• tσ = f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn) for f ∈ F .

A substitution σ is a variable substitution if σ(v) ∈ V for all v ∈ V; it is a
renaming if σ is a bijective variable substitution. If σ and τ are substitutions,
then their composition στ is defined by (στ)(v) = vστ .

Example 2.22. We continue Example 2.20. Let a substitution σ be given by
σ(x) = t2, σ(y) = x, and σ(v) = v for v ∈ V \ {x, y}. Then dom(σ) = {x, y}
and t3σ = g(f(f(c)), g(c, x)).

Definition 2.23. A term s matches a term t, s 6· t, if there exists a substitu-
tion σ such that sσ = t. A term s is a variant of a term t if there is a renaming
σ such that sσ = t.

Example 2.24. We continue Example 2.22. The term x matches any term.
We have g(x, y) 6· g(x, x), but not g(x, x) 6· g(x, y), because no substitution can
map x to both x and y. The terms g(x, g(c, y)) and g(y, g(c, z)) are variants.

Lemma 2.25. Let s, t be terms. Then s is a variant of t if and only if s 6· t
and t 6· s.

Definition 2.26. Let (F ,V) be a signature and � /∈ F ∪ V be a fresh constant
(the hole). We write V� for the set of symbols V ∪ {�}. Contexts are terms
from T (F ∪ {�},V) containing an arbitrary number of holes. We let C(F ,V) =
T (F ∪ {�},V). Contexts are partially ordered by v, defined inductively by

• v v v for v ∈ V,

• � v C for C ∈ C(F ,V), and

• f(C1, . . . , Cn) v f(D1, . . . , Dn) if f ∈ F is a function symbol of arity n
and Ci v Di for 1 6 i 6 n.

8

2.2 Term Rewriting

There is a corresponding partial supremum operation, t , which merges contexts.
The strict order @ is defined by C @ D if C v D and C 6= D. The minimum
context with respect to v is the empty context �. By C[t1, . . . , tn] we denote
the result of replacing holes in C by the terms t1 . . . , tn from left to right.

Example 2.27. We continue Example 2.22. Some contexts from C(F ,V) are

C1 = � C2 = f(g(x, c)) C3 = f(g(�, c)) C4 = g(g(�,�),�)

Note that C2 is both a context without holes and a term. We have C1[t] = t for
all terms t, C3[x] = C2, and C4[f(x), y, z] = g(g(f(x), y), z). In the v order, we
have C1 @ C3 @ C4, while C4 is incomparable to C2 and C3.

2.2.2 Term Rewrite Systems

With the necessary operations on terms in place, we can now introduce term
rewrite systems.

Definition 2.28. A rewrite rule over a signature (F ,V) is a pair (`, r) written
` → r (and occasionally ` ≈ r) such that ` /∈ V and Var(`) ⊇ Var(r). A rule
` → r is a variant of a rule `′ → r′ if there is a renaming σ such that `σ = `′

and rσ = r′. A term rewrite system (TRS) R over a signature (F ,V) is a set of
rewrite rules over (F ,V). A TRS R defines a rewrite relation →R on terms as
follows. If C ∈ C(F ,V) is a context with a single hole, ` → r ∈ R, and σ is a
substitution, then

C[`σ]→R C[rσ]

We also write C[`σ]→p,`→r C[rσ] in order to indicate the position p of the hole
of C and the rule being used in the rewrite step.

Example 2.29. Let F = {f, g, c} with f of arity 2, g of arity 1 and c a constant.
Then f(x, y) → g(z) and x → g(x) are not rewrite rules because they violate
Var(`) ⊇ Var(r) and ` /∈ V, respectively. The set R consisting of the rewrite
rules

f(x, x)→ g(x) g(x)→ f(c, g(c))

is a TRS. The term t = f(g(c), g(c)) can be rewritten at the root position
(corresponding to C = �), at position 1 (corresponding to C = f(�, g(c))) or
at position 2 (C = f(g(c),�)) using the first, second and second rule of R,
respectively. We have

t→R g(g(c)) t→R f(c, g(c)) t→R f(g(c), c)

Note that f(g(c), c) cannot be rewritten at the root position by the first rule
because f(x, x) does not match f(g(c), c).

Given a TRS R over (F ,V), the pair 〈T (F ,V),→R〉 defines an abstract
rewriting system. We say that R is terminating, confluent, etc. if →R is.

9

2 Preliminaries

Definition 2.30. A rewrite rule `→ r is left-linear if ` is linear, right-linear if
r is linear, linear if both ` and r are linear, duplicating if |`|v < |r|v for some
v ∈ V, collapsing if r ∈ V. We lift properties of terms to rules as well, in
the same way as linearity. For example, ` → r is ground if both ` and r are
ground; it is left-flat if ` is flat. A TRS is left-linear, right-linear, ground, or
non-duplicating if all its rules are. Given a TRS R we denote by Rd the subset
of its duplicating rules and by Rnd the subset of its non-duplicating rules.

Example 2.31. Continuing example 2.29, the rule f(x, x)→ g(x) is right-linear
and non-duplicating but not left-linear; g(x) → f(c, g(c)) is linear and also
non-duplicating. Therefore, R is non-duplicating, right-linear but not left-linear.
The rule g(x)→ x would be a collapsing rule. On the other hand, g(c)→ c is
not a collapsing rule. It is a ground rule, and also linear and non-duplicating.

The same rule can act at the same position on different terms, for example
we have

f(c, g(x))→2,g(x)→x f(c, x)

and also
f(z, g(z))→2,g(x)→x f(z, z)

To capture this situation, we introduce the concept of mirroring.

Definition 2.32. Two rewrite steps s→R t, s′ →R t′ mirror each other if both
steps use the same rule at the same position. This notion is extended to rewrite
sequences in the obvious way: empty rewrite sequences mirror each other, and
s0 →R s1 →∗R sn mirrors t0 →R t1 →∗R tn if s0 →R s1 mirrors t0 →R t1 and
s1 →∗R sn mirrors t1 →∗R tn.

Besides →R, which applies a single rule at a single position in each step, it is
also possible to do rewrite steps in parallel.

Definition 2.33. Let R be a TRS over the signature (F ,V). Parallel reduction
→∥ R is defined inductively by

• v →∥ R v for v ∈ V,

• `σ →∥ R rσ if `→ r ∈ R and σ is a substitution, and

• f(s1, . . . , sn)→∥ R f(t1, . . . , tn) if f ∈ F is a function symbol of arity n and
si →∥ R ti for 1 6 i 6 n.

Example 2.34. Let R be as in Example 2.29 and t = f(g(x), g(x)). Then

t −→
R
∥ t t −→

R
∥ f(f(g(c), c), g(x)) t −→

R
∥ f(g(x), f(g(c), c))

t −→
R
∥ f(f(g(c), c), f(g(c), c)) t −→

R
∥ g(x)

where we rewrite nowhere, at position 1, at position 2, at the parallel positions
1 and 2, and at the root position, respectively.

10

2.2 Term Rewriting

2.2.3 Termination
Given a TRS R we can ask the question whether→R is terminating. A common
approach is to prove termination by exhibiting a reduction order > on terms
such that ` > r for all `→ r ∈ R.

Definition 2.35. Let → ⊆ T (F ,V)2 be a relation. Then → is monotone if
s → t implies C[s] → C[t] for all single hole contexts s → t. The relation is
stable if s → t implies sσ → tσ for all substitutions σ. A well-founded order
that is monotone and stable is a reduction order.

Lemma 2.36. Let R be a TRS. Then →R is a monotone and stable.

Lemma 2.37. A TRS R is terminating if and only if there is a reduction order
> such that R ⊆ >.

Numerous reduction orders are known in the literature, for example the
Knuth–Bendix order [44], the lexicographic and recursive path orders [15],
various approaches based on well-founded monotone algebras, e.g. [17, 48], and
many more.

Example 2.38. Let R over F = {add, s, 0} consist of the rules

add(0, y)→ y add(s(x), y)→ s(add(x, y))

Then the monotone F-algebra over the natural numbers N given by

0N = 0 sN(x) = x+ 1 addN(x, y) = 2x+ y + 1

gives rise to a reduction order via the evaluation map

[x]N = x [0]N = 0N [s(t)]N = sN([t]N) [add(t1, t2)]N = addN([t1]N, [t2]N)

by letting s > t if [s]N > [t]N for all assignments of natural numbers to the
variables. Now because

y + 1 = [add(0, y)]N > [y]N = y

2x+ y + 3 = [add(s(x), y)]N > [s(add(x, y))]N = 2x+ y + 2

we have R ⊆ >, and therefore termination of R follows.

Another technique, which is especially important for automation, is to prove
termination of TRSs incrementally by considering relative rewriting.

Definition 2.39. Let R and S be TRSs over a common signature. Then R/S
denotes a relative TRS, whose rewrite relation is defined as

−−−→
R/S

= ∗−→
S
· −→
R
· ∗−→
S

Note that R and R/∅ define the same rewrite relation. Therefore, we may
speak of R as a relative TRS.

11

2 Preliminaries

Definition 2.40. Let > and > be relations. Then > and > are compatible if
> ·> ·> ⊆ >. If furthermore, > is a well-founded order, > is a preorder and
both > and > are rewrite relations, then (>, >) is a monotone reduction pair.

Relative termination is a powerful tool for termination analysis, because it
allows for incremental termination proofs by the following theorem.

Theorem 2.41 (Geser [26]). A relative TRS R/S is terminating if R = ∅
or there exists a monotone reduction pair (>, >) such that R ∪ S ⊆ > and
(R \>)/(S \>) is terminating.

Example 2.42. Consider the TRS R over F = {ack, s, 0} computing the
Ackermann function,

(1) ack(0, x)→ s(x) (2) ack(s(x), 0)→ ack(x, s(0))
(3) ack(s(x), s(y))→ ack(x, ack(s(x), y))

and the following monotone F-algebra over the natural numbers.

0N = 2 sN(x) = x+ 1 ackN(x, y) = x+ y

This algebra gives rise to a reduction pair (>, >) given by s > t (s > t) if
[s]N > [t]N ([s]N > [t]N) for all possible assignments of natural numbers to the
variables. Then we have

x+ 2 = [ack(0, x)]N > [s(x)]N = x+ 1
x+ 3 = [ack(s(x), 0)]N > [ack(x, s(0))]N = x+ 3

x+ y + 2 = [ack(s(x), s(y))]N > [ack(x, ack(s(x), y))]N = x+ y + 1

which establishes termination of {(1), (3)}/R. By Theorem 2.41, the same
reduction pair reduces termination of R to that of the single rule (2), which is
easy to establish.

2.2.4 Confluence
We now turn to some basic definitions and results for analyzing confluence of
TRSs. A key notion is that of critical pairs, which are essential for determining
whether a TRS is locally confluent or not.

Definition 2.43. Let s and t be terms. A substitution σ is a unifier of s and t if
sσ = tσ. In this case, s and t are unifiable. The substitution σ is a most general
unifier (mgu) if for any substitution τ with sτ = tτ , there is a substitution ρ
such that σρ = τ .

Lemma 2.44. Let s and t be unifiable terms. Then s and t have a most general
unifier. Furthermore, the mgu is unique up to renaming of variables.

Example 2.45. Let t1 = g(x), t2 = f(x, x), t3 = f(f(a, y), f(z, g(z))) and
t4 = f(y, g(y)). Then t1 is not unifiable with t2, t3 or t4 because they have a
different root symbol. The term t2 is unifiable with t3; an mgu is

σ = {x 7→ f(a, g(a)), y 7→ g(a), z 7→ a}

12

2.2 Term Rewriting

The terms t2 and t4 are not unifiable, because a unifier τ would have to satisfy

yτ = xτ = g(y)τ = g(yτ)

and t = g(t) has no finite solution.

Definition 2.46. Let R be a TRS over (F ,V), and let `1 → r1 and `2 → r2
be variants of rules from R with no common variables. Let p ∈ PosF (`2), such
that `1 and `2|p are unifiable with mgu σ. If `1 → r1 is a variant of `2 → r2,
we further assume that p 6= ε. Then (l1 → r1, p, l2 → r2)σ is a critical overlap
which induces the critical peak

`2[r1]pσ ←−
R
`2σ −→

R
r2σ

The corresponding critical pair is 〈`[r′]pσ, rσ〉.

Lemma 2.47 (Critical pair lemma [34]). Let R be a TRS. Then R is locally
confluent if all its critical pairs are joinable by →R.

Combining Lemma 2.47 with Newman’s lemma, we obtain the Knuth-Bendix
criterion for confluence of terminating TRSs.

Lemma 2.48 (Knuth-Bendix [44]). A terminating TRS is confluent if and only
if all its critical pairs are joinable.

Example 2.49. The terminating TRS made of the four rules

sub(x, x)→ 0 sub(s(x), s(y))→ sub(x, y) sub(x, 0)→ x sub(0, y)→ 0

has two critical pairs up to symmetry:

0←−
R

sub(s(x), s(x)) −→
R

sub(x, x) 0←−
R

sub(0, 0) −→
R

0

Note that the second critical pair arises in three ways, from overlapping any two
of the first, third or last rules. All these critical pairs are joinable (in particular,
sub(x, x)→ 0), and therefore the TRS is locally confluent. By Theorem 2.48 we
conclude that the TRS is confluent.

Definition 2.50. A TRS is orthogonal if it is left-linear and has no critical
pairs.

Lemma 2.51. Orthogonal TRSs are confluent.

Example 2.52. Both the TRSs for addition (Example 2.38) and for the Ack-
ermann function (Example 2.42) are orthogonal, and therefore confluent. It is
important to note that absence of critical pairs alone does not ensure confluence.
This is demonstrated by the following TRS from [34]:

f(x, x)→ A f(x, g(x))→ B c→ g(c)

which has no critical pairs, but nevertheless has a non-joinable peak:

A←−
R

f(c, c) −→
R

f(c, g(c)) −→
R

B

13

2 Preliminaries

2.2.5 Redex Patterns
Definition 2.53. Let R be a TRS. A redex pattern is a pair π = 〈pπ, `π → rπ〉
consisting of a position pπ and a rewrite rule `π → rπ ∈ R. A redex pattern
π matches a term t if t|pπ is an instance of `π. If π matches t, then π and t
uniquely determine a term tπ such that t→pπ ,`π→rπ t

π. We denote this rewrite
step by t→π tπ.

Note that two rewrite steps mirror each other if and only if their redex patterns
are the same.
Remark 2.54. It may seem odd that the rewrite pattern ends up as the
superscript of a rewrite step. The main reason for this switch of positioning is
convenience: we will use redex patterns in connection with labels in Chapter 4,
and those labels will be written as subscripts.
Definition 2.55. Let π1 and π2 be redex patterns that match a common
term. They are called parallel (π1 ‖ π2) if pπ1 ‖ pπ2 . If pπ2 6 pπ1 and
pπ1\ pπ2 ∈ PosF (lπ2) then π1 and π2 overlap critically; otherwise they are called
orthogonal (π1 ⊥ π2). Note that π1 ‖ π2 implies π1 ⊥ π2. We write P ⊥ Q if
π ⊥ π′ for all π ∈ P and π′ ∈ Q and similarly P ‖ Q if π ‖ π′ for all π ∈ P and
π′ ∈ Q.

We will mainly use redex patterns to describe parallel rewrite steps.
Definition 2.56. We assign to each parallel rewrite step s→∥ R t a set of redex
patterns P (s→∥ R t) as follows:
• P (v →∥ R v) = ∅,

• P (`σ →∥ R rσ) = {〈ε, `→ r〉}, and

• P (f(s1, . . . , sn) →∥ R f(t1, . . . , tn)), if si →∥ R ti for 1 6 i 6 n, is given by
{〈ip, `→ r〉 | 1 6 i 6 n, 〈p, `→ r〉 ∈ P (si →∥ R ti)}

We write s→∥ PR t if P = P (s→∥ PR t). Note that s and P determine t uniquely;
we therefore denote t by sP .
Remark 2.57. Equivalently, we could define parallel steps by starting with
a set of pairwise parallel redex patterns P . Then if all redex patterns in
P = {π1, . . . , πn} match a term s, they induce a parallel rewrite step s→∥ PR sP ,
where sP denotes sπ1...πn . Note that because π1, . . . , πn are pairwise parallel, sP
is independent of their order.
Example 2.58. We revisit Example 2.31. As before, let t = f(g(x), g(x)), and
R consist of the rules

(1) f(x, x)→ g(x) (2) g(x)→ f(c, g(c))
Then

t
∅−→
R
∥ t t

{〈1,(2)〉}−−−−−→
R
∥ f(f(g(c), c), g(x))

t
{〈2,(2)〉}−−−−−→
R
∥ f(g(x), f(g(c), c)) t

{〈1,(2)〉,〈2,(2)〉}−−−−−−−−−→
R
∥ f(f(g(c), c), f(g(c), c))

t
{〈ε,(1)〉}−−−−−→
R
∥ g(x)

14

2.3 Tree Automata

2.3 Tree Automata

Definition 2.59. A (bottom-up) tree automaton A = (F , Q,Qf ,∆) over a
signature F consists of a set of states Q disjoint from F , a set of final states
Qf ⊆ Q, and a set of transitions ∆ of shape f(q1, . . . , qn)→ q where the root
f ∈ F has arity n and q, q1, . . . , qn ∈ Q.

For the sake of simplicity, we only consider automata without ε-transitions.
We regard ∆ as a TRS over the signature F ∪Q, with the states as constants.

Example 2.60. Let F = {F,T,¬,∨,∧}, Q = {0, 1, 2, 3}, Qf = {1} and ∆
consist of the transitions

F→ 0 T→ 1 ¬(0)→ 1 ¬(1)→ 0
∨(0, 0)→ 0 ∨(0, 1)→ 1 ∨(1, 0)→ 1 ∨(1, 1)→ 1
∧(0, 0)→ 0 ∧(0, 1)→ 0 ∧(1, 0)→ 0 ∧(1, 1)→ 1

F→ 2 ¬(3)→ 3

Then A = (F , Q,Qf ,∆) is a bottom-up tree automaton.

Definition 2.61. Let A = (F , Q,Qf ,∆) be a tree automaton. A substitution
σ over F ∪ Q is a state substitution if σ(v) ∈ Q for all v ∈ V. A term t is
accepted in state q if t→∗∆ q; t is accepted by A if it is accepted in a final state.
The language accepted by A is L(A) = {t | t→∗∆ q for some q ∈ Qf}. We call A
deterministic if no two rules in ∆ have the same left-hand side. For convenience,
we often write →A for →∆.

Example 2.62. Consider the automaton A from Example 2.60. Then the term
t = ∧(¬(F),F) is accepted in state 0:

∧(¬(F),F)→∆ ∧(¬(0),F)→∆ ∧(¬(0), 0)→∆ ∧(1, 0)→∆ 0

Note that t is not accepted by A because 0 is not a final state and t 6→∗∆ 1. The
language accepted by A are those terms over F that are true when F, T, ¬,
∨ and ∧ are interpreted as false, true, negation, disjunction and conjunction,
respectively. The automaton A is not deterministic, because there are two
transitions with left-hand side F.

We recall that every tree automaton can be reduced to an equivalent automaton
where all states are useful.

Definition 2.63. Let A = (F , Q,Qf ,∆) be a tree automaton. We say that a
state q ∈ Q is reachable if t→∗A q for some term t ∈ T (F); q ∈ Q is productive
if C[q]→∗A q′ for some context C and state q′ ∈ Qf . Finally, an automaton A is
trim if all its states are both reachable and productive.

Proposition 2.64. For any tree automaton A there is an equivalent tree au-
tomaton A′ that is trim. If A is deterministic, then A′ is also deterministic.

15

2 Preliminaries

Example 2.65. Consider once more the automaton A from Example 2.60. The
states 0 and 1 are both reachable (F→∆ 0, T→∆ 1) and productive (1 is a final
state, and ¬(0)→∆ 1). The state 2 is reachable (F→∆ 2), but not productive,
while 3 is neither productive nor reachable. The corresponding trim automaton
is obtained by restricting the states to {0, 1}, and dropping all transitions that
involve other states. The resulting automaton with 2 states and 12 transitions
is actually deterministic, because the transition F → 2 was removed, making
the left-hand sides unique.

Definition 2.66. Given a set of terms L, and a TRS R, R(L) (R∗(L)) is the
set of one-step (many-step) descendants of L:

R(L) = {t′ | t ∈ L, t′ ∈ T (F ,V), t→R t′}
R∗(L) = {t′ | t ∈ L, t′ ∈ T (F ,V), t→∗R t′}

A language L is closed under rewriting by R if R(L) ⊆ L.

Example 2.67. Let A be the automaton from Example 2.60. Then L(A) is
closed under rewriting by the rule ∧(x, x)→ x (because replacing ∧(t, t) by t
does not change the truth value of a propositional formula, but not closed under
rewriting by the rule F→ T (because ¬(F) ∈ L(A) but ¬(T) /∈ L(A)).

We will see in Chapter 7 how to decide whether L(A) is closed under rewriting
by a TRS R.

16

Chapter 3

Abstract Decreasing Diagrams

In this chapter we revisit the decreasing diagrams technique [62]. We present
a well-founded proof order for establishing the correctness of the decreasing
diagrams technique and use the same construction to obtain generalizations of
decreasing diagrams for Church-Rosser modulo. Furthermore, we will investigate
variations of the technique that allow labeling objects as well as steps in ARSs,
whereas the standard decreasing diagrams technique only allows labeling rewrite
steps.

This chapter is an extended version [21], except that the presentation of a
second proof order, »ilpo, which is based on a lexicographic order, has been
omitted.

3.1 Introduction
In this chapter we revisit the decreasing diagrams technique [62] for proving
confluence. This technique proves confluence of a rewrite relation by decomposing
it into a labeled ARS (→κ)κ∈L. Then, if every local peak u κ← · →µ v can be
joined decreasingly, that is, there is a joining conversion

u
∗←→

<κ
· =−→
µ
· ∗←−→

<κµ
· =←−
κ
· ∗←→

<µ
v

(see Figure 3.1(a)), the relation →L is confluent.
We exhibit several well-founded orders on proofs (i.e., conversions) that allow

us to prove termination of the proof transformation system defined by the locally
decreasing diagrams. A similar approach is used in the correctness proof for
completion by Bachmair and Dershowitz [9]. Rather than working on proofs

·

· · · ·

· ·

κ µ

<κ

∗

<µ

∗

µ

=
κ

=

<κµ

∗

(a) Locally decreasing diagram.

κ́µ̀

{κ>}[µ̀]{κµ>}[κ́]{µ>}

(b) Interpretations.

Figure 3.1: Interpreting peak and joining sequence of decreasing diagrams.

17

3 Abstract Decreasing Diagrams

directly, we develop the orders in the setting of involutive monoids, which capture
the essential structure of proofs—proofs may be concatenated and reversed.

This work is partly inspired by [38], where Jouannaud and van Oostrom define
a well-founded order on proofs in order to establish that local decreasingness
implies confluence. In [36], Jouannaud and Liu propose a simplified version of
this proof order. The orders presented here are much simpler.

The remainder of this chapter is structured as follows: Section 3.2 presents
involutive monoids. In Section 3.3 we develop orders on so-called French strings
that entail the decreasing diagrams technique. Then, in Section 3.4, we extend
our approach to the Church-Rosser modulo property, using an extension of
French strings that we call Greek strings, leading to a generalization of a
results by Ohlebusch [56] and Jouannaud and Liu [36]. In Section 3.5, we
consider Bognar’s point-decreasing diagrams [10] (which labels objects of ARSs
rather than steps), and show that they can be obtained as a special case of
standard decreasing diagrams. This leads to Section 3.6, where we explore the
possibility of labeling both objects and steps of a decreasing diagram, obtaining
point-step decreasing diagrams that generalize both decreasing diagrams and
point-decreasing diagrams. In Section 3.7 we present two common extensions of
decreasing diagrams for covering commutation and generalizing the well-founded
order on labels to reduction pairs (extended decreasingness). Finally, we conclude
in Section 3.8.

Throughout we illustrate our constructions by means of the following running
example.

i

ea

c

b d

f g

h j

(a) Rewrite relation.
i

ea

c

b d

f g

h j

¬ ­

®
¯ °

±

3
1 2

3

3
2

3
2

2

3

2

3 3

2

2

1

(b) Labeled ARS.

Figure 3.2: Decomposing a rewrite relation.

Example 3.1. The rewrite relation → on objects {a, . . . , j} as presented in
Figure 3.2(a) is the union of the family of rewrite relations (→κ)κ∈L in Fig-
ure 3.2(b), indexed by concrete labels L = {1, 2, 3} and having individual rewrite
relations:

−→
1

= {(b, c), (j, i)}

−→
2

= {(d, c), (f, a), (f, h), (g, e), (h, a), (e, j)}

−→
3

= {(b, a), (d, e), (c, f), (c, g), (g, i), (a, i), (h, i)}

We will show how each of the transformation steps, indicated by the numbers,
leading from the initial conversion a 3← b →1 c 2← d →3 e to the final valley

18

3.2 Involutive Monoids

t→ u
t = u

(step)
t = t

(refl) u = t
t = u

(sym) t = u u = v
t = v

(trans)

Figure 3.3: Equational logic for abstract rewrite relations.

.... P
t = u

.... Q
u = v

t = v

.... R
v = w

t = w
assoc===⇒

.... P
t = u

.... Q
u = v

.... R
v = w

u = w
t = w

.... P
t = u

.... Q
u = v

t = v
v = t

anti==⇒

.... Q
u = v
v = u

.... P
t = u
u = t

v = t

.... P
t = u u = u

t = u
r.id==⇒

.... P
t = u

t = t

.... P
t = u

t = u
l.id=⇒

.... P
t = u

.... P
t = u
u = t
t = u

inv=⇒

.... P
t = u

t = t
t = t

i.id=⇒ t = t

Figure 3.4: Normalizing equational logic proofs into conversions.

a→3 i 1← j 2← e entails a decrease in each of our proof orders, which are based
on some well-founded order > on L.

Throughout we assume > is a well-founded partial order on the labels L.

3.2 Involutive Monoids
A conversion t ↔∗ u for a rewrite relation → is a witness to a proof that t is
equal to u in the equational logic induced by →, see Figure 3.3.

Remark 3.2. Because of the absence of term structure the equational logic is
particularly simple: terms t, u, v are constants and the usual substitution and
congruence rules are superfluous.

However, conversions correspond only to a subset of the equational logic proofs.
For example, in a conversion symmetry is never applied below transitivity. In
general, conversions can be identified with equational logic proofs that are in
normal form with respect to the transformations in Figure 3.4.1 Since these

1Reductions can be identified with proofs of rewrite logic in normal form.

19

3 Abstract Decreasing Diagrams

transformations are confluent and terminating, every equational logic proof can
be transformed into a conversion so one may restrict attention to the latter, a
result known as logicality of rewriting with respect to equational logic.

Involutive monoids, see e.g. [35], are the natural algebraic structure to interpret
such equational proofs and their transformations. In a slogan: involutive
monoids are to conversions what monoids are to reductions.2 More precisely,
involutive monoids are obtained by abstracting the equalities into primitives a,
b, c,. . . , interpreting transitivity as composition (·), symmetry as inversion (−1),
reflexivity as identity (e), and equipping these with the laws in Definition 3.3
corresponding to the transformations of Figure 3.4.

Definition 3.3. A monoid is a (carrier) set equipped with an associative binary
operation (·) and an identity element (e). An involutive monoid is a monoid
equipped with an anti-automorphic involution (−1), i.e., satisfying the following
laws:3

(P ·Q) ·R = P · (Q ·R) (assoc) (P ·Q)−1 = Q−1 · P−1 (anti)
P · e = P (r.id) (P−1)−1 = P (inv)
e · P = P (l.id) e−1 = e (i.id)

Involutive monoids are the main algebraic structure into which conversions
and transformations on them will be interpreted in this chapter. Note that
concatenation of conversions is a partial operation. Therefore, they do not
form an involutive monoid by themselves. This will be the topic of the next
section. We now illustrate involutive monoids first by some (mostly well-known)
examples from algebra to be used later, and next by our main example, the
involutive monoid of French strings.

Example 3.4. (i) The integers with addition, zero, and negation (Z,+, 0,−)
constitute an involutive monoid. In general, any group constitutes an
involutive monoid.

(ii) The monoid of natural numbers with addition and zero (N,+, 0) constitute
an involutive monoid when equipped with the identity map, as do the
multisets over L with multiset sum and the empty multiset ([L],], []).
Commutative monoids give rise to involutive monoids in this way.

(iii) (Ordinary) strings over an alphabet L of labels or letters κ, equipped
with juxtaposition, the empty string ε, and string reversal constitute an
involutive monoid.

(iv) Natural number pairs with pointwise addition, the pair (0, 0), and swapping
constitute an involutive monoid. In fact, any monoid (A, ·, e) gives rise to
an involutive monoid on A×A by equipping it with pointwise composition,
the pair (e, e), and swapping.

2For term rewriting the involutive monoid is to be extended with operations corresponding
to the function symbols and laws for them yielding (equational) proof term algebras.

3Actually e−1 = e is derivable: e−1 = e · e−1 = (e−1)−1 · e−1 = (e · e−1)−1 = (e−1)−1 = e.

20

3.2 Involutive Monoids

Our interpretations of conversions with respect to a family (→κ)κ∈L of rewrite
relations indexed by labels in L, will all factor through an interpretation (see
Definition 3.9) that only keeps the labels, equipping them with accents according
to the direction (forward or backward) of the individual steps in the conversion.
We call such strings of accented labels French strings.

Definition 3.5. For a given alphabet L, let a French letter be an accented
(grave κ̀ or acute κ́) letter. We will use the circumflex as in κ̂ to denote a French
letter having κ as label and carrying either a grave or acute accent. The set L̂ of
French strings over L, i.e., strings of French letters, equipped with juxtaposition,
the empty string, and mirroring −1 given by κ̀−1 = κ́ and κ́−1 = κ̀, constitute
an involutive monoid. The order > on labels is extended to French letters: we
let κ̂ > µ̂ and κ > µ̂ iff κ > µ.

For instance, mirroring the French string 3́1̀2́3̀ over the alphabet of Example 3.1
yields 3́2̀1́3̀. In case the alphabet is a singleton set, the French letters over the
alphabet are identified with the accents, denoted by Ó and Ò. French strings
are to involutive monoids what (ordinary) strings are to monoids. To make
this precise, we need the standard notion of a homomorphism as a structure
preserving map.

Definition 3.6. A homomorphism from the involutive monoid (A, ·, e,−1) to the
involutive monoid (B, ·′, e′,−1′) is a map h from A to B such that for all a, b, c in
A, h(a · b) = h(a) ·′ h(b), h(e) = e′, and h(a−1) = h(a)−1′ . The homomorphism
is an isomorphism if there exists a homomorphism that is inverse to it.

Proposition 3.7. The involutive monoid on French strings L̂ is the free in-
volutive monoid over L. That is, any map from L into the carrier of some
involutive monoid, extends, via the map κ 7→ κ̀, uniquely to an involutive monoid
homomorphism on L̂.

This is a well-known fact and moreover easy to show. It is implicit in the old
proofs of logicality of rewriting for the special case of (abstract) rewrite relations
as noted above and explicitly proven in e.g. [35, Proposition 2].

Proof. Consider the term rewrite system obtained by orienting the laws of
Definition 3.3 from left to right into term rewrite rules:

c(c(x, y), z) → c(x, c(y, z)) i(i(x)) → x
c(x, e) → x i(c(x, y)) → c(i(y), i(x))
c(e, x) → x i(e) → e

This term rewriting system is confluent and terminating, as tools nowadays can
show automatically, and has as closed normal forms4 e and the elements of the
set N given by:

N ::= κ | i(κ) | c(κ,N) | c(i(κ), N)

4Think of these closed normal forms as (empty) conversions.

21

3 Abstract Decreasing Diagrams

Therefore, equipping {e} ∪N with operations c, e, and i, in each case followed
by taking normal forms, constitutes a free involutive monoid. This monoid
is easily seen to be isomorphic to the one on French strings via the bijection
between N and L̂ induced by κ 7→ κ̀.

We conclude this section by giving some examples of homomorphisms linking
up the various involutive monoids presented above.

Example 3.8. (i) Mapping a French string over L to the natural number
pair of grave, acute accents in it, is a homomorphism. In turn, mapping a
natural number pair to its sum is also a homomorphism. Their composition
maps a French string to its length, e.g. 1́1̀2̀2́1̀ 7→ (3, 2) 7→ 5.

(ii) Mapping a French string over L to an ordinary string over L by forgetting
accents, is a homomorphism. In turn, mapping a string over L to the
multiset of letters in it is also a homomorphism. Their composition maps
a French string to its multiset, e.g. 1́1̀2̀2́1̀ 7→ 11221 7→ [1, 1, 1, 2, 2].

(iii) Mapping a French string over L to the French string of its accents by
forgetting the letters is a homomorphism.

3.3 Proof Orders and Confluence
In this section we present two novel proof orders, i.e., well-founded orders on
proofs in equational logic, factoring these through their interpretation into the
French string of their (accented) labels. They are shown both to be proof
orders for decreasing diagrams, yielding alternative proofs showing that a locally
decreasing rewrite relation is confluent. Both proof orders are flexible, in a sense
to be explained in the next section.

3.3.1 Proof Orders via French Strings
A proof order is a well-founded order on conversions, i.e., on proofs in equational
logic. Proof orders can be generated by proof rewrite systems as introduced in
the context of completion by Bachmair and Dershowitz [9]. The objects of a
proof rewrite system are conversions and its rewrite steps allow one to replace a
subproof, i.e., a conversion between two terms, occurring in it by another such
conversion between the same two terms.5 The idea is to stepwise transform
proofs into simpler ones, the usual goal being to obtain a valley proof (sometimes
called a rewrite proof), i.e., a pair of reductions from the source and target of
the original conversion, to a common reduct. Here, we adapt these ideas by
factoring through an interpretation into the involutive monoid of French strings,
the advantage being that they can easily be dealt with algebraically.

Definition 3.9. The interpretation of a conversion for an L-indexed (→κ)κ∈L
family of rewrite relations, is the French string over L that is the stepwise
juxtaposition of the labels in the conversion, where a label carries a grave (acute)

5As before, we deal here only with the special case where the terms are constants.

22

3.3 Proof Orders and Confluence

accent in case the corresponding step in the conversion is a forward (backward)
step.

Example 3.10. The successive conversions of Example 3.1 are interpreted as
the successive French strings in the following transformation, where we have
underlined in each step the substring being replaced:

3́1̀2́3̀ =⇒¬ 2́3́2́3̀ =⇒­ 2́3́3̀2̀ =⇒® 2́2̀3̀3́2̀ =⇒¯ 2́3̀3́2̀ =⇒° 2́3̀1́2́ =⇒± 3̀1́2́

Equipping French strings with a well-founded order or with a terminating
(French string) rewrite system, gives rise to a proof order, via this interpretation.
Among the well-founded orders on French strings, the monotone ones are of
special interest.

Definition 3.11. A well-founded involutive monoid is an involutive monoid
equipped with a well-founded order � on its carrier. It is monotone if the
algebraic operations are so with respect to the order, that is, all French string
s, t, p satisfy:

1. if s� t then ps� pt and sp� tp.

2. if s� t then s−1 � t−1.

Theorem 3.12. Let the French strings equipped with � be a well-founded
involutive monoid. Then if for all labels κ, µ ∈ L and French strings s, r over L
(only over ∅ if � is monotone, i.e., then s = r = ε):

sκ́µ̀r � s{κ>}[µ̀]{κµ>}[κ́]{µ>}r

and (→κ)κ∈L is locally decreasing, then →L has the Church-Rosser property.

In the statement of the theorem we have employed the EBNF notations []
and { } to express option and arbitrary repetition respectively, and used ~κ> to
denote a French letter to which (at least) one letter in the vector ~κ >-relates.
For instance, [µ̀] denotes either ε or µ̀, and {κ>} denotes an arbitrary French
string of letters to which κ >-relates.

Proof. It suffices to show that any conversion between two objects a and b that
is not yet a valley, can be transformed into another conversion between a and
b that is more like a valley w.r.t. some well-founded order. If a conversion
is not yet a valley, then it contains some local peak, say with interpretation
κ́µ̀. By the assumption that the rewrite relation is locally decreasing, the
local peak can be transformed into a conversion having interpretation of shape
{κ>}[µ̀]{κµ>}[κ́]{µ>}, see Figure 3.1(b). Using the assumption that sκ́µ̀r �
s{κ>}[µ̀]{κµ>}[κ́]{µ>}r and well-foundedness of �, eventually a conversion
without local peaks, i.e., a valley proof, is obtained.

If � is monotone, then the comparison for s = r = ε extends to arbitrary
strings s, r immediately.

23

3 Abstract Decreasing Diagrams

A well-founded order satisfying the (displayed) condition of the theorem
is called a well-founded involutive monoid for decreasing diagrams. The two
well-founded involutive monoids for decreasing diagrams to be presented below
are obtained via further homomorphisms of the French strings into well-founded
involutive monoids. The first one is not monotone but has ‘small’ images,
whereas the second one is monotone but has ‘large’ images.

3.3.2 A Monotone Order
Definition 3.13. Let L be an alphabet with precedence >. We denote by�mul
and (�1,�2)lex the multiset extension of � and the lexicographic product of
�1 and �2, respectively. The order �• on French strings is defined recursively
as follows: s�• t iff

〈s〉f ((>,�•)lex)mul 〈t〉f

where 〈s〉f = [(κ́, q) | s = pκ́q] ∪ [(κ̀, p) | s = pκ̀q] collects acute letters together
with their suffix in s and grave letters together with their prefix in s into a
multiset, and > on French letters just compares their labels. For the following
discussion, we define �Λ

• = ((>,�•)lex)mul .

Note that Definition 3.13 is a proper recursive definition: The multiset
extension of the lexicographic product of two orders can be computed by
comparing only elements present in the compared multisets, and all French
strings occurring in 〈s〉f are proper substrings of s.

Example 3.14. Recall the interpretations from Example 3.10. We order the
set L of labels by the well-founded order 3 > 1, 2, and consider how to compare
the first interpretation to the last one. Because 〈ε〉f = ∅, while 〈1̀2́3̀〉f is a
non-empty multiset, we have 3́1̀2́�• ε. Therefore,

〈3́1̀2́3̀〉f = [(3́, 1̀2́3̀), (2́, 3̀), (1̀, 3́), (3̀, 3́1̀2́)]�Λ
• [(1́, 2́), (2́, ε), (3̀, ε)] = 〈3̀1́2́〉f

3́1̀2́3̀�• 3̀1́2́

Next we show that �• has all the desired properties: it is a well-founded,
monotone, partial order, provided that > is a well-founded order on labels.

Lemma 3.15. If > is a strict partial order on labels, then �• is a strict partial
order on French strings. Furthermore the construction is incremental: If > ⊆ >′
then �• ⊆ �′•, where s�′• t iff 〈s〉f ((>′,�′•)lex)mul 〈t〉f .

Proof. Consider the map Λ>(�) = {(s, t) | 〈s〉f ((>,�)lex)mul 〈t〉f }. By the
properties of the lexicographic product and multiset extension of partial orders,
Λ>(�) is monotone in � (with respect to ⊆) and maps strict partial orders to
strict partial orders. Therefore, and because the union of an increasing chain
(w.r.t. ⊆) of strict partial orders is again a strict partial order, the least fixed
point of Λ> exists and is a strict partial order. Inspection of the definition shows
that this least fixed point equals �•. Incrementality follows because Λ>(�) is
monotone in >.

Lemma 3.16. The order �• on French strings is monotone.

24

3.3 Proof Orders and Confluence

Proof. First consider monotonicity of the inverse. We have to show that s�• t
implies s−1 �• t−1. We proceed by induction on the length of s. Note that we
can express 〈s−1〉f as 〈s−1〉f = [(κ̂−1, p−1) | (κ̂, p) ∈ 〈s〉f]. Now by assumption,
〈s〉f �Λ

• 〈t〉f , and we need to show 〈s−1〉f �Λ
• 〈t−1〉f , that is,

[(κ̂−1, p−1) | (κ̂, p) ∈ 〈s〉f]�Λ
• [(µ̂−1, q−1) | (µ̂, q) ∈ 〈t〉f] (3.1)

Since κ̂−1 > µ̂−1 iff κ̂ > µ̂ by definition and p−1 �• q−1 iff p�• q for all proper
substrings p of s by the induction hypothesis, the evaluation of 〈s〉f �Λ

• 〈t〉f can
be mirrored in the comparison (3.1), which therefore holds.

Next we show that concatenation is monotone. Assume that s�• t. We need
to show that ps �• pt for arbitrary French strings p. (Once we have proved
that, we know that s �• t implies s−1 �• t−1, then p−1s−1 �• p−1t−1, and
finally sp�• tp using the monotonicity of the inverse.) It suffices to show the
claim if p has length 1; induction on the length of p will complete the proof.
There are two cases, p = κ́ and p = κ̀. We have:

〈κ́s〉f = [(µ́, p) | (µ́, p) ∈ 〈s〉f] ∪ [(µ̀, κ́p) | (µ̀, p) ∈ 〈s〉f] ∪ [(κ́, s)]
〈κ̀s〉f = [(µ́, p) | (µ́, p) ∈ 〈s〉f] ∪ [(µ̀, κ̀p) | (µ̀, p) ∈ 〈s〉f] ∪ [(κ̀, ε)] (3.2)

Now when comparing 〈κ́s〉f �Λ
• 〈κ́t〉f (respectively 〈κ̀s〉f �Λ

• 〈κ̀t〉f), we have
(κ́, s) (>,�•)lex (κ́, t) by assumption ((κ̀, ε) = (κ̀, ε) trivially), while the other
elements of the multisets originate in 〈s〉f and 〈t〉f , and their comparisons
carry over to that of 〈κ̂s〉f �• 〈κ̂t〉f . Note that in the lexicographic product,
comparing (µ̂, p) and (µ̂′, p′) will only require comparing p to p′ if µ̂ = µ̂′, and
then we know whether κ̂ was prepended to p and p′, in which case we apply
the induction hypothesis to that comparison, or not. Hence we conclude that
κ̂s�• κ̂t.

Remark 3.17. None of the previously mentioned orders are monotone. For
the order »ilpo from [21], we have »ilpoÓÒÒÒÓ»ilpoÒÓÓÓÓ, but appending
Ó to both strings results in ÒÓÓÓÓÓ»ilpoÓÒÒÒÓÓ, i.e., the order is
reversed. For the order from [38], we have ÓÓÓÓÓ � ÓÒÒÓÒ but after
appending Ó, we get ÓÒÒÓÒÓ� ÓÓÓÓÓÓ; for [36], ÓÓÓÒ� ÓÒÓÒ
but ÓÒÓÒÒ� ÓÓÓÒÒ after appending Ò.

Remark 3.18. It is interesting to note that while we have not explicitly stated
that 〈·〉f is a homomorphism between involutive monoids, this is in fact the case.
We can define the necessary operations as follows: Let X = 〈s〉f and Y = 〈t〉f .
The equations

X−1 = [(κ̂−1, p−1) | (κ̂) ∈ X]
XY = [(κ́, pt) | (κ́, p) ∈ X] ∪ [(κ́, p) | (κ́, p) ∈ Y] ∪

[(κ̀, p) | (κ̀, p) ∈ X] ∪ [(κ̀, sp) | (κ̀, p) ∈ Y]

define an involutive monoid on such interpretations. See also (3.1) and (3.2). The
definition of XY refers to s and t, but these strings can in fact be reconstructed
from X and Y .

25

3 Abstract Decreasing Diagrams

We still have to establish well-foundedness of �•. The proof is based on
simple termination [50].

Theorem 3.19. If the precedence > is well-founded, then �• is a well-founded,
monotone, partial order on French strings.

Proof. By Lemmas 3.15 and 3.16, �• is a strict partial order and monotone.
We have to show that �• is well-founded as well. Because its construction is
incremental by Lemma 3.15, we may assume w.l.o.g. that > is a (partial) well-
order. We can easily see that�• is a simplification order ([50, Definition 5.2]), if
we regard French strings a terms over a unary signature as usual: monotonicity
means that �• is a stable and monotone order, while κ̂ �• ε and κ̂ �• µ̂ if
κ̂ > µ̂ ensure that >emb ⊆ �•. Therefore, �• is well-founded by [50, Theorem
5.3].

Lemma 3.20. Let > be a strict partial order. Then (recall the notation from
Theorem 3.12)

1. κ̂�• {κ>}, and

2. κ́µ̀�• {κ>}[µ̀]{κµ>}[κ́]{µ>}.

Proof. 1. Let t ∈ {κ>}. We have to establish that

[(κ̂, ε)]�Λ
• 〈t〉f

The elements of 〈t〉f are pairs (µ̂, p) with κ > µ, i.e., smaller than (κ̂, ε)
lexicographically, so the comparison holds.

2. Let t ∈ {κ>}[µ̀]{κµ>}[κ́]{µ>}. We have to establish that

[(κ́, µ̀), (µ̀, κ́)]�Λ
• 〈t〉f

Most elements of 〈t〉f are pairs (ν̂, p) with κ > ν or µ > ν. There are up to
two exceptions, depending on which of the letters κ́ and µ̀ are present in t:
(κ́, p) with p ∈ {µ>}, for which we have (κ́, µ̀) (>,�•)lex (κ́, p) using the
first case, and (µ̀, p) with p ∈ {κ>}, for which we have (µ̀, κ́) (>,�•)lex
(µ̀, p) likewise. Thus, every element of 〈t〉f is dominated by an element of
〈κ́µ̀〉f , and the comparison succeeds.

Consequently, French strings equipped with �• are a well-founded involutive
monoid for decreasing diagrams.

Theorem 3.21. Let L be an alphabet equipped with a well-founded order >,
and (→κ)κ∈L be a family of abstract rewrite relations. If

←−
κ
· −→
µ
⊆ ∗←→

<κ
· =−→
µ
· ∗←−→

<κµ
· =←−
κ
· ∗←→

<µ

then →L is confluent.

Proof. This follows directly from Theorem 3.12 and Lemma 3.20.

26

3.4 Church-Rosser Modulo

a b c

d g

h i jh

e

f

(a) Rewrite relations→, ⊢⊣.

a b c

d g

h i jh

e

f

¬
­

®
¯

3 2

2
1

3

2
3

1

3
2

2

2 1

(b) Labeled ARSs (→),
(⊢⊣).

Figure 3.5: Decomposing relations with the Church-Rosser modulo property.

We have presented a well-founded, monotone order on French strings,�•. Let
us briefly compare it to »ilpo from [21], which is defined in the same framework
of involutive monoids. To compare two French strings by »ilpo, we first map
them to French terms, which are then compared by a lexicographic path order.
The size of the French terms is linear in that of the strings, making the definition
fairly lightweight. In contrast, the definition of �• results in much bigger
interpretations; unfolding it naively will result in an exponential number of
comparisons. On the other hand, »ilpo is not monotone, which makes the proof
of [21, Lemma 18] more tedious than that of Lemma 3.20. Also thanks to
monotonicity, the validity of new rules like 1̀2̀2̀ ⇒ 2̀2́2̀1̀2́ if 1 > 2 is readily
established by a direct comparison, 1̀2̀2̀�• 2̀2́2̀1̀2́. Without monotonicity, we
would have to consider all possible prefixes and suffixes in the proof. Comparing
strings that are longer than two symbols can be useful, as will be shown in
Section 3.6.

3.4 Church-Rosser Modulo
In this section we derive a decreasing diagrams technique for Church-Rosser
modulo property, in analogy to Section 3.3. In Section 3.3.1 we have seen
how conversions correspond to French strings. In order to apply this idea to
Church-Rosser modulo, we introduce Greek strings, an extension of French
strings with self-inverse letters.

3.4.1 Decreasing Diagrams
Definition 3.22. Let L be an alphabet. For each κ ∈ L there are three Greek
letters, accented by acute, grave, or macron accents (κ́, κ̀, or κ̄). We use κ̂ to
denote a Greek letter with label κ. Mirroring letters is defined by κ́−1 = κ̀ and
κ̄−1 = κ̄. The Greek strings L are strings over Greek letters, which together
with juxtaposition and mirroring form an involutive monoid. Any precedence >
on L is extended naturally to Greek letters by letting κ̂ > µ̂ iff κ > µ.

The intended purpose of macron (self-inverse) letters is to represent equational
steps in proofs, a natural extension of the interpretations (Definition 3.9) used

27

3 Abstract Decreasing Diagrams

for confluence in Section 3.3.

Example 3.23. Consider the rewrite relations in Figure 3.5(b). There are
several conversions proving the equivalence of d and g, using labels L = {κ, µ, ν}.
We list some interpretations:

2́3̀2́3̀⇒¬ 2̄1́2́3̀⇒­ 2̄1́1̀3̀1̄⇒ 2̄3̀1̄⇒¯ 3̀2̄2́1̄⇒° 3̀2̄1̄2́

We base our order on the monotone order from Section 3.3.2 (Definition 3.13).

Definition 3.24. Let L be an alphabet with precedence >. The order �• on
Greek strings over L is defined by recursion as follows: s�• t iff

〈s〉g ((>,�•)lex)mul 〈t〉g

where

〈s〉g = [(κ́, q) | s = pκ́q] ∪ [(κ̀, p) | s = pκ̀q] ∪ [(κ̄, ε) | s = pκ̄q]

collects acute letters together with their suffixes, grave letters together with
their prefixes, and macron letters together with empty strings into a multiset.
We also define �Λ

• = ((>,�•)lex)mul .

Remark 3.25. We can regard any French string as a Greek string. If we
do that, Definition 3.24 properly extends Definition 3.13: The map 〈·〉g is an
extension of 〈·〉f that deals with self-inverse letters. One subtle difference is that
> is also extended: It compares French letters in Definition 3.13, but Greek
letters in Definition 3.24.

Example 3.26. Continuing Example 3.23, we show that the second to last
step is decreasing, using the order 3 > 2 > 1 on L. In the resulting multiset
comparison, it’s easy to see that (µ̀, κ̄) is larger than every element of the
right-hand side multiset:

〈2̄3̀1̄〉g = [(2̄, ε), (3̀, 2̄), (1̄, ε)]�Λ
• [(3̀, ε), (2̄, ε), (2́, 1̄), (1̄, ε)] = 〈3̀2̄2́1̄〉g

2̄3̀1̄�• 3̀2̄2́1̄

The order �• shares many properties with �•.

Theorem 3.27. If the precedence > on L is well-founded, then the order �•
is a well-founded, monotone, partial order on Greek strings.

Proof. The similarities between �• and �• are so overwhelming that the
proofs of Lemmas 3.15, 3.16 and Theorem 3.19 work with straight-forward
modifications:

• Replace �• by �•, �Λ
• by �Λ

• and 〈·〉f by 〈·〉g everywhere.

• In Lemma 3.15, define Λ by Λ(�) = {(s, t) | 〈s〉g ((>,�)lex)mul 〈t〉g}.

28

3.4 Church-Rosser Modulo

• In Lemma 3.16, the expression for 〈s−1〉f remains valid for 〈s−1〉g. For
the monotonicity of concatenation, we have to consider three cases for p
of length 1, p = κ́, p = κ̀ and p = κ̄, and we can express 〈κ̂s〉g as follows:

〈κ́s〉g = [(µ̂, p) | (µ̂, p) ∈ 〈s〉g and µ̂ 6= µ̀] ∪ [(µ̀, κ́p) | (µ̀, p) ∈ 〈s〉g] ∪ [(κ́, s)]
〈κ̀s〉g = [(µ̂, p) | (µ̂, p) ∈ 〈s〉g and µ̂ 6= µ̀] ∪ [(µ̀, κ̀p) | (µ̀, p) ∈ 〈s〉g] ∪ [(κ̀, ε)]
〈κ̄s〉g = [(µ̂, p) | (µ̂, p) ∈ 〈s〉g and µ̂ 6= µ̀] ∪ [(µ̀, κ̄p) | (µ̀, p) ∈ 〈s〉g] ∪ [(κ̄, ε)]

When comparing 〈κ̄s〉g and 〈κ̄t〉g, we have (κ̄, ε) = (κ̄, ε), and the remaining
elements of the multisets originate in 〈s〉g and 〈t〉g, respectively. The
remainder of the argument in Lemma 3.16 applies directly.

• Finally, the well-foundedness proof in Theorem 3.19 requires no further
modifications.

Lemma 3.28. Let > be a strict partial order. Then (recall the notation from
Theorem 3.12)

1. κ̂�• {κ>} and κ́µ̀�• {κ>}[µ̀]{κµ>}[κ́]{µ>},

2. κ̄µ̀ �• ({κ>} ∩ {µ>})[µ̀]{µ>}κ̄{µ>} (the intersection works on sets of
strings), and

3. κ̄µ̀�• {κ>}[µ̀]{κµ>}.
Proof. 1. The first item is analogous to Lemma 3.20.

2. Let t ∈ ({κ>} ∩ {µ>})[µ̀]{µ>}κ̄{µ>}. We have to show that

[(κ̄, ε), (µ̀, κ̄)]�Λ
• 〈t〉g

Note that (κ̄, ε) ∈ 〈t〉g, so all other elements of 〈t〉g must be smaller than
(µ̀, κ̄). This is true for (µ̀, p) with p ∈ ({κ>} ∩ {µ>}) by the first item of
this lemma, and all remaining pairs (µ̂, p) ∈ 〈t〉g are smaller than (µ̀, κ̄)
because µ > µ. We conclude that κ̄µ̀�• t.

3. Let t ∈ {κ>}[µ̀]{κµ>}. We show that

[(κ̄, ε), (µ̀, κ̄)]�Λ
• 〈t〉g

All elements (µ̂, p) of 〈t〉g have κ > µ or r > µ (and are thus smaller than
one of (µ̀, κ̄) or (κ̄, ε)), with one possible exception: (µ̀, p) where p ∈ {κ>},
which is smaller than (µ̀, κ̄) using the first item of this lemma. Therefore,
κ̄µ̀�• t is true.

Theorem 3.29. Let L be an alphabet equipped with a well-founded order >.
Furthermore, let (→κ)κ∈L and (⊢⊣κ)κ∈L be families of abstract rewrite relations,
where each ⊢⊣κ is symmetric. If

←−
κ
· −→
µ
⊆ ∗⇐⇒

<κ
· =−→
µ
· ∗⇐=⇒

<κµ
· =←−
κ
· ∗⇐⇒

<µ

and ⊢−−⊣
κ
· −→
µ
⊆
(

∗⇐==⇒

<κ∩ <µ
· =−→
µ
· ∗⇐⇒

<µ
· ⊢−−⊣
κ
· ∗⇐⇒

<µ

)
∪
(
∗⇐⇒

<κ
· =−→
µ
· ∗⇐=⇒

<κµ

)
,

for all κ, µ ∈ L, where ⇔κ = κ← ∪ ⊢⊣κ ∪ →κ (see Figure 3.6), then →L is
Church-Rosser modulo ⊢⊣L.

29

3 Abstract Decreasing Diagrams

· · ·

· · · · · ·

· · · · ·

· · · · ·

κ µ
<κ∗ <µ∗

µ
=

κ
=

∗

<κµ

κ µ

<κ∩ <µ∗ <µ∗

µ
=

κ∗

<µ

κ µ

<κ∗

µ
=

∗

<κ
µ

Figure 3.6: Locally decreasing diagrams for Church-Rosser modulo.

Proof. The proof follows that of Theorem 3.12. First we observe that if a
conversion between two objects a and b is not a valley of shape →∗ · ⊢⊣∗ · ∗←,
then it must contain a local peak or cliff. By assumption, we can replace that
peak or cliff by an alternative subproof. To show termination, we observe that
the interpretation of the replacement proof is smaller than that of the peak or
cliff w.r.t. �•, by Lemma 3.28. Thanks to monotonicity this extends to the
interpretations of the whole proofs. This implies termination, because �• is
well-founded.

The rewrite relations in Figure 3.5(a) have the Church-Rosser modulo property,
because every local peak and cliff in Figure 3.5(b) can be joined in a decreasing
diagram of the required shape. As an instance of Theorem 3.29 we obtain the
following result by Jouannaud and Liu.

Corollary 3.30 ([36, Corollary 2.5.8]). Let (→κ)κ∈L and (⊢⊣κ)κ∈L be families
of abstract rewrite relations, where each ⊢⊣κ is symmetric. Then →L is Church-
Rosser modulo ⊢⊣L if for all κ, µ ∈ L,

←−
κ
· −→
µ
⊆ ∗⇐⇒

<κ
· =−→
µ
· ∗⇐=⇒

<κµ
· =←−
κ
· ∗⇐⇒

<µ
and ⊢−−⊣

κ
· −→
µ
⊆ =−→

µ
· ∗⇐=⇒

<κµ

Furthermore, Ohlebusch’s main theorem of [56] is a consequence of Corol-
lary 3.30 by labeling all ⊢⊣ steps with a minimal, fresh label ⊥. As another
instance of Theorem 3.29 we can obtain a key lemma for abstract Church-Rosser
modulo from [5]:

Corollary 3.31 (Aoto and Toyama [5, Lemma 2.1]). Let (→κ)κ∈L and (⊢⊣κ)κ∈L
be families of abstract rewrite relations, where each ⊢⊣κ is symmetric. Then →L

is Church-Rosser modulo ⊢⊣L if for all κ, µ ∈ L,

←−
κ
· −→
µ
⊆ ⇐=⇒

<κµ
and ⊢−−⊣

κ
· −→
µ
⊆ ⇐=⇒

<κµ

3.4.2 Incompleteness

It is known that decreasing diagrams are complete for confluence of count-
able rewrite relations [70, Theorem 14.2.32]. In this section we show that no
terminating proof rewrite system can be complete for proving Church-Rosser
modulo. To this end, we exhibit a pair of rewrite relations →, ⊢⊣ such that →

30

3.4 Church-Rosser Modulo

a0 a1 a2 a3 a4 a5 · · ·

b0 b1 b2 b3 b4 b5 · · ·

c0 c1 c2 c3 c4 c5 · · ·

Figure 3.7: Incompleteness: The rewrite relations → and ⊢⊣.

is Church-Rosser modulo ⊢⊣, but there is no terminating proof rewrite system
that has only valley proofs of shape →∗ · ⊢⊣∗ · ∗← as normal forms.

Remark 3.32. Terminating proof rewrite systems are exactly those which are
compatible with some monotone well-founded order on proofs. We can also
show termination of proof rewrite systems using non-monotone orders like »ilpo
[21]. The incompleteness result of this section applies to such proofs as well.

Definition 3.33. On the set A = {ai, bi, ci | i ∈ N} we define the relations →
and ⊢⊣ as follows:

1. ui → ui+1 iff u ∈ {a, b, c};

2. ui ⊢⊣ vi iff {u, v} = {b, c} if i ≡ 0 (mod 3), {u, v} = {a, c} if i ≡ 1 (mod 3)
and {u, v} = {a, b} otherwise. (See also Figure 3.7.)

Remark 3.34. Definition 3.33 may be regarded as a simplified version of [36,
Figure 1(a)]. Both examples would serve the purpose of this section, and
Theorem 3.36 subsumes the incompleteness result of [36, Section 4.3].

Note that → is deterministic and that all ⊢⊣∗ equivalence classes have size 1
or 2. Together with the periodic and symmetric nature of the rewrite relations
(consider mapping ai, bi and ci to bi+1, ci+1 and ai+1, respectively), this restricts
valley proofs to just a few possibilities:

Proposition 3.35. 1. The rewrite relation → is Church-Rosser modulo ⊢⊣.

2. Any valley proof for a peak n← · →m has shape →l−n · ⊢⊣∗ · l−m← for
some l > n,m > 0.

3. Any valley proof for a local cliff ← · ⊢⊣ has shape →3n−1 · ⊢⊣+ · 3n← for
some n > 0.

The following result establishes that no terminating proof rewrite system can
be complete for Church-Rosser modulo of →, ⊢⊣.

Theorem 3.36. There is no terminating proof rewrite system for →, ⊢⊣ that
only rewrites local peaks and cliffs and always produces valley proofs as normal
forms.

31

3 Abstract Decreasing Diagrams

Proof. By contradiction. Assume that we are given a terminating proof rewrite
system whose normal forms are valley proofs. We show coinductively that any
proof of shape

⊢−−⊣ · n−→ · m←− · ⊢−−⊣ (3.3)

with n 6≡ m (mod 3) allows an infinite proof rewrite sequence. Note that such
proofs exist, for example, we have b0 ⊢⊣ c0 → c1 ⊢⊣ a1. We may assume w.l.o.g.
that n > 0 (if n = 0, then m > 0, and we can conclude symmetrically). Then we
can rewrite the initial cliff ⊢⊣ · → to a normal form, which must be a valley proof.
By Proposition 3.35, the resulting proof has shape →3k · ⊢⊣+ · 3k−1← · →n−1

· m← · ⊢⊣ for some k ∈ N. Similarly, we can reduce the new peak 3k−1← · →n−1

to a valley proof, which by Proposition 3.35 results in a proof

3k−→ · +
⊢−−⊣ · u−→ · p

⊢−−⊣ · v←− · ⊢−−⊣ (3.4)

with u = l−3k+1 and v = l−n+1+m for some l, p ∈ N. for some l, p ∈ N. Let
u = l−3k+1 and v = l−n+1+m. It is easy to see that u 6≡ v (mod 3). If p = 0,
then (3.4) contains a subproof of shape (3.3), namely ⊢⊣ · →u · v← · ⊢⊣. If p > 0
and u 6≡ 0 (mod 3) then the subproof ⊢⊣ · →u · 0← · ⊢⊣ of (3.4) has shape (3.3).
Otherwise, p > 0 and v 6≡ 0 (mod 3), and the subproof ⊢⊣ · →0 · v← · ⊢⊣ of (3.4)
has shape (3.3). Continuing this process on the obtained subproof, we obtain an
infinite proof rewrite sequence, contradicting our termination assumption.

Remark 3.37. Note that by identifying ui with ui+3 for all i ∈ N and u ∈
{a, b, c} we obtain a pair of finite rewrite relations for which Theorem 3.36 still
holds.

3.5 Point-Decreasing Diagrams
In this section we consider the point version of decreasing diagrams proposed
by Bognar in [10], and show how it follows from ordinary decreasing diagrams.
In this version, the objects (i.e., the points) rather than the steps of an abstract
rewrite system are labeled. We will refer to van Oostrom’s decreasing diagrams
result as the step version of decreasing diagrams in this section. We can restate
Bognar’s version of local decreasingness as follows.

Definition 3.38. Let 〈A,→〉 be an abstract rewrite system and > be a well-
founded order on L, and ` : A → L be a function labeling the objects. We
annotate steps by the labels of their target in square brackets, that is, we write
s→[`(t)] t. If every local peak t [κ]← s→[ν] u with µ = `(s) has a joining valley

t
∗−−−→

[<κµ]
· =−→

[ν]
· ∗−−−−→

[<κµν]
· ∗←−−−−

[<κµν]
· =←−

[κ]
· ∗←−−−

[<µν]
u

then 〈A,→〉 is locally point-decreasing.

Bognar’s main result [10, Corollary 8] states that any locally point-decreasing
labeled ARS is confluent.

32

3.5 Point-Decreasing Diagrams

Theorem 3.39. Any locally point-decreasing labeled ARS is confluent.

Proof. Because any well-founded order can be extended to a well-order, and
because locally point-decreasing diagram are preserved when the order > on
W is extended, we may assume that > is a well-order. We label steps by
pairs from L × {⊥,>}, ordered lexicographically, with the order > > ⊥ on
the second component. Each step s→ t is labeled by max((`(s),⊥), (`(t),>)).
In particular, the peak t [κ]← s →[ν] u with µ = `(s) is labeled by A =
max((µ,⊥), (κ,>)) to the left and B = max((µ,⊥), (ν,>)) to the right. We
claim that using this labeling, the point-decreasing diagrams of Definition 3.38
become decreasing diagrams. Consider a step v → w of the valley, with label
C = max((`(v),⊥), (`(w),>)). We consider three cases.

1. Let v → w be from the t→∗[<κµ] · subderivation of the valley. The source
v of such a step satisfies κ > `(v) (hence (κ,>) > (`(v),⊥)) or µ > `(v)
(hence (µ,⊥) > (`(v),⊥)), while the target w satisfies κ > `(w) (hence
(κ,>) > (`(w),>))) or µ > `(w) (hence (µ,⊥) > (`(w),>)). Therefore,
A > C.

2. Assume that v → w corresponds to the · →=
[ν] · step of the valley. Then

κ > `(v) or µ > `(v), and `(w) = ν. We have (ν,>) = (`(w),>),
(κ,>) > (`(v),⊥) and (µ,⊥) > (`(v),⊥). Consequently, B = C or A > C.

3. Let v → w be from the · →∗[<κµν] · part of the valley. Then κ > `(v),
µ > `(v) or ν > `(v), and κ > `(w), µ > `(w) or ν > `(w). Consequently,
(κ,>) > (`(v),⊥), (µ,>) > (`(v),⊥) or (ν,⊥) > (`(v)), and (κ,>) >
(`(w),>), (µ,>) > (`(w),>) or (ν,⊥) > (`(w),>). Consequently, A > C
or B > C follows.

A symmetrical argument applies to steps w ← v on the left side of the valley.
Therefore it follows that

t
∗−−→

<A
· =−→
B
· ∗−−−→

<AB
· ∗←−−−

<AB
· =←−
A
· ∗←−−

<B
u

This is a decreasing diagram. Since we started from an arbitrary peak and
because the order on the set of labels L× {⊥,>} is well-founded, we conclude
that the ARS → is decreasing by Theorem 3.21.

Remark 3.40. Definition 3.38 differs from Bognar’s [10], which defines decreas-
ing diagrams for peaks and valleys of arbitrary size, based on van Oostrom’s
lexicographic path measure [59]. Furthermore [10] assumes that > is a total,
well-founded order. Using the notation of [10], a locally decreasing diagram

j ←−
[j]

i −→
[k]

k j
∗−−→

[τ ′]
l
∗←−−

[σ′]
k

(where σ′ and τ ′ are strings of labels) satisfies

|i; j; τ ′| �# [i] ∪# i6|j| ∪# i6|k| (DCR1)

33

3 Abstract Decreasing Diagrams

a : 1

b : 2 c : 0

e : 1 h : 2

f : 2 g : 1

i : 3 j : 1

Figure 3.8: Labeling the “Maja the Bee”-example from [11].

and the symmetric property (DCR2) which is obtained by swapping the roles of
j, σ′ and k, τ ′. The condition (DCR1) can be simplified as follows.

[i] ∪# i6|j| ∪# max(i,j)6|τ
′| �# [i] ∪# i6|j| ∪# i6|k|

max(i,j)6|τ
′| �# i6|k|

The right-hand side is an empty multiset if i > k, in which case τ ′ must consist
of labels all smaller than max(i, j) (including labels smaller than or equal to
k). If k > i, then the right-hand side is the singleton multiset [k], and τ ′ must
consist of some labels smaller than max(i, j), optionally followed by k, followed
by further labels smaller than max(i, j, k). Definition 3.38 arises from these
observations and the fact that a comparison by max(i, j) (or max(i, j, k)) can
be performed by comparing to each of i, j (or i, j, k) and taking the disjunction
of the comparison results. It is therefore a generalization of Bognar’s definition
of local decreasingness.

To conclude the section, we briefly consider the question of completeness of
the point version of decreasing diagrams.

Theorem 3.41. The point version of decreasing diagrams is complete for
confluence of finite ARSs.

Proof. Let 〈A,→〉 be a confluent, finite ARS. The relation ↔∗ is an equivalence
relation that partitions A into equivalence classes, the components of A. Because
A is finite, there are only finitely many components of A and each component
contains finitely many objects from A. Let C ⊆ A be a component of A. For all
s, t ∈ C, we have s↔∗ t. Therefore, by finiteness of C and confluence, we can
choose an object fC ∈ A that is reachable from all elements of C. Furthermore,
because →∗ ⊆ ↔∗, fC ∈ C. Let

F = {fC | C is a component of A}

By this construction, every object s ∈ A reaches exactly one element of F ,
namely fCs , where Cs denotes the component which contains s. Let

`(a) = min{n ∈ N | a n−→ fCa}

34

3.6 Point-Step Decreasing Diagrams

Note that for any s ∈ A with n = `(s), we have

s
n−−→

[<n]
fCs

We claim that the labeling function ` makes 〈A,→〉 point-decreasing. To see
why, it suffices to consider a local peak t [n]← s→[m] u, and note that

t
∗−−→

[<n]
fCt = fCu

∗←−−−
[<m]

u

Example 3.42. We consider the “Maja the Bee” example by Bognar et al. [11],
which has been presented as a counterexample to the completeness of the point-
version of decreasing diagrams. The example is reproduced in Figure 3.8. There
is only a single component C = {a, b, c, e, f, g, h}, and we pick fC = c, which is
reachable from all objects in C. (In fact, C is strongly connected, and we could
pick any element of C.) Consider the local peak e [1]← a→[2] f. We obtain the
joining valley e→[0] c [0]← a [1]← f, which passes through a.

This particular peak is of interest because in [11], it is argued that any
conversion between e and f that passes through a cannot result in a point-
decreasing diagram. Evidently, that is not the case with our labeling, due to
the fact that `(f) > `(a).

The question whether the point version of decreasing diagrams is complete
for countable ARSs remains open.

3.6 Point-Step Decreasing Diagrams

In this section we present a unified result that encompasses both step- and
point-decreasing diagrams results, and is strictly more general than both. The
key idea is to use a different representation of conversions as Greek (rather
than French) strings, a representation that alternates between steps and objects,
mapping objects to macron letters and steps to accented letters.

Definition 3.43. Let 〈A, (→κ)κ∈L〉 be a labeled ARS. Furthermore let ` : A →
L be a function labeling the objects. Then each conversion

s0 ←→
κ1
· · · ←→

κn
sn

has a point-step interpretation κ̂1
¯̀(s1) . . . ¯̀(sn−1)κ̂n, where

κ̂i =
{
κ́i if si−1 κi← si

κ̀i if si−1 →κi si

Note that the initial and final objects are omitted from the interpretation.

35

3 Abstract Decreasing Diagrams

S κ̂�• {κ>}
D κ́µ̀�• {κ>}[µ̀]{κµ>}[κ́]{µ>}
M1 κ́µ̄�• {κµ>}[κ́]{µ>}
M2 κ́µ̄�• {κ>}µ̄{κ>}[κ́]({κ>} ∩ {µ>})
F1 κ̄µ̄�• {κµ>}
F2 κ̄µ̄�• {µ>}κ̄{µ>}
P1 κ́µ̄ν̀ �• {κµ>}[κ́]{µ>}[ν̀]{µν>}
P2 κ́µ̄ν̀ �• {κµ>}[ν̀]{κµν>}[κ́]{µν>}
P3 κ́µ̄ν̀ �• {κ>}µ̄{κ>}[κ́]({κ>} ∩ {µ>})[ν̀]{ν>}
P4 κ́µ̄ν̀ �• {κ>}µ̄{κ>}[ν̀]{κν>}[κ́]{ν>}
P5 κ́µ̄ν̀ �• {κ>}[ν̀]{κν>}µ̄{κν>}[κ́]{ν>}
C1 κ́µ̄ν̄ �• {κµν>}[κ́]{µν>}
C2 κ́µ̄ν̄ �• {κν>}[κ́]{ν>}µ̄{ν>}
C2′ κ́µ̄ν̄ �• {κµ>}[κ́]{µ>}ν̄{µ>}
C3 κ́µ̄ν̄ �• {κν>}µ̄{κν>}[κ́]({κν>} ∩ {µν>})
C3′ κ́µ̄ν̄ �• {κµ>}ν̄{κµ>}[κ́]({κµ>} ∩ {µν>})
C4 κ́µ̄ν̄ �• {κ>}µ̄{κ>}ν̄{κ>}[κ́]({κ>} ∩ {µν>})
C4′ κ́µ̄ν̄ �• {κ>}ν̄{κ>}µ̄{κ>}[κ́]({κ>} ∩ {µν>})
C5 κ́µ̄ν̄ �• {κ>}µ̄{κ>}[κ́]({κ>} ∩ {µ>})ν̄({κ>} ∩ {µ>})
C5′ κ́µ̄ν̄ �• {κ>}ν̄{κ>}[κ́]({κ>} ∩ {ν>})µ̄({κ>} ∩ {ν>})

Table 3.1: Comparing short Greek strings.

In order to obtain a point-step decreasing diagrams result, we map each
conversion to its point-step interpretation, and then compare the resulting
interpretations before and after pasting a local diagram by �•. Obviously,
pasting a local diagram corresponds to replacing a substring κ́µ̄ν̀ (i.e., the
interpretation of a local peak without its endpoints) by some other Greek string
corresponding to the joining conversion (again, without endpoints). We omit
the endpoints because their labels do not change.

Lemma 3.44. Recall the notation from Theorem 3.12 and Lemma 3.28. All
comparisons from Table 3.1 are true.

Proof. Properties S, D, M1 and M2 have been established earlier. The proof of
the remaining properties follow the same general process as seen before in the
proofs of Theorem 3.12 and Lemma 3.28: Consider the elements of 〈·〉g applied
to the right-hand side of each comparison. In each case, for most of the elements
of the resulting multiset, the first component is already strictly smaller than
the first component of some element of 〈·〉g applied to the left-hand side. For
the remaining elements, we can establish the required comparisons by using the
established comparisons on shorter strings.

We will only establish P3 here, leaving the rest as an exercise to the interested
reader. We have

〈κ́µ̄ν̀〉g = [(κ́, µ̄ν̄), (µ̄, ε), (ν̀, κ́µ̄)]

Let p ∈ {κ>}µ̄{κ>}[κ́]({κ>}∩ {µ>})[ν̀]{ν>}. Almost all elements of 〈p〉g have
a first component below κ or ν, and are therefore dominated by (κ́, µ̄ν̄) or

36

3.6 Point-Step Decreasing Diagrams

(ν̀, κ́µ̄), respectively. The exceptions are the elements corresponding to µ̄, κ́ and
ν̀, if present. These elements are (µ̄, ε), which is present in 〈κ́µ̄ν̀〉g, (κ́, q) with
q ∈ ({κ>} ∩ {µ>})[ν̀]{ν>}, for which we have µ̄ν̀ �• q by the mirrored version
of M1, and (ν̀, q) with q ∈ {κ>}µ̄{κ>}[κ́]({κ>} ∩ {µ>}), whence κ́µ̄�• q by
M2. This establishes κ́µ̄ν̀ �• p.

The properties P1 to P5 from Table 3.1 translate into locally decreasing dia-
grams for local peaks, and properties C1 to C5′ correspond to locally decreasing
diagrams for local cliffs.

Example 3.45. Let (M) denote an object whose label is in M , and ↔∗M stand
for a conversion with all steps and intermediate objects (not including the initial
and final objects of the conversion) having labels in M . Property P1 corresponds
to the following conversion joining a local peak t κ← s→ν u, where µ = `(s):

t
∗←−→

<κµ
(<κµ) =−→

ν
(<κµν) ∗←−−→

<κµν
(<κµν) =←−

κ
(<µν)←−→

<µν
u

In the case of rewriting modulo, many properties give rise to several locally
decreasing diagrams because macron letters can be labels of equational steps or
objects. For example, for the cliff t κ← s ⊢⊣ν u with µ = `(s), C2 corresponds
to the following joining sequences, where we let ⇔ κ =↔ κ ∪ ⊢⊣κ:

t
∗⇐⇒

<κν
(<κν) =←−

κ
(<ν) ∗⇐⇒

<ν
(<ν) ⊢−−⊣

µ
(<ν) ∗⇐⇒

<ν
u

t
∗⇐⇒

<κν
(<κν) =←−

κ
(<ν) ∗⇐⇒

<ν
(µ) ∗⇐⇒

<ν
u t

∗⇐⇒

<κν
(<κν) =←−

κ
(<ν) ∗⇐⇒
<ν

u

t
∗⇐⇒

<κν
(<κν) =←−

κ
(µ) ∗⇐⇒

<ν
u t

∗⇐⇒

<κν
(<κν) =←−

κ
u

Theorem 3.46. Let 〈A, (→κ)κ∈L〉 be a labeled ARS, and ` : A → L be a labeling
function. Assume that every local peak t κ← s→ν u, with µ = `(s) has a joining
conversion s ↔∗ t whose interpretation matches a right-hand side of P1, P2,
P3, P4 or P5 from Table 3.1. Then → is confluent.

Proof. We closely follow the proof of Theorem 3.12. By Lemma 3.16 and
Theorem 3.19,�• is well-founded and monotone. We show that every conversion
t ↔∗ u has an equivalent valley proof t →∗ · ∗← u by well-founded induction
on t ↔∗ u, measured by the interpretation of the conversion according to
Definition 3.43 and ordered according to �•. If t↔∗ u is a valley proof then
we are done. Otherwise, there must be a local peak, say

t
∗←→ t′ ←−

κ
s′ −→

ν
u′

∗←→ u (P)

Let µ = `(s′). Then the interpretation of (P) can be written as pκ́µ̄ν̀r, where
p is the interpretation of t ↔∗ t′ followed by ¯̀(t′) and r is ¯̀(u′) followed by
the interpretation of u′ ↔∗ u. By assumption, the local peak t κ← s →ν u
has a joining conversion t ↔∗ u whose interpretation q satisfies κ́µ̄ν̀ �• q by
Lemma 3.44. By monotonicity, this implies pκ́µ̄ν̀r �• pqr. Consequently, we can
apply the induction hypothesis to the resulting conversion t↔∗ t′ ↔∗ u′ ↔∗ u,
whose interpretation is pqr, to conclude.

37

3 Abstract Decreasing Diagrams

Remark 3.47. Theorem 3.46 entails both decreasing diagrams and point-
decreasing diagrams. To obtain decreasing diagrams, simply label all objects by
a fresh label ⊥ that is minimal with respect to >. Then case D of Table 3.44
(which encodes a decreasing diagram) corresponds to case P2, noting that the
sets {κµ>}, {κµν>} and {µν>} contain ⊥̄.

In order to obtain point-decreasing diagrams, let `p be the labeling function for
establishing point-decreasingness. We label steps s→ t by (`p(t),>) and objects
s by (`p(s),⊥), with the tuples ordered lexicographically by > on the original L
and > > ⊥. Now if we consider the joining conversion from Definition 3.38, we
easily see that it corresponds to case P2 of Table 3.44.

Analogously we obtain a theorem for Church-Rosser modulo:

Theorem 3.48. Let 〈A, (→κ)κ∈L〉 be a labeled ARS, 〈A, (⊢⊣κ)κ∈L〉 a labeled
ARS whose rewrite relations are symmetric, and let ` : A → L be a labeling
function. Let ⇔κ = ↔κ ∪ ⊢⊣κ. If every local peak t κ← s →ν u with µ = `(s)
has a joining conversion s⇔∗ t whose interpretation matches a right-hand side
of P1–P5 from Table 3.1, and every local cliff t κ← s ⊢⊣ν u with µ = `(s) has a
joining conversion whose interpretation matches a right-hand side of C1–C5′ in
Table 3.1, then → is Church-Rosser modulo ⊢⊣.

Corollary 3.49. Let 〈A,→〉 be an ARS, and ` : A → L a labeling function. If
for ever peak t← s→ u, either

t −→ v ←− u or t←→ v1 · · · vn ←→ u

such that `(s) = `(v) or `(s) > `(vi) for 1 6 i 6 n, then → is confluent.

Proof. Let L⊥ = L∪{⊥}, where ⊥ is a fresh label. We extend > to L⊥ by letting
α > ⊥ for all α ∈ L. Let (→α)α∈L⊥ be the labeled ARS given by →⊥ =→ and
→α = ∅. Then since both

⊥́¯̀(s)⊥̀ �• ⊥̀¯̀(v)⊥́

by P5 from Table 3.1 and

⊥́¯̀(s)⊥̀ �• ⊥̂¯̀(v1) . . . ¯̀(vn)⊥̂

by P2, we conclude that the local diagrams are point-step decreasing and
therefore → is confluent.

Remark 3.50. Corollary 3.49 is interesting because to our knowledge, neither
decreasing diagrams nor point-decreasing diagrams can prove it directly, i.e.,
without changing the joining conversions for the local peaks, therefore indicating
that point-step decreasing diagrams strictly generalize decreasing diagrams and
point-decreasing diagrams.

For the point-decreasing diagrams, the main obstacle presents itself as follows:
In order to obtain a point-decreasing diagram (with labeling function `′) for
joining t ← s → u as t ↔ v1 . . . vn ↔ u for n > 1, since we cannot assume
anything about the labels of t and u, we will have to ensure that `′(s) > `′(vi)

38

3.7 Commutation and Extended Decreasingness

whenever `(s) > `(vi). This suggests using `′ = `. But then the case of joining
t → v ← u with `(s) = `(v) does not result in a point-decreasing diagram if
neither `(t) > `(s) nor `(u) > `(s) hold. So the proof attempt fails.

For decreasing diagrams, the picture is less clear. Let us assume that the order
> on labels is total. The simplest labeling that makes the joining conversions
t ↔ v1 . . . vn ↔ u decreasing labels each step s → t by max(`(s), `(t)). Then
for the t → v ← u join, we have to join the peak t κ← s →µ u (with κ =
max(`(s), `(t)) and µ = max(`(s), `(u))) by t→κ s µ← u. However, this is only
a decreasing diagram if κ = µ, and we cannot ensure this in general.

3.7 Commutation and Extended Decreasingness
This section is devoted to two common generalizations of decreasing diagrams.
Neither extension is new. The extension to commutation appears in [60, Theorem
2.3.5], whereas extended decreasingness is introduced in [31].

The first extension concerns commutation of two rewrite relations. In order
to show commutation of two ARSs ⇀ and ⇁, we adopt the convention that
⇀ steps are always leftward steps. That is, we consider conversions of the
form ∗↼−−−−⇁−−−−, where ↼−−−−⇁−−−− = ↼ ∪⇁. These conversions possess a partial monoidal
structure much like ordinary conversions, but without the involution. If we label
all rewrite steps, then any conversion has a corresponding French string, and we
can compare those French strings using the order from Section 3.3.2. We arrive
at the following result.

Theorem 3.51. Let (⇀κ)κ∈L and (⇁κ)κ∈L be labeled ARSs. Then ⇀ and ⇁
commute if for all κ, µ ∈ L,

↼−
κ
· −⇁
µ
⊆ ∗↼−−−−⇁−−−−

<κ
· =−⇁
µ
· ∗↼−−−−−−⇁−−−−

<κµ
· =
↼−
κ
· ∗↼−−−−⇁−−−−

<µ

Corollary 3.52. Let → be strongly confluent, i.e., ← ·→ ⊆ →∗ · =←. Then
→L is confluent.

Proof. We show that → commutes with itself. To that end, let L = {1, 2} with
2 > 1, ⇀2 = ⇁1 =→ and ⇀1 = ⇁2 = ∅, thereby labeling leftward steps by 1
and rightward steps by 2. We immediately obtain the locally decreasing diagram

↼−
2
· −⇁

1
⊆ ∗−⇁

1
· =
↼−

2

and no other local peaks κ↼ ·⇁µ exist. Therefore, ⇀ and ⇁ commute by
Theorem 3.51. This concludes the proof because ⇀ = ⇁ =→.

Corollary 3.52 illustrates the use of the commutation version of decreasing
diagrams. In fact, it appears that the fact that strong confluence implies conflu-
ence cannot be shown by ordinary decreasing diagrams that do not distinguish
between left and right steps.

Our second extension concerns the order on labels: rather than requiring a
single order > on labels, we consider a pair (>,>) of a well-founded order >
and a quasi-order > on L that are compatible: > ·> ·> ⊆ >. In other words,

39

3 Abstract Decreasing Diagrams

(>,>) is a reduction pair on L, where we treat all elements of L as constants,
which makes monotonicity and stability trivial.

Definition 3.53. Let L be a set of labels equipped with a reduction pair (>,>).
A labeled ARS (→κ)κ∈L is extended locally decreasing if for all κ, µ ∈ L,

←−
κ
· −→
µ
⊆ ∗←→

<κ
· =−−→

6µ
· ∗←−→

<κµ
· =←−−

6κ
· ∗←→

<µ

Theorem 3.54. Let (→κ)κ∈L be an extended locally decreasing labeled ARS.
Then →L is confluent.

Proof. We define a new labeled ARS (⇒κ)κ∈L by ⇒κ =→ 6κ. Consider a local
peak t κ⇐ s ⇒µ u. Then there exist labels κ′ 6 κ and µ′ 6 µ such that
t κ′← s→µ′ u. By assumption, there is a joining conversion

t
∗←→

<κ′
· =−−→

6µ′
· ∗←−−→

<κ′µ′
· =←−−

6κ′
· ∗←→

<µ′
u

Note that each label κ′′ from <κ′ satisfies κ > κ′ > κ′′, hence κ > κ′′ by
compatibility. Furthermore, each label κ′′ from 6κ′ satisfies κ > κ′ > κ′′, hence
κ > κ′′ by transitivity. By these observations, which analogously hold for labels
from <κ′µ′, <µ′ and 6µ′, we find that

t
∗⇐⇒

<κ
· ==⇒
µ
· ∗⇐=⇒

<κµ
· =⇐=
κ
· ∗⇐⇒

<µ
u

Consequently, (⇒κ)κ∈L is locally decreasing, and hence ⇒L is confluent by
Theorem 3.21. This concludes the proof, because ⇒L =→L.

As can be seen from the proof of Theorem 3.54, any confluence proof using
extended local decreasingness can be rephrased in terms of local decreasingness.
The main benefit of extended local decreasingness is that it allows labeling
rewrite steps by functions instead of allowing a step to have several labels. We
will exploit this fact extensively in Chapter 4.

3.8 Conclusion
We have presented a well-founded monotone order on French strings that entails
the decreasing diagrams technique. Generalizing the monotone order to work on
Greek strings that include self-inverse letters, we have obtained a new result for
Church–Rosser modulo. Furthermore, we have shown that no complete criterion
for Church–Rosser modulo can be obtained by considering proof transformations
alone; at least some sort of strategy for applying proof rewrite rules must be
incorporated to obtain completeness. Using the same extension to Greek strings,
we have also demonstrated an extension to point-step decreasing diagrams
that labels both steps and objects of an ARS, and generalizes both point-
decreasingness and decreasing diagrams. Finally, we have presented commonly
used extensions to the decreasing diagrams technique to commutation, and to
reduction pairs.

40

Chapter 4

Labeling Diagrams Decreasingly

In this chapter we develop a framework for labeling the rewrite steps of a TRS
R such that all local peaks arising from rewriting by R are decreasing, thereby
establishing confluence of R. The main challenge is to obtain a finite criterion
that covers all local peaks. To this end, we take inspiration from the critical
pair lemma for establishing local confluence (Lemma 2.47). We restrict labeling
functions such that local peaks that do not arise from critical overlaps are
automatically decreasing, while we demand that decreasing diagrams exist for
critical pairs.

The contents of this chapter has appeared previously in [79].

4.1 Introduction

Confluence is an important property of rewrite systems since it ensures unique
normal forms. It is decidable in the presence of termination [44] and implied by
orthogonality [67] or restricted joinability conditions on the critical pairs [34,
76, 61, 65, 58]. Recently, there is a renewed interest in confluence research, with
a strong emphasis on automation. As one application we mention [68], where
automated confluence tools are employed for proving soundness of abstract
forms of reduction in solving the typing problem.

The decreasing diagrams technique of van Oostrom [59] is a complete method
for showing confluence of countable abstract rewrite systems. The main idea
of the approach is to show confluence by establishing local confluence under
the side condition that rewrite steps of the joining sequences must decrease
with respect to some well-founded order. For term rewrite systems however,
the main problem for automation of decreasing diagrams is that in general
infinitely many local peaks must be considered. To reduce this problem to a
finite set of local peaks one can label rewrite steps with functions that satisfy
special properties. In [62] van Oostrom presented the rule labeling that allows
to conclude confluence of linear rewrite systems by checking decreasingness of
the critical peaks (those emerging from critical overlaps). The rule labeling
has been implemented by Aoto [1] and Hirokawa and Middeldorp [32]. Already
in [62] van Oostrom presented constraints that allow to apply the rule labeling
to left-linear systems. This approach has been implemented and extended by
Aoto [1]. Our framework subsumes the above ideas.

The contributions of this chapter comprise the extraction of abstract con-
straints on a labeling such that for a (left-)linear rewrite system decreasingness

41

4 Labeling Diagrams Decreasingly

of the (parallel) critical peaks ensures confluence. We show that the rule la-
beling adheres to our constraints and present additional labeling functions.
Furthermore such labeling functions can be combined lexicographically to obtain
new labeling functions satisfying our constraints. This approach allows the
formulation of an abstract criterion that makes virtually every labeling function
for linear rewrite systems also applicable to left-linear systems. Consequently,
confluence of the TRS in Example 4.1 can be established automatically, e.g., by
the rule labeling, while current approaches based on the decreasing diagrams
technique [1, 32] as well as other confluence criteria like Knuth and Bendix’
criterion or orthogonality (and its refinements) fail.

Example 4.1. Consider the TRS R (Cops #60)1 consisting of the rules

1 : x+ (y + z)→ (x+ y) + z 6: x× y → y × x
2: (x+ y) + z → x+ (y + z) 7 : s(x) + y → x+ s(y)
3 : sq(x)→ x× x 8: x+ s(y)→ s(x) + y

4: sq(s(x))→ (x× x) + s(x+ x) 9 : x× s(y)→ x+ (x× y)
5 : x+ y → y + x 10: s(x)× y → (x× y) + y

This system is locally confluent since all its 34 critical pairs are joinable.

The remainder of this chapter is organized as follows. We present constraints
(on a labeling) such that decreasingness of the critical peaks ensures confluence
for (left-)linear rewrite systems in Section 4.2. Three of these constraints
are based on relative termination while the fourth employs persistence. We
focus on parallel rewriting in Section 4.3. The merits of these approaches are
assessed in Section 4.4 by discussing the relationship to the recent literature.
Implementation issues are addressed in Section 4.5. Section 4.6 concludes.

4.2 Labeling Plain Rewrite Steps

In this section we present constraints (on a labeling) such that decreasingness
of the critical peaks ensures confluence of linear (Section 4.2.1) and left-linear
(Section 4.2.2) TRSs. Furthermore, we show that if two labelings satisfy these
conditions then also their lexicographic combination satisfies them.

For a local peak

t = s[r1σ]p ← s[l1σ]p = s = s[l2σ]q → s[r2σ]q = u (4.1)

there are three possibilities (modulo symmetry):

(a) p ‖ q (parallel),

(b) q 6 p and p\q ∈ PosF (l2) (critical overlap),

(c) q < p and p\q /∈ PosF (l2) (variable overlap).

42

4.2 Labeling Plain Rewrite Steps

s

t u

v

(a) (parallel)

s

t u

· ·

?
(b) (critical overlap)

s

t

t1

u

v
∥

∥

(c) (variable overlap)

Figure 4.1: Three kinds of local peaks.

These cases are visualized in Figure 4.1. Figure 4.1(a) shows the shape of a local
peak where the steps take place at parallel positions. Here we have s→p,l1→r1 t
and u→p,l1→r1 v as well as s→q,l2→r2 u and t→q,l2→r2 v, i.e., the steps drawn
at opposing sides in the diagram are due to the same rules. The question mark
in Figure 4.1(b) conveys that joinability of critical overlaps may depend on
auxiliary rules. Variable overlaps (Figure 4.1(c)) can again be joined by the
rules involved in the diverging step. More precisely, if q′ is the unique position
in PosV(l2) such that qq′ 6 p, x = l2|q′ , |l2|x = m, and |r2|x = n then we have
t→m−1

l1→r1 t1, t1 →l2→r2 v, and u→n
l1→r1 v.

Labelings are used to compare rewrite steps. In the sequel we denote the set
of all rewrite steps for a TRS R by ΛR and elements from this set by capital
Greek letters Γ and ∆. Furthermore if Γ = s→p,l→r t then C[Γσ] denotes the
rewrite step C[sσ] →p′p,l→r C[tσ] for any substitution σ and context C with
C|p′ = �.

Definition 4.2. Let R be a TRS. A labeling function ` : ΛR →W is a mapping
from rewrite steps into some set W . A labeling (`,>, >) for R consists of a
labeling function `, a preorder >, and a well-founded order > such that > and >
are compatible and for all rewrite steps Γ,∆ ∈ ΛR, contexts C and substitutions
σ:

1. `(Γ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]), and

2. `(Γ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]).

All labelings we present satisfy > ⊆ >, which allows to avoid tedious case
distinctions, and we assume this property henceforth. We do so without loss
of generality, because ((> ∪>)∗, >) satisfies the conditions of Definition 4.2 if
(>, >) does.

In the sequel W , >, and > are left implicit when clear from the context and a
labeling is identified with the labeling function `. We use the terminology that
a labeling ` is monotone and stable if properties 1 and 2 of Definition 4.2 hold.
Abstract labels, i.e., labels that are unknown, are represented by lowercase Greek
letters α, β, γ, and δ. We write s →π

α t (or simply s →α t) if `(s →π t) = α.
Often we leave the labeling ` implicit and just attach labels to arrows. A local

1COnfluence ProblemS, see http://coco.nue.riec.tohoku.ac.jp/problems/.

43

http://coco.nue.riec.tohoku.ac.jp/problems/

4 Labeling Diagrams Decreasingly

s

t u

v

α

δ

β

γ

(a) (parallel)

s

t u

v

α

δ

β

γ
=

(b) (variable-linear)

s

t u

v

α

δ

β

∥

γ

(c) (variable-left-linear)

Figure 4.2: Labeled local peaks.

peak t← s→ u is called decreasing for ` if there are labels α and β such that
t α← s →β u, and →α and →β are decreasing with respect to > and >. To
employ Theorem 3.21 for TRSs, decreasingness of the ARS 〈T (F ,V), {→w}w∈W 〉
must be shown.

In this chapter we investigate conditions on a labeling such that local peaks
according to (parallel) and (variable overlap) are decreasing automatically. This
is desirable since in general there are infinitely many local peaks corresponding
to these cases (even if the underlying TRS has finitely many rules). There are
also infinitely many local peaks according to (critical overlap) in general, but
for a finite TRS they are captured by the finitely many critical overlaps. Still, it
is undecidable if they are decreasingly joinable [32].

For later reference, Figure 4.2 shows labeled local peaks for the case (parallel)
(Figure 4.2(a)) and (variable overlap) if the rule l2 → r2 in local peak (4.1) is
linear (Figure 4.2(b)) and left-linear (Figure 4.2(c)), respectively. In Figure 4.2(c)
the expression γ denotes a sequence of labels ~γ. In the subsequent analysis we
will always use the fact that the local peaks in Figure 4.2 can be closed by the
rules involved in the peak (applied at opposing sides in the diagram).

4.2.1 Linear TRSs

The next definition presents sufficient abstract conditions on a labeling such that
local peaks according to the cases (parallel) and (variable-linear) in Figure 4.2
are decreasing. We use the observation that for linear TRSs the (parallel) case
can be seen as an instance of the (variable-linear) case to shorten proofs.

Definition 4.3. Let ` be a labeling for a TRS R. We call ` an L-labeling (for
R) if for local peaks according to (parallel) and (variable-linear) we have α > γ
and β > δ in Figures 4.2(a) and 4.2(b), respectively.

The local diagram in Figure 4.3(a) visualizes the conditions on an L-labeling
more succinctly. We will use L-labelings also for left-linear TRSs, where no
conditions are required for local peaks different from (parallel) and (variable-
linear). We call the critical peaks of a TRS R Φ-decreasing if there exists
a Φ-labeling ` for R such that the critical peaks of R are decreasing for `.
In the sequel we will introduce further labelings, e.g., LL-labelings and weak

44

4.2 Labeling Plain Rewrite Steps

LL-labelings. The placeholder Φ avoids the need for repeating the definition of
decreasingness for these labelings.

The next theorem states that L-labelings may be used to show confluence of
linear TRSs.

Theorem 4.4. Let R be a linear TRS. If the critical peaks of R are L-decreasing
then R is confluent.

Proof. By assumption there is an L-labeling ` that makes the critical peaks of
R decreasing. We establish confluence of R by Theorem 3.21, i.e., show decreas-
ingness of the ARS 〈T (F ,V),→R〉 where rewrite steps are labeled according to
`. Since R is linear, local peaks have the shape (parallel), (variable-linear), or
(critical overlap). By definition of an L-labeling the former two are decreasing.
Now consider a local peak according to (critical overlap), i.e., for the local peak
(4.1) we have q 6 p and p\q ∈ PosF(l2). Let p′ = p\q. Then t|q ← s|q → u|q
must be an instance of a critical peak l2µ[r1µ]p′ ← l2[l1µ]p′ = l2µ→ r2µ which
is decreasing by assumption. By monotonicity and stability of ` we obtain
decreasingness of the local peak (4.1).

We recall the rule labeling of van Oostrom [62], parametrized by a mapping
i : R → N. Often i is left implicit. The rule labeling satisfies the constraints of
an L-labeling.

Lemma 4.5. Let R be a TRS and `irl(s→π t) = i(lπ → rπ). Then (`irl,>N, >N)
is an L-labeling for R.

Proof. First we show that (`irl,>N, >N) is a labeling. The preorder >N and the
well-founded order >N are compatible. Furthermore `irl(s →π t) = i(lπ → rπ)
which ensures monotonicity and stability of `irl. Hence (`irl,>N, >N) is a labeling.
Next we show the properties demanded in Definition 4.3. For local peaks
according to cases (parallel) and (variable-linear) we recall that the steps drawn
at opposite sides in the diagram, e.g., the steps labeled with α and γ (β and δ)
in Figures 4.2(a) and 4.2(b), are due to applications of the same rule. Hence
α = γ and β = δ in Figures 4.2(a) and 4.2(b), which shows the result.

Inspired by [32] we propose a labeling based on relative termination.

Lemma 4.6. Let R be a TRS and `rt(s→ t) = s. Then `Srt = (`rt,→∗R,→
+
S/R)

is an L-labeling for R, provided →S ⊆ →R and S/R is terminating.

Proof. Let > =→∗R and > =→+
S/R. First we show that (`rt,>, >) is a labeling.

By definition of relative rewriting, > and > are compatible and > is well-founded
by the termination assumption of S/R. Since rewriting is closed under contexts
and substitutions, `Srt is monotone and stable and hence a labeling. Next we
show the properties demanded in Definition 4.3. The assumption →S ⊆ →R
yields > ⊆ >. Combining α = s = β, γ = u, and δ = t with s→R t and s→R u
yields α = β > γ, δ for local peaks according to (parallel) and (variable-linear)
in Figures 4.2(a) and 4.2(b).

45

4 Labeling Diagrams Decreasingly

s

t u

v

α 1
β
1

6β
1 6α 1=

(a) Labeling `1.

s

t u

v

α 2

β
2

6β
2 6α 2=

(b) Labeling `2.

s

t u

v

(α 1,
α 2)

(β
1 , β

2)

6(β
1 , β

2) 6(α
1,
α 2)=

(c) Labeling `1 × `2.

Figure 4.3: Lexicographic combination of L-labelings.

The L-labeling from the previous lemma allows to establish a decrease with
respect to some steps of R. The next lemma allows to combine L-labelings. Let
`1 : ΛR →W1 and `2 : ΛR →W2. Then (`1,>1, >1)× (`2,>2, >2) is defined as
(`1×`2,>12, >12) where `1×`2 : ΛR →W1×W2 with (`1×`2)(Γ) = (`1(Γ), `2(Γ)).
Furthermore (x1, x2) >12 (y1, y2) if and only if x1 >1 y1 or x1 >1 y1 and x2 >2 y2
and (x1, x2) >12 (y1, y2) if and only if x1 >1 y1 or x1 >1 y1 and x2 >2 y2.

Lemma 4.7. Let `1 and `2 be L-labelings. Then `1 × `2 is an L-labeling.

Proof. First we show that `1 × `2 is monotone and stable whenever `1 and
`2 are labelings. Indeed if (`1 × `2)(Γ) > (`1 × `2)(∆) then `1(Γ) > `1(∆) or
`1(Γ) > `1(∆) and `2(Γ) > `2(∆), which for all contexts C and substitutions σ
implies `1(C[Γσ]) > `1(C[∆σ]) or `1(C[Γσ]) > `1(C[∆σ]) and `2(C[Γσ]) >
`2(C[∆σ]) by stability and monotonicity of `1 and `2, which is equivalent to
(`1 × `2)(C[Γσ]) > (`1 × `2)(C[∆σ]). Showing stability and monotonicity of >
is similar. Since the lexicographic product satisfies >12 ⊆ >12 if `1 and `2 are
labelings we conclude that `1 × `2 is a labeling.

Next we show that `1 × `2 satisfies the requirements of Definition 4.3. If `1
and `2 are L-labelings then the diagram of Figure 4.2(b) has the shape as in
Figure 4.3(a) and 4.3(b), respectively. It is easy to see that the lexicographic
combination is again an L-labeling (cf. Figure 4.3(c)).

4.2.2 Left-linear TRSs

For left-linear TRSs the notion of an LL-labeling is introduced. The following
definition exploits that Figure 4.2(b) is an instance of Figure 4.2(c).

Definition 4.8. A labeling ` for a TRS R is an LL-labeling (for R) if

1. in Figure 4.2(a), α > γ and β > δ,

2. in Figure 4.2(c), α > γ and β > δ for all permutations of the rewrite steps
of u→∥ v, where α > γ means α > γi for 1 6 i 6 n, and

3. in Figure 4.2(c), α > γ for some permutation of the rewrite steps of u→∥ v,
where α > γ means α > γ1 and α > γi for 2 6 i 6 n.

46

4.2 Labeling Plain Rewrite Steps

A labeling ` is a weak LL-labeling if the first two conditions are satisfied.

Considering all permutations in case 2 of Definition 4.8 is necessary to ensure
that the lexicographic combination of two weak LL-labelings again is a weak
LL-labeling (cf. Lemma 4.12). Furthermore, this condition facilitates their use
for parallel rewriting (Section 4.3).

Remark 4.9. The L-labelings presented so far (cf. Lemmata 4.5 and 4.6) are
weak LL-labelings.

The next theorem states that LL-labelings allow to show confluence of left-
linear TRSs.

Theorem 4.10. Let R be a left-linear TRS. If the critical peaks of R are
LL-decreasing then R is confluent.

Proof. By assumption the critical peaks of R are decreasing for some LL-
labeling `. We establish confluence of R by Theorem 3.21, i.e., we show de-
creasingness of the ARS 〈T (F ,V),→R〉 by labeling rewrite steps according
to `. By definition of an LL-labeling local peaks according to (parallel) and
(variable-left-linear) are decreasing. The reasoning for local peaks according to
(critical overlap) is the same as in the proof of Theorem 4.4.

The rule labeling from Lemma 4.5 is a weak LL-labeling but not an LL-labeling
since in Figure 4.2(c) we have α = γi for 1 6 i 6 n which does not satisfy α > γ
if n > 1. (See also [32, Example 9].) We return to this problem and propose
two solutions (based on persistence of confluence and on parallel steps) after
presenting simpler (weak) LL-labelings based on measuring duplicating steps,
the context above the contracted redex, and the contracted redex.

Measuring Duplicating Steps

The L-labeling from Lemma 4.6 can be adapted to an LL-labeling.

Lemma 4.11. Let R be a TRS. Then `Rd
rt is an LL-labeling, provided Rd/Rnd

is terminating.

Proof. By Theorem 2.41 the relative TRS Rd/Rnd is terminating if and only
if Rd/R is terminating. Hence (`Rd

rt ,>, >) is a labeling by Lemma 4.6. Here
> =→∗R and > =→+

Rd/R. Since `rt(s→ t) = s, we have α = β in Figures 4.2(a)
and 4.2(c). We have > ⊆ >. Hence α > γ and α > δ in Figure 4.2(a) and,
if l2 → r2 in local peak (4.1) is linear, also in Figure 4.2(c) as γ is empty or
γ = γ in this case. If l2 → r2 is not linear then it must be duplicating and hence
α > γi for 1 6 i 6 n. Because α > δ, `Rd

rt is an LL-labeling for R.

To combine the previous lemma with the rule labeling we study how different
labelings can be combined.

Lemma 4.12. Let `1 be an LL-labeling and let `2 be a weak LL-labeling. Then
`1 × `2 and `2 × `1 are LL-labelings.

47

4 Labeling Diagrams Decreasingly

Proof. By the proof of Lemma 4.7 `1 × `2 and `2 × `1 are labelings. The only
interesting case of (variable-left-linear) is when l2 → r2 in local peak (4.1) is
non-linear, i.e., γ contains more than one element. First we show that `1 × `2 is
an LL-labeling. Here labels according to `1 are suffixed with the subscript 1 and
similarly for `2. Recall Figure 4.2(c). Let us first deal with Definition 4.8(2).
We have α1 > γ1, β1 > δ1, α2 > γ2 and β2 > δ2, which yields (β1, β2) > (δ1, δ2),
(α1, α2) > (γ1i, γ2i) for all 1 6 i 6 n, by the definition of the lexicographic
product. Next we consider Definition 4.8(3). By assumption we have α1 > γ1,
and α2 > γ2, which yields the desired (α1, α2) > (γ11, γ21), (α1, α2) > (γ1i, γ2i)
for 2 6 i 6 n. In the proof for `2 × `1 the assumptions yield (β2, β1) > (δ2, δ1)
and (α2, α1) > (γ2i, γ1i) for 1 6 i 6 n for Definition 4.8(2) and additionally
(α2, α1) > (γ2i, γ1i) for 2 6 i 6 n for Definition 4.8(3).

Remark 4.13. If `1 and `2 are weak LL-labelings then so are `1×`2 and `2×`1.
Furthermore, LL-labelings are also weak LL-labelings by definition. In particular
LL-labelings can be composed lexicographically.

From Theorem 4.10 and Lemmata 4.11 and 4.12 we obtain the following
result.

Corollary 4.14. Let R be a left-linear TRS. If Rd/Rnd is terminating and all
critical peaks of R are weakly LL-decreasing then R is confluent.

Proof. By Lemma 4.11 `Rd
rt is an LL-labeling. By assumption the critical peaks

of R are decreasing for some weak LL-labeling `. By Lemma 4.12 also `Rd
rt × `

is an LL-labeling. It remains to show decreasingness of the critical peaks for
`Rd
rt × `. This is obvious since for terms s, t, u with s →R t →R u we have
`Rd
rt (s→ t) > `Rd

rt (t→ u). Hence decreasingness for ` implies decreasingness for
`Rd
rt × `. Confluence of R follows from Theorem 4.10.

We revisit the example from the introduction.

Example 4.15. Recall the TRS R from Example 4.1. The polynomial inter-
pretation

+N(x, y) = x+ y sN(x) = x+ 1 ×N(x, y) = x2 + xy + y2 sqN(x) = 3x2 + 1

shows termination of Rd/Rnd. It is easy to check that `irl with i(3) = i(6) = 2,
i(4) = i(10) = 1, and i(l → r) = 0 for all other rules l → r ∈ R establishes
decreasingness of the 34 critical peaks. We consider two selected critical peaks
(where the applied rewrite rule is indicated above the arrow in parentheses).
The peaks

t1 = x+ ((y + z) + w) (1)←−
0
x+ (y + (z + w)) (1)−→

0
(x+ y) + (z + w) = u1

t2 = s(x)× s(x) (3)←−
2

sq(s(x)) (4)−→
1

(x× x) + s(x+ x) = u2

48

4.2 Labeling Plain Rewrite Steps

can be joined decreasingly as follows:

t1
(2)−→
0
x+ (y + (z + w)) (2)←−

0
u1

t2
(10)−→

1
(x× s(x)) + s(x) (9)−→

0
(x+ (x× x)) + s(x) (2)−→

0
x+ ((x× x) + s(x))

(8)−→
0
x+ (s(x× x) + x) (2)←−

0
(x+ s(x× x)) + x

(5)←−
0

(s(x× x) + x) + x

(1)←−
0

s(x× x) + (x+ x) (8)←−
0
u2

The next example is concise and constitutes a minimal example to familiarize
the reader with Corollary 4.14.

Example 4.16. Consider the TRS R consisting of the three rules

1 : b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(x))

We have Rd = {3} and Rnd = {1, 2}. Termination of Rd/Rnd can be established
by LPO with precedence a ∼ b and f > g. The rule labeling that takes the rule
numbers as labels shows the only critical peak decreasing, i.e., f(g(x, b)) 2←
f(g(x, a))→3 g(f(x), f(x)) and f(g(x, b))→1 f(g(x, a))→3 g(f(x), f(x)). Hence
we obtain the confluence of R by Corollary 4.14.

Remark 4.17. Using `irl(·) = 0 as weak LL-labeling, Corollary 4.14 gives a
condition (termination of Rd/Rnd) such that t→= u or u→= t for all critical
pairs t←o→ u implies confluence of a left-linear TRS R. This partially answers
one question in the RTA list of open problems #13.2

Measuring the Context above the Contracted Redex

In [62, Example 20] van Oostrom suggests to count function symbols above the
contracted redex, demands that this measurement decreases for variables that
are duplicated, and combines this with the rule labeling. Consequently local
peaks according to Figure 4.2(c) are decreasing. Below we exploit this idea but
incorporate the following beneficial generalizations. First, we do not restrict
to counting function symbols (which has been adopted and extended by Aoto
in [1]) but represent the constraints as a relative termination problem. This
abstract formulation allows to strictly subsume the criteria from [62, 1] (see
Section 4.4) because more advanced techniques than counting symbols can be
applied for proving termination. Additionally, our setting also allows to weaken
these constraints significantly (cf. Lemma 4.25).

The next example motivates the need for an LL-labeling that does not require
termination of Rd/Rnd.

Example 4.18. Consider the TRS R consisting of the six rules

f(h(x))→ h(g(f(x), x, f(h(a)))) f(x)→ a a→ b
h(x)→ c b→ ⊥ c→ ⊥

2http://www.cs.tau.ac.il/˜nachum/rtaloop/problems/13.html

49

http://www.cs.tau.ac.il/~nachum/rtaloop/problems/13.html

4 Labeling Diagrams Decreasingly

Since the duplicating rule admits an infinite sequence, Corollary 4.14 cannot
succeed.

In the sequel we let G be the signature consisting of unary function symbols
~f for every n-ary function symbol f ∈ F .

Definition 4.19. Let x ∈ V. We define a partial mapping ? from terms in the
original signature and positions T (F ,V)× N∗+ to terms in T (G,V) as follows:

?(f(~t), p) =
{
fi(?(ti, q)) if p = iq

x if p = ε

For a TRS R we abbreviate R?>/R?= by ?(R). Here, for & ∈ {>,=}, R?& consists
of all rules ?(l, p)→ ?(r, q) such that l→ r ∈ R, l|p = r|q = y ∈ V , and |r|y & 1.

The next example illustrates the transformation ?(·).

Example 4.20. Consider the TRS R from Example 4.18. The relative TRS
?(R) = R?>/R?= consists of the TRS R?> with rules

f1(h1(x))→ h1(g1(f1(x))) f1(h1(x))→ h1(g2(x))

and the TRS R?= which is empty.

Due to the next lemma a termination proof of ?(R) yields an LL-labeling.

Lemma 4.21. Let R be a TRS and `?(s→π t) = ?(s, pπ). Then (`?,>, >) is
an LL-labeling, provided (>, >) is a monotone reduction pair, R?> ⊆ >, and
R?> ∪R?= ⊆ >.

Proof. Because (>, >) is a monotone reduction pair, (`?,>, >) is a labeling
for R. Note that monotonicity and stability are with respect to the signature G.
To see that the constraints of Definition 4.8 are satisfied we argue as follows.
For Figure 4.2(a) we have α = γ and β = δ because the steps drawn at opposing
sides in the diagram take place at the same positions and the function symbols
above these positions stay the same. Next we consider Figure 4.2(b), i.e., the
right-linear case. Recall the local peak (4.1). Again we have β = δ because
q < p. To see α > γ consider the step s →q,l2→r2 u and let q′ be the unique
position in PosV(l2) such that qq′r = p with x = l2|q′ for some position r. If
|r2|x = 0 then there is no step and we are done. Otherwise let q′′ be the position
in r2 with |r2|q′′ = x. By construction R?= contains the rule ?(l2, q′)→ ?(r2, q

′′).
Combining the assumption R?= ⊆ > with monotonicity and stability of `?
yields ?(s, p) > ?(u, qq′′r), i.e., α > γ. Next we consider Figure 4.2(c) for the
duplicating case. Recall the local peak (4.1). Again we have β = δ because q < p.
To see α > γ (for any permutation of the steps) consider the step s→q,l2→r2 u
and let q′ be the unique position in PosV(l2) such that qq′r = p for some position
r. Let x = l2|q′ and Q = {~q′} with r2|q′i = x. Then P = {qq′ir | q′i ∈ Q} is the set
of descendants of p. By construction R?> contains all rules ?(l2, q′)→ ?(r2, q

′
i)

for 1 6 i 6 n. Combining the assumption R?> ⊆ > with monotonicity and
stability of `? yields ?(s, p) > ?(u, p′i) for p′i ∈ P . Since u→∥ P v we obtain α > γi
for 1 6 i 6 n and hence the desired α > γ.

50

4.2 Labeling Plain Rewrite Steps

Remark 4.22. It is also possible to formulate Lemma 4.21 as a relative ter-
mination criterion without the use of a monotone reduction pair. However,
the monotone reduction pair may admit more labels to be comparable (in the
critical diagrams) because of the inclusions R?> ⊆ > and R?> ∪R?= ⊆ >.

From Lemma 4.21 we obtain the following corollary.

Corollary 4.23. Let R be a left-linear TRS and let ` be a weak LL-labeling.
Let `?` denote `× `? or `?× `. Let (>, >) be a monotone reduction pair showing
termination of ?(R). If the critical peaks of R are decreasing for `?` then R is
confluent.

Proof. The function `? is an LL-labeling by Lemma 4.21. Lemma 4.12 yields
that `?` is an LL-labeling. By assumption the critical peaks are decreasing for
`?` and hence Theorem 4.10 yields the confluence of R.

The next example illustrates the use of Corollary 4.23.

Example 4.24. We show confluence of the TRS R from Example 4.18. Ter-
mination of ?(R) (cf. Example 4.20) is easily shown, e.g., the polynomial
interpretation

f1N(x) = 2x g1N(x) = g2N(x) = x h1N(x) = x+ 1

orients both rules in R?> strictly. To show decreasingness of the three crit-
ical peaks (two of which are symmetric) we use the labeling `? × `irl with
i(f(h(x))→ h(g(f(x), x, f(h(a))))) = 1 and all other rules receive label 0. For
the moment we label a step s →π t with the interpretation of ?(s, pπ). E.g.,
a step f(h(b))→ f(h(⊥)) is labeled 2x+ 2 since ?(f(h(b)), 11) = f1(h1(x)) and
[f1(h1(x))]N = 2x+2. The critical peak h(g(f(x), x, f(h(a)))) x,1← f(h(x))→x,0 a
is closed decreasingly by

h(g(f(x), x, f(h(a)))) −−→
x,0

c −−→
x,0
⊥ ←−−

x,0
b←−−

x,0
a

and the critical peak h(g(f(x), x, f(h(a)))) x,1← f(h(x)) →2x,0 f(c) is closed
decreasingly by

h(g(f(x), x, f(h(a)))) −−→
x,0

c −−→
x,0
⊥ ←−−

x,0
b←−−

x,0
a←−−

x,0
f(c)

which allows to prove confluence of R by Corollary 4.23.

By definition of α > γ (cf. Definition 4.8) we observe that the definition of
?(R) can be relaxed. If l2 → r2 with l2|q′ = x ∈ V and {~q′} are the positions of
the variable x in r2 then it suffices if n−1 instances of ?(l2, q′)→ ?(r2, q

′
i) are put

in R?> while one ?(l2, q′)→ ?(r2, q
′
j) can be put in R?= (since the steps labeled γ

in Figure 4.2(c) are at parallel positions we can choose the first closing step such
that α > γ1). This improved version of ?(R) is denoted by ??(R) = R??> /R??= .
We obtain the following variant of Lemma 4.21.

Lemma 4.25. Let R be a TRS. Then (`?,>, >) is an LL-labeling, provided
(>, >) is a monotone reduction pair, R??> ⊆ >, and R??> ∪R??= ⊆ >.

51

4 Labeling Diagrams Decreasingly

Obviously any ??(R) inherits termination from ?(R). The next example shows
that the reverse statement does not hold. In Section 4.5 we show how the
intrinsic indeterminacy of ??(R) is eliminated in the implementation.

Example 4.26. Consider the TRS R from Example 4.1. The TRS R?> consists
of the rules

sq1(x)→ ×1(x) sq1(s1(x))→ +1(×1(x)) ×1(x)→ +1(x)
sq1(x)→ ×2(x) sq1(s1(x))→ +1(×2(x)) † : ×1(x)→ +2(×1(x))

sq1(s1(x))→ +2(s1(+1(x))) † : ×2(y)→ +1(×2(y))
sq1(s1(x))→ +2(s1(+2(x))) ×2(y)→ +2(y)

while R?= consists of the rules

+1(x)→ +1(+1(x)) +1(x)→ +2(x) +1(x)→ +1(s1(x))
+2(+1(y))→ +1(+2(y)) +2(y)→ +1(y) +2(s1(y))→ +2(y)
+2(+2(z))→ +2(z) ×1(x)→ ×2(x) ×2(s1(y))→ +2(×2(y))
+1(+1(x))→ +1(x) ×2(y)→ ×1(y) ×1(s1(x))→ +1(×1(x))
+1(+2(y))→ +2(+1(y)) +1(s1(x))→ +1(x)

+2(z)→ +2(+2(z)) +2(y)→ +2(s1(y))

Let R?† denote the rules in R?> marked with †. Termination of ?(R) cannot be
established (because R?† is non-terminating) but we stress that moving these
rules into R?= yields a valid ??(R) which can be proved terminating by the
polynomial interpretation with

sq1N(x) = x+ 2 ×1N(x) = ×2N(x) = x+ 1

that interprets the remaining function symbols by the identity function. We
remark that Corollary 4.23 with the labeling from Lemma 4.25 establishes
confluence of R. Since all reductions in the 34 joining sequences have only +
above the redex and +1N(x) = +2N(x) = x, the `? labeling attaches x to any of
these steps. The rule labeling that assigns i(3) = i(6) = 2, i(4) = i(10) = 1, and
0 to all other rules shows the 34 critical peaks decreasing.

Measuring the Contracted Redex

Instead of the labeling `?, which is based on the context above the contracted
redex, one can also use the contracted redex itself for labeling.

Lemma 4.27. Let R be a TRS and `4(s →π t) = s|pπ . Then (`4,>, >) is a
weak LL-labeling, provided (>, >) is a monotone reduction pair with R ⊆ >.

Proof. Because (>, >) is a monotone reduction pair, (`4,>, >) is a labeling
for R. To see that the constraints of Definition 4.8 are satisfied we argue as
follows. For Figure 4.2(a) we have α = γ and β = δ. For Figure 4.2(c) we
have α = γ1 = · · · = γn (since the same redex is contracted) and β > δ by the
assumption R ⊆ > and monotonicity and stability of >.

52

4.2 Labeling Plain Rewrite Steps

The following definition collects the constraints, such that variable overlaps
can be made decreasing.

Definition 4.28. For a TRS R let R4 = {l→ x | l→ r ∈ R and |r|x > 1}.

Due to the next result a termination proof ofR4/R enables a weak LL-labeling
to establish confluence.

Corollary 4.29. Let R be a left-linear TRS and let ` be a weak LL-labeling.
Let (>, >) be a simple monotone reduction pair showing termination of R4/R.
If the critical peaks of R are decreasing for `4 × ` then R is confluent.

Proof. Note that `4 × ` is a weak LL-labeling (cf. Remark 4.13), which shows
the peaks in Figure 4.2(a) and Figure 4.2(b) decreasing. For the duplicating
case of Figure 4.2(c) we inspect the labels with regard to `4. Consider the local
peak (4.1). Clearly, β = l2σ and α = l1σ. Since γi = α, we want to establish
β > α. To this end let q′ ∈ PosV(l2) such that qq′r = p and x = l2|q′ . Note
that l2 → x ∈ R4 because we are in the duplicating case. Hence the relative
termination assumption gives l2 > x, and l2σ > xσ is obtained by stability. Now
as xσ|r = l1σ the desired β > α follows from simplicity of the reduction pair
since l2σ > xσ > l1σ. Combining `4 lexicographically with a weak LL-labeling
` into `4 × ` maintains decreasingness.

Remark 4.30. Note that the labeling `4 × ` from Corollary 4.29 is not an
LL-labeling. The point is that there are multiple ways of ensuring decreasingness
of Figure 4.2(c). For LL-labelings, we use α > γ, while in Corollary 4.29, β > γi
for 1 6 i 6 n does the job. This is also the reason why `× `4 cannot be used in
Corollary 4.29. Consider the TRS with the rules 1 : f(x)→ g(x, x) and 2 : a→ b.
Let `rl be the rule labeling attaching the rule numbers as labels. Then the
variable overlap is not decreasing for `rl × `4.

We demonstrate Corollary 4.29 on the TRS from Example 4.16.

Example 4.31. Consider the TRS from Example 4.16. The polynomial inter-
pretation

gN(x, y) = 2x+ 2y + 1 aN = bN = 0 fN(x) = x2

establishes relative termination of {f(g(x, a)) → x}/R and shows the critical
peak decreasing when labeling steps with the pair obtained by the interpretation
of the redex and the rule labeling, i.e., t = f(g(x, b)) 0,2← f(g(x, a))→(2x+1)2,3
g(f(x), f(x)) = u for the peak and t→0,1 f(g(x, a))→(2x+1)2,3 u for the join.

Exploiting Persistence

In this section we show how to exploit persistence of confluence [4, 19] to
enhance the applicability of L-labelings to certain duplicating left-linear TRSs.
Compared to the previous labelings (based on duplicating steps, or context or
redex of the rewrite steps), where variable overlaps were closed decreasingly by
a relative termination criterion, here persistence arguments are employed to
avoid reasoning about variable overlaps at duplicating variable positions at all.
To this end we recall order-sorted TRSs.

53

4 Labeling Diagrams Decreasingly

Definition 4.32. Let S be a set of sorts equipped with a partial order 6.
A signature F and a set of variables V are S-sorted if every n-ary function
symbol f ∈ F is equipped with a sort declaration α1 × · · · × αn → α where
~α, α ∈ S and every variable x ∈ V has exactly one sort α ∈ S. We write
S(f) = α, S(f, i) = αi for 1 6 i 6 n, and S(x) = α, respectively. We let
Vα = {x ∈ V | S(x) = α} and require that Vα is infinite for all α ∈ S. The
set of S-sorted terms, TS(F ,V), is the union of the sets Tα(F ,V) for α ∈ S
that are inductively defined as follows: Vα ⊆ Tα(F ,V) and f(~t) ∈ Tα(F ,V)
whenever f ∈ F has sort declaration α1 × · · · × αn → α and ti ∈ T6αi(F ,V) for
all 1 6 i 6 n. Here T6α(F ,V) is the union of all Tβ(F ,V) for β 6 α.

The notion of S-sorted terms properly extends many-sorted terms. Indeed, if
we let 6 be the identity relation then T6α(F ,V) = Tα(F ,V), which means that
the i-th argument of f in an S-sorted term must have sort S(f, i).

Definition 4.33. We extend S(·) and S(·, ·) to S-sorted terms t and non-root
positions of t. If t = f(~t) then S(t) = S(f), S(t, i) = S(f, i), and S(t, ip) =
S(ti, p) for p 6= ε. If t = x ∈ V then S(t) = S(x).

Example 4.34. Let S = {0, 1, 2} with 0 6 1 and consider the sort declarations
f : 1 → 2 and x : 0. Then t = f(x) ∈ TS({f}, {x}), S(t) = 2, S(t, 1) = 1, and
S(t|1) = 0 6 1.

One easily observes that S(t, p) defines the maximal sort induced by the context
t[�]p: a term t[u]p is S-sorted if and only if u ∈ T6S(t,p)(F ,V). Consequently,
we have S(t|p) 6 S(t, p) for all non-root positions p of t.

We are particularly interested in the case where rewriting restricted to S-
sorted terms coincides with ordinary rewriting with initial terms restricted to
S-sorted ones. This property is captured by S-compatible TRSs.

Definition 4.35. A TRS R is S-compatible if for every rule l → r ∈ R there
exists a sort α ∈ S such that l ∈ Tα(F ,V) and r ∈ T6α(F ,V), and S(l, p) = S(l|p)
for all p ∈ PosV(l).

The following lemma is well-known (e.g. [77]) and easy to prove.

Lemma 4.36. If R is S-compatible then TS(F ,V) and T6α(F ,V) for every
α ∈ S are closed under rewriting by R.

The following result is a generalization of persistency of modularity [3] to
ordered sorts, and will be proved in Chapter 5 (cf. Theorem 5.65).

Theorem 4.37. An S-compatible left-linear TRS R is confluent on T (F ,V) if
and only if it is confluent on TS(F ,V).

Example 4.38. Consider the duplicating TRS R with rules

1 : f(a)→ f(b) 2 : f(x)→ g(f(x), f(x))

54

4.2 Labeling Plain Rewrite Steps

Recall that L-labelings (in particular, rule labelings) that are not LL-labelings
are not applicable to non-linear TRSs because the variable overlap diagram (Fig-
ure 4.2(c)) is not decreasing. Let S = {0, 1} with the following sort declarations:

x : 0 a : 0 b : 0 f : 0→ 1 g : 1× 1→ 1

The TRS R is S-compatible and hence we may restrict rewriting to S-sorted
terms without affecting confluence by Theorem 4.37. This has the beneficial
effect that variable overlaps are ruled out. To see how, note that no sub-
terms of sort 1 can appear inside terms of sort 0. Consider the left-hand
side f(x) of R. We have S(f(x), 1) = 0, so that any term substituted for x
must have sort 0. Further note that both left-hand sides have sort 1. Con-
sequently, no rule application may be nested below f(x) → g(f(x), f(x)) and
hence variable overlaps are ruled out. Therefore, we may use L-labelings
to show confluence of R even though R is not linear, and in fact the rule
labeling which takes the rule numbers as labels allows us to join the sole (mod-
ulo symmetry) critical peak t = f(b) 1← f(a)→2 g(f(a), f(a)) = u decreasingly:
t→2 g(f(b), f(b)) 1← g(f(b), f(a)) 1← u.

Formally, we define TEα(F ,V) = {t | t E t′ for some t′ ∈ T6α(F ,V)}, to cap-
ture which terms may occur as subterms of terms of sort α or below.

Theorem 4.39. Let R be a left-linear S-compatible TRS such that the variable
l|p occurs at most once in r whenever l → r ∈ R and l′ → r′ ∈ R with
l′ ∈ TES(l,p)(F ,V) for some p ∈ PosV(l). Then R is confluent if all its critical
peaks are L-decreasing.

Proof. By Theorem 4.37 we may restrict rewriting to S-sorted terms. The proof
follows that of Theorem 4.4, except in the analysis of local peaks, where right-
linearity of R is used, which is not among our assumptions. Instead, we argue as
follows: Since R is left-linear, any local peak has the shape (parallel), (critical
overlap), or (variable-left-linear). In the latter case, the step s→q,l′→r′ t is nested
below s→p,l→r u, and it is easy to see that this implies l′ ∈ TES(l,q′)(F ,V) for
some variable position q′ of l such that pq′ 6 q. Consequently the variable
x = l|q′ occurs at most once in r by assumption, and the parallel step (which
contains one rewrite step for every occurrence of x in r) is empty or a single
step, resulting in a decreasing diagram.

As a refinement of Theorem 4.39, instead of ruling out duplicating (variable-
left-linear) overlaps completely, we can also add additional constraints on the
labeling for the remaining variable overlaps.

Definition 4.40. Let ` be a weak LL-labeling for an S-compatible TRS R. We
call ` persistent if whenever rules l → r, l′ → r′ ∈ R satisfy l′ ∈ TES(l,p)(F ,V)
for some p ∈ PosV(l), either |r|l|p 6 1 or β > γ in Figure 4.2 for all resulting
variable overlaps with l′ → r′ below l→ r. We call R persistent LL-decreasing
if there is a persistent, weak LL-labeling ` such that all critical peaks of R are
decreasing with respect to `.

55

4 Labeling Diagrams Decreasingly

Theorem 4.41. Let R be a left-linear TRS. If the critical peaks of R are
persistent LL-decreasing then R is confluent.

Proof. The proof follows along the lines of the proof of Theorem 4.39. In the case
of a duplicating variable-left-linear overlap, the additional constraints ensure
that the resulting diagram is decreasing.

Example 4.42. Suppose we extend the TRS from Example 4.38 with the rule
a→ b, using the same sorts:

1 : f(x)→ g(f(x), f(x)) 2 : f(a)→ f(b) 3 : a→ b

Theorem 4.39 is no longer applicable, because rule 3 may be nested below rule
1, which is duplicating. However, by the preceding remark, any rule labeling
with `irl(1) > `irl(3) will make the corresponding variable overlaps decreasing.

Remark 4.43. Note that Theorem 4.41 does not subsume Theorem 4.39,
because the former demands a weak LL-labeling whereas the latter requires
only an L-labeling. If we were to restrict the L-labeling and weak LL-labeling
conditions to those variable overlaps that are consistent with the sort declarations,
then Theorem 4.41 would subsume Theorem 4.39. We chose not to do so because
all our labelings are weak LL-labelings.

The following example shows that considering order-sorted instead of many-
sorted signatures is beneficial.

Example 4.44. Consider the duplicating TRS R given by the rules

1 : h(a, a)→ f(a) 2 : f(a)→ a 3: f(x)→ h(x, x)

Furthermore, let S = {0, 1} with 1 > 0 and take the sort declarations

h : 0× 0→ 1 f : 0→ 1 a : 0

Considering only S-sorted terms, no rule can be nested below the duplicating
rule f(x)→ h(x, x). Basically, there is one critical peak, h(a, a) 3← f(a)→2 a,
which is decreasingly joinable as h(a, a)→1 f(a)→2 a by the rule labeling (using
rule numbers as labels), and confluence follows by Theorem 4.39. Due to the
rule f(a) → a, any many-sorted sort declaration for R must assign the same
sorts to a and the argument and result types of f. Therefore, f(x) → h(x, x)
may be nested below itself, and Theorems 4.39 and 4.41 would fail in connection
with the rule labeling.

4.3 Labeling Parallel Rewrite Steps
In this section, rather than labeling individual rewrite steps, we will label parallel
rewrite steps instead. This is inspired by the parallel moves lemma, which says
that any peak t←∥ s→∥ u of two non-overlapping parallel rewrite steps can be
joined in a diamond as t →∥ · ←∥ u, and diamonds are comparatively easy to
label decreasingly, as we saw in Section 4.2.1.

56

4.3 Labeling Parallel Rewrite Steps

The main problem is to label parallel steps such that variable overlaps are
decreasing. The multiset of the single steps’ labels does not work since {α} 6>mul
{α, . . . , α}. Hence we use sets to label parallel steps which we denote by capital
Greek letters. Sets of labels are ordered by the Hoare preorder of (>, >), which
we denote by (>H , >H) and is defined by

Γ >H ∆ ⇐⇒ Γ 6= ∅ ∧ ∀β ∈ ∆ ∃α ∈ Γ (α > β)
Γ >H ∆ ⇐⇒ ∀β ∈ ∆ ∃α ∈ Γ (α > β)

For readability we drop the subscript H when attaching labels to rewrite steps
as in →∥ <Γ.

Example 4.45. Let > denote the natural order on N. Then {1} >H {0, 1} and
{1} >H {1, 1, 1} = {1} but {5, 4} 6>H {5, 3}.

The following lemma states obvious properties of Hoare preorders which we
implicitly use in the sequel.

Lemma 4.46. Let (>H , >H) be a Hoare preorder.

1. If (>, >) is a monotone reduction pair then (>H , >H) is a monotone
reduction pair.

2. If Γ ⊇ Γ′ then Γ >H Γ′.

3. If Γ >H Γ′ and ∆ >H ∆′ then Γ ∪∆ >H Γ′ ∪∆′.

4. If Γ >H Γ′ and ∆ >H ∆′ then Γ ∪∆ >H Γ′ ∪∆′.

As we have seen in Section 4.2.2, constructing LL-labelings is quite a bit
harder than constructing L-labelings, because of the duplicated steps in the
(variable-left-linear) case (Figure 4.2(c)). Here, we use weak LL-labelings for
labeling single and parallel rewrite steps. Throughout this section we assume a
given left-linear TRS R, and a weak LL-labeling ` with corresponding labeling
function for parallel steps `‖, as introduced in the following definition.

Definition 4.47. We lift a weak LL-labeling ` to parallel steps t →∥ P t′ as
follows. For each π ∈ P , we have a rewrite step t→π tπ. We label t→∥ P t′ by
`‖(t→∥ P t′) = {`(t→π tπ) | π ∈ P}.

So a parallel rewrite step is labeled by the set of the labels of the single steps
making up the parallel step. We indicate labels along with the step, writing
t→∥ PΓ t′.

The next example shows that the labels change when decomposing a parallel
step into a sequence of single steps, i.e., the label of the parallel step may be
different from the union of labels of the single steps. However, the proof of
Lemma 4.49 reveals that for weak LL-labelings the labels never increase when
sequencing a parallel step.

Example 4.48. Consider the rule a → b and the extension of the source
labeling `(s → t) = s to parallel steps. Then f(a, a) →∥ {f(a,a)} f(b, b) but
f(a, a) →∥ {f(a,a)} f(b, a) →∥ {f(b,a)} f(b, b). Clearly {f(a, a)} 6= {f(a, a), f(b, a)}.

57

4 Labeling Diagrams Decreasingly

s

sπ

sP
′

t1 t2
tπ2

tP
′

2
u

∥
Q

∆

∥P
Γ

∥

P
′

6Γ

π

6Γ

∥

P
′

6Γ
∥
Q

6∆

∥P

6Γ

π

6Γ
∥

P
′

6Γ

∥

∥
Q

6∆

∥

Figure 4.4: Weak LL-labeling applied to parallel steps.

This effect is intrinsic to labelings that take the context of the rewrite step
into account. On the other hand, the rule labeling gives f(a, a) →∥ {1} f(b, b)
and f(a, a) →∥ {1} f(b, a) →∥ {1} f(b, b) with {1} = {1, 1}, because the labels are
independent of the context.

The following lemma is the key to show that even for parallel rewriting
overlaps due to Figure 4.2(a) (parallel) and Figure 4.2(c) (variable-left-linear)
are decreasing.

Lemma 4.49.

1. Let t1 P
Γ←∥ s →∥ Q∆ t2 with P ‖ Q. Then there is a term u such that

s→∥ P∪QΓ∪∆ u and t1 →∥ Q∆′ u P
Γ′←∥ t2, where Γ >H Γ′ and ∆ >H ∆′.

2. Let s →∥ s′ and σ(x) →∥ σ′(x) for all x ∈ V, so that there are parallel
rewrite steps sσ′ PΓ←∥ sσ →∥ Q∆ s′σ. Then sσ′ →∥ Q∆′ s

′σ′ Γ′←∥ s′σ and
Γ >H Γ′, ∆ >H ∆′. Furthermore, if σ(x) = σ′(x) for all x ∈ Var(s′|Q)
then sσ →∥ Σ s′σ′ for some Σ ⊆ Γ ∪∆.

Proof. 1. First note that since P ‖ Q, a term u with s→∥ P∪Q u exists. We have

`‖(s P∪Q−−−→∥ u) = {`(s π−→ sπ) | π ∈ P ∪Q}
= {`(s π−→ sπ) | π ∈ P} ∪ {`(s π−→ sπ) | π ∈ Q}

= `‖(s P−→∥ t1) ∪ `‖(s Q−→∥ t2) = Γ ∪∆

by definition. To establish t1 →∥ Q∆′ u
P
Γ′←∥ t2, we use induction on |P |+ |Q|. We

consider several base cases. If |P | = 0 or |Q| = 0 then the result follows by
definition of parallel rewriting. If |P | = |Q| = 1 the result follows from the fact
that ` is a weak LL-labeling, Definition 4.8(1) (Figure 4.2(a)). For the induction
step, assume without loss of generality that |P | > 1 and let P = {π}] P ′. The
proof is illustrated in Figure 4.4. The parallel P -step can be decomposed into a

58

4.3 Labeling Parallel Rewrite Steps

sσ
sπσ

sQ
′
σ

s′σsσ′

sπσ′

sQ
′
σ′

s′σ′

∥P

Γ

∥
Q
′6∆

π

6∆

∥
Q
′6∆

∥

6Γ

π

6∆

∥
Q
′6∆

∥

∥

6Γ

∥

(a) Split base step.

sσ
sσπ

sσP
′

sσ′ s′σ
s′σπ

s′σP
′

s′σ′

Q

∆

∥

P
′

6Γ

π

6Γ

∥

P
′

6Γ

Q

6∆

6Γ

∥

6Γ∥

Q

6∆

(b) Split substitution.

Figure 4.5: Weak LL-labeling applied to nested parallel steps.

π-step and a P ′-step. Since {π}, P ′ ⊆ P , the labels are less than or equal to Γ.
Then we apply the induction hypothesis to the peaks

i. sP ′ P ′6Γ←∥ s→∥
{π}

6Γ sπ yielding sπ →∥ P ′6Γ t1,

ii. sπ {π}6Γ←∥ s→∥
Q
∆ t2 yielding t2 →∥ {π}6Γ tπ2 and sπ →∥ Q

6∆ tπ2 ,

iii. sP ′ P ′6Γ←∥ s→∥
Q
∆ t2 yielding t2 →∥ P

′

6Γ t
P ′
2 , which we merge with t2 →∥ {π}6Γ tπ2 to

obtain t2 →∥ P6Γ u, noting that the union of two sets from 6Γ is again in

6Γ, and finally

iv. t1 P ′

6Γ←∥ s
π →∥ Q

6∆ tπ2 yielding t1 →∥ Q6∆ u.

2. The existence of parallel rewrite steps sσ′ →∥ s′σ′ and s′σ →∥ s′σ′ follows
easily from the definition of parallel steps. We establish Γ >H Γ′ and ∆ >H ∆′
by induction on |Q|. The reasoning for the induction step (|Q| > 1) is very
similar to the induction step in item 1, cf. Figure 4.5(a): Taking Q = {π}]Q′,
we split sσ →∥ Q∆ s′σ into sσ →∥ {π}

6∆ sπσ and sσ →∥ Q
′

6∆ sQ
′
σ. We apply the induction

hypothesis to the peaks

i. sσ′ PΓ←∥ sσ →∥
{π}

6∆ sπσ yielding sσ′ →∥ {π}

6∆ sπσ′ and sπσ →∥ 6Γ s
πσ′,

ii. sσ′ PΓ←∥ sσ →∥
Q′

6∆ sQ
′
σ yielding sσ′ →∥ Q

′

6∆ sQ
′
σ′, which can be merged with

sσ′ →∥ {π}

6∆ sπσ′ to obtain sσ′ →∥ Q

6∆ s′σ′, and finally

iii. sπσ′ 6Γ←∥ sπσ →∥ Q
′

6∆ s′σ yielding s′σ →∥ 6Γ s′σ′, where sπσ →∥ Q
′

6∆ s′σ is
obtained from part 1 of this lemma applied to sQ′σ Q′

6∆←∥ sσ →∥
{π}

6∆ sπσ.

This concludes the induction step. If |Q| = 0, there is nothing to show, so
only the base case |Q| = 1 remains. Note that because R is left-linear, we may
assume without loss of generality that s is linear. Therefore, every rewrite step
of sσ →∥ P sσ′ can be performed by modifying σ. For P ′ ⊆ P , we write σP ′ for
the substitution τ that satisfies sσ →∥ P ′ sτ , and proceed by induction on |P |. For

59

4 Labeling Diagrams Decreasingly

the induction step (|P | > 1), the argument is again almost the same as before,
cf. Figure 4.5(b). Let P = {π}] P ′. We split sσ →∥ PΓ sσ′ into sσ →∥ {π}6Γ sσπ and
sσ →∥ P ′6Γ sσ

P ′ . Next we apply the induction hypothesis to the peaks

i. sσπ {π}6Γ←∥ sσ →
Q
∆ s′σ yielding sσπ →Q

6∆ s′σπ and s′σ →∥ 6Γ s
′σπ,

ii. sσP ′ P ′6Γ←∥ sσ →
Q
∆ s′σ yielding s′σ →∥ 6Γ s

′σP
′ , which can be merged with

s′σ →∥ 6Γ s
′σπ to obtain s′σ →∥ 6Γ s

′σ′, and finally

iii. sσ′ P ′

6Γ←∥ sσπ →Q
6∆ s′σπ yielding sσ′ →Q

6∆ s′σ′, where sσπ →∥ P ′6Γ sσ is
obtained from part 1 of this lemma applied to sσπ {π}6Γ←∥ sσ →∥

P ′

6Γ sσ
P ′ .

This concludes the induction step. If |P | = 0 then there is nothing to show.
Finally, if |P | = |Q| = 1, then we are left with a parallel or variable overlap,
and we conclude by Definition 4.8(1) or 4.8(2), respectively. This concludes
the proof that Γ >H Γ′ and ∆ >H ∆′. Now if σ(x) = σ′(x) for all x ∈
Var(s′|Q), then s′σ →∥ P ′ s′σ′ satisfies P ′ ‖ Q. Performing the same rewrite
steps on sσ, we obtain a parallel rewrite step sσ →∥ P ′ s′′ with P ′ ⊆ P and
therefore Γ′′ = `‖(sσ →∥ P ′ s′′) ⊆ `‖(sσ →∥ P sσ′) = Γ. Finally, using the first part
of this lemma, we can combine the two parallel steps from sσ into a single one,
sσ →∥ P

′∪Q
Γ′′∪∆ s′σ′ with Σ = Γ′′ ∪∆ ⊆ Γ ∪∆ as claimed.

Only Definition 4.8(1) was used in the proof of Lemma 4.49(1). This fact can
be exploited for an alternative characterization of weak LL-labelings.

Corollary 4.50. Let ` be a labeling. Then ` is a weak LL-labeling if and only if

1. in Figure 4.2(a), α > γ and β > δ, and

2. in Figure 4.2(c), β > δ and {α} >H `‖(u→∥ v).

Proof. Assume that ` is a weak LL-labeling. The first condition of this lemma
is identical to Definition 4.8(1). For the second condition, β > δ follows from
Definition 4.8(2). To establish {α} >H `‖(u →∥ P v), we need to show that
α > `(u→∥ π uπ) for all π ∈ P . For each π, we can arrange that `(u→∥ π uπ) = γ1
by choosing u →∥ π uπ as the first step in the permutation of u →∥ v, and then
α > γ1 follows from Definition 4.8(2), establishing the claim.

Next assume that ` satisfies the conditions of this lemma. Then the condition
of Definition 4.8(1) holds. To show the conditions of Definition 4.8(2), note
that β > δ holds by assumption. Consider the parallel rewrite step u→∥ P v and
a permutation ~π of P . We can decompose u →∥ P v into u = u0 →π1

γ1 u1 →π2
γ2

· · · →πn
γn un = v. By Lemma 4.49(1) applied to the peaks

· {πi}←−−−

6{α}
∥ u

{π1,...,πi−1}−−−−−−−→

6{α}
∥ ui−1

we obtain ui−1 →∥ {πi}6{α} ui, i.e., {α} >H {γi}, which is equivalent to α > γi.
Hence α > γ.

60

4.3 Labeling Parallel Rewrite Steps

The following lemma is used to reduce the number of parallel peaks that have
to be considered in the proof of Theorem 4.54.

Lemma 4.51. Let s→∥ ∗

<Γ · →∥ 6∆ · →∥
∗

<Γ∆ t and s→∥ ∗

<Γ · →∥ 6∆ · →∥
∗

<Γ∆ u be two
rewrite sequences such that all rewrite steps in the sequence to t are at or below
a position p and the rewrite steps in the sequence to u are parallel to p. Then
the two rewrite sequences can be merged into s→∥ ∗

<Γ · →∥ 6∆ · →∥
∗

<Γ∆ u[t|p]p.

Proof. Let the two sequences be s→∥ ∗

<Γ t1 →∥ 6∆ t2 →∥ ∗ <Γ∆ t and s→∥ ∗

<Γ u1 →∥ 6∆
u2 →∥ ∗ <Γ∆ u. Using Lemma 4.49(1) repeatedly, we can derive a sequence

s
∗−→

<Γ
∥ u1[t1|p]p −−→

6∆
∥ u2[t2|p]p

∗−−−→

<Γ∆
∥ u[t|p]p

which establishes the claim.

In order to perform a critical pair analysis for parallel rewrite steps, we need
parallel critical pairs [74, 30].

Definition 4.52. Let l→ r be a rule in a TRS R and P be a non-empty set of
pairwise parallel redex patterns such that every π ∈ P critically overlaps with l.
By choosing variants of rules from R appropriately, we may assume that the sets
Var(lπ) for π ∈ P and Var(l) are pairwise disjoint. Assume that the unification
problem {l|pπ ≈ lπ | π ∈ P} has a solution and let σ be a most general unifier.
Then there is a unique term lP such that lσ →∥ P lP . We call lP ←∥o→ rσ a
parallel critical pair, and lP ←∥ lσ → rσ a parallel critical peak.

Note that every standard critical pair also is a parallel critical pair. The
following lemma states how critical pair analysis for a peak consisting of a
parallel and a root rewrite step is done. It is a straightforward extension of [30,
Lemma 4.7].

Lemma 4.53. Let R be a left-linear TRS and t P←∥ s →π u with pπ = ε.
Then either P ⊥ π or there are substitutions σ →∥ σ′ and a parallel critical pair
t′ ←∥o→ u′ such that t = t′σ′ P\P

′←∥ t′σ P ′←∥ s→ u′σ = u with P ′ ⊆ P .

Note that left-linearity is essential for the substitutions σ and σ′ to exist in
Lemma 4.53. We are now ready to state and prove the main theorem of this
section.

Theorem 4.54. A left-linear TRS R is confluent if all its parallel critical peaks
t PΓ←∥ s→∆ u can be joined decreasingly as

t
∗−→

<Γ
· −−→

6∆
∥ · ∗−−−→

<Γ∆
· ∗←−−−

<Γ∆
v

Q←−−

6Γ
∥ · ∗←−−

<∆
u

such that Var(v|Q) ⊆ Var(s|P).

Proof. We show that →∥ is decreasing, which implies confluence of R. Let
t PΓ←∥ s→∥

Q
∆ u. It suffices to show that

t
∗−→

<Γ
· −−→

6∆
∥ · ∗−−−→

<Γ∆
· ∗←−−−

<Γ∆
· ←−−

6Γ
∥ · ∗←−−

<∆
u (4.2)

61

4 Labeling Diagrams Decreasingly

s = s′σ

t′σ u = u′σ

· s′σ′ u′′σ

t = t′σ′ · vσ

· v′σ

· vσ′

v′σ′

∥P ′

6Γ ∥

6Γ
∆
ε

∗

<Γ

∥

6∆
∗

<Γ∆
∗

<Γ∆

∥Q
′

6Γ

∗

<∆

∗

<Γ

∥

6∆
∗

<Γ∆
∗

<Γ∆

∥

6Γ

∥

6Γ

∥

6Γ

∥

6Γ

∥

6Γ

∥

6Γ

Figure 4.6: Part of the proof of Theorem 4.54.

Below we show that (4.2) holds whenever P = {π} or Q = {π} with pπ = ε.
Then for all p ∈ min {pπ | π ∈ P ∪ Q}, t PΓ←∥ s →∥ Q∆ u induces a peak t|p P ′

Γ0
←∥

s|p →∥ Q
′

∆0
u|p, where P ′ = {π} or Q′ = {π} for some π with pπ = ε. So for each p,

we obtain a joining sequence for t|p and u|p of shape (4.2). By the monotonicity
of labelings, this results in joining sequences

s[t|p]p
∗−→

<Γ
· −−→

6∆
∥ · ∗−−−→

<Γ∆
· ∗←−−−

<Γ∆
· ←−−

6Γ
∥ · ∗←−−

<∆
s[u|p]p

which are mutually parallel since the positions p ∈ min(P ∪ Q) are mutually
parallel. By repeated application of Lemma 4.51 those sequences can be combined
into a single sequence of the same shape.

In order to show (4.2) for P = {π} or Q = {π} with pπ = ε, assume without
loss of generality that Q = {π}. If P ⊥ π then s = lπσ and, because lπ is
linear, there is a substitution σ′ with t = lπσ

′ and σ(x)→∥ σ′(x) for all variables
x ∈ V. We conclude by Lemma 4.49(2). Otherwise P and π overlap, and by
Lemma 4.53, there are a parallel critical peak t′ P ′←∥ s′ → u′ and substitutions
σ, σ′ such that σ →∥ σ′ and t = t′σ′

P\P ′

6Γ←∥ t
′σ P ′

6Γ←∥ s
′σ = s →ε

∆ u′σ = u with
P ′ ⊆ P . This case is illustrated in Figure 4.6. By assumption there are u′′, v
and v′ with Var(v|Q′) ⊆ Var(s|P ′) such that we can join t′ and u′ decreasingly,
and consequently, using the stability of labelings we obtain

t′σ
∗−→

<Γ
· −−→

6∆
∥ · ∗−−−→

<Γ∆
v′σ

∗←−−−

<Γ∆
vσ

Q′←−−

6Γ
∥ u′′σ

∗←−−

<∆
u′σ = u

Furthermore, making repeated use of Lemma 4.49(2),

t = t′σ′
∗−→

<Γ
· −−→

6∆
∥ · ∗−−−→

<Γ∆
v′σ′

∗←−−−

<Γ∆
vσ′ ←−−

6Γ
∥ vσ

Notably, the step vσ →∥ 6Γ vσ
′ is obtained from s′σ →∥ 6Γ s

′σ′ by passing through
the rewrite sequence s′σ → u′σ →∗ u′′σ →∥ vσ. We have σ(x) = σ′(x) for
x ∈ Var(s|P ′) for otherwise s→∥ Γ t would not be a parallel step. Together with

62

4.3 Labeling Parallel Rewrite Steps

Var(v|Q′) ⊆ Var(s|P ′), the parallel steps u′′σ →∥ 6Γ vσ and vσ →∥ 6Γ vσ
′ can be

combined into a single →∥ 6Γ step by Lemma 4.49(2). Thus we can join t and u
decreasingly with common reduct v′σ′, completing the proof.

To conclude the section we demonstrate Theorem 4.54 on two examples. Both
are based on rule labeling.

Example 4.55. Consider the TRS R consisting of the following five rules with
labels 2 > 1 > 0:

a −→
1

b b −→
0

a f(a, a) −→
1

c f(b, b) −→
2

c h(x) −→
0

h(f(x, x))

There are six parallel critical peaks that can all be joined decreasingly as required
by Theorem 4.54:

f(b, a)←−−
{1}
∥ f(a, a) −−→

{1}
c : f(b, a) −−→

{0}
f(a, a) −−→

{1}
c

f(a, b)←−−
{1}
∥ f(a, a) −−→

{1}
c : f(a, b) −−→

{0}
f(a, a) −−→

{1}
c

f(b, b)←−−
{1}
∥ f(a, a) −−→

{1}
c : f(b, b) −−→

{0}
∥ f(a, a) −−→

{1}
c

f(a, b)←−−
{0}
∥ f(b, b) −−→

{2}
c : f(a, b) −−→

{0}
f(a, a) −−→

{1}
c

f(b, a)←−−
{0}
∥ f(b, b) −−→

{2}
c : f(b, a) −−→

{0}
f(a, a) −−→

{1}
c

f(a, a)←−−
{0}
∥ f(b, b) −−→

{2}
c : f(a, a) −−→

{1}
c

Therefore, R is confluent.

Example 4.56. Let R be the TRS (Cops #62) consisting of the (labeled) rules

x− 0 −→
0
x 0− x −→

0
0 s(x)− s(y) −→

0
x− y

0 < s(x) −→
0

true x < 0 −→
0

false s(x) < s(y) −→
0
x < y

gcd(x, 0) −→
0
x gcd(0, x) −→

0
x gcd(x, y) −→

1
gcd(y,mod(x, y))

if(true, x, y) −→
0
x if(false, x, y) −→

0
y

mod(x, 0) −→
0
x mod(0, x) −→

0
0

mod(x, s(y)) −→
1

if(x < s(y), x,mod(x− s(y), s(y)))

There are 12 critical pairs, 6 of which are trivial. One easily verifies that the
remaining 6 pairs can be joined decreasingly, using the order 1 > 0. Hence
the confluence of R follows from Theorem 4.54. Even though R lacks proper
parallel critical pairs, none of the other results in this chapter applies. Note
that the preconditions for Corollaries 4.14, 4.23, and 4.29 are not satisfied as
Rd/Rnd, ?(R), and R4 are non-terminating (due to the rules with label 1).
Finally, persistence cannot rule out variable overlaps (of the duplicating mod
rule below the variable x) and hence Theorems 4.39 and 4.41 based on the rule
labeling fail.

63

4 Labeling Diagrams Decreasingly

Ex.4.60

Ex.4.61Ex
.4.

42

persistence + rule labeling

parallel rewriting

re
lat

ive
te

rm
in

at
ion

(a) All.

Ex.4.57

Ex.4.58Ex
.4.

59

Tm.4.4

Corollary 4.14

Corollary
4.23 Co

ro
lla

ry
4.2

9

(b) Relative Termination.

Figure 4.7: Interrelationships.

4.4 Assessment
In this section we relate the results from this chapter to each other (Section 4.4.1)
and to the recent literature [1, 32] (Section 4.4.2).

4.4.1 Interrelationships
The main results for left-linear systems presented in this chapter can be divided
into three classes. Those that require relative termination as a precondition
(Corollaries 4.14, 4.23, and 4.29), those exploiting persistence (Theorems 4.39
and 4.41), and those considering parallel rewriting (Theorem 4.54). Figure 4.7(a)
demonstrates that these three classes are incomparable. The same holds when
focusing on the results relying on relative termination, cf. Figure 4.7(b). Note
that the regions where only one class is applicable can be populated with
examples using Toyama’s celebrated modularity result [75], e.g., the disjoint
union (after renaming function symbols) of the TRSs in Examples 4.60 and 4.61
can only be handled by the approach based on relative termination. We discuss
the interrelationships in more detail below.

First we observe that Corollaries 4.14, 4.23, and 4.29 subsume Theorem 4.4
since the preconditions of the corollaries evaporate for linear systems. The inclu-
sion is strict since Theorem 4.4 cannot deal with the rule f(x)→ g(x, x), while
all the corollaries can. Furthermore, Theorem 4.4 is subsumed by Theorem 4.39,
which, if restricted to weak LL-labelings, is subsumed by Theorem 4.41.

The following three examples show that Corollaries 4.14, 4.23, and 4.29 are
pairwise incomparable in power (for an overview see Figure 4.7(b)).

Example 4.57. Consider the TRS R consisting of the following rules

f(h(x))→ k(g(f(x), x, f(h(a)))) f(x)→ a a→ b
k(x)→ c b→ ⊥ c→ ⊥

This TRS has one critical peak (modulo symmetry). Since Rd/Rnd is non-
terminating, Corollary 4.14 does not apply. For Corollary 4.23 observe that ?(R)

64

4.4 Assessment

is terminating using the interpretation h1N(x) = x+ 1 and the identify function
for all other function symbols. To show decreasingness we use the labeling
`? × `irl with i(f(x)→ a) = 1 and all other rules receive label 0. The critical
peak t = a x,1← f(h(x))→x,0 k(g(f(x), x, f(h(a)))) = u is closed decreasingly by
t→x,0 b→x,0 ⊥ x,0← c x,0← u. Corollary 4.29 also applies since the polynomial
interpretation with hN(x) = 3x+ 1 and interpreting all other function symbols
by the sum of its arguments establishes termination of R4/R. When taking
the identity for ` in Corollary 4.29 the critical peak t = a 3x+1← f(h(x))→3x+1
k(g(f(x), x, f(h(a)))) = u can be closed decreasingly by t →0 b →0 ⊥ 0←
c 2x+1← u.

Example 4.58. It is easy to adapt the TRS from Example 4.16 such that ?(R)
becomes non-terminating. Consider the TRS R

1: b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(g(x, c)))

for which termination ofRd/Rnd is proved by LPO with precedence f > g and a ∼
b > c. Corollary 4.14 applies since the rule labeling establishes decreasingness
of the critical peak t = f(g(x, b)) 2← f(g(x, a)) →3 g(f(x), f(g(x, c))) = u by
the join t →1 f(g(x, a)) →3 u. Note that f1(g1(x)) → g2(f1(g1(x))) ∈ R?> is
non-terminating and hence Corollary 4.23 does not apply.3 For Corollary 4.29
the (above) termination proof establishes termination of R4/R and `4 in
combination with the rule labeling (taking rule numbers as labels) labels the
critical peak t = f(g(x, b)) a,2← f(g(x, a)) →f(g(x,a)),3 g(f(x), f(g(x, c))) = u
decreasingly since t→b,1 f(g(x, a))→f(g(x,a),3 u.

Example 4.59. Consider the TRS consisting of the rules

a(a(c))→ a(b(a(c))) b(x)→ h(x, x)

The TRS R has no critical peaks and is terminating by the following matrix
interpretation over N2:

aN2(~x) =
(

1 1
1 2

)
~x+

(
0
3

)
hN2(~x, ~y) =

(
1 0
0 0

)
~x+

(
1 0
0 0

)
~y

bN2(~x) =
(

2 0
0 0

)
~x+

(
2
0

)
cN2 =

(
0
0

)

Hence also Rd/Rnd is terminating, and by Corollary 4.14 the TRS R is con-
fluent. Corollary 4.23 also applies since ?(R) is terminating. The derivation
a(a(c))→ a(b(a(c)))→R4 a(a(c))→ · · · shows that R4/R is non-terminating,
so Corollary 4.29 does not apply.

Note that any simple monotone reduction pair showing termination of Rd/Rnd
will also establish termination of R4/R, because if l→ x ∈ R4 then there is a
rule l → r ∈ Rd that duplicates x, whence l > r > x. Hence it is no surprise
that Example 4.59 used a matrix interpretation of dimension 2.

3We remark that it is easy to extend this example such that also ??(R) is non-terminating;
just consider the rule f(g(x, a))→ g(f(x), g(f(g(x, c), f(g(x, c))))).

65

4 Labeling Diagrams Decreasingly

Furthermore, the results on relative termination are incomparable with those
on persistence and those based on parallel rewriting. To this end observe that
the first rule of Example 4.42 violates all preconditions of Corollaries 4.14,
4.23, and 4.29 but Theorems 4.41 and 4.54 apply. Note that Theorem 4.41
based on arbitrary weak LL-labelings subsumes Corollaries 4.14 and 4.23, since
they produce LL-labelings which may be used to close problematic variable
peaks decreasingly even without persistence. However, if restricted to the rule
labeling the following TRS cannot be handled using persistence while each of
the Corollaries 4.14, 4.23, and 4.29 as well as Theorem 4.54 succeeds.

Example 4.60. Consider the TRS consisting of the rules

1 : f(x, y, a)→ f(x, x, b) 2 : f(f(x, y, b), z, c)→ x

which is orthogonal. Since a most general sort assignment cannot exclude
variable overlaps of the first rule with itself, Theorem 4.41 can only succeed
when used in combination with an LL-labeling. Note that all preconditions
for Corollaries 4.14, 4.23, and 4.29 are satisfied and due to the lack of critical
overlaps they are decreasing. For the same reason Theorem 4.54 applies.

The final example shows that Theorem 4.54 does not subsume the plain
version for linear TRSs (because of the variable condition).

Example 4.61. Consider the linear TRS consisting of the single rule

(x+ y) + z → (z + y) + x

Note that all steps are labeled the same, because they use the same rule. There is
only one (parallel) critical peak, ((z+y)+x)+u← ((x+y)+z)+u→ (u+z)+(x+
y), which may be joined as ((z+y)+x)+u→ ((x+y)+z)+u← (u+z)+(x+y).
Confluence of R can be established by Theorem 4.4 using the rule labeling from
Lemma 4.5. On the other hand, trying to use Theorem 4.54 fails for this joining
sequence, because Var(((z + y) + x) + u) 6⊆ Var((z + y) + x). All other ways
of joining the critical peak fail to be decreasing because they require more
than one parallel rewrite step from ((z + y) + x) + u or (u+ z) + (x+ y), e.g.
((z + y) + x) + u→ ((x+ y) + z) + y → (y + z) + (x+ y).

4.4.2 Related work
In this section we relate our results to [32, 1].

To compare our setting with the main result from [32] we define the critical
pair steps CPS(R) = {s → t, s → u | t← s→ u is a critical peak of R}. Fur-
thermore let CPS′(R) be the critical pair steps which do not give rise to trivial
critical pairs.

Theorem 4.62 ([32, Theorem 3]). A left-linear locally confluent TRS R is
confluent if CPS′(R)/R is terminating.

Using the weak LL-labeling `
PCPS′(R)
rt , from Theorem 4.54 we obtain the

following corollary. Here PCPS′(R) are the parallel critical pair steps which do
not give rise to trivial parallel critical pairs.

66

4.4 Assessment

Corollary 4.63. A left-linear TRS R whose parallel critical pairs are joinable
is confluent if PCPS′(R)/R is terminating.

Proof. We need to show that the relative termination assumption eliminates
the variable condition in Theorem 4.54. If PCPS′(R)/R is terminating then for
any (non-trivial) parallel critical peak t PΓ←∥ s→∆ u we obtain t→∗

<Γ ·
∗

<∆← u,
hence Q can be chosen to be empty and ∅ = Var(v|∅) ⊆ Var(s|P) trivially
holds.4

We stress that despite the fact that the preconditions in Corollary 4.63 require
more (implementation) effort to check than those in Theorem 4.62, in theory
Corollary 4.63 subsumes Theorem 4.62. To this end observe that termination of
PCPS′(R)/R is equivalent to termination of CPS′(R)/R. Furthermore joinability
of the parallel critical pairs is a necessary condition for confluence just as local
confluence is.

Due to the flexibility of the `Srt labeling we can also choose S to be (a subset of)
the critical diagram steps CDS(R) = {s→ ti, s→ uj | t0 ← s→ u0 is a critical
peak in R, t0 →∗ tn = um

∗← u0, 0 6 i 6 n, and 0 6 j 6 m}. Using CDS(R)
allows to detect a possible decrease also somewhere in the joining part of the
diagrams. This incorporates (and generalizes) the idea of critical valleys [64].
However, we remark that our setting does not (yet) follow another recent trend,
i.e., to drop development closed critical pairs (see [64, 33]). We leave this for
future work.

Next we show that Corollary 4.23 generalizes the results from [1, Sections 5
and 6]. It is not difficult to see that the encoding presented in [1, Theorem 5.4]
can be mimicked by Corollary 4.23 where linear polynomial interpretations over
N of the shape as in (1)

(1) fiN(x) = x+ cf (2) fiN(x) = x+ cfi

are used to prove termination of ?(R) and `? × `rl is employed to show LL-
decreasingness of the critical peaks. In contrast to [1, Theorem 5.4], which
explicitly encodes these constraints in a single formula of linear arithmetic, our
abstract formulation has the following advantages. First, we do not restrict to
weight functions but allow powerful machinery for proving relative termination
and second our approach allows to combine arbitrarily many labelings lexico-
graphically (cf. Lemma 4.12). Furthermore we stress that our abstract treatment
of ?(R) allows to implement Corollary 4.23 based on ??(R) (cf. Section 4.5) which
admits further gains in power (cf. Example 4.1).

The idea of the extension presented in [1, Example 6.1] amounts to using
`rl × `? instead of `? × `rl, which is an application of Lemma 4.12 in our set-
ting. Finally, the extension discussed in [1, Example 6.3] suggests to use linear
polynomial interpretations over N of the shape as in (2) to prove termination of
?(R). Note that these interpretations are still weight functions. This explains

4The condition that {s→ t | u← s→ t is a critical pair}/R is terminating also eliminates
the variable condition.

67

4 Labeling Diagrams Decreasingly

why the approach from [1] fails to establish confluence of the TRSs in Exam-
ples 4.16 and 4.18 since a weight function cannot show termination of the rules
f1(g1(x))→ g1(f1(x)) and f1(h1(x))→ h1(g1(f1(x))), respectively.

Note that both recent approaches [1, 32] based on decreasing diagrams fail to
prove the TRS R from Example 4.1 confluent. The former can, e.g., not cope
with the non-terminating rule ×1(x) → +0(×1(x)) in R?> (cf. Example 4.26)
while overlaps with the non-terminating rule x+ y → y + x ∈ R prevent the
latter approach from succeeding. In contrast, Examples 4.15 and 4.26 give two
confluence proofs based on our setting.

4.5 Implementation

In this section we sketch how the results from this chapter are implemented in
CSI.

Before decreasingness of critical peaks can be investigated, the critical pairs
must be shown to be convergent. For a critical pair t ←o→ u in our imple-
mentation we consider all joining sequences such that t →6n · 6n← u and
there is no smaller n that admits a common reduct. While in theory longer
joining sequences might be easier to label decreasingly, preliminary experiments
revealed that the effort due to the consideration of additional diagrams decreased
performance.

To exploit the possibility for incremental confluence proofs by lexicographically
combining labels (cf. Lemmata 4.7 and 4.12) our implementation considers lists
of labels. The search for relative termination proofs (and thus the labelings)
is implemented by encoding the constraints in non-linear (integer) arithmetic.
Below we describe how we combine existing labels (some partial progress) with
the search for a new labeling that shows the critical peaks decreasing. Note
that labelings use different domains (natural numbers, terms), and, even worse,
different orders (matrix interpretations, LPO, etc.). The crucial observation for
incremental labeling is that neither the actual labels nor the precise order on the
labels have to be recorded but only how the labels in the join relate to the labels
from the peak. We use the following encoding. Let the local peak have labels
t α← s→β u. Then a step v →γ w is labeled by the pair (◦α, ◦β) where ◦α and
◦β indicates if α ◦α γ and β ◦β γ, respectively. Here {◦α, ◦β} ⊆ {>,>, ?} and ?
means that the labels are incomparable, e.g., f(x) ? g(y) in LPO or 2x+ 1 ?x+ 2
for (matrix) interpretations.Decreasingness as depicted in Figure 4.8(a) can then
be captured by the conditions shown in Figure 4.8(b), where ◦ can be replaced
by any symbol.

It is straightforward to implement Corollary 4.14. After establishing termina-
tion of Rd/Rnd (e.g., by an external termination prover) any weak LL-labeling
can be tried to show the critical peaks decreasing. In [1, 32] it is shown how
the rule labeling can be implemented by encoding the constraints in linear
arithmetic. Note that when using weak LL-labelings the implementation does
not have to test condition 2 in Definition 4.8 since this property is intrinsic to
weak LL-labelings.

We sketch how to implement the labeling `Srt from Lemma 4.6 as a relative

68

4.5 Implementation

α β

<α

∗

6β
=

<α
β

∗

<β

∗

6α=

<α
β∗

(a) Decreasingness.
∗(>
,◦)

(◦,>
)

=

∗

(>
,◦) or (◦,>

)

∗
(◦
,<

)

(6
,◦

)=

∗
(<
,◦

) o
r (
◦,
<

)

(b) Encoding of decreasingness.

Figure 4.8: Encoding the order on the labels.

termination problem. First we fix a suitable set S, i.e., the critical diagram
steps (see Section 4.4). Facing the relative termination problem S/R we try
to simplify it according to Theorem 2.41 into some S ′/R′. Note that it is not
necessary to finish the proof. By Theorem 2.41 the relative TRS (S \ S ′)/R
is terminating and hence by Lemma 4.6 `S\S

′

rt is an L-labeling. Let > = →∗R
and > =→+

(S\S′)/R. Since > and > can never increase by rewriting, it suffices
to exploit the first decrease with respect to >. Consider a rewrite sequence
v1 →R v2 →R · · · →R vl. Take the smallest k such that v1 → vk+1 ∈ S but
v1 → vk+1 /∈ S ′. Then vi →(>,>) vi+1 for 1 6 i 6 k and vi →(>,>) vi+1 for
k < i < l. If no such k exists set vi →(>,>) vi+1 for 1 6 i < l. We demonstrate
the above idea on an example.

Example 4.64. Consider the following TRS R from [6]:

I(x)→ I(J(x)) J(x)→ J(K(J(x))) H(I(x))→ K(J(x)) J(x)→ K(J(x))

We show how the critical peak H(I(J(x)))← H(I(x))→ K(J(x)) can be closed
decreasingly H(I(J(x)))→(>,>) K(J(J(x)))→(>,>) K(J(K(J(x)))) (6,6)← K(J(x))
by `Srt. Let S be the TRS consisting of the critical diagram steps from the above
diagram, i.e.,

H(I(x))→ H(I(J(x))) H(I(x))→ K(J(J(x)))
H(I(x))→ K(J(x)) H(I(x))→ K(J(K(J(x))))

The interpretation HN(x) = JN(x) = KN(x) = x and IN(x) = x + 1 allows to
“simplify” termination of the problem S/R according to Theorem 2.41. Since
the rules that reduce the number of I′s are dropped from S (and R), those rules
admit a decrease in the labeling.

The abstraction works similarly for the labelings `? and `4 from Lemmata 4.21
and 4.27, respectively.

Finally, we explain why ??(R) need not be computed explicitly to implement
Corollary 4.23 with the labeling from Lemma 4.25. The idea is to start with ?(R)

69

4 Labeling Diagrams Decreasingly

and incrementally prove termination of R?>/R?= until some S1/S2 is reached.
If all left-hand sides in S1 are distinct then they must have been derived from
different combinations (l, x) with l → r ∈ R and x ∈ Var(l).5 Hence they are
exactly those rules which should be placed in R?=. We show the idea by means
of an example.

Example 4.65. We revisit Example 4.1 and try to prove termination of ?(R).
By an application of Theorem 2.41 with the interpretation given in Exam-
ple 4.26 the problem is termination equivalent to R†/R?= and by another ap-
plication of Theorem 2.41 the same proof can be used to show termination of
(R?> \ R?†)/(R?= ∪R?†) which is a suitable candidate for ??(R) since the rules in
R?† have different left-hand sides.

We have also implemented Theorems 4.39 and 4.41. The requirements of
Theorem 4.39 can be checked effectively by the following characterization of
t ∈ TEα(F ,V):

Remark 4.66. The condition t ∈ TEα(F ,V) holds if and only if t is S-sorted
and S(t) (6 ∪ /1)∗ α, where the relation /1 on sorts relates argument types
to result types: S(f, i) /1 S(f) for all function symbols f ∈ F of arity n and
1 6 i 6 n.

We only implemented the simplest case of Theorem 4.41, where ` is a rule
labeling. First, using Remark 4.66, we determine for which rules l → r ∈ R,
l′ → r′ ∈ R, it is possible to nest l′ → r′ below a duplicating variable of l→ r.
We add constraints i(l→ r) > i(l′ → r′) to our constraint satisfaction problem
for the rule labeling. The hard work is done by an SMT solver.

To postpone the expensive computation (and labeling) of parallel critical pairs
as long as possible we implemented Theorem 4.54 according the following lazy
approach. We first find ordinary weak LL-labelings for the critical diagrams,
as described earlier in this section. Only if confluence cannot be established by
considering this weak LL-labeling for (non-parallel) critical peaks, we generate
parallel critical peaks together with joining sequences. Finally, we check whether
the weak LL-labeling joins all resulting diagrams (critical and parallel critical)
decreasing as per Theorem 4.54. This check is also responsible for combining
single steps into a parallel one for the joining sequence. We confess that this
implementation for Theorem 4.54 is somewhat opportunistic but allows to reuse
partial progress (the weak LL-labeling) while postponing parallel critical pairs
as long as possible.

4.6 Conclusion
In this chapter we studied how the decreasing diagrams technique can be
automated. We presented conditions (subsuming recent related results) that
ensure confluence of a left-linear TRS whenever its critical peaks are decreasing.
The labelings we proposed can be combined lexicographically which allows

5When computing ?(R) the implementation renames variables such that (`, x) uniquely
identifies a rule `→ r.

70

4.6 Conclusion

incremental proofs of confluence and has a modular flavor in the following sense:
Whenever a new labeling function is invented, the whole framework gains power.
We discussed several situations (Examples 4.1, 4.16, 4.18, 4.58) where traditional
confluence techniques fail but our approach easily establishes confluence. We
have also considered parallel rewriting resulting in a significantly more powerful
approach.

71

Chapter 5

Confluence with Layer Systems

We introduce layer systems for proving generalizations of the modularity of
confluence for first-order rewrite systems. Layer systems specify how terms
can be divided into layers. We establish structural conditions on those systems
that imply confluence. Our abstract framework covers known results like mod-
ularity, many-sorted persistence, layer-preservation and currying. We present
a counterexample to an extension of persistence to order-sorted rewriting and
derive new sufficient conditions for the extension to hold. All our proofs are
constructive. The contents of this chapter is based on [19].

5.1 Introduction
We revisit the celebrated modularity result of confluence, due to Toyama [75].
It states that the union of two confluent rewrite systems is confluent, provided
the participating rewrite systems do not share function symbols. This result has
been reproved several times, using category theory [49], ordered completion [37],
and decreasing diagrams [63]. While confluence is also modular for rewriting
modulo [37, 36], the situation is different for higher-order rewriting [7]. In
practice, modularity is of limited use. More useful techniques, in the sense that
rewrite systems can be decomposed into smaller systems that share function
symbols and rules, are based on type introduction [4], layer-preservation [54],
and commutativity [67].

Type introduction [80] restricts the set of terms that have to be considered
to the well-typed terms according to some many-sorted type discipline which
is compatible with the rewrite system under consideration. A property of
(many-sorted) rewrite systems which is preserved and reflected under type
removal is called persistent and Aoto and Toyama [4] showed that confluence is
persistent. In [3] they extended the latter result by considering an order-sorted
type discipline. However, we show that the conditions imposed in [3] are not
sufficient for confluence.

The proofs in [54] and [3, 4] are adaptations of the proof of Toyama’s mod-
ularity result by [43]. A more complicated proof using concepts from [43] has
been given by Kahrs, who showed in [39] that confluence is preserved under
currying [41]. In this chapter we introduce layer systems as a common framework
to capture the results of [4, 39, 54, 75] and to identify appropriate conditions
to restore the persistence of confluence for order-sorted rewriting [3]. Layer
systems identify the parts that are available when decomposing terms. The
key proof idea remains the same. We treat each such layer independently from

73

5 Confluence with Layer Systems

the others where possible, and deal with interactions between layers separately.
The main advantage of and motivation for our proof is that the result becomes
reusable; rather than checking every detail of a complex proof, we have to check
a couple of comparatively simple, structural conditions on layer systems instead.
Such a common framework also facilitates a formalization of these results in a
theorem prover like Isabelle or Coq.

Besides the theoretical results of this chapter we stress practical implications:
Due to an implementation of Theorem 5.65 in our confluence tool CSI [78] it
supports a decomposition result based on ordered sorts, exceeding the criteria
available in other tools. A second result of practical importance is preservation
and reflection of confluence under currying [39] which is used as a preprocessing
step when deciding confluence of ground TRSs [18].

The remainder of this chapter is organized as follows. In the next section we
recall preliminaries. Section 5.2 introduces layer systems and establishes results
how rewriting interacts with layers. The main (abstract) results for confluence
via layer systems are presented in Section 5.3 and instantiated in Section 5.4
to obtain various known results. The new result on order-sorted persistence is
covered in Section 5.5. Differences to related work are discussed in Section 5.6,
which might be consulted in advance by readers familiar with the literature. We
conclude in Section 5.7.

5.2 Layer Systems
In this section we introduce layer systems, which are sets of contexts satisfying
special properties. The top-down decomposition of a term into maximal layers
admits the notion of the rank of a term. Since for suitable layer systems rewriting
does not increase the rank this is a valid measure for proofs by induction.

Definition 5.1. Let L ⊆ C(F ,V) be a set of contexts. Then L ∈ L is called a
top of a context C ∈ C(F ,V) (according to L) if L v C. A top is a max-top of
C if it is maximal with respect to v among the tops of C.

Note that terms are contexts without holes, so they have tops and max-tops
as well. In the sequel we use subsets L ⊆ C(F ,V) to layer terms. The process is
top-down, taking the max-top of a term as layer and proceeding recursively.

Example 5.2. Let F consist of a binary function symbol f, a unary function
symbol g, and constants a, b, and c. We consider the following candidates for L:

L0 = ∅
L1 = {f(v, w), g(v), a, b, c, v | v, w ∈ V�}
L2 = {f(gn(v), gm(w)), gn(v), gn(c), a, b | v, w ∈ V�, n,m ∈ N}
L3 = {f(gn(v), gm(w)), gn(v), a, b | v, w ∈ V� ∪ {c}, n,m ∈ N}

Regard the terms s = f(c, c) and t = f(c, g(c)). According to L0, neither s nor
t have any tops. According to L1, the tops of both s and t are � and f(�,�),
and the latter is the max-top of s and t. According to L2, � and f(�,�) are
tops of s and t, and f(�, g(�)) is a top of t but not of s. The max-tops of s

74

5.2 Layer Systems

f
c c

→
c→g(c) f

c g
c

(a) Breaking layers.

f
c c

→
c→g(c) f

c g
c

(b) Partial fusion.

h
c c

→
h(c,x)→g(h(x,x))

g
h

c c

(c) Fusion from above.

f
g
c

c
→

c→g(c) f
g
c

g
c

(d) Conspiring aliens.

Figure 5.1: Undesired behavior on layers.

and t are f(�,�) and f(�, g(�)), respectively. Finally, the max-tops of s and t
according to L3 are s and t themselves.

Our goal is to deduce confluence of R when rewriting is restricted to L ∩
T (F ,V). To this end, we need to impose restrictions on L. This leads to the
central definition of the chapter.

Definition 5.3. Let F be a signature. A set L ⊆ C(F ,V) of contexts is called a
layer system if it satisfies properties (L1), (L2), and (L3). The elements of L are
called layers. A TRS R over F is weakly layered (according to a layer system L)
if condition (W) is satisfied for each ` → r ∈ R. It is layered (according to a
layer system L) if conditions (W), (C1), and (C2) are satisfied. The conditions
are as follows:

(L1) Each term in T (F ,V) has a non-empty top.

(L2) If x ∈ V and C ∈ C(F ,V) then C[x]p ∈ L if and only if C[�]p ∈ L.

(L3) If L,N ∈ L, p ∈ PosF (L), and L|p tN is defined then L[L|p tN]p ∈ L.

(W) If M is a max-top of s, p ∈ PosF(M), and s→p,`→r t then M →p,`→r L
for some L ∈ L.

(C1) In (W) either L is a max-top of t or L = �.

(C2) If L,N ∈ L and L v N then L[N |p]p ∈ L for any p ∈ Pos�(L).

Example 5.4 (Example 5.2 revisited). Consider the TRS R1 consisting of the
rewrite rules

f(x, x)→ a f(x, g(x))→ b c→ g(c)

from [34]. It is non-confluent because a R1← f(c, c)→R1 f(c, g(c))→R1 b, and a,
b are in normal form. However, R1 is confluent on L0 ∩ T (F ,V), L1 ∩ T (F ,V)
and L2∩T (F ,V) (on the other hand, note that L1∩T (F ,V) is not closed under
rewriting by R1 because c→R1 g(c)), but R1 is not confluent on L3 ∩ T (F ,V),

75

5 Confluence with Layer Systems

because a, f(c, c), f(c, g(c)), b ∈ L3 ∩ T (F ,V). Clearly L0 violates (L1), and
therefore any attempt of proving confluence of R1 by decomposing terms into
a max-top and remaining subterms is doomed to fail. Our basic idea for
establishing confluence of a (weakly) layered TRS is to perform rewrite steps on
arbitrary terms on the corresponding elements of a layer system in the terms’
decomposition, with subterms replaced by variables (this replacement is enabled
by (L2)).

Figure 5.1(a) depicts the rewrite step f(c, c)→R1 f(c, g(c)) with both terms
decomposed according to L1. Note that the c subterm rewrites to g(c), but the
resulting subterm is split into two layers. Note furthermore that f(c, g(c))→R1 b,
but the corresponding left-hand side f(x, g(x)) does not match any part of the
decomposition of f(c, g(c)). Condition (W) (which is violated by L1) helps
ensuring that rewrite steps on terms can be adequately simulated on layers.

Next consider Figure 5.1(b), depicting the rewrite step f(c, c)→R1 f(c, g(c))
with terms decomposed according to L2. Note that L2 satisfies (L1), (L2) and
(W). Nevertheless, the result of the rewrite step c →R1 g(c) is broken apart:
only a part of g(c) is merged with the max-top of f(c, g(c)). Condition (L3)
prevents such partial fusion. We can see that it is violated by L2: we have
f(�, g(�)) ∈ L2 and g(c) ∈ L2, but f(�, g(�) t g(c)) = f(�, g(c)) /∈ L2. Finally,
L3 weakly layers R.

In order to motivate (C1), we consider the TRS R2 consisting of the rewrite
rules

f(x, x)→ a f(x, g(x))→ b h(c, x)→ g(h(x, x))

which is closely related to R1; instead of the rewrite step c→R1 g(c) we have
tc →R2 g(tc) for tc = h(c, c), and therefore a R2← f(tc, tc)→R2 f(tc, g(tc))→R2

b. We define a layer system L4 by

Lc = {v, h(v, w), h(c, v) | v, w ∈ V�}
L4 = {f(gn(s), gm(t)), gn(t), a, b, c, s | s, t ∈ Lc, n,m ∈ N}

It is straightforward to verify that L4 weakly layers R2 and that R2 is confluent
on L4 ∩ T (F ,V). Figure 5.1(c) depicts the rewrite step tc →R2 g(tc). It affects
the max-top of tc, but the max-top of the result, g(h(c,�)), is larger than the
result of rewriting the max-top h(c,�) of tc: h(c,�)→ g(h(�,�)). In the case
of R2, there are rewrite sequences in which such fusion from above happens
infinitely often, and that presents another obstacle to confluence. Condition
(C1) is designed to rule out such fusion from above completely, and indeed the
rewrite step tc →R2 g(tc) shows that (C1) is violated by L4 and R2.

Finally consider the layer system

L5 = {f(v, w), f(gn+1(c), gm+1(c)), a, gn(c), gn(v), v | v, w ∈ V�, n,m ∈ N}

which weakly layers the TRS R3 consisting of the rewrite rules

f(x, x)→ a c→ g(c)

76

5.2 Layer Systems

and satisfies (C1). Figure 5.1(d) shows a rewrite step f(g(c), c)→R3 f(g(c), g(c)).
What happens here is that the result of rewriting the subterm c→ g(c) fuses
with the previous top, f(�,�), but only if the unrelated first subterm g(c) fuses
at the same time. This phenomenon causes problems in our proof, and (C2)
prevents that. To wit, we have f(�,�) ∈ L5 and f(g(c), g(c)) ∈ L5, so by (C2)
with p = 1, there should be f(� t g(c),�) ∈ L5, but this is not the case.

The following convention helps to differentiate various contexts.

Convention 5.5. We use C and D to denote contexts, B to denote base contexts
(to be introduced in Section 5.3), L and N to denote arbitrary layers, and M to
denote a max-top of a term or context.

In the sequel we implicitly assume a given layer system L. In light of the next
lemma we speak of the max-top of a term or context.

Lemma 5.6. Any non-empty context has a unique and non-empty max-top.

Proof. Let C be a non-empty context. To show that C has a non-empty top
let x be a variable not occurring in C and consider C[x, . . . , x], which has a
non-empty top Lx by (L1). Then L := Lxσ with dom(σ) = {x} and σ(x) = �
is a top of C since L ∈ L by (L2) and L v C by construction. It is non-empty
since L = � implies Lx = x, hence C[x, . . . , x] = x and consequently C = �
because x is fresh, contradicting the premises. Hence the set S of non-empty
tops of C is non-empty. Since it also is finite it has a (non-empty) maximal
element.

To show uniqueness let M and M ′ be max-tops of C. Then M v C and
M ′ v C ensures that M tM ′ is defined, and a layer by (L3) (if � ∈ {M,M ′}
then (L3) is not needed). If M 6= M ′ then M @M tM ′ or M ′ @M tM ′. Since
M tM ′ v C this gives the desired contradiction.

Next we introduce the key notion of the rank of a term.

Definition 5.7. Let t = M [t1, . . . , tn] with M the max-top of t. Then t1, . . . , tn
are the aliens of t. We define rank(t) = 1 + max{rank(ti) | 1 6 i 6 n}, where
max(∅) = 0 by convention.

Since the max-top of a term is uniquely defined (Lemma 5.6), it follows that
also its aliens are uniquely defined. The next example shows that rewriting
might increase the rank of a term. In Lemma 5.13 we show that this cannot
happen in weakly layered TRSs.

Example 5.8. Consider the layer system

L6 = {v, f(v), g(v), h(v), f(g(h(v))), g(g(v)), a | v ∈ V�}

Note that (in contrast to modularity) subterms can have larger rank. E.g., if
s = f(g(h(x))) and t = g(h(x)) then rank(s) = 1 < 2 = rank(t). Furthermore
s→R t in the TRS R containing the rule f(g(x))→ g(x). Note that R is not
weakly layered according to L6.

The next lemma states a useful decomposition result.

77

5 Confluence with Layer Systems

Lemma 5.9. Let t = L[t1, . . . , tn], L a top of t, and k be the maximum of
rank(ti) for 1 6 i 6 n. Then rank(t) 6 k + 1 and aliens of t that are not rooted
at hole positions of L have rank less than k.

Proof. Let M be the max-top of t. We show the (stronger) property for any
context C with C vM (instead of a top L of t). Note that L vM . The proof
is by induction on |t| − |C|F∪V , which is a natural number because C v t. If
C = M then rank(t) = 1 + max{rank(ti) | 1 6 i 6 n} = 1 + k and all aliens of t
are rooted at hole positions of C, so we are done. Otherwise, let Mi be the max-
top of ti. There is a unique maximal context C ′ such that C ′ v C[M1, . . . ,Mn]
and C ′ vM . Furthermore, we have C @ C ′ because the Mi are non-empty by
Lemma 5.6. Because C ′ vM v t, t = C ′[t′1, . . . , t′m] where t′j is the subterm of
t at the position of the j-th hole in C ′. For each p ∈ Pos�(C) there are three
possibilities. Let C[t1, . . . , tn]|p = ti.

1. If p ∈ Pos�(C ′) then C ′[t′1, . . . , t′m]|p = t′j and ti = t′j for some j.

2. If p ∈ PosV(C ′) then there are no holes below p in C ′.

3. If p ∈ PosF(C ′) then p ∈ PosF(M) and M [M |p t Mi]p ∈ L by (L3).
Because M is the max-top of t this implies Mi v M |p and therefore
C ′|p = Mi by construction of C ′. Hence all t′j corresponding to holes of
C ′ below p are aliens of ti having rank less than rank(ti).

We can now apply the induction hypothesis to C ′[t′1, . . . , t′m] since C @ C ′

implies |t| − |C|F∪V > |t| − |C ′|F∪V . To conclude, note that any alien rooted at
a hole position of C ′ but not at a hole position of C equals a t′j from case (3)
and therefore has rank less than k.

Lemma 5.10. Let R be a TRS that is weakly layered according to L. Then L
is closed under rewriting by R.

Proof. Let L ∈ L and L →R N . Obviously L[x, . . . , x] →R N [x, . . . , x] for
a fresh variable x. Since L[x, . . . , x] ∈ L by (L2) it is its own max-top. We
conclude since N [x, . . . , x] ∈ L by (W) and hence N ∈ L by (L2).

We now present technical results about rewriting contexts. In the sequel we
often want to replace variables affected by some substitution σ by holes. We
therefore denote by σ�(x) the substitution obtained by letting σ�(x) = � for
x ∈ dom(σ) and σ�(x) = x otherwise. For a context C we denote by C� the
context obtained from C by replacing all variables by holes.

Lemma 5.11. Let C be a context and ` a non-variable term. If ` 6· C|p then
there is a term c such that

1. ` 6· c|p and C = cσ� for some substitution σ, and

2. if C v D for a context D and ` 6· D|p then c 6· D.

78

5.3 Confluence by Layer Systems

Proof. Assume that C has n > 0 holes. We may assume without loss of generality
that C and ` have no variables in common. Let c0 := C[x1, . . . , xn] with fresh
variables x1, . . . , xn. The context C witnesses the fact that c0 and c1 := c0[`]p
are unifiable. Let c be a most general instance of c0 and c1. Note that variables
in c can be renamed freely. If C v D then D is an instance of c0. Furthermore,
if ` 6· D|p then D must be an instance of c1 as well and therefore c 6· D.
In particular, c 6· C and thus C = cσ for some substitution σ. Let τ be a
substitution such that c = c0τ . For x ∈ Var(C), σ(τ(x)) = x, which implies
that τ(x) is a variable. We can rename each τ(x) to x in c. Therefore we may
assume without loss of generality that σ(x) = τ(x) = x for x ∈ Var(C). For the
variables xi, we have σ(τ(xi)) = � for all 1 6 i 6 n, which is only possible if σ
maps those variables to �. Consequently, σ� = σ.

If a rewrite rule is applied to a context then each hole may be erased, copied
or duplicated. The same holds for the terms used to fill the holes in a context,
as formalized by the next lemma.

Lemma 5.12. If C →p,`→r C
′ and ` 6· C[s1, . . . , sn]|p then C[s1, . . . , sn]→p,`→r

C ′[t1, . . . , tm] and {t1, . . . , tm} ⊆ {s1, . . . , sn}.

Proof. Since ` 6· C|p, Lemma 5.11(1) yields a term c and a substitution
σ� such that ` 6· c|p and C = cσ�. Furthermore due to C v C[s1, . . . , sn]
and ` 6· C[s1, . . . , sn]|p, there is a substitution σ with cσ = C[s1, . . . , sn] by
Lemma 5.11(2). Hence C →p,`→r C

′ mirrors a rewrite step c →p,`→r c
′ with

C ′ = c′σ� and C ′[t1, . . . , tm] = c′σ. Since t1, . . . , tm can only come from σ we
conclude.

This section ends with a key lemma that enables the use of induction on the
rank of terms for proving confluence of R.

Lemma 5.13. Let R be a weakly layered TRS. If s→R t then rank(s) > rank(t).

Proof. By induction on the rank of s. Let s→p t and s = M [s1, . . . , sn] be the
decomposition of s into max-top and aliens. We distinguish two cases.

If p ∈ PosF(M) then condition (W) yields M →p L and L a top of t. Let
t = L[t1, . . . , tm]. By Lemma 5.12 {t1, . . . , tm} ⊆ {s1, . . . , sn} since M →p L.
Hence rank(t) 6 1 + max{rank(ti) | 1 6 i 6 m} 6 1 + max{rank(si) | 1 6 i 6
n} = rank(s) using Lemma 5.9.

If p /∈ PosF (M) then sj → s′j and t = M [s1, . . . , s
′
j , . . . , sn] for some 1 6 j 6 n.

The induction hypothesis yields rank(sj) > rank(s′j). Since M is a top of t,
Lemma 5.9 yields rank(t) 6 1 + max{rank(s′j), rank(si) | 1 6 i 6 n, i 6= j} 6
1 + max{rank(si) | 1 6 i 6 n} = rank(s).

5.3 Confluence by Layer Systems
We start this long section by stating our main results. All results reduce the
task of proving confluence of a TRS to the easier task of proving confluence of
the terms in a suitable layer system, i.e., the terms in L ∩ T (F ,V), which are
precisely the terms of rank one. The first result imposes left-linearity.

79

5 Confluence with Layer Systems

Theorem 5.14. Let R be a weakly layered TRS that is confluent on terms of
rank one. If R is left-linear then R is confluent.

The second result exchanges left-linearity for a condition that is weaker than
non-duplication.

Definition 5.15. Let R be a TRS and ♦ a fresh unary function symbol.
Then R is bounded duplicating if the relative rewrite system {♦(x)→ x}/R is
terminating.

Theorem 5.16. Let R be a weakly layered TRS that is confluent on terms of
rank one. If R is bounded duplicating then R is confluent.

Lemma 5.17. Non-duplicating TRSs are bounded duplicating.

Proof. Let R be a non-duplicating TRS. To show termination of {♦(x)→ x}/R
we measure terms by counting the number of occurrences of the ♦ symbol.
Clearly each application of the ♦(x)→ x rule decreases that number and rules
of R do not increase it because they do not duplicate ♦ symbols and cannot
introduce any new ones.

Bounded duplication strictly extends non-duplication; the TRS consisting of
the rewrite rule f(x, x)→ g(x, x, x) is duplicating but still bounded duplicating.
This can be shown by the polynomial interpretation [48] given by

fN(x, y) = 2x+ 2y gN(x, y, z) = x+ y + z ♦N(x) = x+ 1

By combining Theorem 5.16 with Lemma 5.17, we obtain the following corollary.

Corollary 5.18. Let R be a weakly layered TRS that is confluent on terms of
rank one. If R is non-duplicating then R is confluent.

The third result does not impose any conditions on R but further limits the
layer systems that can be employed to derive confluence.

Theorem 5.19. Let R be a layered TRS that is confluent on terms of rank one.
Then R is confluent.

Hence for duplicating TRSs there are three possibilities to prove confluence,
either by weakly layering a left-linear rewrite system (Theorem 5.14), by estab-
lishing bounded duplication for a weakly layered rewrite system (Theorem 5.16),
or by layering the rewrite system (Theorem 5.19). Table 5.1 shows that the
three results are pairwise incomparable where L = {v, k(v, w), b | v, w ∈ V�}
and L6 is as in Example 5.8.

The following subsections are devoted to the proof development for Theo-
rems 5.14, 5.16, and 5.19. In Section 5.3.1 we describe the proof setup and
introduce auxiliary rewrite relations. In Sections 5.3.2 and 5.3.3 we show that
the auxiliary relations are locally decreasing. Finally, we wrap up the proofs in
Section 5.3.4.

80

5.3 Confluence by Layer Systems

rewrite rule layer system Thm. 5.14 Thm. 5.16 Thm. 5.19
f(g(h(x))) → g(x) L6 X X ×

k(b, x) → k(x, x) L X × X

k(x, x) → k(x, x) L × X X

Table 5.1: Incomparability of the main results.

5.3.1 Proof Setup

Assume we are given a weakly layered TRS R such that R is confluent on terms
of rank one. We will show confluence of R on all terms by induction on the
rank of terms. In the sequel we prepare for the induction step, hence:

We fix r and assume terms with rank at most r to be confluent.

Next we generalize the crucial concepts of [63] from the modularity setting to
layer systems. We have renamed non-native to foreign because the former is
confusing.

Definition 5.20. Terms with rank at most r + 1 are called native. An alien
of a native term is tall if its rank equals r and short otherwise. Foreign terms
have rank less than or equal to r.

Note that by definition, foreign terms are also native. However, we will only
call terms foreign if they are descendants of aliens.

Definition 5.21. Let t be a native term. Its base context B is obtained by
replacing all tall aliens in t with holes. The tall aliens form the base sequence t,
which satisfies t = B[t].

Definition 5.22. Sequences of foreign terms are called foreign sequences. The
imbalance of a foreign sequence t is the number of distinct terms in t. The
imbalance of a native term t is the imbalance of its base sequence. If s and t
are sequences of length n, then we write s ∝ t if si = sj implies ti = tj for all
1 6 i, j 6 n.

Note that the relation ∝ is transitive. It is useful for analyzing the imbalance
of foreign sequences. If s ∝ t then the imbalance of t is no larger than that of s.

Definition 5.23. Let s and t be native terms. A short step s IIs0 t is a
sequence of R-steps s →∗R t that is mirrored by a rewrite sequence B →∗R C
from the base context B of s. Short steps are labeled by terms s0 that are
predecessors of the source: s0 →∗R s. We omit the label when it is irrelevant.

There are two ways in which short steps arise: either by rewriting short aliens
(hence the name), or by rewriting the max-top of a term. In the sequel we will
sometimes use the fact that in Definition 5.23, C v t by Lemma 5.12, and when
writing s = B[s] and t = C[t], each element of t is an element of s.

81

5 Confluence with Layer Systems

term foreign native max-top
base
context

base
sequence imbalance

f(G(a),G(a)) × X f(�,�) f(�,�) (G(a),G(a)) 1
f(H(a),G(a)) × X f(�,�) f(�,�) (H(a),G(a)) 2
f(J,G(a)) × X f(�,�) f(J,�) (G(a)) 1
f(K,K) X X f(�,�) f(K,K) () 0

Table 5.2: Properties for r = 2.

Definition 5.24. Let B and s be the base context and base sequence of a native
term s. If s→∗R t then s = B[s] BBι B[t] = t is a tall step. Here the label ι is
the imbalance of t.

Note that t in Definition 5.24 is a foreign sequence because R is weakly
layered. Further note that the imbalance of t may be smaller than ι (since B
need not be the base context of t). The following example illustrates the above
concepts.

Example 5.25. Consider the TRSs R1 = {f(x, x)→ x} over F1 = {f, a} and
R2 = {G(x)→ I, I→ K,G(x)→ H(x),H(x)→ J, J→ K} over F2 = {I, J,K,G,H}
and let R = R1 ∪ R2. Then L = C(F1,V) ∪ C(F2,V) layers R1 and R2 (cf.
the proof of Theorem 5.50). Assume that r = 2. Table 5.2 demonstrates some
properties and notions. We have f[G(a),G(a)] II G(a) but f[G(a),G(a)] II I is
not possible since the step G(a)→R I is not in the base context of f(G(a),G(a)).
We also have f[G(a),G(a)] BB2 f[J,G(a)] = u, despite the imbalance of u being 1
(note that f(�,�) is not the base context of u). Furthermore, (G(a),G(a)) 6∝
(J,G(a)) but as the latter can be further rewritten (J,G(a))→∗R (J, J) we obtain
(G(a),G(a)) ∝ (J, J).

Remark 5.26. The constraint on short steps is subtle. It implies that the
rewrite steps do not overlap with any descendants of the tall aliens of s, but
furthermore it also has the effect of delaying fusion of those tall aliens with the
base context until the end of the rewrite sequence, continuing to treat terms
that started out as aliens as aliens even if they could fuse with the top.

We prove confluence of R on native terms by showing that any local peak
consisting of short steps and/or tall steps may be joined decreasingly. Steps
are compared as follows. Tall steps are ordered by their imbalance, tall steps
are ordered above short steps, and short steps are compared by a well-founded
order introduced later (in the proof of Lemma 5.46).

In the remainder of this section we use s, t, and u to denote native terms.

5.3.2 Local Decreasingness of Peaks involving Tall Steps
Based on Lemma 5.12 we obtain the following result:

Lemma 5.27. Let s and t be sequences of contexts with s ∝ t and C →p,`→r C
′.

If ` 6· C[s]|p then C[t]→p,`→r C
′[t′] with each element of t′ belonging to t.

82

5.3 Confluence by Layer Systems

Proof. We extend the proof of Lemma 5.12 as follows. Let τ be the substitution

τ(x) =
{
ti if x ∈ dom(σ�) and σ(x) = si

x otherwise

Note that C[t] = cτ because s ∝ t. We have cτ →p,`→r c
′τ . Comparing c′τ

and C ′ = c′σ� establishes the claim that c′τ = C ′[t′] with each element of t′
equaling some element of t.

Lemma 5.28. Let s, t, u be foreign sequences. If s →∗R t and s →∗R u then
there is a foreign sequence v such that t→∗R v, u→∗R v with t ∝ v and u ∝ v.

Proof. Let m be the length of s. We use induction on the number of disequalities
ti 6= ui for 1 6 i 6 m. If this number is zero then t = u and we can take v = t.
Otherwise, ti 6= ui for some 1 6 i 6 m. Both ti and ui are reducts of si and thus
have a common reduct v since R is confluent on foreign terms. By replacing
every occurrence of ti and ui in t, u by v, we obtain new sequences t′, u′ that
satisfy s→∗R t→∗R t′, s→∗R u→∗R u′, t ∝ t′ and u ∝ u′. Since the number of
disequalities t′i 6= u′i is decreased, we conclude by the induction hypothesis and
the transitivity of ∝.

A step in the base context is short.

Lemma 5.29. Let p be a non-hole position of the base context of s. If s→p t
then s II t.

Proof. Let B be the base context of s and let s →p t. We show B →p C for
some context C. Because left-hand sides of rules are not variables, p ∈ PosF (B).
Let M be the max-top of s, which is also the max-top of B. We distinguish two
cases. If p ∈ PosF (M) then consider the decomposition s = M [s]. According to
(W) there is a layer L with M →p L. We have B = M [s′] where s′i = si if si is
a short alien and s′i = � if si is tall. Clearly s ∝ s′ and hence we conclude by
Lemma 5.27. If p /∈ PosF(M) then s|p is a subterm of a short alien of s and
thus B|p = s|p. Hence B →p C for the context C := B[t|p]p.

When doing a short step s = B[s] II C[s′] = t, in general the context C is
not the base context of t (because of fusion from above or conspiring aliens).
Similarly, for a tall step s = B[s] BB B[t] = t in general the context B is not
the base context of t (because of fusion caused by steps in the aliens of t), but
both contexts (B and C) satisfy the more general property defined below.

Definition 5.30. We call a context shallow if its rank is at most r and all its
aliens are terms from T (F ,V).

Note that the base contexts of native terms are shallow. The same holds for
the max-tops of native terms. Furthermore, shallow contexts are closed under
rewriting, as shown by the next lemma.

Lemma 5.31. If C is a shallow context and C →R D then D is a shallow
context.

83

5 Confluence with Layer Systems

Proof. Assume that C →p,`→r D. Then C[x, . . . , x] →p,`→r D[x, . . . , x] for a
fresh variable x. Let Mx be the max-top of C[x, . . . , x] and note that the max-
top M of C is obtained by replacing each occurrence of x by a hole in Mx. If
p ∈ PosF (M) = PosF (Mx) then by (W) there is a rewrite step Mx →p,`→r Lx
where Lx is a layer, and even a top of D[x, . . . , x] by Lemma 5.12. There is a
mirroring rewrite step M →p,`→r L where L is a top of D. By Lemma 5.12, each
hole of L corresponds to a hole or a term without holes in D. If p /∈ PosF (M)
then we take L = M , which is a top of D. Again, each hole of L corresponds to
a hole or a term in D. In both cases we conclude by noting that any holes of D
are holes of L and therefore also of the max-top of D and that the rank of D,
which equals the rank of Dx, is at most r by Lemma 5.13.

Let s = B[s] be the decomposition of s into base context and base sequence.
From the previous result we get that B[s] II C[s′] = t (with B →∗R C) implies
that C is shallow. The next result establishes that the shallow context C is
never larger than the base context of t.

Lemma 5.32. Let C be a shallow context and t a native term. If C v t then
C v B for the base context B of t.

Proof. Let C = M [s] be the decomposition of C into max-top and aliens. Since
C is shallow, elements of s are either holes or terms of rank less than r. From
M v C v t we infer the existence of a sequence t′ such that t = M [t′] and
si = t′i whenever si 6= �. By Lemma 5.9 every tall alien in t is a subterm of a
term of rank at least r in t′. Hence C v B as desired.

Steps within shallow contexts are short steps.

Lemma 5.33. Let p be a non-hole position in a shallow context C with s = C[s].
If s→p t then s II t.

Proof. By Lemmata 5.32 and 5.29.

Steps below a shallow context can be decomposed into tall and short steps.

Lemma 5.34 (tall–short factorization). Let s = C[s] with a shallow context
C and a foreign sequence s. If s →∗R t and ι is the imbalance of t then
C[s] BB6ι · II∗ C[t].

Proof. Let B and s′ be the base context and base sequence of s. Note that
by Lemma 5.9 (with L equal to the max-top of C) the tall aliens s′ of s are
a subsequence of s, because all aliens of C have rank less than r. For the
corresponding subsequence t′ of t, we obtain s = B[s′] BB6ι B[t′], while the
remaining elements of s and t give rise to a rewrite sequence B = C[s′′]→∗R C[t′′],
where s′′ (t′′) is obtained by replacing the terms corresponding to the elements
of s′ (t′) by holes. Consequently, B[t′] = C[s′′][t′] II∗ C[t′′][t′] = C[t] by
Lemma 5.33.

84

5.3 Confluence by Layer Systems

Example 5.35. Continuing Example 5.25. Let s = f(J,G(a)). Then s = C[s] for
the shallow context C = f(�,�) with s = (J,G(a)). Let t = (K, I). Since s→∗R t
the conditions of Lemma 5.34 hold and we have C[s] BB62 · II∗ C[t]. The tall
step arises as s = f(J,�)[G(a)] BB1 f(J,�)[I] = f(J, I) while f(J, I) II f(K, I) is a
short step since f(J, I) is its own base context.

Lemma 5.36. Peaks of tall steps are locally decreasing:

ιCC ·BBκ ⊆ BB6κ ·II∗ · ∗JJ · 6ιCC

Proof. Let t ιCC s BBκ u and let the base context and base sequence of s be
B and s. There are foreign sequences t and u such that t ∗

R← s →∗R u and
t = B[t], u = B[u]. By Lemma 5.28, we can find a foreign sequence v such that
t →∗R v ∗

R← u, t ∝ v, and u ∝ v. Hence the imbalance of v is less than or
equal to both ι and κ and we conclude by Lemma 5.34.

Example 5.37. To demonstrate Lemma 5.36, we extend Example 5.25. Let
s = f(G(a),G(a)). Then t = f(H(a), I) 2CC s BB2 f(I,H(a)) = u. Note that
I →R K and H(a) →R J →R K. The base contexts of t and u are f(�, I) and
f(I,�), respectively. Consequently, t BB1 f(K, I) II f(K,K) JJ f(I,K) 1CC u.

Lemma 5.38. Peaks involving a tall and a short step are locally decreasing:

ιCC ·II ⊆ BB=
<ι ·II∗ · ∗JJ · 6ιCC

Proof. Let t ιCC s II u and let the base context and base sequence of s be B
and s. We have t = B[t] with s→∗R t for some foreign sequence t and u = C[u].
We construct v and w such that

B[t] BB=
<ι · II∗ B[v] II∗ C[w] ∗JJ · 6ιCC C[u]

We distinguish two cases.

1. If s ∝ t then we let v = t. Hence B[t] = B[v] and thus B[t] BB=
<ι · II∗

B[v].

2. Otherwise, using Lemma 5.28 with s →∗R t and s →∗R s we can find
a foreign sequence v such that t →∗R v, t ∝ v, and s ∝ v. Since the
imbalance of v is less than ι (s 6∝ t means that there are i, j with si = sj
and ti 6= tj . By s ∝ v, we have vi = vj , and t ∝ v ensures that all other
equalities between elements of t carry over to v, so the imbalance becomes
smaller) we obtain B[t] BB=

<ι · II∗ B[v] from Lemma 5.34.

By the definition of II we get B →∗R C mirroring s = B[s] →∗R C[u] = u.
Hence u is a sequence of foreign terms such that all elements of u are elements
of s, which follows by repeated application of Lemma 5.12. We define wi = vj
if ui = sj . Then u →∗R w and the imbalance of w is at most ι. Hence
C[u] BB6ι · II∗ C[w] by Lemma 5.34. We also have B[v] →∗R C[w] with no
rewrite step affecting a tall alien and thus B[v] II∗ C[w] by Lemma 5.33.

85

5 Confluence with Layer Systems

Example 5.39. We revisit Example 5.25. Let s = f(f(G(a),G(a)), I). The base
context of s is f(f(�,�), I). Then t = f(f(I,H(a)), I) 2CC s II f(G(a),K) =
u. The base context of t is f(f(I,�), I) and we have t BB1 f(f(I,K), I) II
f(f(K,K),K) II f(K,K) = v, whereas the base context of u is f(�,K) and
u BB1 v.

Lemma 5.40 (Main Lemma). If II is locally decreasing then R is confluent
on native terms.

Proof. Every rewrite step s →R t can be written as s II t by Lemma 5.29
or s BB t if the rewrite rule is applied to a tall alien of s. Consequently,
→R ⊆ BB ∪II ⊆ →∗R and the claim follows from the confluence of BB ∪II.
The latter is a consequence of Theorem 3.21 in connection with the assumption
and Lemmata 5.36 and 5.38.

The various versions of the main theorem will follow from Lemma 5.40.

5.3.3 Local Decreasingness of Short Steps

In this section we study conditions to make short steps locally decreasing. The
following result allows to represent a native term s by a foreign term s′ and
a substitution π such that s = s′π. This will be the key for joining the peak
originating from s by the confluence assumption of s′.

Lemma 5.41 (peak analysis). For a peak t JJ s II u there are foreign terms
s′, t′, u′, v′ and substitutions π, π� such that

1. π is a bijection with dom(π) ∩ Var(s) = ∅,

2. s′π = s, t′π = t, u′π = u, s′π� is the base context of s, and t′π� and u′π�
are shallow contexts of t and u, and

3. v′ ∗R← t′ ∗R← s′ →∗R u′ →∗R v′ and t→∗R v ∗R← u with v = v′π.

Proof. Let s = B[s] be the decomposition of s into base context and base
sequence, and recall that base contexts are shallow. According to the definition
of II there are rewrite sequences B →∗R Ct, B →∗R Cu mirroring s →∗R t,
s →∗R u, respectively. Using Lemma 5.31 repeatedly, we find that Ct and Cu
are shallow contexts. Let π be a bijection between the tall aliens of s and fresh
variables, and define s′ = B[π−1(s)]. We have s ∝ π−1(s) and therefore repeated
application of Lemma 5.27 yields rewrite sequences s′ →∗R t′ and s′ →∗R u′

mirroring s′π = s →∗R t = t′π and s′π = s →∗R u = u′π. Since s′ is a foreign
term and therefore confluent, t′ and u′ have a common reduct: t′ →∗R v′ ∗R← u′.
By applying π to this valley we obtain t →∗R v ∗

R← u. Note that s′π� = B,
t′π� = Ct and u′π� = Cu are shallow contexts as claimed.

Example 5.42. Consider the layer system L given by

L0 = {v, a, b, f(v), g(v), g(b) | v ∈ V�}
L = L0 ∪ {h(C,C ′, C ′′) | C,C ′, C ′′ ∈ L0}

86

5.3 Confluence by Layer Systems

which weakly layers the TRS R = {h(x, y, z)→ h(y, x, z), f(x)→ g(x), a→ b}.
Assume that r = 1 and let s = h(a, f(a), f(b)). The base context of s is
h(a, f(�), f(�)). There is a peak of short steps

t = h(b, g(a), f(b)) JJ s II h(f(a), a, g(b)) = u

From Lemma 5.41, we may obtain π = {a/x, b/y}, s′ = h(a, f(x), g(y)), t′ =
h(b, g(x), f(y)), u′ = h(f(x), a, g(y)), and v′ = h(g(x), b, g(y)). Note that t′π� =
h(b, g(�), f(�)) is the base context of t but u′π� = h(f(�), a, g(�)) does not
equal h(f(�), a, g(b)), the base context of u.

Lemma 5.43. If R is left-linear then II is locally decreasing.

Proof. Consider a local peak t s0JJ s IIs1 u. First we apply Lemma 5.41.
Let t′′ be a linearization of t′, which we obtain by replacing each variable in
t′ by a fresh variable. Because R is left-linear, t′ →∗R v′ can be mirrored as
t′′ →∗R v′′. Let Bt be the base context of t and Ct = t′π�. We have Ct v Bt by
Lemma 5.32, which implies t′′ 6· Bt and thus Bt = t′′σ for some substitution
σ. We have Bt →∗R v′′σ. Together with t→∗R v, which mirrors Bt →∗R v′′σ, we
obtain t II v. This step can be labeled with s1 because s1 →∗R s →∗R t. By
symmetry we obtain u IIs0 v and hence II is locally decreasing.

Next we deal with bounded duplicating TRSs. In order to exploit relative
termination, we insert ♦ symbols in front of tall aliens as follows.

Definition 5.44. Let s be a native term with base context B and base se-
quence s. Then s♦ = B[♦(s)] where ♦(s) denotes the result of replacing each
element u of s by ♦(u).

Lemma 5.45. If s→R t then s♦ →R · →∗♦(x)→x t
♦.

Proof. Let s→p,`→r t and let B be the base context of s. If p ∈ PosF (B) then
by Lemma 5.27 we obtain a term t′ and a context C such that s♦ →p,`→r t

′

and B →p,`→r C. Decomposing t as t = C[t] we find that t′ = C[♦(t)]. If
p /∈ PosF(B), then the rewrite step is within a tall alien of s. Hence letting
C = B and decomposing t as C[t], we find that s♦ = C[♦(s)]→R C[♦(t)]. In
either case, Lemma 5.9 (with L equal to the max-top of C) shows that the tall
aliens of t are a subsequence of t, and therefore C[♦(t)]→∗♦(x)→x t

♦, using that
♦(ti)→♦(x)→x ti for those ti that are not tall aliens.

Lemma 5.46. If R is bounded duplicating then II is locally decreasing.

Proof. Since R is bounded duplicating, we may assume a fresh function symbol
♦ such that {♦(x)→ x}/R is terminating. In order to compare the labels we
define a well-founded order on terms by s0 > s1 if s♦0 →

+
{♦(x)→x}/R s

♦
1 . Consider

a peak t s0JJ s IIs1 u which we first subject to Lemma 5.41. We analyze the
sequence t→∗R v resulting from the peak analysis by distinguishing two cases.

1. If t′π� is the base context of t then the rewrite sequence t′π� →∗R v′π�
mirrors t →∗R v. Hence we obtain t IIs1 v, noting that the label s1
satisfies s1 →∗R s→∗R t.

87

5 Confluence with Layer Systems

2. If t′π� is not the base context then like in the proof of Lemma 5.45, we can
decompose t as t = t′π�[t′] in order to obtain s♦ →∗R t′π�[♦(t′)]. Since t′π�
is not the base context, the tall aliens of t are a proper subsequence of t′ and
therefore, t′π�[♦(t′)] →+

♦(x)→x t
♦. We also have s1 →∗R s, which implies

s♦1 →∗R∪{♦(x)→x} s by Lemma 5.45. As a consequence, s♦1 →
+
R/{♦(x)→x} t

♦

and s1 > t follow. By applying Lemma 5.29 several times we obtain
t II∗t v and thus t II∗∨s1 v.

The analogous analysis of u→∗R v yields u IIs0 v or u II∗∨s0 v and hence II
is locally decreasing.

Finally, we prepare for the main result about layered TRSs, where condition
(C1) of Definition 5.3 is crucial.

Lemma 5.47. Let R be a layered TRS and t→p,`→r t
′ for native terms t and

t′ If p ∈ PosF(B) for the base context B of t then either B →p,`→r B
′ for the

base context B′ of t′ or t′ is its own base context.

Proof. Let M and M ′ be the max-tops of t and t′. We distinguish two cases.

1. If p ∈ PosF(M) then by (C1) either M →p,`→r � or M →p,`→r M
′. In

the former case t′ equals an alien of t. Since the rank of t′ is at most r, t′
is its own base context. So assume M →p,`→r M

′. By Lemma 5.11 there
exist a term m and a substitution σ such that m →p,`→r m

′ for some
m′ (since ` 6· m|p), t = mσ, and M = mσ�. Define a substitution τ as
follows:

τ(x) =
{
� if x ∈ dom(σ�) and σ(x) is a tall alien of t
σ(x) otherwise

We haveB = mτ by construction of τ . LetB′ = m′τ . ClearlyB →p,`→r B
′.

By comparing m′τ to M ′ = m′σ�, we see that B′ is the base context of t′.

2. If p /∈ PosF(M) then a short alien of t is rewritten. By letting B and t
be the base context and base sequence of t, by Lemma 5.12 we obtain a
rewrite step t = B[t] →p,`→r B

′[t′] = t′ with t′ = t because p is parallel
to the hole positions of B. We claim that B′ is the base context of t′.
Suppose to the contrary that some ti is not a tall alien of t′. Let q be
its position in t, which is also its position in t′. Since q ∈ Pos�(M) and
q /∈ Pos�(M ′), M @ M [M ′|q]q. Hence M [M ′|q]q ∈ L by (C2) and thus
M [M ′|q]q v t, contradicting the fact that M is a max-top of t.

The following example shows that (C2) is essential for Lemma 5.47.

Example 5.48. Recall Figure 5.1 and the underlying layer system L, which
satisfies (W) and (C1). However (C2) is violated, e.g., we have L = k(�,�) ∈ L
and N = k(h(�), h(�)) ∈ L but L[N |2]2 = k(�, h(�)) /∈ L. Consider the
term t = k(f(a), h(a)) of rank 3. Its base context is B = k(f(a),�). We have
t → k(h(a), h(a)) =: t′. The base context of t′ is k(h(�), h(�)) =: B′ but
B 6→R B′.

88

5.4 Applications

Lemma 5.49. If R is layered then II is locally decreasing.

Proof. Consider a local peak t s0JJ s IIs1 u. First we analyze the peak by
Lemma 5.41. The rewrite sequence t′π� →∗R v′π� mirrors t = t′π →∗R v′π = v.
We find by repeated application of Lemma 5.47 that the base context Bt of t
equals t′π� or t. In both cases, we have t IIs1 v, noting that t→∗R v mirrors
itself, and that s1 →∗R t. We obtain u IIs0 v in the same way and hence II is
locally decreasing.

5.3.4 Proof of Main Theorems

Because the proofs are similar, we prove all main results in one go.

Proof of Theorems 5.14, 5.16, and 5.19. By assumption the TRS R is weakly
layered and confluent on terms of rank one. We have to show that

- if R is left-linear then R is confluent (Theorem 5.14),

- if R is bounded duplicating then R is confluent (Theorem 5.16), and

- if R is layered then R is confluent (Theorem 5.19).

We show confluence of all terms by induction on the rank r of a term. In the
base case we consider terms of rank one, which are confluent by assumption.
Assume as induction hypothesis that confluence of terms of rank r or less has
been established. We consider terms of rank r + 1, to which the analysis of
Sections 5.3.1–5.3.3 applies. By Lemma 5.40 in conjunction with Lemma 5.43
(for weakly layered left-linear R), Lemma 5.46 (for weakly layered bounded
duplicating R), or Lemma 5.49 (for layered R), we obtain confluence of R on
terms of rank up to r + 1, completing the induction step.

5.4 Applications

In this section the abstract confluence results via layer systems are instantiated
by concrete applications. Section 5.4.1 treats the plain modularity case [75]
and Section 5.4.2 covers layer-preservation [54]. The result for quasi-ground
systems [42] is less known but also fits our framework, as outlined in Section 5.4.3.
Currying [39] is the topic of Section 5.4.4, before many-sorted persistence [4] is
discussed in Section 5.4.5.

For the results in this section the reverse directions also hold. We do not give
the (easy) proofs since they do not require layer systems.

In Sections 5.4.1, 5.4.2, and 5.4.3 we deal with two TRSs R1 and R2 that
are defined over the respective signatures F1 and F2. We let R = R1 ∪R2 and
F = F1 ∪ F2.

89

5 Confluence with Layer Systems

5.4.1 Modularity

We recall the classical modularity result for confluence [75].

Theorem 5.50. Suppose F1 ∩ F2 = ∅. If R1 and R2 are confluent then R is
confluent.

Proof. Define
L := C(F1,V) ∪ C(F2,V)

We show that R is layered. Since V ⊆ L and f(�, . . . ,�) ∈ L for all function
symbols f ∈ F1 ∪ F2, every term in T (F ,V) has a non-empty top. Hence
condition (L1) holds. Also condition (L2) holds because L is closed under the
operation of interchanging variables and holes. For condition (L3) we observe
that if L ∈ C(Fi,V), p ∈ PosF (L), and N ∈ L such that L|p tN is defined then
root(L|p) ∈ Fi and thusN ∈ C(Fi,V). Consequently, L[L|ptN]p ∈ C(Fi,V) ⊆ L.
Since each rule is over a single signature, and layers are closed under rewriting,
condition (W) follows easily. For condition (C1) we consider a term s with
max-top M , p ∈ PosF(M), and rewrite step s →p,`→r t which is mirrored by
M →p,`→r L. Suppose M ∈ C(Fi,V). We have L ∈ C(Fi,V). The case L = �
is obtained when t is an alien of s, which is only possible if the rule ` → r is
collapsing. Otherwise L is the max-top of t since the root symbols of aliens of
s belong to F3−i and hence cannot fuse with L to form a larger top. Finally,
condition (C2) holds because if N ∈ C(Fi,V) then L v N implies L ∈ C(Fi,V)
and thus also L[N |p]p belongs to C(Fi,V).

According to Theorem 5.19, R is confluent if we show that R is confluent
on terms of rank one. The latter follows from the fact that rewriting does not
increase the rank of a term (Lemma 5.13) together with the observation that
non-variable terms of rank one belong to either T (F1,V) or T (F2,V) and only
rewrite rules of Ri apply to terms in T (Fi,V), in connection with the confluence
assumptions of R1 and R2.

5.4.2 Layer-Preservation

Layer-preserving TRSs are a special class of TRSs with shared function symbols
for which confluence is modular as shown in [54]. In this section, we reprove
this result using layer systems. Let TX(F ,V) denote the set of terms with root
symbol from X. Let B := F1 ∩F2, D1 := F1 \F2 and D2 := F2 \F1. The result
on layer preservation can be stated as follows.

Theorem 5.51. Let R1 ⊆ T (B,V)2∪TD1(F1,V)2, R2 ⊆ T (B,V)2∪TD2(F2,V)2,
and R1 ∩ T (B,V)2 = R2 ∩ T (B,V)2. If R1 and R2 are confluent then R is
confluent.

Proof. We define

L := C(B,V) ∪ TD1(F1 ∪ {�},V) ∪ TD2(F2 ∪ {�},V)

It is easy to verify that L layers R := R1 ∪ R2, much like in the modularity
case. In particular, L is closed under rewriting. Consider a term s of rank one

90

5.4 Applications

and a peak t ∗R← s→∗R u. Let i ∈ {1, 2} be such that s ∈ T (Fi,V). The only
rules of R3−i that can be used in the peak come from T (B,V)2 and hence also
appear in Ri. Since Ri is confluent on T (Fi,V) we obtain joinability of t and u
in Ri and thus also in R. Hence R is confluent on terms of rank one and we
conclude by Theorem 5.19.

Toyama’s modularity result has been adapted in [55] to constructor-sharing
combinations in which the participating TRSs may share constructor symbols
under the additional condition that neither collapsing nor constructor-lifting
rules are present. This result is subsumed by Theorem 5.51, cf. [57, p. 249]. Still,
layer-preservation and modularity are incomparable (since layer-preservation
places collapsing rules in both systems).

5.4.3 Quasi-Ground Systems

We show modularity of quasi-ground TRSs [42, Theorem 1] using layer systems.

Definition 5.52. We call a context C quasi-ground if for all p ∈ Pos(C) with
root(C|p) ∈ F1 ∩ F2, C|p is ground over F , i.e., C|p ∈ T (F).

Theorem 5.53. Suppose root(`) /∈ F1 ∩ F2 and ` and r are quasi-ground, for
all `→ r ∈ R. If R1 and R2 are confluent then R is confluent.

Proof. We define a layer system L := L1 ∪ L2 ∪ Lc with

Li = {C ∈ C(Fi,V) | C is quasi-ground} for i = 1, 2
Lc = {f(v1, . . . , vn) | f ∈ F1 ∩ F2 and vi ∈ V� for 1 6 i 6 n}

We readily check that (L1) and (L2) are satisfied. For (L3), L1, L2 and Lc are
individually closed under merging at function positions. Fix i ∈ {1, 2}. If we
merge L ∈ Li with N ∈ L3−i ∪ Lc at p ∈ PosF(L) then either N = � and
L[L|p t N] = L ∈ Li, or root(L|p) ∈ F1 ∩ F2, which implies L|p ∈ T (F) and
hence L[L|p tN]p = L[L|p]p = L ∈ Li. Note that L ∈ Lc can be merged with
N ∈ Li only at position p = ε. If N = � then L t� = L ∈ Lc and otherwise
L tN = N ∈ Li. For (W) we let M be the max-top of s, p ∈ PosF(M), and
consider a rewrite step s→p,`→r t. We assume without loss of generality that
`→ r ∈ R1. Hence M ∈ L1 because root(`) ∈ F1 \ F2. Note that L1 is closed
under taking subterms and that for any substitution τ : V → L1 we have `τ ∈ L1.
Let σ be a substitution such that s|p = `σ and let τ be the substitution that
maps each variable x ∈ Var(`) to the L1-max-top of σ(x). We have M = M [`τ]p
and thus M →p,`→r L with L = M [rτ]p ∈ L1. For (C1) it is easy to see that L
is the L1-max-top of t. Suppose L 6= �. We claim that L is the max-top (with
respect to L) of t. This follows from the observation that if there is a top of t
that comes from L2 or Lc then root(L) ∈ F1 ∩ F2 and thus L ∈ T (F), which
cannot be made larger. Condition (C2) follows as in the proof of Theorem 5.50.

Now let R1 and R2 be confluent. We show that R is confluent on terms of
rank one. Consider a term of rank one. Note that rules from R1 only apply
to elements of L1. Furthermore, L1 is closed under rewriting by R1. Likewise,
rules from R2 only apply to elements of L2, which is closed under rewriting by

91

5 Confluence with Layer Systems

R2. We conclude that R is confluent on terms of rank one and by Theorem 5.19
this implies that R is confluent.

5.4.4 Currying

Currying is a transformation of TRSs such that the resulting TRS has only
one non-constant function symbol Ap that represents partial applications. It is
useful in the construction of polynomial-time procedures for deciding properties
of TRSs, e.g., [14]. [39] proved that confluence is preserved by currying.

Definition 5.54. Given a TRS R over a signature F , let FC = {Ap}∪{f0 | f ∈
F} where Ap is a fresh binary function symbol and all function symbols in F
become constants. The curried version Cu(R) of R is the TRS over the signature
FC with rules {Cu(`) → Cu(r) | ` → r ∈ R}. Here Cu(t) = t if t is a variable
or a constant and Cu(f(t1, . . . , tn)) = Ap(· · ·Ap(f0,Cu(t1)) · · · ,Cu(tn)) (with n
occurrences of Ap). Let FU = {Ap} ∪ {fi | f ∈ F and 0 6 i 6 arity(f)}, where
each fi has arity i and farity(f) is identified with f . The partial parametrization
PP(R) of R is the TRS R ∪ U over the signature FU , where U consists of all
uncurrying rules:

Ap(fi(x1, . . . , xi), xi+1)→ fi+1(x1, . . . , xi+1)

for all f ∈ F and 0 6 i < arity(f).

The next example familiarizes the reader with the above concepts.

Example 5.55. For the TRS R = {f(x, x)→ f(a, b)} we have

Cu(R) = {Ap(Ap(f0, x), x)→ Ap(Ap(f0, a), b)}
U = {Ap(f0, x)→ f1(x),Ap(f1(x), y)→ f(x, y)}

PP(R) = R∪ U

Note that for a term s = Ap(Ap(Ap(f0, x), x), x) we have

s→Cu(R) Ap(Ap(Ap(f0, a), b), x)

and

s→U Ap(Ap(f1(x), x), x)→U Ap(f(x, x), x)→R Ap(f(a, b), x)

so the partial parametrization is closely related to currying.

Note that U is both terminating and orthogonal, hence confluent. By s↓U we
denote the unique U-normal form of a term s.

Lemma 5.56 ([39, Proposition 3.1]). Let R be a TRS. If PP(R) is confluent
then Cu(R) is confluent.

Theorem 5.57 ([39, Theorem 5.2]). Let R be a TRS. If R is confluent then
Cu(R) is confluent.

92

5.4 Applications

Ap
Ap

Ap
f0 x

Ap
f0 x

x

(a)

Ap
Ap

Ap
f1 x

Ap
f1 x

x

(b)

Ap
Ap

Ap
f2 x

Ap
f2 x

x

(c)

Ap
Ap

Ap
f2 x

Ap
f2 x

x

(d)

Figure 5.2: Layering terms in PP(R) for the TRS R in Example 5.55.

Proof. According to Lemma 5.56 it suffices to show that PP(R) is confluent. To
this end, we let L := L1 ∪L2, where L1 is the smallest extension of V� such that

Ap(· · ·Ap(fm(s1, . . . , sm), sm+1) · · · , sn) ∈ L1

for all fm ∈ FU \ {Ap}, s1, . . . , sn ∈ L1, with n less than or equal to the arity of
f in the original TRS R, and

L2 = {Ap(v, t) | v ∈ V� and t ∈ L1}

It is not difficult to see that L1 consists of those contexts in C(FU ,V) whose
U-normal form contains no occurrences of Ap. See Figure 5.2 for some layered
terms.

We claim that PP(R) is layered. Conditions (L1) and (L2) are trivial and
conditions (L3) and (C2) are easily shown by induction on the definition of L1.
The interesting case for (L3) is when L ∈ L1. Since merging cannot create new
Ap symbols above any fm, the result is in L1, whenever defined. For (W) and
(C1), we let M be the max-top of s, p ∈ PosF (M), and consider a rewrite step
s →p,`→r t with ` → r ∈ PP(R) Because L is closed under taking subterms,
M |p is a top of s|p. It is the max-top because otherwise we could merge the
max-top of s|p with M at position p and obtain a larger top of s. Note that
`� ∈ L1 (recall that `� is obtained by replacing all variables in ` by �) We have
`� v s|p and therefore `� vM |p. As a matter of fact, M |p is obtained from `�
by replacing each hole at position q by the max-top (in L1) of s|pq. Because
equal subterms have equal max-tops, s 6·M |p and hence there is a rewrite step
M →p,`→r L. We have L ∈ L1 because L1 is closed under rewriting by PP(R).
Furthermore, the max-tops of the aliens of s do not belong to L1 and therefore
the aliens of s are still aliens of L, unless L = �. It follows that both (W) and
(C1) hold.

To show confluence of PP(R) on terms of rank one, first note that elements
of L2 allow no root steps and therefore it suffices to show confluence on terms
in L1. It is easy to see that s→R∪U t implies s↓U →=

R t↓U . Hence, for a peak

93

5 Confluence with Layer Systems

t ∗
R∪U← s→∗R∪U u there is a corresponding peak t↓U ∗R← s↓U →∗R u↓U , which

is joinable by the confluence of R. Hence t and u are joinable in PP(R). We
conclude by Theorem 5.19.

5.4.5 Many-sorted Persistence

In this subsection, we prove persistence of confluence [3]. We begin by recalling
many-sorted terms and rewriting.

Definition 5.58. Let S be a set of sorts. A sort attachment S associates with
each function symbol f ∈ F of arity n a type f : α1×· · ·×αn → α with αi, α ∈ S
for 1 6 i 6 n, and with each variable x ∈ V a sort from S. Let Vα denote the
set of variables of sort α. We assume that each Vα is countably infinite.

Note that Vα ∩ Vβ = ∅ for all α, β ∈ S whenever α 6= β.

Definition 5.59. Let S be a sort attachment. We define terms of sort α
inductively by Tα(F ,V) = Vα ∪ {f(t1, . . . , tn) | f : α1 × · · · × αn → α and ti ∈
Tαi(F ,V) for 1 6 i 6 n}. The set of many-sorted terms is defined TS(F ,V) =⋃
α∈S Tα(F ,V).

Definition 5.60. A TRS R is compatible with a sort attachment S if for each
rule `→ r ∈ R, there is a sort α ∈ S with `, r ∈ Tα(F ,V).

Remark 5.61. If a TRSR is compatible with a sort attachment S then Tα(F ,V)
is closed under rewriting by R, for each α ∈ S.

Confluence is a persistent property of TRSs.

Theorem 5.62. Let a TRS R be compatible with a sort attachment S. If R is
confluent on TS(F ,V) then R is confluent.

Proof. Assume that R is confluent on TS(F ,V). We let L be the smallest set
such that TS(F ,V) ⊆ L and L is closed under replacing variables by holes and
vice versa (cf. (L2)). It is easy to see that R is layered according to L. (W)
and (C1) follow from the compatibility assumption and Remark 5.61. Also
(C2) is confirmed easily. We show that R is confluent on terms of rank one.
To this end, consider a term s ∈ L ∩ T (F ,V). The confluence assumption on
TS(F ,V) does not immediately apply to s since the variables need not match
the type of their context. If s is a variable then s is confluent. Otherwise, there
is a term s′ in TS(F ,V) that has s as an instance. Because subterms of sort
α are interchangeable in many-sorted terms, we may choose s′ in such a way
that s′|p = s′|q if s′|p, s′|q ∈ Vα for some α and s|p = s|q. Note that for each
p the sort of s′|p is uniquely determined by s. Because the sets Tα(F ,V) are
pairwise disjoint, any rewrite sequence on s ∈ L ∩ T (F ,V) is mirrored by a
rewrite sequence from s′ ∈ TS(F ,V). By assumption, s′ is confluent and hence
s is confluent as well. We conclude that R is confluent on terms of rank one
and hence confluent by Theorem 5.19.

94

5.5 Order-sorted Persistence

5.5 Order-sorted Persistence

In this section we establish order-sorted persistence. Section 5.5.1 introduces
order-sorted rewriting, states the main result, and explains how to exploit it
for establishing confluence. In Section 5.5.2 we prove the result for left-linear
systems before Section 5.5.3 shows that layer systems cannot immediately cover
arbitrary TRSs. We refine them such that they become suitable and give an
alternative proof for many-sorted persistence (Section 5.5.4) before we finally
prove order-sorted persistence in Section 5.5.5. We compare our work with the
earlier result from [3] in Section 5.6.1.

5.5.1 Confluence via Order-sorted Persistence

To obtain order-sorted terms, we equip a set of sorts S with a precedence > and
modify Definition 5.59 as follows.

Definition 5.63. Let S be a sort attachment. We define terms of sort α induc-
tively by Tα(F ,V) = Vα ∪ {f(t1, . . . , tn) | f : α1 × · · · × αn → α, ti ∈ Tβi(F ,V),
αi > βi, and 1 6 i 6 n}. The set of all order-sorted terms is TS(F ,V) =⋃
α∈S Tα(F ,V). A term t is strictly order-sorted if root(t|p) : α1 × · · · × αn → α

and t|pi ∈ Vβ imply αi = β, for all p ∈ PosF (t).

Note that we obtain many-sorted terms by letting > = ∅. Next we define
when a TRS is compatible with a sort attachment S in the order-sorted setting.

Definition 5.64. A TRS R is compatible with a sort attachment S if each rule
`→ r ∈ R satisfies condition (1), and strongly compatible with S if condition (2)
is satisfied as well.

1. If ` ∈ Tα(F ,V) and r ∈ Tβ(F ,V) then α > β and ` is strictly order-sorted.

2. If r ∈ Vβ then β is maximal in S. If r /∈ V then r is strictly order-sorted.

Note that condition (1) ensures that well-typed terms are closed under rewrit-
ing. The main result on order-sorted persistence is stated below.

Theorem 5.65. Let R be compatible with a sort attachment S. Furthermore
assume that R is left-linear, bounded duplicating, or strongly compatible with S.
If R is confluent on TS(F ,V) then it is confluent.

Theorem 5.65 gives rise to a decomposition result (presented in [3, 4]) based
on order-sorted persistence. The decomposition is based on the observation
that the sort of a term restricts the rules that can be applied when rewriting it;
therefore we can decompose a TRS R that is compatible with a sort attachment
S into several TRSs Rα (α ∈ S) each containing the rules applicable to terms of
sort α or less. Formally, we define D on sorts as the smallest transitive relation
such that > ⊆ D and α D αi whenever f : α1 × · · · × αn → α, and then define
Rα = {`→ r | `→ r ∈ R, ` ∈ Tβ(F ,V), and α D β}.

The next example shows that order-sorted persistence is more powerful than
many-sorted persistence for decomposing TRSs.

95

5 Confluence with Layer Systems

Example 5.66 (adapted from [3]). Consider the TRS R consisting of the
rewrite rules

(1) f(x, a)→ g(x) (2) f(x, f(x, b))→ b (3) g(c)→ c (4) h(x)→ h(g(x))

and the set of sorts S = {0, 1, 2} with 1 > 0. Let the sort attachment be given by
a, b : 1, c : 0, f : 0× 1→ 1, g : 0→ 0, h : 0→ 2, and x : 0. It is straightforward
to check that R is consistent with S. In the order-sorted TRS, only rules (1),
(2), and (3) can be applied to terms of sort 1 and their reducts, rules (3) and (4)
can be applied to terms of sort 2, and only rule (3) can be applied to terms of
sort 0. Hence, since R1 = {(1), (2), (3)} (which is terminating and has no critical
pairs), R2 = {(3), (4)} (which is orthogonal), and R0 = {(3)} (orthogonal)
are confluent, R is confluent. No such decomposition can be obtained with
many-sorted persistence. Consider a most general sort attachment making all
rules many-sorted: a, b, c, x : 0, f : 0 × 0 → 0, g : 0 → 0, and h : 0 → 2. Since
terms of sort 2 can have subterms of sort 0, no decomposition is possible.

The weaker conditions in Definition 5.64 for left-linear TRSs are beneficial.

Example 5.67. Consider the TRS R consisting of the rewrite rules

f(a)→ f(f(h(c))) g(b)→ g(g(h(c))) h(x)→ x

and the set of sorts S = {0, 1, 2} with 1, 2 > 0. Let the sort attachment be
given by a : 1, b : 2, c, x : 0, f : 1→ 1, g : 2→ 2, and h : 0→ 0, Note that R is
compatible with S. We can decompose R into the component induced by sort
1: R1 = {f(a)→ f(f(h(c))), h(x)→ x}, sort 2: R2 = {g(b)→ g(g(h(c))), h(x)→
x}, and sort 0: R0 = {h(x)→ x}. If we add the restrictions for non-left-linear
systems, the collapsing rule h(x) → x enforces h : α → α for a maximal sort
α. Hence also the arguments of f and g have sort α, and α is greater than or
equal to the sort of a, b, c, f(x), g(x). So the component induced by α contains
all rules.

5.5.2 Order-sorted Persistence for Left-linear Systems
In this section we show that layer systems can establish order-sorted persistence
for left-linear TRSs.

Theorem 5.68. Let R be compatible with a sort attachment S. If R is left-linear
and confluent on TS(F ,V) then it is confluent.

Proof. Let L be the smallest set such that TS(F ,V) ⊆ L and L is closed
under (L2). First we show that L weakly layers R. In the sequel we call contexts
weakly order-sorted if they are order-sorted except that arbitrary variables
may occur at any position. (These are exactly the elements of L and weakly
order-sorted terms are those in L ∩ T (F ,V).)

Condition (L1) holds trivially and condition (L2) holds by assumption. For
(L3) we assume that L|p tN = N ′ with p ∈ PosF (L) is defined. Since L,N ∈ L
obviously N ′ is weakly order-sorted and so is L[N ′]p since root(L|p) = root(N ′)
and hence L[N ′]p ∈ L. The final condition is (W). So let s→p,`→r t with p ∈

96

5.5 Order-sorted Persistence

PosF (M) for the max-top M of s. We have root(M |p) = root(`) and henceM [`]p
is a layer. Since M is the max-top of s and ` is left-linear there is a substitution
σ such that M [`σ]p = M . Hence M →p,`→r M [rσ]p. By compatibility with the
sort attachment S we have rσ ∈ L. Furthermore if α and β are the sorts of
` and r then α > β ensures that M [rσ]p is weakly order-sorted and hence a
member of L.

Next we show confluence of terms of rank one. To this end let s ∈ L∩T (F ,V).
Then there are a term s′ ∈ TS(F ,V) and a variable substitution χ such that
s = s′χ. Let t ∗R← s →∗R u. By left-linearity of R there are terms t′ and u′

with t = t′χ and u = u′χ such that t′ ∗R← s′ →∗R u′. The confluence assumption
on TS(F ,V) yields t′ →∗R v′ ∗R← u′. Hence t = t′χ →∗R v′χ ∗

R← u′χ = t. We
conclude by Theorem 5.14.

5.5.3 Variable-restricted Layer Systems
The following example shows that Theorem 5.19 alone cannot establish Theo-
rem 5.65 for TRSs which are neither left-linear nor bounded duplicating.

Example 5.69. Consider the set of sorts S = {0, 1, 2, 3, 4}, where 2 > 0 and
2 > 1. The sort attachment S is given by

u : 0 v : 1 f : 3× 3→ 4 h : 2× 2× 0× 1→ 3
x : 2 y : 3 g : 3→ 3 a, b : 4

and the TRS R consists of the rules

f(y, y)→ a f(y, g(y))→ b h(x, x, u, v)→ g(h(u, v, u, v))

Then R is confluent on TS(F ,V) because it is locally confluent and terminat-
ing on order-sorted terms, noting that u and v never represent equal terms
due to sort constraints. However, if we take L to be the closure of TS(F ,V)
under (L2) then with t = h(z, z, z, z) the term f(t, t) is not confluent because
a← f(t, t)→ f(t, g(t))→ b. Note that f(t, t) is not order-sorted but contained
in L. Furthermore, observe that L is the smallest layer system layering R that
contains TS(F ,V).

The above example does not contradict Theorem 5.65 since R is not strongly
compatible with S; the right-hand sides of R are not strictly order-sorted
although R is neither left-linear nor bounded duplicating. In particular we have
an infinite reduction

h(z, z,♦(z),♦(z))→R g(h(♦(z),♦(z),♦(z),♦(z)))
→+
♦(x)→x g(h(z, z,♦(z),♦(z)))→R · · ·

The problem is that layer systems allow to replace variables by variables of
a different sort and hence contain terms which are not order-sorted, enabling
new rewrite steps (which does never happen in the many-sorted case nor for
left-linear systems in the order-sorted setting). Since TS(F ,V) (L ∩ T (F ,V),
we have to study when confluence on TS(F ,V) implies confluence on L∩T (F ,V)

97

5 Confluence with Layer Systems

in order to apply Theorem 5.19. Instead of proving the missing implication
directly, we again pursue a general approach. To this end we relax condition (L2)
such that variables need not be replaced by variables of different sort, to enable
the representation of TS(F ,V) as L ∩ T (F ,V), where L satisfies the following
refined notion of layer systems.

Definition 5.70. Recall the conditions from Definition 5.3. We introduce the
following condition:

(L′2) If C[x]p ∈ L then C[�]p ∈ L. If C[�]p ∈ L then {x ∈ V | C[x]p ∈ L} is an
infinite set.

We call a set L ⊆ C(F ,V) a variable-restricted layer system if it satisfies the
conditions (L1), (L′2), and (L3). Analogously, a variable-restricted layer system
weakly layers R if (W) is satisfied and layers R if (W), (C1), and (C2) are
satisfied.

To distinguish between variable-restricted and (unrestricted) layer systems we
denote the former by L′ in the future. Note that (L2) implies (L′2), hence any
layer system is also a variable-restricted layer system. Furthermore, for each
variable-restricted layer system L′ there is a corresponding (unrestricted) layer
system L′L = L′ ∪ {C[x]p | C[�]p ∈ L′ and x ∈ V}. Obviously L′ ⊆ L′L.

With the new condition (L′2) it is now possible to adequately represent TS(F ,V)
by a variable-restricted layer system.

Example 5.71 (Example 5.69 revisited). To obtain a variable-restricted layer
system, let L′ be the smallest set such that TS(F ,V) ⊆ L′ and L′ is closed under
replacing variables by holes. Then it satisfies (L′2). Note that L′ ∩ T (F ,V) =
TS(F ,V) and hence t = h(z, z, z, z) /∈ L′ and thus f(t, t) /∈ L′.

For a weakly layered TRS the reduct of a rank one term again is a rank one
term.

Lemma 5.72. Let L′ be a variable-restricted layer system that weakly layers a
TRS R. Then L′ ∩ T (F ,V) is closed under rewriting by R.

Proof. Let t ∈ L′ ∩ T (F ,V) and t →R u. Note that t is its own max-top.
By (W), its reduct u is a layer and hence u ∈ L′ ∩ T (F ,V).

In the remainder of this section we show the analogues of Theorems 5.14, 5.16,
and 5.19 for variable-restricted layer systems (cf. Corollary 5.86).

The case of left-linear systems is straightforward.

Lemma 5.73. Let L′ be a variable-restricted layer system that weakly layers
a left-linear TRS R. If R is confluent on L′ ∩ T (F ,V) then R is confluent on
L′L ∩ T (F ,V).

Proof. Let s ∈ L′L ∩ T (F ,V). By (L2) and (L′2) there are a term s′ ∈ L′ ∩
T (F ,V) and a variable substitution χ such that s′χ = s. Now consider rewrite
sequences t ∗

R← s →∗R u. Thanks to left-linearity, there are terms t′ and
u′ with t′χ = t, u′χ = u, and t′ ∗R← s′ →∗R u′. By repeated application of
Lemma 5.72, t′, u′ as well as all intermediate terms are elements of L′ ∩

98

5.5 Order-sorted Persistence

T (F ,V). From the assumption we obtain a valley t′ →∗R v′ ∗R← u′, inducing a
valley t = t′χ→∗R v′χ ∗

R← u′χ = u. Note that v′χ ∈ L′L (by Lemma 5.10) and
obviously v′χ ∈ T (F ,V).

To prepare for a result concerning bounded duplicating TRSs, we generalize
bounded duplication to weakly bounded duplication, which turns out to be more
suitable for the proof of Lemma 5.76 below.

Definition 5.74. We call R weakly bounded duplicating if {> → ⊥}/R is
terminating for fresh constants > and ⊥.

Lemma 5.75. Any bounded duplicating TRS is weakly bounded duplicating.

Proof. Assume that R is not weakly bounded duplicating. So there exists an
infinite rewrite sequence t0 → t1 → · · · in R∪ {> → ⊥} that contains infinitely
many applications of the rule > → ⊥. Let t′i be obtained from ti by replacing all
occurrences of > by ♦(⊥). Since > does not appear in the rules of R, we obtain
an infinite rewrite sequence t′0 → t′1 → · · · in R ∪ {♦(x) → x} with infinitely
many applications of the instance ♦(⊥) → ⊥ of ♦(x) → x. Hence R is not
bounded duplicating.

To see that weakly bounded duplication generalizes bounded duplication,
consider the TRS R consisting of the single rule f(a, x)→ f(x, x), which is not
bounded duplicating since f(a,♦(a))→R f(♦(a),♦(a))→♦(x)→x f(a,♦(a))→R
· · · , but weakly bounded duplicating.

Below we will establish the following two lemmata.

Lemma 5.76. Let L′ be a variable-restricted layer system that weakly layers a
weakly bounded duplicating TRS R. If R is confluent on L′ ∩ T (F ,V) then R is
confluent on L′L ∩ T (F ,V).

Lemma 5.77. Let L′ be a variable-restricted layer system that layers a TRS
R. If R is confluent on L′ ∩ T (F ,V) then R is confluent on L′L ∩ T (F ,V).

For both proofs we are given a variable-restricted layer system L′ that weakly
layers a TRS R. We fix an initial term s ∈ L′L ∩ T (F ,V) and show that it is
confluent. Since L′ ⊆ L′L the confluence assumption on L′ ∩ T (F ,V) may not
apply to s. To overcome this problem we use (L2) and (L′2) to construct a term
s′ ∈ L′ ∩ T (F ,V) and a variable substitution χ such that s = s′χ and fix a
well-order � on Var(s′). We extend � to terms by closing it under contexts
and transitivity.

Let s ∈ L′L ∩ T (F ,V), s′ ∈ L′ ∩ T (F ,V), and χ with s = s′χ be fixed.

Definition 5.78. A term t′ ∈ L′∩T (F ,V) is a representative of t ∈ L′L∩T (F ,V)
if t = t′χ and Var(t′) ⊆ Var(s′). A representative t′ of t is called minimal if it
is minimal with respect to �.

Note that s′ is a representative of s. Before proving key properties for
representatives we show how they help to avoid the situation of Example 5.69.

99

5 Confluence with Layer Systems

Example 5.79 (Example 5.69 revisited). Consider the variables with sorts

x1, x2, x5, x6 : 2 x3, x7 : 0 x4, x8 : 1

and order x8 � x7 � · · · � x1. The term s = f(t, t) ∈ L′L ∩ T (F ,V) has
the representative s′ = f(h(x1, x2, x3, x4), h(x5, x6, x7, x8)) ∈ L′ ∩ T (F ,V) and
the (unique) minimal representative ŝ = f(t̂, t̂) ∈ L′ ∩ T (F ,V) where t̂ =
h(x1, x1, x3, x4). The peak a ← f(t, t) → f(t, g(t)) → b in L′L ∩ T (F ,V) is
simulated by

a← f(t̂, t̂)→ f(t̂, g(h(x3, x4, x3, x4)))� f(t̂, g(t̂))→ b

in L′ ∩ T (F ,V). Note that the �-step replaces f(t̂, g(h(x3, x4, x3, x4))) by the
least representative f(t̂, g(t̂)) of f(t, g(t)).

The key operation on representatives and related terms is copying variables
between them, as justified by the following lemma.

Lemma 5.80. Let L,N ∈ L′ be layers with L� = N�. If p ∈ PosV�(L) then
L[N |p]p ∈ L′.

Proof. If p = ε then the claim is trivial. Otherwise, let L′ = L[�]p and
N ′ = N [�]q∈PosV� (L)\{p}. We have L′, N ′ ∈ L′ by applications of property
(L′2) and L[N |p]p = L′ t N ′ by assumption. Property (L3) yields the desired
L[N |p]p ∈ L′.

The next lemma establishes that the minimal representative (if it exists) is
unique, justifying the name least representative. The proof makes the construc-
tion in Example 5.79 explicit and is illustrated by Example 5.82.

Lemma 5.81. If t ∈ L′L ∩ T (F ,V) has a representative then it has a least
representative.

Proof. We have to show the existence and uniqueness of a minimal representative
of t. From a representative t′ we obtain t′� ∈ L′ using (L′2) repeatedly. Consider
Vp = {x ∈ Var(s′) | χ(x) = t|p and t′�[x]p ∈ L′} for each p ∈ PosV(t′). Note
that t′|p ∈ Vp because we can insert the variable t′|p into t′� at position p by
Lemma 5.80 to obtain a layer in L′. Hence Vp is non-empty. Since it is also finite it
has a minimum element min(Vp) with respect to�. Let ṫ = t′�[min(Vp)]p∈PosV (t′).
We have ṫ ∈ L′ by (L′2) and the definition of Vp. Clearly ṫ ∈ T (F ,V) and
Var(ṫ) ⊆ Var(s′) because all holes are replaced by some variable from Var(s′).
Moreover, ṫχ = t by construction, in particular the definition of Vp. It follows
that ṫ is a representative of t. Note that ṫ does not depend on the choice of t′
because t′� = t�. Therefore, t′ �= ṫ for any representative t′ of t, which makes
ṫ the least representative of t.

Example 5.82 (Example 5.79 revisited). Let s = f(h(z, z, z, z), h(z, z, z, z))
and s′ = f(h(x1, x2, x3, x4), h(x5, x6, x7, x8)) with χ(xi) = z for all 1 6 i 6 8.
Then s′� = f(h(�,�,�,�), h(�,�,�,�)). Since V11 = V12 = V21 = V22 =
{x1, . . . , x8}, V13 = V23 = {x3, x7}, and V14 = V24 = {x4, x8} we obtain ṡ =
f(h(x1, x1, x3, x4), h(x1, x1, x3, x4)).

100

5.5 Order-sorted Persistence

We denote the least representative term of a representable term t ∈ L′L ∩
T (F ,V) by t̂ ∈ L′ ∩ T (F ,V). The following lemma states that a rewrite step
performed on a term in L′L can be mirrored on its least representative in L′.
Recall that in Example 5.79 the representative s′ is a normal form but the step
from s can be mirrored on ŝ.

Lemma 5.83. Let t, u ∈ L′L ∩ T (F ,V) with t→R u such that t̂ exists.

1. If L′ weakly layers R then t̂→R u′ for some representative u′ of u.

2. If L′ layers R then u′ = û or u′ ∈ V in (1).

Proof.

1. Assume that t̂ is the least representative of t and let t→p,`→r u. We obtain
a context C ∈ L′ by replacing all variables in t by �. By Lemma 5.11, there
is a term c with C = cσ� and ` 6· c|p. To ensure c 6· t̂ we need to show
t̂|q = t̂|r for all x ∈ Var(c) and q, r ∈ Posx(c). To that end, fix x and let
P = Posx(c). For each q ∈ P , t̂|q is a variable. Let y = min {t̂|q | q ∈ P}.
We will show that t̂|q = y for all q ∈ P . Consider the max-top M ∈ L′
of C[y, . . . , y]. Note that c 6· C[y, . . . , y], so that ` 6· C[y, . . . , y]|p. From
condition (W) we obtain ` 6·M |p and thus c 6·M by Lemma 5.11(2) since
C vM . By construction t̂|q = y for some q ∈ P . Since C[y]q is a layer by
Lemma 5.80, M t C[y]q is a layer according to (L3). Because M is the
max-top of C[y, . . . , y], M tC[y]q = M and thus M |q = y. It follows that
M |q = y for all q ∈ P , since otherwise M would fail to be an instance
of c. Repeated applications of Lemma 5.80 yields t′ = t̂[y]q∈P ∈ L′. We
have t′ = t̂ by the choice of y and the minimality of t̂. We conclude that
c 6· t̂ and hence ` 6· t̂|p, which induces a rewrite step t̂ →p,`→r u

′ as
claimed. The term u′ is a representative of u because u′χ = u, u′ ∈ L′ by
Lemma 5.72, and rewriting does not introduce variables.

2. Assume that u′ is not a least representative of u. We have u′ � û, so
there is a position q ∈ PosV(u) with z = u′|q � û|q = y. Let C = cσ� as
in the proof of part (1). There is a rewrite step c→p,`→r d for some term
d and C →p,`→r D = dσ�. Let M ∈ L′ and L ∈ L′ be the max-tops of
Cy = C[y, . . . , y] and Dy = D[y, . . . , y]. Note that Cy →p,`→r Dy, which
implies M →p,`→r L by (C1) except when M →p,`→r �. In the latter case
r and thus also u′ is a variable, and we are done. So assume M →p,`→r L.
Consider the variable x = d|q. We must have L|q = y because otherwise
we could copy û|q = y to L by Lemma 5.80. The term t̂ and the context
M are instances of c and so there are substitutions σt̂ and σM such that
cσt̂ = t̂ and cσM = M . We have σt̂(x) = u′|q = z and σM (x) = y because
dσM = L. Since x ∈ Var(d) and c →R d, the set Posx(c) is non-empty.
Let q′ ∈ Posx(c). The layer C[y]q′ ∈ L′ can be obtained by copying
M |q′ = y to C using Lemma 5.80. Since t̂|q′ = σt̂(x) = z, we obtain
t̂� t̂[y]q′ ∈ L′. The term t̂[y]q′ is a representative of t because χ(y) = χ(z)
(recall that u = u′χ = ûχ). Hence we obtained a contradiction with the
minimality of t̂.

101

5 Confluence with Layer Systems

The following lemma shows that instead of adding a single rule > → ⊥, we
can extend a weakly bounded duplicating TRS with any terminating ARS, where
the objects are regarded as fresh constants, and still obtain relative termination.
The induced well-founded order will be used in the proof of Lemma 5.76.

Lemma 5.84. Let R be a weakly bounded duplicating TRS and A be a termi-
nating ARS. If R and A share no constants then A is terminating relative to
R.

Proof. We use reduction pairs for this proof, which are pairs consisting of a quasi-
order > and a well-founded strict order > that are compatible: > ·> ·> ⊆ >.
Reduction pairs give rise to a multiset extension in a straightforward way (e.g.,
the definitions of >gms and >gms in [71]). We denote the objects in A by O.
Let F be the signature of R. From the termination of A we obtain a well-
founded order > on O such that A ⊆ >. For each α ∈ O define a map πα from
T (F ∪O,V) to T (F ∪ {>,⊥},V) as follows:

πα(t) =


> if t = α

⊥ if t ∈ O \ {α}
f(πα(t1), . . . , πα(tn)) if t = f(t1, . . . , tn) with f ∈ F
t if t ∈ V

We measure terms by the set #t = {(α, πα(t)) | α ∈ Fun(t)∩O}. The measures
of two terms are compared by the multiset extension of the lexicographic product
of the precedence > on O and the reduction pair consisting of the well-founded
(by the weakly bounded termination assumption) order →+

{>→⊥}/R and the
compatible quasi-order →∗R. Each application of a rule α→ β from A decreases
the component associated with α in #t and introduces or modifies a component
associated with β in #t, giving rise to a decrease in the strict part of the multiset
extension. Moreover, if t→R u then πα(t)→R πα(u), for all α ∈ O. Hence the
terms are related by the non-strict part of the multiset extension. It follows
that A is terminating relative to R.

Proof of Lemma 5.76. To show confluence of s we introduce a relation IB that
allows to map an R-peak from s to a IB-peak. Afterwards we show confluence
of IB and conclude by IB ⊆ →∗R.

We write t IBt′0 u if t′0 →∗R t̂ and s→∗R t→∗R u such that t→∗R u is mirrored
by t̂ →∗R u′ with u = u′χ. Labels are compared using the order > := →+

�/R,
which is well-founded according to Lemma 5.84 applied to the ARS (Var(s′),�),
where we regard the elements of Var(s′) as constants for this purpose.

First we show that a peak consisting of R-steps can be represented as a peak
of IB-steps. To this end we claim that t IBt̂ u whenever s →∗R t →R u. To
show the claim, note that s has a least representative by Lemma 5.81, and
that by Lemmata 5.83(1) and Lemma 5.81 each immediate successor of a term
with a least representative also has a least representative. Therefore, t has a
least representative, and we conclude by another application of Lemma 5.83(1).

102

5.5 Order-sorted Persistence

Next we establish that IB is locally decreasing and hence confluent by The-
orem 3.21. Consider a local peak u t′0

CJ t IBt′1 v. By definition of IB there
are representatives u′ and v′ of u and v such that u′ ∗R← t̂→∗R v′. We obtain
u′ →∗R w′ ∗R← v′ from the confluence assumption on L′ ∩ T (F ,V). Consider
the sequence u′ →∗R w′. If u′ = û then u IBt′1 w

′χ, noting that t′1 →∗R t̂→∗R u′.
Otherwise, there is a rewrite sequence u = u′χ = u1 →R · · · →R un = w′χ = w,
such that u′ � û →∗�∪R ûi and thus u′ > ûi for all 1 6 i 6 n. Hence we
obtain u IB∗∨t′1

w by repeated use of the above claim. Analogously, we obtain
v IBt′0 w or v IB∗∨t′0 w. The proof is concluded by the obvious observation that
IB ⊆ →∗R.

Proof of Lemma 5.77. Consider a peak t ∗
R← s →∗R u. Obviously s has a

representative and hence also a least representative ŝ by Lemma 5.81. Using
Lemma 5.83 repeatedly we obtain a peak t′ ∗R← ŝ→∗R u′, noting that all reducts
of ŝ are least representatives of the corresponding reducts of s or variables, but
since variables are normal forms the latter can only happen in the last step.
From the confluence assumption on L′ ∩ T (F ,V) we obtain t′ →∗R v′ ∗R← u′.
Applying the variable substitution χ yields t = t′χ →∗R v′χ ∗

R← u′χ = u on
L′L ∩ T (F ,V).

Lemma 5.85. If a TRS is (weakly) layered according to a variable-restricted
layer system then it is (weakly) layered according to the corresponding (unre-
stricted) layer system.

Proof. The result for weakly layered TRSs is obvious. The result for layered
TRSs follows from Lemma 5.83.

Corollary 5.86. The statements of Theorems 5.14, 5.16, and 5.19 remain true
when based on a variable-restricted layer system.

Proof. In case of a left-linear TRSs we conclude by Theorem 5.14 and Lem-
mata 5.73 and 5.85. For bounded duplicating TRSs we use Theorem 5.16
and Lemmata 5.75, 5.76, and 5.85. For TRSs that are layered according to
a variable-restricted layer system we use Theorem 5.19 and Lemmata 5.77
and 5.85.

5.5.4 Many-sorted Persistence by Variable-restricted Layer Systems
We demonstrate the usefulness of variable-restricted layer systems by the fol-
lowing alternative proof of Theorem 5.62, which avoids the complication of
establishing confluence on L ∩ T (F ,V).

Proof of Theorem 5.62. Assume that R is confluent on TS(F ,V). We let L′
be the smallest set such that TS(F ,V) ⊆ L′ and L′ is closed under replacing
variables by holes. So L′ trivially satisfies (L′2). Hence L′ ∩ T (F ,V) = TS(F ,V)
and thus R is confluent on L′ ∩ T (F ,V) by the assumption. It is easy to see
that L′ is a variable-restricted layer system layering R; conditions (W) and
(C1) follow from the compatibility assumption. Therefore R is confluent by
Corollary 5.86.

103

5 Confluence with Layer Systems

5.5.5 Order-sorted Persistence by Variable-restricted Layer Systems

In this section we prove the main result on order-sorted persistence.

Proof of Theorem 5.65. Assume thatR is compatible with S. To define layers as
order-sorted terms, we add a fresh, minimum sort ⊥ with � : ⊥ and require that
no variable has sort ⊥. The set L′ := TS∪{⊥}(F ∪{�},V) is a variable-restricted
layer system that satisfies (C2).

We show that L′ satisfies condition (W). So let M be the max-top of s,
p ∈ PosF(M), and s→p,`→r t. Because ` is order-sorted, Pos(`) ⊆ Pos(M |p).
We claim that ` 6·M |p. If `|q = `|q′ ∈ Vα then M |pq = M |pq′ ∈ Tα′(F ∪ {�},V)
for some α′ with α > α′, due to the fact that ` is strictly order-sorted. Let σ
be a substitution such that `σ = M |p. Using the compatibility condition (of
Definition 5.63), we readily obtain L = M [rσ]p ∈ L′.

Next we show that if R is strongly compatible with S, then condition (C1)
holds. So assume thatR is neither left-linear nor bounded duplicating and L 6= �.
We show that L is the max-top of t, Let L′ be the max-top of t. First of all, if r
is not a variable and `|q = r|q′ ∈ Vα then L′|pq′ = M |pq = L|pq′ because ` and r
are strictly order-sorted. This implies L = L′. Next suppose that r = x ∈ Vβ.
Let p′ be the position directly above p and let root(L|p′) : β1 × · · · × βn → β′.
We have p = p′i for some 1 6 i 6 n. We claim that βi = β. Let α be the sort of
`. We have α > β and βi > α. According to the second compatibility condition,
β is maximal in S and thus β = α = βi. It follows that L′|p = M |pq = L|p for
any q ∈ Posx(`).

Note that L′ ∩ T (F ,V) = TS(F ,V) = L′ ∩ TS(F ,V). The proof is concluded
with an appeal to Corollary 5.86.

5.6 Related Work
As we already mentioned in the introduction, modularity of term rewrite systems
has been reproved several times. A number of related results have been proved by
adapting the proof of [43] and there have been several previous attempts to make
the result more reusable. Ohlebusch [55] casts the modularity result in terms
of a collapsing reduction →c, and shows that for composable TRSs, confluence
is modular if →c is normalizing. Toyama’s theorem arises as a special case.
Kahrs [39] proposes an abstract framework, based on so-called pre-confluences
and context selectors constructed from pre-confluences. The latter can be seen
as a precursor of layer systems. In particular, the selection of max-tops gives rise
to a (proper) context selector. However, the notion of pre-confluences is geared
towards the uncurrying application, and too restrictive to encompass modularity
of confluence [40]. A third approach to abstraction is taken by Lüth [49]. In
this work, modularity of confluence is proved using category theory, using the
fact that terms can conveniently be modeled by a monad. Unfortunately, the
development is flawed, and only applies to TRSs over unary function symbols
and constants.1

1 The paper claims that for any TRS Θ, the monad TΘ is strongly finitary, which implies that
it preserves coequalizers. This is not true in general. As an example, let ? be the trivial

104

5.6 Related Work

In the remainder of this section we discuss specific issues, starting with a
comparison of our result on order-sorted persistence to [3] in Section 5.6.1. In
Section 5.6.2 we reflect on the differences between [43] and [63] which correspond
to changes from the earlier conference paper [22] to the present chapter. Finally
we elaborate the constructivity claim in Section 5.6.3.

5.6.1 Order-sorted Persistence

In this section we compare our result from Section 5.5 to the main result of [3],
which can be stated as follows.

Definition 5.87. A sort attachment S is compatible? with a TRS R if condition
(?) is satisfied for each rewrite rule `→ r ∈ R:

(?) If ` ∈ Tα(F ,V) and r ∈ Tβ(F ,V) then α > β and `, r are strictly order-
sorted.

The main claim in [3] is that Theorem 5.65 holds for compatible? systems.
We show that this is incorrect.

Example 5.88. We use {0, 1, 2, 3} as sorts where 1 > 0 and sort attachment S

x : 0 f : 0→ 2 h : 1× 0→ 2 e : 0→ 1 c : 1
y : 2 g : 2→ 2 i : 2× 2→ 3 a, b : 3

Consider the TRS R consisting of the rules

f(x)→ h(e(x), x) h(c, x)→ g(f(x)) e(x)→ x i(y, y)→ a i(y, g(y))→ b

This TRS is compatible? with S. It is locally confluent and terminating and
thus confluent on order-sorted terms (note that x may not be instantiated by c
due to the sort constraints). It is not confluent on arbitrary terms because

a← i(f(c), f(c))→∗ i(f(c), g(f(c)))→ b

Note that any compatible? TRS is strongly compatible (cf. Definition 5.64),
unless it is neither left-linear nor bounded duplicating, and contains a collapsing
rule. Indeed the TRS R of Example 5.88 has all these features. Ultimately, the
culprit is the collapsing rule e(x)→ x, causing fusion from above (cf. Figure 5.3).
This case is not considered in the proof of [3, Proposition 3.9]. Definition 5.64
takes care of the problem with collapsing rules in Definition 5.87. Furthermore,
it puts fewer constraints on the right-hand sides in case of left-linear or bounded
duplicating systems, which is beneficial (cf. Example 5.67).

category and consider the coequalizer Q : ? + ? → ? of the injections ι1, ι2 : ? → ? + ?.
Furthermore let Θ = {f(x, x)→ x}. Then TΘ(Q) equates f (́ ι1?, ί1?) and f (́ ι1?, ί2?), but
the coequalizer of TΘ(ι1) and TΘ(ι2) does not, because f (́ ι1?, ί1?) is not in the image of
either of these functors.

105

5 Confluence with Layer Systems

a ← i
f
c

f
c

→ i
f
c

h
e
c

c

→

i
f
c

h
c c

→ i
f
c

g
f
c

→ b

Figure 5.3: Non-confluence in Example 5.88.

5.6.2 Modularity

We compare the proof setups of [43] and [63].
The first difference concerns the decomposition of terms. Whereas Klop et al.

split a term into its max-top and aliens, van Oostrom splits it into a base context
and a sequence of tall aliens. This is the key for making the proof constructive:
while fusion of an alien may cause many new aliens to appear, none of them
will be tall, so they do not have to be tracked explicitly. In contrast, Klop et
al. start by constructing witnesses, and thus prevent aliens from fusing while
establishing confluence.

The other ingredients of the proofs are quite similar: The proof setup is an
induction on the rank of the starting term. One distinguishes inner (→∗i , acting
on aliens) and outer (→∗o, acting on the max-top) steps (Klop et al.), or tall
(BBι, acting on the tall aliens) and short (II, acting on the base context) steps
(van Oostrom). One then argues as follows:

1. Outer (short) steps are confluent because one can replace the principal
(tall) subterms by suitable variables in the top (base) context, and then
invoke the induction hypothesis.

2. Inner (tall) steps are confluent because they only act on principal subterms
(tall aliens). In joining these subterms, one can ensure that any equalities
between them are preserved (we call such sequences of inner steps balanced).
In van Oostrom’s proof, the resulting joining sequences may involve fusion
and therefore short steps, but by ranking short steps below tall steps, the
result becomes a decreasing diagram.

3. Balanced inner steps (tall steps) and outer steps (short steps) commute
(can be joined decreasingly). The idea is to replace the principal subterms
(tall aliens) of source and target of the inner steps by the same variables,
so that the outer steps can be simulated on the result. In van Oostrom’s
proof, the target term has to be balanced (with respect to the source) first.

106

5.6 Related Work

When specialized to modularity, the same differences and similarities can be
encountered when comparing [22] to the present work. Short steps differ in two
ways from [63]. The imbalance is defined differently and the underlying rewrite
sequences are less restricted here. Nevertheless, they define the same relation
on native terms. This covers Theorem 5.19. For Theorems 5.14 and 5.16, our
proof deals with a new effect, namely fusion from above. This makes confluence
of short short steps (II) a non-trivial matter.

We remark that layer systems according to Definition 5.3 differ from those
in [22]. The latter are closer to variable-restricted layer systems (Definition 5.70).
Since the weakened condition (L′2) is only needed for the order-sorted setting, we
decided to base the theory on the easier condition (L2) instead and then derive
the main results for variable-restricted layer systems separately (cf. Section 5.5.3).
Furthermore, we remark that the notions of weak layering and layering (which are
called weak consistency and consistency in [22]) have changed in an incomparable
way, even for variable-restricted layer systems. This is due to the new condition
(C2), which is required for our constructive proof, as shown in Example 5.48.

5.6.3 Constructivity

We say that a TRS is constructively confluent if there is a procedure that, given
a peak t ∗← s →∗ u, constructs a valley t →∗ v ∗← u. In [63] constructive
confluence is proved to be a modular property for disjoint TRSs.

Most previous proofs of modularity and related results rely on the reduction
of terms until they allow no further fusion, which requires checking whether
the top layer of a term may collapse, a property which is undecidable. This
includes [75, 43, 55, 39, 3, 4, 37, 36]. Interestingly, [49] is constructive, but not
applicable in general as observed at the beginning of this section.

The key observation for obtaining a constructive result is that our main tool
for establishing confluence, the decreasing diagrams technique, is constructive:
If any given local peak can be joined decreasingly in a constructive way, then any
conversion becomes joinable by exhaustively replacing local peaks by smaller
conversions until none are left.

For our proofs to be constructive, the TRS needs to be constructively confluent
on terms of rank one. Furthermore, the proofs rely on the decomposition of
arbitrary terms into their max-top and aliens. Consequently, we must be able
to decide whether a given context C v t is a max-top of t. In the applications
from Section 5.4, this is indeed the case.

If these two assumptions are satisfied, then our proofs are constructive and
we obtain the following corollary.

Corollary 5.89. Let R be a TRS. Assume that R is left-linear and weakly
layered, or bounded duplicating and weakly layered, or layered. If R is construc-
tively confluent on terms of rank one and for any context C and term t it is
decidable if C is a max-top of t, then R is constructively confluent.

We remark that the above corollary extends to variable-restricted layer systems,
and thus to the order-sorted application in Section 5.5.

107

5 Confluence with Layer Systems

5.7 Conclusion
In this chapter we have presented an abstract layer framework that covers
several known results about the modularity and persistence of confluence. The
framework enabled us to correct the result claimed in [3] on order-sorted persis-
tence, and, by placing weaker conditions on left-linear or bounded duplicating
systems, to increase its applicability. We have incorporated a decomposition
technique based on order-sorted persistence (Theorem 5.65) into CSI [78], our
confluence prover. In the implementation we approximate bounded duplication
by non-duplication. We also showed how Kahrs’ confluence result for curried
systems is obtained as an instance of our layer framework.

108

Chapter 6

Deciding Confluence of Ground TRSs

It is well known that the confluence property of ground term rewrite systems
(ground TRSs) is decidable in polynomial time. For an efficient implementation,
the degree of this polynomial is of great interest. The best complexity bound in
the literature is given by Comon, Godoy and Nieuwenhuis (2001), who describe
an O(n5) algorithm, where n is the size of the ground TRS. In this chapter
we improve this bound to O(n3). The contents of this chapter has appeared
previously in [18].

6.1 Introduction

It is well known that confluence of ground TRSs can be decided in polynomial
time. In this chapter, we are interested in the degree of the associated polynomial.

To derive a polynomial time decision procedure for confluence of ground TRSs,
Comon et al. [14] base their approach on a transformation by Plaisted [66] that
flattens the TRS. Then they test deep joinability of sides of rules. The authors
sketch an implementation with complexity O(n5), where n is the size of the
given TRS. Tiwari [73] and Godoy et al. [29] base their approach on a rewrite
closure that constructs tree transducers—the given TRS R is converted into
two TRSs F and B such that F and B−1 are left-flat, right-constant, F is
terminating, and →∗R =→∗F · →∗B. They then consider top-stabilizable terms to
derive conditions for confluence. Tiwari obtains a bound of O(n9) (but a more
careful implementation would end up with O(n6)), while Godoy et al. obtain
a bound of O(n6). The algorithm of [14] is limited to ground TRSs, but [73]
extends the algorithm to certain shallow, linear systems, and [28] treats shallow,
linear systems in full generality.1 In these extensions, however, the exponent
depends on the maximum arity of the function symbols of the given TRS. In
our work we combine ideas from [14, 73, 29] in order to improve the complexity
bound to O(n3). The key ingredients are a Plaisted-style rewrite closure, which
results in TRSs F and B of only quadratic size, and top-stabilizability, which is
cheaper to test than deep joinability.

The remainder of this chapter is structured as follows: We describe the
confluence check in Section 6.2. Some experimental results are presented in
Section 6.3. Finally we conclude in Section 6.4.

1The same claim can be found in [29]. However, rule splitting, a key step in the proof of their
Lemma 3.1, only works if left-hand side and right-hand side variables are disjoint for every
rule.

109

6 Deciding Confluence of Ground TRSs

6.2 Testing Confluence
We are given a finite ground TRS R0 over a finite signature F . We may assume
without loss of generality that R0 is curried, with a binary function symbol ◦
(representing function application) and no other non-constant function symbols.
To curry an arbitrary ground TRS R, one introduces a fresh binary function
symbol ◦ and replaces all function applications f(t1, . . . , tn) by (. . . ((f ◦ t1) ◦
t2) . . .)◦ tn. The original function symbols become constants in the curried TRS.
It is well-known that currying preserves (non-)confluence (e.g., [39]) and can be
performed in linear time, increasing the total size of the rules of the TRS by a
constant factor.

Furthermore we assume that F is minimal, i.e., only function symbols oc-
curring in R0 are elements of F . We denote the set of constants from F by
FC . We can make this assumption because (non-)confluence is preserved under
signature extension (this follows from the modularity of confluence, [75]). Let
K be a countably infinite set of fresh constants (disjoint from FC), and let
u, v, w denote elements of FC ∪K. We call u→ v a C-rule (constant rule), and
u ◦ v → w a D-rule (decreasing rule).

The construction proceeds in four phases: First the TRS is flattened preserv-
ing confluence and non-confluence, then we determine its rewrite closure and
congruence closure, and finally these closures are used for testing confluence of
the flattened TRS.

Example 6.1. We will decide confluence of R = {a→ b, a→ f(a), b→ f(f(b))}
and R′ = R ∪ {f(f(f(b))) → b}. We start with the curried ground TRSs
R0 = {a→ b, a→ f ◦ a, b→ f ◦ (f ◦ b)} and R′0 = R0 ∪ {f ◦ (f ◦ (f ◦ b))→ b}.

In the remainder of this chapter, we use the following abbreviation: By R−,
R±, we denote R−1 (where we view R as a relation on ground terms), R∪R−1,
and by |R|, ‖R‖ the number of rules in R, and the total size of the rules,∑
`→r∈R(|`|+ |r|), respectively.

6.2.1 Flattening
First, we flatten the TRS R0, as follows. We start with (R0,∅) and exhaustively
apply the rules

(R[u ◦ v], E) `ext (R[w], E ∪ {u ◦ v ≈ w})
(R[t], E ∪ {t ≈ u}) `simp (R[u], E ∪ {t ≈ u}),

where w ∈ K is fresh in `ext, and R[·] is a context of R, i.e., a context `[·] (or
r[·]) of a side of a rule `→ r in R, so that R[u] is obtained by replacing `→ r
by `[u]→ r (or `→ r[u]) in R. After each `ext step, we apply `simp as often as
possible before using `ext again.

In the resulting pair (R, E), R consists solely of C-rules (since otherwise, `ext
would be applicable), and E consists of D-rules. Furthermore, →R0 is confluent,
if and only if →E±∪R is, since every deduction step preserves and reflects the
confluence property (cf. Lemma 6.2). Because `simp is applied eagerly, no two
left-hand sides in E are equal, and therefore E is confluent (it is orthogonal).

110

6.2 Testing Confluence

Note that as a result, every distinct subterm occurring in R is represented by
exactly one constant from FC ∪K. This is similar in spirit to the Nelson-Oppen
congruence closure algorithm [51].

Lemma 6.2. If (R, E) `ext (R′, E ′) or (R, E) `simp (R′, E ′) then →E±∪R is
confluent if and only if →E ′±∪R′ is.

Proof. The rule `ext can be split into two steps, first adding the rule u ◦ v ≈ w
to E followed by applying `simp. The first step preserves confluence since any
application of the new E-rule can be undone using the corresponding E−-rule
and vice versa, and since w is fresh, no rule other than w ≈ u ◦ v can affect a
subterm containing w.

For `simp, we prove that →E±∪R[t] ⊆ →∗E±∪R[u] and →E±∪R[u] ⊆ →∗E±∪R[t].
There are two cases. (i) If a left-hand side of a rule is changed, i.e., `[t]→ r ∈ R[t]
is changed to `[u]→ r ∈ R[u], then observing that s[`[t]]→E s[`[u]]→R[u] s[r]
(simulating→`[t]→r using rules from E±∪R[u]) and s[`[u]]→E− s[`[t]]→R[t] s[r]
(simulating →`[u]→r using rules from E± ∪ R[t]) establishes the claim, since
all other rules are contained in both R[u] and R[t]. (ii) If a right-hand side
is changed, ` → r[t] ∈ R[t], ` → r[u] ∈ R[u], then the simulations s[`] →R[t]
s[r[t]]→E s[r[u]] and s[`]→R[u] s[r[u]]→E− s[r[t]] prove the claim.

Let the result of flattening be (R1, E), over an extended signature, where FC
includes the fresh constants added by `ext. Flattening is straightforward to
implement by a bottom-up traversal of the sides of the TRS, replacing subterms
of the shape u ◦ v by constants, and maintaining a lookup table of which such
terms have been seen before. This takes time O(‖R0‖ log(‖R0‖)) (the log(‖R0‖)
factor accounts for the lookup table operations), and we have ‖E‖ = O(‖R0‖),
‖R1‖ = O(|R0|), i.e., the total size of the TRSs R1 and E is at most linear in
that of R0.

Example 6.3 (continued from Example 6.1). We introduce fresh constants fa,
fb, ffb and fffb for f ◦ a, f ◦ b, f ◦ fb and f ◦ ffb, respectively. The resulting TRSs
are (R1, E) = ({a→ fa, a→ b, b→ ffb}, {f ◦ a ≈ fa, f ◦ b ≈ fb, f ◦ fb ≈ ffb}) and
(R′1, E ′) = (R1 ∪ {fffb→ b}, E ∪ {f ◦ ffb ≈ fffb).

6.2.2 Rewrite Closure

In this step, we are given a pair (R1, E), where R1 is a system of C-rules and E is
a system of D-rules. We want to obtain another pair (R2, E), where s→∗E±∪R2

t
iff s→∗E±∪R1

t, such that every rewrite sequence in (R1, E) can be transformed
into a rewrite sequence in (R2, E) of a special shape (cf. Lemma 6.4). The
inference rules in Figure 6.1 define a relation u v on constants. We will see
in a moment that u v iff u→∗E±∪R1

v.
The result of the rewrite closure step is (R2, E), where R2 = {u→ v | u v}.

Lemma 6.4. s→∗E±∪R1
t if and only if s→∗E∪R2

· →∗E−∪R2
t.

Proof. Because of (base), we have R1 ⊆ R2, so that →∗E±∪R1
⊆ →∗E±∪R2

. On
the other hand, all rules in Figure 6.1 are compatible with the requirement

111

6 Deciding Confluence of Ground TRSs

u→ v ∈ R1
u v base

u ∈ FC
u u refl u v v w

u w trans

u1 v1 u2 v2 {u1 ◦ u2 ≈ u, v1 ◦ v2 ≈ v} ⊆ E
u v comp

Figure 6.1: Inference rules for rewrite closure.

that →∗E±∪R2
⊆ →∗E±∪R1

. Therefore, the reachability relation is preserved, i.e.,
→∗E±∪R1

=→∗E±∪R2
.

First we show that for u, v ∈ FC , u v (and therefore u→R2 v) whenever
u→∗E±∪R2

v. Assume that we have u→∗E±∪R2
v but not u v. Let u = t0 →

· · · → tn = v be the shortest sequence of (E± ∪R2) steps from u to v, and pick
u and v such that n is minimal. If n = 0 then u = v, and u v by (refl).
If n = 1 then u → v ∈ R2 since E only contains D-rules. If ti ∈ FC for any
0 < i < n, then u ti v by minimality of u →∗E±∪R2

v, and u v by
transitivity (trans). In the remaining case, we have ti = ui ◦ vi for all 0 < i < n,
and hence u1 →∗E±∪R2

un−1 and v1 →∗E±∪R2
vn−1 since any root step would

have a constant from FC as source or target. But these two rewrite sequences
have length at most n− 2, and therefore u1 un−1 and v1 vn−1, implying
u v by the (comp) rule. In all cases we found that u v, a contradiction.

Now let s→∗E±∪R1
t. Then s→∗E±∪R2

t. Assume that this rewrite sequence is
not of the shape s→∗E∪R2

· →∗E−∪R2
t, but has a minimal number of inversions

between E and E− steps (an inversion is any pair of an E step following an
E− step, not necessarily directly). Then it has a subsequence of the shape
s′ →p,E− s

′′ →∗R2
t′′ →q,E t

′, starting with an E− step at p and a final E step at
q. The cases p < q or p > q are impossible, because E contains only D-rules
and R2 only C-rules (applying C-rules does not change the set of positions of a
term).

If p = q then s′′|pi →∗R2
t′′|qi for i ∈ {1, 2}, collecting all R2 steps at positions

below p from s′′ →∗E±∪R2
t′′. By (refl) and (trans) this implies s′′|pi t′′|qi for

i ∈ {1, 2}. Consequently, we have s′|p t′|p by (comp). Hence we can delete
the two E± steps and the collected R2 steps, and replace them by an R2 step
using the rule s′|p → t′|p. This decreases the number of inversions between E
and E− steps, contradicting our minimality assumption. Otherwise, if p ‖ q,
then we can reorder the rewrite sequence s′ →∗E±∪R2

t′ as s′ →∗>q,R2
· →q,E

· →∗R2
· →p,E− · →∗>p,R2

t′, commuting mutually parallel rewrite steps. This
reduces the number of inversions between E and E− steps, and again we reach a
contradiction.

The size of R2 is bounded by |FC |2 = O(‖R0‖2). Note that inference rules
correspond naturally to Horn clauses, which are implications with a conjunction
of positive literals on the left-hand side and at most one positive literal on the
right-hand side. For example,

A B
C

is equivalent to A∧B → C. Therefore, we view the inference rules in Figure 6.1
as a system of Horn clauses with atoms of the form u v (u, v ∈ FC).

112

6.2 Testing Confluence

rewrite-closure(n, E ,R): Compute rewrite closure.
(Assumes that FC = {1, . . . , n}, which can be achieved as part of the flattening
step).

1. By scanning E once, compute arrays l and r such that l[u] = {(v, w) |
u ◦ v → w ∈ E} and r[v] = {(u,w) | u ◦ v → w ∈ E}.

2. Let R′ = ∅ ⊆ {1, . . . , n}2 (represented by an array).

3. Process (refl): Call add(u, u) for 1 6 u 6 n.

4. Process (base): Call add(u, v) for u→ v ∈ R.

add(u, v): Add u→ v to R′ and process implied (trans) and (comp) rules.

1. If u→ v ∈ R′, return immediately.

2. Let R′ = R′ ∪ {u→ b}.

3. Process (trans): For all w ∈ {1, . . . , n},
• if w → u ∈ R′, call add(w, v).
• if v → w ∈ R′, call add(u,w).

4. Process (comp):
• For all (u2, ur) ∈ l[u] and (v2, vr) ∈ l[v], if u2 → v2 ∈ R′, call

add(ur, vr).
• For all (u1, ur) ∈ r[u] and (v1, vr) ∈ r[v], if u1 → v1 ∈ R′, call

add(ur, vr).

Figure 6.2: Algorithm for rewrite closure.

This system can be solved in time proportional to the total size of the
clauses [16], finding a minimal solution for the relation . There are |R1|
instances of (base), |FC | instances of (refl), |FC |3 instances of (trans) and at
most |FC |2 instances of (comp), noting that u1, u2 are determined by u and
v1, v2 are determined by v. Therefore, we can compute R2 in time O(‖R0‖3).

Remark 6.5. In our implementation, we do not generate these Horn clauses
explicitly. Instead, whenever we make a new inference u v, we check all
possible rules that involve u v as a premise. The result is a neat incremental
algorithm (see Figure 6.2). From an abstract point of view, however, this is
no different than solving the Horn clauses as stated above. This remark also
applies to inference rules presented later.

Example 6.6 (continued from Example 6.3). We present R2 and R′2 as tables,
where non-empty entries correspond to the rules contained in each TRS. For
example, fa→ b ∈ R′2 but fa→ b /∈ R2. The letters indicate the inference rule
used to derive the entry, while the superscripts indicate stage numbers—each

113

6 Deciding Confluence of Ground TRSs

inference uses only premises that have smaller stage numbers.

R2 f a fa b fb ffb
f r0

a r0 b0 b0 t2 t1

fa r0 c1 c3

b r0 b0

fb r0

ffb r0

R′2 f a fa b fb ffb fffb
f r0

a r0 b0 b0 t2 t1 t3

fa r0 t3 c1 t3 t2

b r0 t4 b0 t4

fb t2 r0 t2 c1

ffb t4 c3 r0 c3

fffb b0 t4 t1 r0

6.2.3 Congruence Closure

We are also interested in the congruence closure of (R1, E), because it allows us
to decide when two terms are convertible. We calculate the congruence closure
as the rewrite closure of (R±1 , E) and call it (C, E). This step also takes O(‖R0‖3)
time. By Lemma 6.4 we have

s↔∗E±∪R1
t ⇐⇒ s→∗E±∪R±1 t ⇐⇒ s→∗E∪C · →∗E−∪C t ⇐⇒ s ↓E∪C t

Note that C is symmetric and therefore, →E−∪C = E∪C←.

Remark 6.7. There are far more efficient methods for calculating the congru-
ence closure (an almost linear time algorithm can be found in [8]), but the
simple reduction to the rewrite closure is sufficient for our purposes, since the
total asymptotic running time is unchanged.

Example 6.8 (continued from Example 6.6). Since C is an equivalence relation,
we just give its equivalence classes: [f]C = {f} and [a]C = {a, fa, b, fb,ffb}. For
C′, we obtain [f]C′ = [f]C and [a]C′ = [a]C ∪ {fffb}. Note that C and C′ are the
symmetric, transitive closures of R2 and R′2, respectively. This holds in general.

6.2.4 Confluence Conditions

So far we have flattened the TRS R0 and computed its rewrite and congruence
closures, enabling us to check reachability and convertibility of any given terms
efficiently. In this section we use these tools to decide confluence of R0.

We closely follow the approach in [73] and [29], which is based on the analysis
of two convertible terms s, t and their normal forms with respect to a system of
so-called forward rules of a rewrite closure. In our approach, these correspond
to the system E ∪ R2. However, →E∪R2 is typically non-terminating, and we
cannot use this idea directly. This problem is easy to overcome though. We
define A;B = {`→ r | `→ m ∈ A and m→ r ∈ B} and→A/B =→∗B ·→A ·→∗B.
Note that →E/R2 is terminating. We will use →E/R2 in place of the forward
reduction. This choice is justified by Lemma 6.10 below. We will abuse notation
slightly and speak of E/R2 normal forms.

Lemma 6.9. Let S be a transitive, reflexive (as a relation) set of C-rules and
E a set of D-rules. Then →∗E∪S =→∗S · →∗E;S and →∗E−∪S =→∗S;E− · →

∗
S .

114

6.2 Testing Confluence

Proof. We first show that →∗E∪S = →∗S · →∗E;S . Start with a rewrite sequence
s →∗E∪S t. Whenever an S step is followed by another S step at the same
position, we can combine them using transitivity of S. Note that since E only
contains D-rules, no intermediate E step can overlap with either of the S steps.
Once there are no more S steps that can be combined this way, we replace each
E step that is followed by an S step at the same position by the corresponding
E ;S step. If there is no following S step, we add an identity S step (which exists
by reflexivity of S) first. It is easy to verify that the final rewrite sequence is of
the desired shape.

For →∗E−∪S = →∗S;E− · →
∗
S it suffices to note that by reversing the rewrite

sequences this is equivalent to →∗E∪S− =→∗S− · →
∗
E;S− . Since S− is transitive

and reflexive if S is, the claim reduces to the previous one.

Lemma 6.10.

1. If s→∗E±∪R1
t then s→∗E/R2

· →∗R2;E− · →
∗
R2

t.

2. If s↔∗E±∪R1
t then s→∗C · →∗E;C · ∗

E;C← · ∗C← t.

Proof. 1. Assume that s →∗E±∪R1
t. By Lemma 6.4, this is equivalent to

s→∗E∪R2
· →∗E−∪R2

t, or s→∗E/R2
· →∗E−∪R2

t, which according to Lemma 6.9 is
equivalent to s→∗E/R2

· →∗R2;E− · →
∗
R2

t, noting that R−2 is both reflexive and
transitive by construction.

2. Assume that s↔∗E±∪R1
t, i.e., s→E±∪R±1 t. Again by Lemma 6.4, this is

equivalent to s →∗E∪C · ∗
E∪C← t. Since C is reflexive and transitive, the claim

follows from Lemma 6.9.

Let us assume that R1 ∪ E± is confluent, and that we have two convertible
terms s and t. There are corresponding E/R2 normal forms s′ and t′ for s and t,
respectively. Now s′ and t′ are convertible, so that by Lemma 6.10(2), for some
term r,

s′ →∗C · →∗E;C r
∗←−−
E;C
· ∗←−
C
t′ (6.1)

Furthermore, by confluence and Lemma 6.10(1), noting that the choice of s′
and t′ forces the →∗E/R2

sequences to be empty, it follows that for their common
reduct r′,

s′ →∗R2;E− · →
∗
R2 r

′ ∗←−−
R2
· ∗←−−−−
R2;E−

t′ (6.2)

To capture the conditions on s′ and t′ (which are E/R2 normal forms), we adapt
the notion of top-stabilizable terms and constants from [29] to our purposes.

Definition 6.11. A term u ◦ v with u, v ∈ FC is top-stabilizable if there exists
an E/R2 normal form s such that s →∗C · →∗E;C u ◦ v. A constant u ∈ FC is
top-stabilizable if there exist v, w ∈ FC such that u →C;E− v ◦ w and v ◦ w is
top-stabilizable.

The equations (6.1,6.2) define two rewrite sequences from r to r′ that consist
solely of C- and inverse D-steps (note that we consider the rewrite sequences
from (6.1) in reverse). This means that no rewrite step occurs below a preceding

115

6 Deciding Confluence of Ground TRSs

rewrite step. In fact all rewrite steps modify a leaf of a term. Therefore we
may assume without loss of generality that r ∈ FC . Looking at the surrounding
rewrite steps in equation (6.1), we distinguish three cases depending on whether
the sequence of E ; C steps is empty or not.

1. s′ →∗C∪E s1 ◦ s2 →E;C r E;C← t1 ◦ t2 ∗
C∪E← t′. In this case s1 ◦ s2, t1 ◦ t2

must be top-stabilizable. Furthermore, for i ∈ {1, 2}, the terms si and ti
are convertible via ri, so that si ↓C∪E ti by Lemma 6.10.

2. s′ →∗C∪E s1 ◦ s2 →E;C t
′ ∈ FC . (Note that we use the fact that C is an

equivalence relation: s1 ◦ s2 →E;C · ∗C← t′ implies s1 ◦ s2 →E;C t
′ if t′ ∈ FC .)

Then there must be t1, t2 ∈ FC such that t′ →R2;E− t1 ◦ t2, and si ↓C∪E ti
for i ∈ {1, 2}. This case also covers s′ E;C← t1 ◦ t2 ∗

C∪E← t′ by symmetry.

3. FC 3 s′ →C t′ ∈ FC . Then s′ ↓E−∪R2 t
′, with common reduct r′.

Hence we have found the following necessary conditions for confluence of
R1 ∪ E±:

Definition 6.12. The confluence conditions for confluence of R2 ∪ E± are as
follows.

1. If s1 ◦ s2 and t1 ◦ t2 are top-stabilizable for constants s1, s2, t1, t2 ∈ FC
such that s1 ◦ s2 →E;C r E;C← t1 ◦ t2 then si ↓C∪E ti for i ∈ {1, 2}.

2. If s1 ◦ s2 →E;C t
′ for s1, s2, t

′ ∈ FC and top-stabilizable s1 ◦ s2, then there
must be t1, t2 ∈ FC such that t′ →R2;E− t1 ◦t2, and si ↓C∪E ti for i ∈ {1, 2}.

3. If FC 3 s′ →C t′ ∈ FC then s′ ↓E−∪R2 t
′.

Lemma 6.13. The confluence conditions are necessary and sufficient for con-
fluence of R1 ∪ E±.

Proof. Necessity has already been shown above. For sufficiency, assume that the
confluence conditions are satisfied and there are convertible terms s and t with
no common reduct. Then any corresponding E/R2 normal forms do not have a
common reduct either. Let s′ and t′ be convertible E/R2 normal forms with no
common reduct such that |s′|+ |t′| is minimal. Recall that →∗E±∪R1

=→∗E±∪R2
so that R1 ∪ E± joinability and R2 ∪ E± joinability coincide. The same holds
for convertibility. We will simply use the terms “joinable” and “convertible” for
both R1 ∪ E± and R2 ∪ E±. We distinguish three cases.

1. If s′, t′ ∈ FC , then by Lemma 6.10(2), s′ →C t′ (since s′, t′ are E ; C normal
forms and C is an equivalence relation) and we obtain a joining sequence
from the third confluence condition, contradicting the non-joinability of s′
and t′.

2. If s′ = s′1 ◦ s′2 /∈ FC and t′ ∈ FC , then by Lemma 6.10(2) there is a rewrite
sequence s′ →∗C∪E s1 ◦ s2 →E;C t

′ (again using that t′ is an E ; C normal
form and that C is an equivalence relation). By the second confluence
condition we obtain a term t1 ◦ t2 such that t′ →R2;E− t1 ◦ t2, and ti and

116

6.2 Testing Confluence

si are convertible for i ∈ {1, 2}. Therefore, t1 and s′1 are convertible.
Furthermore, since |t1|+ |s′1| < |t′|+ |s′|, this implies that t1 and s′1 are
joinable. Analogously, t2 and s′2 are also joinable, and therefore s′ is
joinable with t1 ◦ t2 R2;E−← t′, contradicting our assumptions.
The case that s′ ∈ FC and t′ /∈ FC is handled symmetrically.

3. If s′ = s′1 ◦ s′2 /∈ FC and t′ = t′1 ◦ t′2 /∈ FC , then by Lemma 6.10(2),
s′ →∗E∪C r ∗

E∪C← t′. If r = r1 ◦ r2 is not a constant, then s′1 and t′1 are
convertible via r1 and likewise s′2 and t′2 are convertible via r2. However, one
of these pairs cannot be joinable, and we obtain a smaller counterexample
to confluence, a contradiction. Therefore, r must be a constant.
Using Lemma 6.10(2) we obtain a rewrite proof s′ →∗C∪E s1 ◦ s2 →E;C
r E;C← t1 ◦ t2 ∗

C∪E← t′. From the first confluence condition, we conclude
that s1 and t1 are convertible and therefore also s′1 and t′1. By minimality
of |s′| + |t′|, s′1 and t′1 must be joinable. Likewise, s′2 and t′2 must also
be joinable, from which we conclude that s′ = s′1 ◦ s′2 and t′ = t′1 ◦ t′2 are
joinable as well, a contradiction.

This completes the proof.

6.2.5 Computation of Confluence Conditions

The computation consists of two major steps: First we compute all top-
stabilizable constants and terms of the form u ◦ v. Then we check the three
confluence conditions.

In order to compute the top-stabilizable constants and terms, we first need
to find the E/R2 normal forms of the shape u ◦ v—denoted by NF(u ◦ v). We
can compute the complement of that set, i.e., the E/R2 reducible terms of that
shape using the following inference rules.

u ◦ v ≈ w ∈ E
¬NF(u ◦ v) base

{u1 → v1, u2 → v2} ⊆ R2 ¬NF(v1 ◦ v2)
¬NF(u1 ◦ u2)

comp

To obtain a cubic time algorithm, note that thanks to transitivity of R2, infer-
ences made by (comp) need not be processed—if ¬NF(w1◦w2) implies ¬NF(v1◦v2)
by (comp) and ¬NF(v1 ◦ v2) implies ¬NF(u1 ◦ u2) by (comp) then ¬NF(w1 ◦w2)
implies ¬NF(u1 ◦ u2) by (comp) as well. Therefore we simply consider each E
rule (there are O(‖R0‖) of these) in turn, and then make the corresponding
inferences by the (comp) rule in O(‖R0‖2) time, for a total of O(‖R0‖3).

Let us turn to top-stabilizable terms and constants now. First note that any
constant is an E/R2 normal form. The top-stabilizable constants and terms
can be found using another incremental computation. Every E/R2 normal form
is top-stabilizable. If u ◦ v is top-stabilizable and u ◦ v →E/C w, then w is a
top-stabilizable constant, and u′◦v and u◦v′ are top-stabilizable terms whenever
u→C u′, v →C v′. For any top-stabilizable constant w, w ◦ v, u ◦w for constants
u, v are also top-stabilizable. Consequently, we obtain the following inference
rules, where TS(u) and TS(v ◦ w) assert that u and v ◦ w are top-stabilizable,

117

6 Deciding Confluence of Ground TRSs

respectively, and (i, i′) ∈ {(1, 2), (2, 1)}.

u1 ◦ u2 ∈ NF(E/R2)
TS(u1 ◦ u2) nf

u1 ◦ u2 ≈ u ∈ E TS(u1 ◦ u2)
TS(u)

ts0
TS(ui)

TS(u1 ◦ u2)
tsi

u→ v ∈ C TS(v)
TS(u)

comp0
ui → vi ∈ C ui′ = vi′ TS(v1 ◦ v2)

TS(u1 ◦ u2)
compi

There are O(‖R0‖2) instances of (nf), (ts{1,2}) and (comp0), and O(‖R0‖3)
instances of (ts0) and (comp{1,2}). Again these inference rules have the shape
of Horn clauses and can be processed in time proportional to their total size,
which is O(‖R0‖3).

Example 6.14 (continued from Example 6.8). For R we have ¬NF = {f ◦ b, f ◦
fa, f ◦ fb, f ◦ a}. Indeed f ◦ ffb is an E/R2 normal form since using R2 it can only
be rewritten to itself and it is not the left-hand side of any E rule. On the other
hand, for R′ we obtain ¬NF′ = ¬NF ∪ {f ◦ ffb, f ◦ fffb}. Note that normal forms
also include terms like f ◦ f or fa ◦ a that have no correspondence in the original
TRS.

In the R case, all terms of the form u ◦ v are top-stabilizable and so are all
constants except for f. For R′, only the normal forms are top-stabilizable.

With this pre-computation done, checking the confluence conditions becomes a
straightforward matter. The only tricky part is checking joinability of constants
in the third condition. This relation can be computed in a way strikingly similar
to the rewrite closure from Section 6.2.2, using the following inference rules for
computing ↓ = ↓E−∪R2 on constants:

u ∈ FC
u ↓ u refl

{u1 ◦ u2 ≈ u, v1 ◦ v2 ≈ v} ⊆ E u1 ↓ v1 u2 ↓ v2
u ↓ v

comp

u→ v ∈ R2 v ↓ w
u ↓ w trans1

u ↓ v w → v ∈ R2
u ↓ w transr

As with the previous inference rules, this is a system of Horn clauses. There
are O(‖E‖2) = O(‖R0‖2) instances of (comp), O(‖R0‖) instances of (refl)
and O(‖R0‖3) instances of (transl,r). Therefore, computing ↓ can be done
in O(‖R0‖3) time.

Example 6.15 (continued from Example 6.14). The joinability relations R and
R′ are given below. As in Example 6.6, the letters and superscripts indicate the
rule being used to derive the entry and computation stage.

↓ =

f a fa b fb ffb
f r0

a r0 t1l t1l t1l t1l
fa t1r r0 t1l t1l t1l
b t1r t1r r0 t1l

fb t1r t1r r0

ffb t1r t1r t1r r0

↓′ =

f a fa b fb ffb fffb
f r0

a r0 t1l t1l t1l t1l t1l
fa t1r r0 t1l c2 c2 c2

b t1r t1r r0 t1r c3 c3

fb t1r c2 t1l r0 c2 c4

ffb t1r c2 c3 c2 r0 c3

fffb t1r c2 c3 c4 c3 r0

118

6.3 Experiments

Cop 21 33 34 38 39 40 80 81 84 114 115 116
CR × X X × × X × X X X X X

Table 6.1: Confluence of Ground Cops.

system R100 R200 R400 R800 R1600 R3200
time (s) 0.2 (×) 0.2 (×) 1.3 (×) 19.2 (×) 254.3 (×) 2321 (×)
system R101 R201 R401 R801 R1601 R3201

time (s) 0.2 (X) 0.2 (X) 2.3 (X) 30.1 (X) 427.4 (X) 3919 (X)

Table 6.2: Runtimes for Rn.

It is now easy to verify that R violates the third confluence condition (fb→C ffb
but not fb ↓ ffb), and therefore is not confluent. The other two confluence
conditions are satisfied. R′, on the other hand, satisfies all confluence conditions
and is, therefore, confluent.

Putting everything together, we obtain the following theorem.

Theorem 6.16. The confluence of a ground TRS R can be decided in cubic
time.

Proof. Let n = ‖R‖. We follow the process outlined above. First we curry R in
linear time, obtaining R0 with ‖R0‖ = O(n). Then we flatten R0, obtaining
(R1, E) with ‖E‖ = O(n) and ‖R1‖ = O(n) in time O(n log(n)). In the next step
we compute the rewrite and congruence closures (R2, E) and (C, E) of (R1, E) in
O(n3) time. Afterwards, we compute the E/R2 normal forms NF(− ◦−), which
as seen above takes O(n3) time. We then compute TS(−), TS(−,−) and ↓E−∪R2
in O(n3) time. Finally we check the three confluence conditions. For the first
condition, we check each of the O(n2) pairs of rules s1 ◦ s2 →E u, t1 ◦ t2 →E v
with u→C v. For the second condition, we consider the O(n3) triples such that
s1 ◦ s2 →E u→C t′ →R2 v E← t1 ◦ t2. For the third condition we check all O(n2)
pairs s′ →C t′. All these steps can be accomplished in O(n3) time.

6.3 Experiments
We have implemented the above algorithm in the confluence tool CSI2 [78], and
tested it on the ground confluence problems from the Cops database.3 The
results are displayed in Table 6.1. There are no runtimes given because they are
all negligible. Note though that even before implementing ground confluence
in CSI, the tool could handle all these problems. The runtime improved from
14s to 3s for checking all the TRSs. In order to obtain runtime measurements,
we considered the family of TRSs Rn = R ∪ {fn(b) → b} extending R from
Example 6.1. One can easily argue that the system Rn is confluent if and only
if n is odd. (Since R is a subsystem, all terms are convertible. However, f(b)

2http://cl-informatik.uibk.ac.at/software/csi/
3http://coco.nue.riec.tohoku.ac.jp/cops/

119

http://cl-informatik.uibk.ac.at/software/csi/
http://coco.nue.riec.tohoku.ac.jp/cops/

6 Deciding Confluence of Ground TRSs

and b are only joinable if n is odd—otherwise the parity of k in the reducts fk(b)
is invariant.) The runtimes for various n are given in Table 6.2. Saigawa4 fails
on all these systems, while ACP5 [6] can deal with the non-confluent examples
thanks to the interpretation technique from [2], but fails on the confluent ones.
The numbers from Table 6.2 do not agree well with the proven complexity bound.
This is due to cache effects—as the input size increases, the intermediate arrays
outgrow the first and second level caches. Note that for the last two columns,
the factor is very close to 8, finally meeting expectations. The difference between
odd and even n can be explained by the different size of the rewrite closures.
All measurements were done on a 2.67GHz Intel i7-620M computer with 4GB
RAM using a single core.

6.4 Conclusion
We have described an efficient algorithm for deciding the confluence of ground
TRSs. In our opinion, this is a worthwhile addition to an automated confluence
checker, since other methods fail on relatively simple ground TRSs. In fact,
ACP can not handle either TRS from Example 6.1, and neither can Saigawa.
Before adding the ground TRS code, CSI could not disprove confluence of R,
but it was able to prove confluence of R′. It still failed on a close relative of R′,
namely the confluent ground TRS R5 = R∪ {f(f(f(f(f(b)))))→ b}.

A natural question is whether we can improve the bounds for the other
known classes of TRSs with fixed maximum arity that have a known polynomial
complexity for deciding complexity, foremost the class of shallow, left-linear
TRSs. Our main improvement over [73] is the limitation to C-rules in the
rewrite closure, effectively constraining the considered rules to relations between
subterms of the original curried TRS. This does no longer work once we have
variables in rules. Therefore, at present, we do not know how to improve the
other results.

4version 1.6, http://www.jaist.ac.jp/project/saigawa/
5version 0.50, http://www.nue.riec.tohoku.ac.jp/tools/acp/

120

http://www.jaist.ac.jp/project/saigawa/
http://www.nue.riec.tohoku.ac.jp/tools/acp/

Chapter 7

Certifying Non-Confluence

Regular tree languages are a popular device for reachability analysis over term
rewrite systems, with many applications like analysis of cryptographic protocols,
or confluence and termination analysis. At the heart of this approach lies tree
automata completion, first introduced by Genet for left-linear rewrite systems.
Korp and Middeldorp introduced so-called quasi-deterministic automata to
extend the technique to non-left-linear systems. In this chapter, we introduce
the simpler notion of state-compatible automata, which are slightly more general
than quasi-deterministic, compatible automata. This notion also allows us to
decide whether a regular tree language is closed under rewriting, a problem
which was not known to be decidable before.

The improved precision has a positive impact in applications which are based
on reachability analysis, namely termination and confluence analysis.

Our results have been formalized in the theorem prover Isabelle/HOL. This
allows to certify automatically generated proofs that are using tree automata
techniques. However, the formalization itself is out of scope for this thesis. For
details see [20], which forms the basis of this chapter.

7.1 Introduction
In this chapter we are largely concerned with over-approximations of the terms
reachable from a regular tree language L0 by rewriting using a term rewrite
system R, that is, we are interested in regular tree languages L such that
R∗(L0) ⊆ L. Such over-approximations have been used, among other things,
in the analysis of cryptographic protocols [25], for termination analysis [27, 46]
and for establishing non-confluence of term rewrite systems [78].

Unfortunately, the question whether R∗(L0) ⊆ L is undecidable in general.
Tree automata completion, conceived by Genet et al. [23, 24], is based on the
stronger requirements that L0 ⊆ L and L is itself closed under rewriting, i.e.,
R(L) ⊆ L. This is accomplished by constructing L as the language accepted by
a bottom-up tree automaton A that is compatible with R:

Definition 7.1. A tree automaton A is compatible with a TRS R if for all state
substitutions σ, rules l→ r ∈ R and states q ∈ Q, lσ →∗A q implies rσ →∗A q.

The automaton is constructed by starting with an automaton that accepts L0
and then identifying violations of the compatibility requirement, that is, state
substitutions σ and rules ` → r such that `σ is accepted in some state q but
rσ is not. One then adds transitions and states to the automaton such that

121

7 Certifying Non-Confluence

rσ is accepted in state q. If the process terminates with an automaton that is
compatible with R and accepts a language L, then L0 ⊆ L by construction and
L is closed under rewriting by R by the following result.

Theorem 7.2 ([24]). Let the tree automaton A be compatible with the TRS R.
Then

1. if R is left-linear, then L(A) is closed under rewriting by R, and

2. if A is deterministic, then L(A) is closed under rewriting by R.

Example 7.3. Let R = {f(x, x) → x} and A be the automaton with states
1, 2, 3, final state 3, and transitions

a→ 1 a→ 2 f(1, 2)→ 3

So A is non-deterministic and R is non-left-linear. Even though A is compatible
with R, L(A) = {f(a, a)} is not closed under rewriting by R, because f(a, a) can
be rewritten to a which is not in L(A).

However, demanding A to be deterministic if R is not left-linear may result
in bad approximations.

Example 7.4. Let R = {f(x, x) → b, b → a} and L0 = {f(a, a)}. The set of
terms reachable from L0, namely R∗(L0) = {f(a, a), b, a}, is not accepted by
any deterministic, compatible tree automaton. To see why, assume that such
an automaton A exists, and let q be the state accepting f(a, a). There must be
transitions a → q′ (q′ is unique because A is deterministic) and f(q′, q′) → q
in A. By compatibility with the rules f(x, x) → b and b → a, we must have
transitions b → q, and a → q. Since we already have the transition a → q′,
determinism implies q′ = q. With the three transitions a → q, b → q, and
f(q, q) → q, A accepts every term over the signature {f, a, b}, which is not a
very useful approximation of R∗(L0).

To overcome this problem, Korp and Middeldorp introduced quasi-determi-
nistic automata [46]. Indeed it is easy to find a quasi-deterministic automaton
accepting R∗(L0) = {f(a, a), b, a} that is compatible with R from the previous
example.

Example 7.5. Let A be an automaton with states 1, 2, final state 2 and
transitions

a→ 1∗ a→ 2 b→ 2∗ f(1, 1)→ 2∗

where the stars indicate the so-called designated states for each left-hand side.
Then A is quasi-deterministic, compatible with R and L(A) = {f(a, a), b, a}.

In this chapter, we concentrate on the compatibility requirement that ensures
R(L) ⊆ L. Since there may be bugs in the implementation of tree automata
completion, it is important to independently certify whether R(L) ⊆ L is really
satisfied. Such a certifier has already been developed in [12], but it is restricted

122

7.2 State-Compatible Automata

to left-linear systems and does not support the stronger quasi-deterministic
automata. We extend this work by introducing state-compatible automata, which
are deterministic but accomplish the effect of quasi-deterministic automata by
relaxing the compatibility requirement instead. It turns out that as long as R
has only non-collapsing rules, state-compatible automata and quasi-deterministic
automata are equivalent. In the presence of collapsing rules, state-compatible
automata can capture more approximations than quasi-deterministic ones.

We will further show that state-compatibility does not only ensure R(L) ⊆ L,
but it can also be utilized to obtain a decision procedure for the question whether
a regular tree language is closed under rewriting—to the best of our knowledge,
this result is new. We formalized these results within the theorem prover
Isabelle/HOL [53], resulting in a formalized decision procedure for the question
R(L) ⊆ L. It is used to certify automatically generated proofs in two application
areas that utilize tree automata: confluence analysis [78] and termination analysis
via match-bounds [45, 46]. For the latter, we also had to adapt another central
notion (raise-consistency) from compatible quasi-deterministic automata to our
setting of state-compatible deterministic automata.

The improved precision of the decision procedure also has a positive impact
within the application areas. To this end, we provide examples where the
techniques of [45, 46, 78] are successfully applied when using our decision
procedure, but where the techniques must fail if they are restricted to use the
compatibility criteria of Genet or Korp and Middeldorp.

This chapter is structured as follows. In Section 7.2 we introduce the central
notions of state-coherence and state-compatibility, and present the decision
procedure for R(L) ⊆ L. Section 7.3 is devoted to a comparison to quasi-
deterministic automata. The next two sections demonstrate that the improved
precision of the decision procedure is also helpful in applications. Here, Sec-
tion 7.4 is on confluence analysis, and Section 7.5 deals with match-bounds.
Finally, we conclude in Section 7.6.

7.2 State-Compatible Automata

In this section we will introduce state-compatible automata formally, and show
how they ensure R(L(A)) ⊆ L(A). Furthermore, we describe a decision proce-
dure for determining whether this inclusion holds for a given automaton A and
TRS R.

7.2.1 Definitions

Before we get down to definitions, let us briefly analyze the failure in Example 7.4.
What happens there is that, by the compatibility requirement, all three terms in
the rewrite sequence f(a, a)→R b→R a have to be accepted in the same state.
In conjunction with the determinism requirement, this is fatal. Consequently,
because our goal is to obtain a deterministic automaton, we must allow a and
b to be accepted in separate states, qa and qb. To track their connection by
rewriting, we introduce a relation � on states, such that qb � qa. In general,

123

7 Certifying Non-Confluence

lσ rσ lσ rσ l l′

q q q′ q q′

A

R

A

A

R

A

�

A

�

A

�

Figure 7.1: Compatibility, state-compatibility, and state-coherence.

we require � to be state-compatible and state-coherent, which are defined as
follows (see also Figure 7.1).

Definition 7.6. Let A = (F , Q,Qf ,∆) be a tree automaton, and� ⊆ Q×Q be
a relation on the states of A. We say that (A,�) is state-compatible with a TRS
R if for all state substitutions σ, rules l→ r ∈ R and states q ∈ Q, if lσ →∗A q
then rσ →∗A q′ for some q′ ∈ Q with q � q′. We say that (A,�) is state-coherent
if {q′ | q ∈ Qf , q � q′} ⊆ Qf , and if for all f(q1, . . . , qi, . . . , qn) → q ∈ ∆ and
qi � q′i there is some q′ ∈ Q with f(q1, . . . , q

′
i, . . . , qn)→ q′ ∈ ∆ and q � q′.

The purpose of state-coherence is to deal with contexts in rewrite steps, as
we will see in the proof of Theorem 7.9 below.

Example 7.7. Let A be an automaton with states 1, 2 (both final), and transi-
tions

a→ 1 b→ 2 f(1, 1)→ 2

Furthermore, let 2 � 2 and 2 � 1. Then (A,�) is state-coherent and state-
compatible with R = {f(x, x) → b, b → a} and L(A) = {f(a, a), b, a}. Note
that this automaton was obtained from the quasi-deterministic automaton from
Example 7.5 by keeping only the transitions to designated states. We will see in
Section 7.3 that this construction works in general.

Remark 7.8. If (A,�) is state-coherent, then (A,�=) and (A,�∗) are also
state-coherent. The same holds for state-compatibility with R.

7.2.2 Soundness and Completeness
Next we prove the analogue of Theorem 7.2 for state-coherent, state-compatible
automata.

Theorem 7.9. Let A be a tree automaton such that (A,�) is state-coherent
and state-compatible with the TRS R for some relation �. Then

1. if R is left-linear, then L(A) is closed under rewriting by R, and

2. if A is deterministic, then L(A) is closed under rewriting by R.

Proof. Let A = (F , Q,Qf ,∆). First we show that whenever lτ →∗A q for some
substitution τ and rule l→ r ∈ R, then there is a state q′ ∈ Q with q � q′ and
rτ →∗A q′. By the assumptions, we can extract from lτ →∗A q a state substitution
σ such that lτ →∗A lσ →∗A q: For each x ∈ Var(l), we map x to the state reached

124

7.2 State-Compatible Automata

from τ(x) in the given sequence. The state is unique either by left-linearity, or
because the given automaton is deterministic. By state-compatibility, we obtain
a state q′ such that q � q′ and rτ →∗A rσ →∗A q′.

Using state-coherence we can show by structural induction on C that whenever
C[q]→∗A q• and q � q′, then C[q′]→∗A q′• for some state q′• with q• � q′•.

Finally, assume that t ∈ L(A) and t→R t′. Then there exist a rule l→ r ∈ R,
a context C and a substitution τ such that t = C[lτ] and t′ = C[rτ]. We have a
derivation t = C[lτ] →∗A C[q] →∗A q• ∈ Qf . By the preceding observations we
can find states q � q′ and q• � q′• such that t′ = C[rτ]→∗A C[q′]→∗A q′•. Note
that by state-coherence, q• ∈ Qf implies q′• ∈ Qf , so that t′ ∈ L(A).

Note that Theorem 7.9 generalizes Theorem 7.2 (choose � to be the identity
relation on states, which is always state-coherent). Moreover, the converse of
Theorem 7.9 holds for trim, deterministic automata. We will prove this in
Theorem 7.11 below, which allows us to derive our main decidability result in
Corollary 7.12. But first let us show by example that the converse fails for some
trim, non-deterministic automaton and ground TRS R.

Example 7.10. Consider the TRS R = {a → b} and the automaton A with
states 0, 1, 2, 3, final state 0, and transitions

a→ 1 b→ 2 f(1)→ 0 g(1)→ 0
b→ 3 f(2)→ 0 g(3)→ 0

This automaton accepts L(A) = {f(a), f(b), g(a), g(b)}, which is closed under
rewriting by R. Assume that (A,�) is state-coherent and state-compatible
with R. By state-compatibility, a→ b begets 1� 2 or 1� 3. If 1� 2, then
state-coherence, considering the transition g(1)→ 0, requires a transition with
left-hand side g(2), which does not exist. Similarly, if 1 � 3, then f(1) → 0
requires a transition with left-hand side f(3), which does not exist.

Theorem 7.11. Let A be a trim, deterministic tree automaton such that L(A)
is closed under rewriting by the TRS R. Then there is a relation � such that
(A,�) is state-coherent and state-compatible with R.

Proof. Let A = (F , Q,Qf ,∆). We define � as follows: q � q′ iff for some
terms t, t′ ∈ T (F), we have

q
∗←−
A
t −→
R

t′
∗−→
A
q′ (7.1)

Note that by virtue of A being deterministic, t and t′ determine q and q′ uniquely.
We show that (A,�) is state-coherent and state-compatible.

1. (state-coherence) If q ∈ Qf and q � q′, then there exist terms t, t′

satisfying (7.1). In particular, q ∈ Qf implies t ∈ L(A), and t →R t′

implies t′ ∈ L(A), because L(A) is closed under rewriting by R. Because
A is deterministic, t′ determines q′ uniquely, and q′ ∈ Qf follows.

125

7 Certifying Non-Confluence

2. (state-coherence) Assume that f(q1, . . . , qn) → q ∈ ∆ and qi � q′i for
some index i and state q′i. By (7.1) there are ti, t′i such that qi ∗A← ti →R
t′i →∗A q′i. Because all qj are reachable, we can fix terms tj with tj →∗A qj
for j 6= i. The state q is productive, so there is a context C such that
C[q]→∗A q• ∈ Qf . Let t = f(t1, . . . , tn) and t′ = f(t1, . . . , t′i, . . . , tn). Then
C[t] ∈ L(A) and C[t]→R C[t′], hence C[t′] ∈ L(A) as well. Consequently,
there are states q′, q′• such that

C[q] ∗←−
A
C[t] −→

R
C[t′] ∗−→

A
C[f(q1, . . . , q

′
i, . . . , qn)] −→

A
C[q′] ∗−→

A
q′• ∈ Qf

In particular, we have a transition f(q1, . . . , q
′
i, . . . , qn) → q′ ∈ ∆, and

q � q′.

3. (state-compatibility) Assume that lσ →∗A q for a state substitution σ. All
states of A are reachable, so there is a substitution τ : V → T (F) with
τ(x)→∗A σ(x) for all x ∈ V . Furthermore, q is productive, so that for some
context C, C[q]→∗A q• ∈ Qf . We have C[lτ] ∈ L(A) and C[lτ]→R C[rτ].
Consequently, C[rτ] ∈ L(A) and for some states q′, q′•,

C[q] ∗←−
A
C[lσ] ∗←−

A
C[lτ] −→

R
C[rτ] ∗−→

A
C[q′] ∗−→

A
q′• ∈ Qf

In particular, rτ →∗A q′. Recall that A is deterministic. Hence we can
decompose this rewrite sequence as follows: rτ →∗A rσ →∗A q′. We conclude
by noting that q � q′ by the definition of �.

Corollary 7.12. The problem R(L(A)) ⊆ L(A) is decidable.

Proof. W.l.o.g. we may assume that A is deterministic. Using Proposition 2.64
we may also assume that A is trim. By Theorems 7.9 and 7.11 the problem
reduces to whether there is some relation � such that (A,�) is both state-
compatible with R and state-coherent. But since there are only finitely many
relations � we can just test state-compatibility and state-coherence for each
�.

Remark 7.13. As a consequence of Theorem 7.11, regular languages accepted
by state-coherent automata that are state-compatible with a fixed TRS R are
closed under intersection and union. This can also be shown directly by a
product construction.

7.2.3 Deciding R(L(A)) ⊆ L(A)
In the remainder of this section we show that instead of testing all possible
relations �, it suffices to construct a minimal one. We proceed as follows:

1. We assume that A = (F , Q,Qf ,∆) is trim and deterministic. Note
that given a non-deterministic automaton, we can compute an equivalent
deterministic one in exponential time. Once we have a deterministic
automaton, we can compute an equivalent trim one in polynomial time.

126

7.3 Relation to Quasi-Deterministic Automata

2. In the following steps we will find the smallest relation � that makes
(A,�) both state-compatible with R and state-coherent, if such a relation
exists. Initially set � = ∅.

3. Consider each rule l → r ∈ R, each state substitution σ, and each state
q ∈ Q such that lσ →∗∆ q. If there is some state q′ with rσ →∗∆ q′ then
add (q, q′) to �. Otherwise, L(A) is not closed under rewriting by R, and
the procedure terminates.
At this point it is ensured that (any extension of) � is state-compatible
with R.

4. In order to ensure state-coherence, we repeat the following process until
� is not increased any further.
Whenever q � q′ and f(q1, . . . , qi = q, . . . , qn) → q• ∈ ∆, then we look
for a transition with left-hand side f(q1, . . . , q

′
i = q′, . . . , qn) in ∆. If no

such transition exists, state-coherence fails, and the algorithm terminates.
Otherwise, let q′• ∈ Q be the corresponding right-hand side and add (q•, q′•)
to �.
At this point � is the smallest relation satisfying state-compatibility with
R which additionally satisfies the second condition of state-coherence.

5. Assert for all q � q′ with final state q that also q′ is final.

Step 3 which identifies the applicable instances of the state-compatibility con-
straint, consists of a polynomial number of NP queries, and step 4 can be
performed in polynomial time. The whole procedure is, therefore, in the ∆P

2 (or
PNP) complexity class for deterministic automata as input.

Remark 7.14. Using [13, Exercise 1.12.2], which shows that it is NP-hard
to decide whether an instance of a term l is accepted by a tree automaton A,
we can show that deciding whether the language accepted by a deterministic
automaton is closed under rewriting by a given TRS is co-NP-hard. To wit,
given a term l, a tree automaton A, a fresh unary function ? and a fresh constant
�, then ?(L(A)) = {?(x) | x ∈ L(A)} is closed under rewriting by ?(l) → � if
and only if no instance of l is accepted by A.

7.3 Relation to Quasi-Deterministic Automata
In this section we relate deterministic state-coherent, state-compatible automata
to quasi-deterministic automata by Korp and Middeldorp [46]. Our interest
in quasi-deterministic automata is two-fold. First, they represent the state
of the art in tree automata completion for non-left-linear TRSs. Secondly,
the existing implementation of tree automata completion in TTT2 and CSI is
based on quasi-deterministic automata, and our goal is to certify the resulting
non-confluence and termination proofs (cf. Sections 7.4 and 7.5). We show
that given a compatible, quasi-deterministic automaton, we can extract a
state-compatible, deterministic automaton accepting the same language, while

127

7 Certifying Non-Confluence

the opposite direction fails in the presence of collapsing rules. In our tools’
implementation, due to Korp, this restriction is overcome by adding ε-transitions
to the quasi-deterministic automata, and we will conclude the section with a
description of this extension, which was hitherto unpublished.

First we recall the definitions of compatibility and quasi-determinism.

Definition 7.15 (Definition 18 of [46]). Let A = (F , Q,Qf ,∆) be a tree
automaton. For a left-hand side l ∈ lhs(∆) of a transition, we denote the
set {q | l → q ∈ ∆} of possible right-hand sides by Q(l). We call A quasi-
deterministic if for every l ∈ lhs(∆) there exists a designated state p ∈ Q(l) such
that for all transitions f(q1, . . . , qn)→ q ∈ ∆ and i ∈ {1, . . . , n} with qi ∈ Q(l),
the transition f(q1, . . . , qi−1, p, qi+1, . . . , qn) → q belongs to ∆. Moreover, we
require that p ∈ Qf whenever Q(l) contains a final state.

For each l ∈ lhs(∆) we fix a designated state pl satisfying the constraints of
Definition 7.15. We denote the set of designated states by Qd and the set {l→
pl | l ∈ lhs(∆)} by ∆d. The notion of compatibility used for quasi-deterministic
tree automata is refined slightly from the standard one, Definition 7.1.

Definition 7.16 (Definition 23 of [46]). Let R be a TRS and L a language. Let
A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton. We say that A is
compatible with R and L if L ⊆ L(A) and for each rewrite rule l→ r ∈ R and
state substitution σ : Var(l)→ Qd such that lσ →∗∆d

q it holds that rσ →∗∆ q.

Example 7.5 exhibits a quasi-deterministic, quasi-compatible automaton.
We will show that for each quasi-deterministic automaton that is compatible

with a TRS R, there is a deterministic, state-coherent automaton that is state-
compatible with R and accepts the same language. To this end, we need the
following key lemma, a slight generalization of [46, Lemma 20], which shows
that a quasi-deterministic automaton A is almost deterministic: all but the last
step in a reduction can be performed using the deterministic ∆d transitions.

Lemma 7.17. Let A = (F , Q,Qf ,∆) be a quasi-deterministic automaton. If
t→+

∆ q then t→∗∆d
· →∆ q for all terms t ∈ T (F ∪Q) and states q ∈ Q.

Proof. The proof is identical to the proof of [46, Lemma 20], except when ti in
t = f(t1, . . . , tn) is a state. In that case, we let pli = qi = ti.

Theorem 7.18. Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton
that is compatible with R. Then A′ = (F , Qd, Qf ∩ Qd,∆d) makes (A′,�)
state-coherent and state-compatible with R, where q � q′ if q = q′ or, for some
left-hand side l ∈ lhs(∆), q ∈ Q(l) and q′ = pl. Furthermore, L(A′) = L(A).

Proof. Note that →A =→∆ and →A′ =→∆d
.

1. (state-coherence) Assume that q is final in A′, and q � q′. If q = q′ then
q′ is final, too. Otherwise, there is a left-hand side l such that q ∈ Q(l)
and q′ = pl is the designated state of l. Since Q(l) contains a final state
(namely, q), q′ must be final as well by Definition 7.15.

128

7.3 Relation to Quasi-Deterministic Automata

2. (state-coherence) Let l = f(q1, ..., qi, ..., qn) and l′ = f(q1, ..., q
′
i, ..., qn),

where qi � q′i. Furthermore, let l → q ∈ ∆d. If qi = q′i then l′ → q ∈ ∆d

and q � q. Otherwise, there is a left-hand side l• such that qi ∈ Q(l•)
and q′i = pl• is the designated state of l•. By Definition 7.15, there is
a transition l′ → q in ∆. Thus, l′ is a left-hand side and q ∈ Q(l′).
Furthermore, l′ → pl′ ∈ ∆d, and q � pl′ follows.

3. (state-compatibility) Let σ be a state substitution and lσ →∗∆d
q. By

compatibility, we have rσ →∗∆ q. If r is a variable, we are done, noting that
q � q. Otherwise, using Lemma 7.17, there is a left-hand side l′ ∈ lhs(A)
such that rσ →∗∆d

l′ →∆ q. Consequently, rσ →∗∆d
· →∆d

pl′ , and since
q ∈ Q(l′), we have q � pl′ .

4. (accepted language) L(A′) ⊆ L(A) is obvious. To show L(A) ⊆ L(A′),
assume that t ∈ L(A), i.e., t →∗∆ q ∈ Qf . By Lemma 7.17, there is a
left-hand side l ∈ lhs(A) such that t →∗∆d

l →∆ q. As in the previous
item we conclude that t →∗∆d

pl, and q � pl. The state pl is final by
state-coherence, so t ∈ L(A′) follows.

In the opposite direction, we have a positive result for non-collapsing TRSs.

Theorem 7.19. Let A = (F , Q,Qf ,∆) be a deterministic automaton and the
relation � ⊆ Q×Q be such that (A,�) is state-coherent and state-compatible
with R. Furthermore, assume that R contains no collapsing rules. Then the
automaton A′ = (F , Q,Qf ,∆′) with ∆′ = {l → q′ | l → q ∈ ∆, q �= q′} is a
quasi-deterministic automaton with designated states pl = q for l→ q ∈ ∆, such
that A′ is compatible with R and accepts the same language as A.

Proof. Verifying that the construction results in a quasi-deterministic automaton
that is compatible with R is straightforward. Note that applying Theorem 7.18
to A′ results in some (A′′,�′′) with L(A′′) = L(A′), where A′′ is A with states
restricted to Q′d, the right-hand sides of ∆′. This restriction preserves the
accepted language. Therefore, L(A) = L(A′).

If R contains collapsing rules, quasi-deterministic, compatible automata may
be weaker than state-coherent, state-compatible ones, as the following example
demonstrates.

Example 7.20. Let R = {f(x, x) → x}. The automaton A′ over {f, a} with
states 1, 2, both final, and transitions

a→ 1 f(1, 1)→ 2

accepts L = {f(a, a), a}. Furthermore, (A′,�) is state-coherent and state-com-
patible with R if we let 2� 1.

Now assume that A = ({f, a}, Q,Qf ,∆) is a quasi-deterministic automaton
and compatible with R, and that f(a, a) ∈ L(A). We will show that A accepts
all terms over {f, a}. Note that since f(a, a) is accepted, a must be a left-hand

129

7 Certifying Non-Confluence

side of A. Let q be the designated state of a. By Lemma 7.17, we have a run
f(a, a)→∗∆d

f(q, q)→∆ q′ ∈ Qf . Let q• be the designated state of the left-hand
side f(q, q). By quasi-determinism, q• is a final state. Compatibility requires
that f(q, q) →∆d

q• ∗∆← q, i.e., q• = q. So we have a final state q and two
transitions a→ q, f(q, q)→ q, and A accepts all of T ({f, a}).

Remark 7.21. In his thesis [45], Korp generalizes Definition 7.15 (cf. [45, Def-
inition 3.10]) by incorporating an auxiliary relation >φA that may be viewed
as a precursor to our relation �. The modified definition permits smaller
automata, which benefits implementations, but is more complicated than Def-
inition 7.15. The modification also does not add expressive power. Indeed
if A = (F , Q,Qf ,∆) satisfies [45, Definition 3.10] using >φA , then taking
∆′ = {l → q | l ∈ lhs(∆), φA(l) > q}, the automaton A′ = (F , Q,Qf ,∆′) satis-
fies Definition 7.15, noting that φA(l) is just another notation for the designated
state pl of l. Furthermore, L(A′) = L(A).

The actual implementation of quasi-deterministic automata in TTT2 and CSI
by Korp is based on an extension with ε-transitions, which are transitions from
states to states.

Definition 7.22. Let Aε = (F , Q,Qf ,∆,∆ε) be a tree automaton with ε-transi-
tions ∆ε ⊆ Q×Q. Let A = (F , Q,Qf ,∆) be the corresponding tree automaton
with the ε-transitions removed. Then Aε is extended quasi-deterministic if A is
quasi-deterministic and l→ q′ ∈ ∆ whenever l→ q ∈ ∆ and q → q′ ∈ ∆ε.

We let→Aε =→∆∪∆ε . The following lemma is key to justifying the extension.

Lemma 7.23. Let Aε = (F , Q,Qf ,∆,∆ε) be an extended quasi-deterministic
automaton with ε-transitions. Then for terms t ∈ T (F), we have t→∗Aε q if and
only if t→∗A q.

Proof. By structural induction on t.

As a consequence, the language L(Aε) = {t ∈ T (F) | t →∗Aε q, q ∈ Qf}
accepted by Aε satisfies L(Aε) = L(A). Furthermore, Lemmas 20 and 21
and Theorem 24 of [46] remain true for extended quasi-compatible automata,
and therefore L(Aε) is closed under rewriting by R if Aε is extended quasi-
deterministic and compatible with R. In order to obtain a deterministic, state-
coherent, state-compatible automaton, we apply Theorem 7.18, and then extend
� as necessary to ensure compatibility with collapsing rules from R. This is
easy in our implementation, because ε-transitions correspond to state instances
of collapsing rules. More precisely, q′ → q is added only if l→ x ∈ R, lσ →∗Aε q
and σ(x) = q′. A general approach is to observe that (F , Q,Qf ,∆d) accepts the
same language as Aε, and then compute � by the algorithm from Section 7.2.3.

7.4 Confluence
Tree automata have an obvious application for disproving (local) confluence.
Given some peak s ∗R← · →∗R t (or s R← · →R t for local confluence), one has

130

7.4 Confluence

to prove that s and t are not joinable. To this end, it suffices to find suitable
tree automata over-approximating descendants of s and t, respectively.

Observation 7.24. Let As and At be tree automata. If s ∈ L(As), t ∈ L(At),
L(As)∩L(At) = ∅, and both automata are closed under rewriting with R, then
s and t are not joinable w.r.t. R.

Given the peak and both automata for a concrete TRS R, by the decision
procedure for closure under rewriting it is easy to check the conditions of
Observation 7.24.

Notice that due to the precision of our criterion, we also can strengthen the
power of confluence tools which are based on Observation 7.24 as demonstrated
in the upcoming example.

Example 7.25. Consider the TRS R consisting of the following rules.

c→ f(a, b) f(x, x)→ x f(a, a)→ f(b, b)
c→ f(a, a) f(x, y)→ f(y, x) f(b, b)→ f(a, a)

Disproving local confluence is equivalent to finding a non-joinable critical pair.
Note that R contains only one non-joinable critical pair, arising from the peak
f(a, b) R← c→R f(a, a).

Proving non-joinability of f(a, b) and f(a, a) is possible via Observation 7.24
and the following two automata: the first automaton has one final state 3, and
consists of four transitions, and accepts the language {f(a, b), f(b, a)}.

a→ 1 b→ 2 f(1, 2)→ 3 f(2, 1)→ 3

The second automaton has three final states 1, 2, and 3, and also contains four
transitions. It’s language is {f(a, a), f(b, b), a, b}.

a→ 1 b→ 2 f(1, 1)→ 3 f(2, 2)→ 3

By Observation 7.24, R is not confluent. In the following we will argue that
it is impossible to show non-confluence this way when using quasi-deterministic
automata and compatibility for closure under rewriting.

Assume there is some quasi-deterministic automaton A with transitions
∆ which accepts f(a, a) and is compatible with R. In the same way as in
Example 7.20 one obtains transitions a→ q and f(q, q)→ q, where q is a final
state and the designated state of both a and f(q, q). Since A is closed under
rewriting it must also contain f(b, b) and thus, by the same reasoning there
are transitions b → p and f(p, p) → p for some final state p which is also the
designated state of b and f(p, p).

Since A is compatible and f(a, a) →∗∆d
q we deduce f(b, b) →∗∆ q. By

Lemma 7.17 we further conclude f(b, b) →∗∆d
f(p, p) →∆ q. Hence, both p

and q are contained in Q(f(p, p)) where p is the designated state of f(p, p). Thus,
by the definition of quasi-compatible automata, we can exchange q by p in
any left-hand side of a transition, so, from f(q, q)→ q ∈ ∆ we know that also
f(q, p)→ q ∈ ∆. Thus we obtain the derivation f(a, b)→∗∆ f(q, p)→∆ q which
shows f(a, b) ∈ L(A). Therefore, no automaton which accepts f(a, b) is disjoint
from A.

131

7 Certifying Non-Confluence

7.5 Match-Bounds
In this section we show how tree automata can be used to prove termination
via match-bounds [27]. To this end, we first recapitulate the basic concepts and
important results about match-bounds. Note that match-bounds require special
treatment for non-left-linear TRSs (see Example 7.27). In [46], raise-consistent
automata are used to ensure correctness. We present an adaptation of raise-
consistency to our setting, leading to the new notion of state-raise-consistency.
Finally, we explain how we treat quasi-compatibility, a weaker condition than
compatibility that has been introduced specifically for match-bounds.

7.5.1 A Short Introduction to Match-Bounds

Match-bounds is a termination technique which is based on the following idea.

1. One considers an enriched signature where each original symbol of F is
labeled by some natural number to yield a symbol of F ′ = F × N.

2. The rewrite rules of R over F are enriched by labels in a way that each
rewrite step corresponds to an increase of labels.1 The result is an enriched
TRSR′ over F ′. Possible enrichments are match and roof where the details
are not relevant for this chapter.

3. One tries to show boundedness, i.e., whenever one picks some initial term
where all labels in t are 0, then there must be some bound b so that the
labels never exceed b when rewriting with R′.

4. If boundedness is ensured, then termination follows as any infinite deriva-
tion would lead to an infinite increase in the labels by 2., which is impossible
by 3.

Termination via match-bounds can easily be treated as a tree automata
problem: the set of terms where every symbol is labeled by 0, lift0(F), is
accepted by a tree automaton, and moreover, tree automata completion of
lift0(F) under →R′ , if successful, yields a suitable bound b for Step 3, namely
the largest label in the transitions of the resulting automaton A.

In short, match-bounds can be summarized as follows.

Theorem 7.26. If R′ is a valid enrichment of R, R is left-linear, A is a tree
automaton, lift0(F) ⊆ L(A), and A is closed under →R′ , then R is terminating.

It is well known that the restriction to left-linearity is essential as otherwise
not every rewrite step of R can be simulated by a corresponding step in R′.

Example 7.27. For R = {f(x, x)→ f(a, x)} and both possible enrichments we
obtain R′ = {fi(x, x)→ fi+1(ai+1, x) | i ∈ N}. Now the derivation

f(a, a)→R f(a, a)→R f(a, a)→R . . .
1There is an exception concerning collapsing rules as these do not increase the labels. This is
explained in detail in [27].

132

7.5 Match-Bounds

cannot be simulated in the enriched system since after one step

f0(a0, a0)→R′ f1(a1, a0)

there is a mismatch of the labels which cannot be repaired by R′, and thus, the
evaluation gets stuck.

To overcome this problem, we follow [46] and consider a special rewrite relation
which allows to adjust labels for matching non-left-linear rules. In the following
definition, base is the function which removes all labels of a term, and s↑t
takes two terms with base(s) = base(t) as input and performs a component-wise
maximum on all labels. For example, f1(a1, a3)↑f2(a0, a3) = f2(a1, a3). Moreover,
for non-empty sets S = {s1, . . . , sn} we define base(S) = {base(s1), . . . , base(sn)}
and ↑S = s1↑. . . ↑sn.

Definition 7.28. Let R′ be some TRS over an enriched signature F ′. We define
the relation >→R′ as s >→R′ t if there is some rule l→ r ∈ R′, l = D〈x1, . . . , xn〉
with all variables displayed, s = C[D〈s1, . . . , sn〉], Si = {sj | 1 6 j 6 n, xj = xi}
and |base(Si)| = 1 for each 1 6 i 6 n, τ = {x1/↑S1, . . . , xn/↑Sn}, and t = C[rτ].

Note that τ in the previous definition is well-defined since whenever xi = xj

then Si = Sj . Moreover, if R′ is left-linear, then >→R′ is identical to →R′ .
Using this new relation it is possible to generalize Theorem 7.26 to arbitrary,

possibly non-left-linear TRSs.

Theorem 7.29. If R′ is some valid enrichment of R, A is some tree automaton,
lift0(F) ⊆ L(A), and A is closed under >→R′, then R is terminating.

7.5.2 Adapting Raise-Consistency
The main difficulty when handling non-left-linear TRSs stems from the changed
closure property where the standard rewrite relation →R′ has been replaced by
>→R′ .

To handle this problem, the notion of raise-consistency was introduced in [46].
The basic idea is to ensure that whenever an automaton accepts terms s1, s2
with base(s1) = base(s2), it also accepts s1↑s2 in a related state, cf. Lemma 7.31,
thereby allowing to perform a step s

>→R′ t step by first replacing s by another
term s′ accepted by the automaton (namely s′ = C[lτ] in terms of Defini-
tion 7.28), followed by a plain rewrite step using a rule from R′.

In the following we first adapt the notion of raise-consistency to our setting lead-
ing to the notion of state-raise-consistency, and prove that state-raise-consistency
in combination with state-compatibility and state-coherence ensures closure
under >→R′ . Furthermore, we show that raise-consistent quasi-deterministic au-
tomata can easily be turned into state-raise-consistent deterministic automata.

Definition 7.30. (A,�) is state-raise-consistent if q � q′ for any transitions
fi(q1, . . . , qn)→ q and fj(q1, . . . , qn)→ q′ of A with i < j.

Until Corollary 7.33 we assume a fixed deterministic automaton A, a TRS
R′, and a relation �, where (A,�) is state-raise-consistent, state-coherent, and
state-compatible w.r.t. R′.

133

7 Certifying Non-Confluence

Lemma 7.31. Let S = {s1, . . . , sn} with |base(S)| = 1. If si →∗A qi for all
1 6 i 6 n then there is some q such that ↑S →∗A q and qi �∗ q for all 1 6 i 6 n

Proof. We only consider the case n = 2 here, which is then easily generalized
to arbitrary n. Let base(s1) = base(s2), and si →∗A qi for both i = 1, 2. We
perform induction on s1, so let s1 = fa(t1, . . . , tk)→∗A fa(p1, . . . , pk)→A q1 and
s2 = fb(t′1, . . . , t′k) →∗A fb(p′1, . . . , p′k) →A q2 where base(ti) = base(t′i) for all
1 6 i 6 k. By the induction hypothesis we obtain q′i such that ti↑t′i →∗A q′i,
pi �∗ q′i, and p′i �∗ q′i for each i. Thus,

s1↑s2 = fmax(a,b)(t1↑t′1, . . . , tk↑t′k)
∗−→
A
fmax(a,b)(q′1, . . . , q′k)

Using fa(p1, . . . , pk)→A q1, pi �∗ q′i and state-coherence, there is some q•1 such
that that fa(q′1, . . . , q′k)→A q•1 and q1 �∗ q•1. Similarly, we obtain q•2 such that
that fb(q′1, . . . , q′k)→A q•2 and q2 �∗ q•2.

It remains to prove existence of some q• such that fmax(a,b)(q′1, . . . , q′k)→A q•
and q•i �∗ q• for both i = 1, 2: then we would be able to derive the desired
result s1↑s2 →∗A fmax(a,b)(q′1, . . . , q′k)→A q• and qi �∗ q•i �∗ q• for both i. To
show the existence of q• we distinguish cases depending on how a and b compare.

If a = b, then fa(q′1, . . . , q′k) →A q•1, and fb(q′1, . . . , q′k) →A q•2 imply q•1 = q•2
by determinism of A. Hence, we can let q• := q•1 = q•2 and are done. If a < b,
then by state-raise-consistency we conclude q•1 � q•2 and choose q• := q•2 to
derive the desired result: fmax(a,b)(q′1, . . . , q′k) = fb(q′1, . . . , q′k)→A q•2 = q• and
q•i �∗ q•2 = q• for both i. The final case, a > b, is symmetric to a < b.

Lemma 7.32. If s→∗A q and s
>→R′ t, then there exists some q′ with t→∗A q′

and q �∗ q′.

Proof. Since s >→R′ t there are l → r ∈ R′ and C, D, si, Si, and τ satisfying
the conditions of Definition 7.28. Hence, we can decompose s →∗A q into
s = C[D〈s1, . . . , sn〉] →∗A C[D〈q1, . . . , qn〉] →∗A C[p] →∗A q, where si →∗A qi
for each 1 6 i 6 n and D〈q1, . . . , qn〉 →∗A p. Since |base(Si)| = 1 we use
Lemma 7.31 to obtain for each i some q′i such that ↑Si →∗A q′i and qi �∗ q′i.
Moreover, since Si = Sj whenever xi = xj we can ensure that q′i = q′j whenever
xi = xj . This allows us to define σ = {x1/q

′
1, . . . , xn/q

′
n} and we conclude both

D〈q′1, . . . , q′n〉 = lσ and τ(xi)→∗A σ(xi) for all 1 6 i 6 n.
From D〈q1, . . . , qn〉 →∗A p, qi �∗ q′i and state-coherence we obtain a p0

satisfying lσ = D〈q′1, . . . , q′n〉 →∗A p0 and p �∗ p0. From lσ →∗A p0 and state-
compatibility we conclude that there is some p′ such that rσ →∗A p′ and p0 � p′

and hence p�∗ p′. In the same way, from C[p]→∗A q, and p�∗ p′ we obtain
some q′ such that C[p′]→∗A q′ and q �∗ q′.

This finally yields t = C[rτ]→∗A C[rσ]→∗A C[p′]→∗A q′ where q �∗ q′.

Corollary 7.33. If s ∈ L(A) and s >→R′ t, then t ∈ L(A).

Therefore, we have the following criterion for termination of R.

134

7.5 Match-Bounds

Corollary 7.34. Let R be a TRS and R′ a suitable enrichment for R. If A
is a deterministic tree automaton and (A,�) is state-raise-consistent, state-
coherent, and state-compatible with R′, and furthermore lift0(F) ⊆ L(A) then
R is terminating.

Observe that Corollary 7.33 shows that state-coherence together with state-
compatibility, state-raise-consistency, and determinism is a sufficient criterion
for closure under rewriting with >→R′ . However, it is not a necessary criterion,
so there is no analogue of Theorem 7.11 where we replace →R′ by >→R′ and add
state-raise-consistency. This is demonstrated in the following example.

Example 7.35. Let A be the deterministic and trim automaton with transitions
a0 → 0, a1 → 1, f0(0) → 2 and final states 1, 2. It accepts the language L =
{a1, f0(a0)}. Let R′ = ∅. Then obviously L(A) = L is closed under rewriting
w.r.t. >→R′ .

Now assume there is some relation � such that (A,�) is both state-coherent
and state-raise-consistent. From the latter and the transitions a0 → 0 and
a1 → 1 we conclude 0� 1. In combination with the transition f0(0)→ 2 and
state-coherence there must be some state q satisfying f0(1) → q and 2 � q.
However, since there is no transition with left-hand side f0(1) we derived a
contradiction, and thus there is no such relation �.

We present another example that shows that the match-bounds technique
potentially suffers from this limitation.

Example 7.36. Consider the TRS R = {f(g(g(x))) → f(g(x))}, whose en-
richment is R′ = {fa(gb(gc(x))) → fd(gd(x)) | d = min(a, b, c) + 1}. Let the
automaton A have states 1, 2, both final, and the following transitions:

f0(1)→ 1 g0(1)→ 1 c0 → 1
f1(2)→ 1 g1(1)→ 2

With � as equality, A is deterministic, state-coherent, and state-compatible
with R′, and therefore R is match-bounded.

However, there is no (A,�) that is deterministic, state-coherent, state-
compatible with R′, and also state-raise-consistent, and accepts f0(gk0(c0)) for
all k > 0. To see why, let qi be the state accepting gi0(c0). There is a state q
with f0(g0(g0(qi)))→∗A q, and by state-compatibility with R′, there are states
q′, q′′ such that f1(g1(qi)) →A f1(q′) →A q′′, where q � q′′. In particular,
there are transitions g1(qi) → q′, and g0(qi) → qi+1, which implies qi+1 � q′

by state-raise-consistency. By state-coherence this implies that whenever A
accepts C[g0(qi)], then it also accepts C[g1(qi)]. We have f1(g1(gk0(c0))) in
L(A) by closure under rewriting, and by induction on j we can now show that
f1(gj+1

1 (gk−j0 (c0))) ∈ L(A). In particular, f1(gk+1
1 (c0)) is accepted by A as well.

By iterating this construction (increasing all labels of f and g by 1 in each
iteration) we can show that A accepts fa(gka(c0)) for all k > 0 and a ∈ N,
contradicting the fact that A is finite.

Despite incompleteness, state-raise-consistency still subsumes the criterion of
raise-consistency for quasi-deterministic automata.

135

7 Certifying Non-Confluence

Theorem 7.37. Let A, R, A′, and � be as in Theorem 7.18. If A is raise-
consistent then (A′,�) is state-raise-consistent.

Proof. Let fi(q1, . . . , qn)→ q ∈ ∆d and fj(q1, . . . , qn)→ q′ ∈ ∆d be rules of A′
with i < j. Hence, both rules are also present in A and by raise-consistency
we conclude that fj(q1, . . . , qn) → q ∈ ∆. By definition of ∆d we know that
q′ = Q(fj(q1, . . . , qn)) is the designated state and thus, q � q′ by the definition
of �.

Similarly to Example 7.20 we further prove that the inclusion is strict by
providing a rewrite system where match-boundedness cannot be proven using
quasi-deterministic automata.

Example 7.38. Let R = {f(x, x) → x, f(f(x, y), z) → f(a, a)} over signature
F = {a, f}. Then the enriched system is R′ = {fi(x, x) → x, fi(fj(x, y), z) →
fk(ak, ak) | i, j, k ∈ N, k = 1 + min(i, j)}. In particular, R′ contains the rules
fi(x, x)→ x and fi(fi(x, y), z)→ fi+1(ai+1, ai+1) for all i ∈ N.

The deterministic automaton A over {f, a} with states 1, 2, both final, and
transitions

a0 → 2 f0(p, q)→ 1 for all p, q ∈ {1, 2}
a1 → 2 f1(2, 2)→ 1

accepts all terms in lift0(F) and is closed under rewriting with >→R′ , as (A′,�)
is state-coherent and state-compatible with R′ and state-raise-consistent if we
let 1� 1 and 1� 2. Hence, by Theorem 7.29 and Corollary 7.33 termination
of R is proved.

We further prove that a similar proof is impossible if we use compatible, quasi-
deterministic automata. To this end, assume that A = (F × N, Q,Qf ,∆) is a
quasi-deterministic automaton which is compatible2 withR and accepts all terms
in lift0(F). These conditions imply that L(A) is closed under rewriting with R′.
Obviously, f0(f0(a0, a0), a0) ∈ L(A) and since f0(f0(a0, a0), a0)→R′ f1(a1, a1) and
L(A) is closed under rewriting, we also have f1(a1, a1) ∈ L(A).

Since f1(x, x)→ x ∈ R′, we can proceed in the same way as in Example 7.20
to show that A accepts all terms over {f1, a1}, i.e., lift1(F).

Now, again we have a derivation f1(f1(a1, a1), a1)→R′ f2(a2, a2) and by closure
under rewriting we conclude f2(a2, a2) ∈ L(A) and afterwards derive lift2(F) ⊆
L(A) as before. Iterating this reasoning yields

⋃
i∈N lifti(F) ⊆ L(A). But

this is impossible, since A is a finite automaton which can only have finitely
many symbols in the transitions whereas

⋃
i∈N lifti(F) contains infinitely many

symbols.

7.5.3 Quasi-Compatibility

In [46, Section 5] the improvement of quasi-compatibility is introduced, which
relaxes the compatibility criterion and therefore allows to reduce the size of

2We do not even require raise-consistency of A.

136

7.6 Conclusion

the automata. While it is possible to also integrate this refinement into state-
compatibility, we omit the details here. The main reason is that every quasi-
(state-)compatible automata can easily be turned into an automaton which is
also (state-)compatible by just adding more transitions, cf. the remark between
Definition 32 and 33 in [46]. Thus, in the same way as we transform quasi-
deterministic automata into deterministic automata within Section 7.3, we can
also always transform quasi-compatible automata into compatible ones without
losing power.

7.6 Conclusion
We have introduced the class of deterministic, state-coherent automata that
are state-compatible with a TRS R. We have shown that these automata
capture precisely those regular tree languages that are closed under rewriting by
R, leading to a decision procedure for checking whether a regular language is
closed under rewriting. Their simple definition allowed us to formalize most of
our results on state-coherent, state-compatible automata within Isabelle/HOL.
Also criteria for match-bounds—raise-consistency to ensure closure under >→R′—
could easily be adapted to the corresponding notion state-raise-consistency. We
further demonstrated via examples that the gain in precision carries over to the
applications: our notions result in more powerful confluence and termination
analysis.

As future work we plan to expand our formalization on match-bounds, e.g., by
integrating results on relative rewriting, on match-bounds for dependency pairs,
or match-bounds for complexity analysis. Another open question is whether the
state-raise-consistency condition can be relaxed to cover more systems.

137

Chapter 8

Conclusion

In this thesis we have visited a wide range of confluence-related topics, from
abstract rewrite systems and decreasing diagrams, labelings for applying the
decreasing diagrams technique to term rewrite systems, layer systems, which
mainly provide tools for decomposing TRSs into smaller TRSs for the purpose of
establishing (non-)confluence, to very concrete techniques for deciding confluence
of ground TRSs and closure under rewriting of tree automata for certifying
non-confluence. This leaves a lot of opportunities for further research.

• In Chapter 3, we have investigated decreasing diagrams for showing the
confluence and Church-Rosser modulo properties of abstract rewrite sys-
tems. It should be straightforward to adapt the labeling functions from
Chapter 4 to the latter setting, but the details still have to be worked out.

• In Chapter 4, we started out with labeling individual steps, using critical
pairs, and then parallel steps, using parallel critical pairs. A natural
question is whether this extends to development steps. The most obvious
approach is to consider conversions made of development steps. However,
the corresponding notion of critical pairs does not lead to a finite set of
critical pairs (consider the rule f(f(x)) → x. We have f2k(x) →○ x, and
therefore

f(x)←−○ f(f2k(x)) = f2k(f(x)) −→○ f(x)

which gives rise to a development critical pair for each k ∈ N. But there
is another way to proceed: Rather than sticking to the undirected version
of decreasing diagrams, we can use the commutation version, and use
plain rewrite steps in one direction, while using development steps in the
other direction. This was done to great effect by Okui in [58], where he
introduces the notion of simultaneous critical pairs. It seems that Okui’s
result can be fruitfully generalized by adding labels to the rewrite steps.

• A technical challenge posed by labeling functions is that it is often beneficial
to label different rewrite steps the same way. For example, the TRS

f(f(x))→ g(g(x)) g(g(x))→ f(f(x))

can be shown confluent by rule labeling, but only if both rules receive
the same label. This means that adding new components to a labeling
function can destroy confluence proofs by labeling. It would be great to
have a truly incremental approach to labeling diagrams decreasingly.

139

8 Conclusion

• In Chapter 5, we have applied layer systems to confluence. A natural
question is whether this extends to other properties like uniqueness of
normal forms, or perhaps even to non-modular properties like termination
under further restrictions.

• One big open problem for confluence tools is the treatment of non-left-
linear TRSs. We have seen this in Chapter 5, where dealing with layered
terms in the case of left-linear systems is quite straightforward, because
fusion never interferes with rewriting sequences, whereas the non-left-
linear systems caused a lot of trouble because of the need for rebalancing.
Also in Chapter 4 the main reason for restricting most of the theory to
left-linear systems is that the need for rebalancing makes joining variable
overlaps decreasingly quite hard. There is some recent progress in this
area, e.g. [69], but in general it seems that our understanding of confluence
of non-left-linear TRSs is still very limited.

Finally, we plan to formalize some results of this thesis in IsaFoR, most notably
the layer systems part. Some other parts have been formalized, namely the tree
automata results (by René Thiemann), and parts of the labeling results (by
Harald Zankl).

140

Publications

The following publications were produced during the course of my PhD studies
(in order of appearance).

• H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for decreasing
diagrams. In Proc. 22nd International Conference on Rewriting Tech-
niques and Applications, volume 10 of Leibniz International Proceedings in
Informatics, pages 377–392, 2011.

• H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool.
In Proc. 23rd International Conference on Automated Deduction, volume
6803 of Lecture Notes in Artificial Intelligence, pages 499–505, 2011.

• B. Felgenhauer, H. Zankl, and A. Middeldorp. Proving confluence with
layer systems. In Proc. 31st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 13 of
Leibniz International Proceedings in Informatics, pages 288–299, 2011.

• B. Felgenhauer. Deciding confluence of ground term rewrite systems
in cubic time. In Proc. 23rd International Conference on Rewriting
Techniques and Applications, volume 15 of Leibniz International Proceedings
in Informatics, pages 165–175, 2012.

• B. Felgenhauer. A proof order for decreasing diagrams. In Proc. 1st
International Workshop on Confluence, pages 7–14, 2012.

• B. Felgenhauer. Binomial interpretations. In Proc. 12th International
Workshop on Termination, 5 pages, 2012.

• B. Felgenhauer and V. van Oostrom. Proof orders for decreasing diagrams.
In Proc. 24th International Conference on Rewriting Techniques and Ap-
plications, number 21 in Leibniz International Proceedings in Informatics,
pages 174–189, 2013.

• B. Felgenhauer. Rule labeling for confluence of left-linear term rewrite
systems. In Proc. 2nd International Workshop on Confluence, pages 23–27,
2013.

• B. Felgenhauer, Martin Avanzini, and Christian Sternagel. A Haskell
library for term rewriting. In Proc. 1st International Workshop on Haskell
and Rewriting Techniques, 6 pages, 2013.

• B. Felgenhauer and R. Thiemann. Reachability analysis with state-
compatible automata. In Proc. 8th International Conference on Language

141

8 Conclusion

and Automata Theory and Applications, volume 8370 of Lecture Notes in
Computer Science, pages 347–359, 2014.

• M. Avanzini and B. Felgenhauer. Type introduction for runtime complexity
analysis. In Proc. 14th International Workshop on Termination, 5 pages,
2014.

• H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for decreasing
diagrams. Journal of Automated Reasoning, 54(2):101–133, 2015.

• B. Felgenhauer, A. Middeldorp, H. Zankl, and V. van Oostrom. Layer
systems for proving confluence. ACM Transactions on Computational
Logic, 36 pages, 2015, to appear.

142

Bibliography

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on
rule-labelling. In Proc. 21st International Conference on Rewriting Tech-
niques and Applications, volume 6 of Leibniz International Proceedings in
Informatics, pages 7–16, 2010.

[2] T. Aoto. Disproving confluence of term rewriting systems by interpretation
and ordering. In Proc. 9th International Workshop on Frontiers of Combin-
ing Systems, volume 8152 of Lecture Notes in Artificial Intelligence, pages
311–326, 2013.

[3] T. Aoto and Y. Toyama. Extending persistency of confluence with ordered
sorts. Technical Report IS-RR-96-0025F, School of Information Science,
JAIST, 1996.

[4] T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal
Computer Science, 3(11):1134–1147, 1997.

[5] T. Aoto and Y. Toyama. A reduction-preserving completion for proving
confluence of non-terminating term rewriting systems. Logical Methods in
Computer Science, 8(1:31):1–29, 2012.

[6] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting
systems automatically. In Proc. 20th International Conference on Rewriting
Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 93–102, 2009.

[7] C. Appel, V. van Oostrom, and J. G. Simonsen. Higher-order
(non-)modularity. In Proc. 21st International Conference on Rewriting
Techniques and Applications, volume 6 of Leibniz International Proceedings
in Informatics, pages 17–32, 2010.

[8] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[9] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs,
and proof orderings. Journal of the ACM, 41(2):236–276, 1994.

[10] M. Bognar. A point version of decreasing diagrams. In Proceedings Accolade
1996, Dutch Graduate School in Logic, pages 1–14, 1997.

[11] M. Bognar and J. Klop. A note on some abstract confluence criteria.
Technical Report IR-411, Vrije Universiteit Amsterdam, 1996.

143

Bibliography

[12] B. Boyer, T. Genet, and T. P. Jensen. Certifying a tree automata completion
checker. In Proc. 4th International Joint Conference on Automated Rea-
soning, volume 5195 of Lecture Notes in Computer Science, pages 523–538,
2008.

[13] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
2007. Available at http://tata.gforge.inria.fr.

[14] H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term
rewrite systems is decidable in polynomial time. In Proc. 42nd Annual
Symposium on Foundations of Computer Science, pages 298–307, 2001.

[15] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer
Science, 17:279–301, 1982.

[16] W. Dowling and J. Gallier. Linear-time algorithms for testing the satis-
fiability of propositional Horn formulae. Journal of Logic Programming,
1(3):267–284, 1984.

[17] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for
proving termination of term rewriting. Journal of Automated Reasoning,
40(2-3):195–220, 2008.

[18] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic
time. In Proc. 23rd International Conference on Rewriting Techniques and
Applications, volume 15 of Leibniz International Proceedings in Informatics,
pages 165–175, 2012.

[19] B. Felgenhauer, A. Middeldorp, H. Zankl, and V. van Oostrom. Layer
systems for proving confluence. ACM Transactions on Computational Logic,
2015. To appear.

[20] B. Felgenhauer and R. Thiemann. Reachability analysis with state-
compatible automata. In Proc. 8th International Conference on Language
and Automata Theory and Applications, volume 8370 of Lecture Notes in
Computer Science, pages 347–359, 2014.

[21] B. Felgenhauer and V. van Oostrom. Proof orders for decreasing diagrams.
In Proc. 24th International Conference on Rewriting Techniques and Ap-
plications, number 21 in Leibniz International Proceedings in Informatics,
pages 174–189, 2013.

[22] B. Felgenhauer, H. Zankl, and A. Middeldorp. Proving confluence with
layer systems. In Proc. 31st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 13 of
Leibniz International Proceedings in Informatics, pages 288–299, 2011.

[23] G. Feuillade, T. Genet, and V. V. T. Tong. Reachability analysis over term
rewriting systems. Journal of Automated Reasoning, 33:341–383, 2004.

144

http://tata.gforge.inria.fr

Bibliography

[24] T. Genet. Decidable approximations of sets of descendants and sets of nor-
mal forms. In Proc. 9th International Conference on Rewriting Techniques
and Applications, volume 1379 of Lecture Notes in Computer Science, pages
151–165, 1998.

[25] T. Genet, Y.-M. Tang-Talpin, and V. V. T. Tong. Verification of copy-
protection cryptographic protocol using approximations of term rewriting
systems. In Proc. WITS’03 (Workshop on Issues in the Theory of Security),
2003.

[26] A. Geser. Relative Termination. PhD thesis, Universität Passau, 1990.
Available as technical report 91-03.

[27] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata
that certify termination of left-linear term rewriting systems. Information
and Computation, 205(4):512–534, 2007.

[28] G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow
term rewrite systems. In Proc. 20th International Symposium on Theoretical
Aspects of Computer Science, volume 2607 of Lecture Notes in Computer
Science, pages 85–96, 2003.

[29] G. Godoy, A. Tiwari, and R. Verma. Deciding confluence of certain term
rewriting systems in polynomial time. Annals of Pure and Applied Logic,
130(1-3):33–59, 2004.

[30] B. Gramlich. Confluence without termination via parallel critical pairs. In
Proc. 21st International Colloquium on Trees in Algebra and Programming,
volume 1059 of Lecture Notes in Computer Science, pages 211–225, 1996.

[31] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termina-
tion. In Proc. 5th International Joint Conference on Automated Reasoning,
volume 6173 of Lecture Notes in Artificial Intelligence, pages 487–501, 2010.

[32] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termi-
nation. Journal of Automated Reasoning, 47(4):481–501, 2011.

[33] N. Hirokawa and A. Middeldorp. Commutation via relative termination.
In Proc. 2nd International Workshop on Confluence, pages 29–33, 2013.

[34] G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[35] B. Jacobs. Involutive categories and monoids, with a GNS-correspondence.
Foundations of Physics, pages 1–22, 2011.

[36] J. P. Jouannaud and J. Liu. From diagrammatic confluence to modularity.
Theoretical Computer Science, 464:20–34, 2012.

[37] J.-P. Jouannaud and Y. Toyama. Modular Church-Rosser modulo: The com-
plete picture. International Journal of Software and Informatics, 2(1):61–75,
2008.

145

Bibliography

[38] J.-P. Jouannaud and V. van Oostrom. Diagrammatic confluence and com-
pletion. In Proc. 36th International Colloquium on Automata, Languages
and Programming, volume 5556 of Lecture Notes in Computer Science,
pages 212–222, 2009.

[39] S. Kahrs. Confluence of curried term-rewriting systems. Journal of Symbolic
Computation, 19(6):601–623, 1995.

[40] S. Kahrs. Personal communication, January 2011.

[41] R. Kennaway, J. Klop, M. Sleep, and F. Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

[42] A. Kitahara, M. Sakai, and Y. Toyama. On the modularity of confluent
term rewriting systems with shared constructors. Technical Reports of the
Information Processing Society of Japan, 95(15):11–20, 1995. In Japanese.

[43] J. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. Modularity of
confluence: A simplified proof. Information Processing Letters, 49:101–109,
1994.

[44] D. Knuth and P. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263–297. Pergamon Press, 1970.

[45] M. Korp. Termination Analysis by Tree Automata Completion. PhD thesis,
University of Innsbruck, 2010.

[46] M. Korp and A. Middeldorp. Match-bounds revisited. Information and
Computation, 207(11):1259–1283, 2009.

[47] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. The Tyrolean
Termination Tool 2. In Proc. 20th International Conference on Rewriting
Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 295–304, 2009.

[48] D. Lankford. On proving term rewrite systems are noetherian. Technical
Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

[49] C. Lüth. Compositional term rewriting: An algebraic proof of Toyama’s
theorem. In Proc. 7th International Conference on Rewriting Techniques
and Applications, volume 1103 of Lecture Notes in Computer Science, pages
261–275, 1996.

[50] A. Middeldorp and H. Zantema. Simple termination of rewrite systems.
Theoretical Computer Science, 175(1):127–158, 1997.

[51] G. Nelson and D. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, 1980.

[52] M. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223–243, 1942.

146

Bibliography

[53] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[54] E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems.
PhD thesis, Universität Bielefeld, 1994.

[55] E. Ohlebusch. On the modularity of confluence of constructor-sharing
term rewriting systems. In Proc. 19th International Colloquium on Trees
in Algebra and Programming, volume 787 of Lecture Notes in Computer
Science, pages 261–275, 1994.

[56] E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an
equivalence relation. In Proc. 9th International Conference on Rewriting
Techniques and Applications, volume 1379 of Lecture Notes in Computer
Science, pages 17–31, 1998.

[57] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[58] S. Okui. Simultaneous critical pairs and Church-Rosser property. In Proc.
9th International Conference on Rewriting Techniques and Applications,
volume 1379 of Lecture Notes in Computer Science, pages 2–16, 1998.

[59] V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer
Science, 126(2):259–280, 1994.

[60] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, Amsterdam, 1994.

[61] V. van Oostrom. Developing developments. Theoretical Computer Science,
175(1):159–181, 1997.

[62] V. van Oostrom. Confluence by decreasing diagrams – converted. In Proc.
19th International Conference on Rewriting Techniques and Applications,
volume 5117 of Lecture Notes in Computer Science, pages 306–320, 2008.

[63] V. van Oostrom. Modularity of confluence constructed. In Proc. 4th
International Joint Conference on Automated Reasoning, volume 5195 of
Lecture Notes in Artificial Intelligence, pages 348–363, 2008.

[64] V. van Oostrom. Confluence via critical valleys. In Proc. 6th International
Workshop on Higher-Order Rewriting, pages 9–11, 2012.

[65] M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-
Rosser of left-linear term rewriting systems. In Proc. 8th International
Conference on Rewriting Techniques and Applications, volume 1232 of
Lecture Notes in Computer Science, pages 187–201, 1997.

[66] D. Plaisted. Polynomial time termination and constraint satisfaction tests.
In Proc. 5th International Conference on Rewriting Techniques and Appli-
cations, volume 690 of Lecture Notes in Computer Science, pages 405–420,
1993.

147

Bibliography

[67] B. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal
of the ACM, 20(1):160–187, 1973.

[68] A. Stump, H. Zantema, G. Kimmell, and R. Omar. A rewriting view of
simple typing. Logical Methods in Computer Science, 9(1:4):1–29, 2012.

[69] T. Suzuki, T. Aoto, and Y. Toyama. Confluence proofs of term rewriting
systems based on persistency. Computer Software, 30(3):148–162, 2013. in
Japanese.

[70] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

[71] R. Thieman, G. Allais, and J. Nagele. On the formalization of termination
techniques based on multiset orderings. In Proc. 23rd International Con-
ference on Rewriting Techniques and Applications, volume 15 of Leibniz
International Proceedings in Informatics, pages 339–354, 2012.

[72] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. 22nd International Conference on Theorem Proving in
Higher Order Logics, volume 5674 of Lecture Notes in Computer Science,
pages 452–468, 2009.

[73] A. Tiwari. Deciding confluence of certain term rewriting systems in polyno-
mial time. In Proc. 17th IEEE Symposium on Logic in Computer Science,
pages 447–457, 2002.

[74] Y. Toyama. On the Church-Rosser property of term rewriting systems.
Technical Report 17672, NTT ECL, 1981.

[75] Y. Toyama. On the Church-Rosser property for the direct sum of term
rewriting systems. Journal of the ACM, 34(1):128–143, 1987.

[76] Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and
L. Kott, editors, Programming of Future Generation Computers II, pages
393–407. North-Holland, 1988.

[77] U. Waldmann. Semantics of order-sorted specifications. Theoretical Com-
puter Science, 94(1):1–35, 1992.

[78] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In
Proc. 23rd International Conference on Automated Deduction, volume 6803
of Lecture Notes in Artificial Intelligence, pages 499–505, 2011.

[79] H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for decreasing
diagrams. Journal of Automated Reasoning, 54(2):101–133, 2015.

[80] H. Zantema. Termination of term rewriting: Interpretation and type
elimination. Journal of Symbolic Computation, 17(1):23–50, 1994.

148

Appendix A

CSI – A Confluence Tool

CSI is an automatic confluence prover developed in Innsbruck, near the Conflu-
ence of the rivers Sill and Inn. The tool has a web presence at

http://cl-informatik.uibk.ac.at/software/csi/

where the software can be tried out, and downloaded in binary form and as
source code. The tool CSI is based on the termination prover TTT2, which is also
developed in Innsbruck.

In this appendix, we give a brief overview of CSI. Further information can be
found in the TTT2 and CSI system descriptions [47, 78].

A.1 Getting Started
The simplest way to use CSI is via the web frontend,1 where one can enter
or upload term rewrite systems in a standard TRS format, and use CSI to
check confluence of the given system. For an example, see Figure A.1. Because
confluence is an undecidable property, there are three different answers: YES if
confluence could be established; NO if non-confluence was proved; and MAYBE (or
a timeout) if no definitive answer could be found.

Alternatively, one can use the binaries available from the CSI website or
compile CSI from source code. The tool can then be invoked using the csi.sh
script, see Figure A.2.

The CSI tool has a built-in help, available by running csi.sh --help.

A.2 Features
Because CSI is based on TTT2, the two tools have a lot of features in common.
There are a number of advantages to building a confluence tool on top of a
termination tool. First of all, the tools can share fundamentals like represen-
tations and parsers for TRSs. Secondly, termination proofs are often part of
confluence proofs, for example when using the Knuth-Bendix criterion, or when
using labelings (Chapter 4) based on relative termination. The features of CSI
are, in a nutshell:

1. It has processors that turn input problems into a list of (easier) output
problems that need to be solved.

1See http://cl-informatik.uibk.ac.at/software/csi/

149

http://cl-informatik.uibk.ac.at/software/csi/
http://cl-informatik.uibk.ac.at/software/csi/

A CSI – A Confluence Tool

Figure A.1: The CSI web frontend.

2. Processors can be combined into complex strategies using a strategy
language.

3. Input in TRS or CPF (XML) format; output of proofs in text or CPF
format.

CSI comes with a predefined strategy AUTO, which can be found in cr.conf
in the binary distribution and source code. This strategy has been designed
to be flexible and powerful, and it should be sufficient for normal usage. For
advanced users and the curious, he remainder of this section gives a glimpse
into the design and syntax of the strategy language.

A.2.1 Processors
A processor takes an input problem (which may be a confluence problem, a non-
confluence problem, a termination or non-termination problem, and a few other
types), and, if successful, produces a (potentially empty) list of subproblems
that remain to be solved. Let us describe a selection of processors that are
relevant to proving confluence. Note that most processors take options that can
be listed by using csi.sh -s ’<processor> -help’ foo.trs. A complete list
of processors can be obtained by running csi.sh -P.

• cr -kb. This processor implements the Knuth-Bendix criterion. It takes
a confluence problem as input, and checks whether all its critical pairs are

150

A.2 Features

./csi.sh 243.trs ∗

NO

Problem:
a() -> h(g(b()))
a() -> h(c())
b() -> g(b())
h(g(x)) -> g(h(x))
g(x) -> h(x)

Proof:
Nonconfluence Processor:
terms: h(g(b())) *<- a() ->* h(c())
Qed

first automaton:
final states: {9}
transitions:
h(11) -> 11,32,9
h(32) -> 9*
h(9) -> 9*
h(10) -> 10,11,32
b() -> 10*
g(32) -> 9*
g(9) -> 9*
g(11) -> 32,11
g(10) -> 10,11

second automaton:
final states: {7}
transitions:
h(8) -> 7*
c() -> 8*

∗ 243.trs is Cops 243 from http://coco.nue.riec.tohoku.ac.jp/cops/

Figure A.2: Using CSI from the command line.

151

http://coco.nue.riec.tohoku.ac.jp/cops/

A CSI – A Confluence Tool

joinable. If successful, it returns the same TRS as a termination problem,
which can then be dealt with by termination processors.

• sorted -order. Perform an order-sorted decomposition. This processor
takes a confluence problem as input. If there is an order-sorted sort attach-
ment that allows the TRS to be decomposed, it produces the decomposed
TRS as a list of subproblems. Otherwise, it fails.

• nonconfluence. Try to establish non-confluence. It takes a non-confluence
problem as input and tries to produce a witness for non-confluence, i.e. a
conversion s↔ t (in practice it only looks for peaks, essentially starting
with critical pairs) such that s and t are not joinable. Non-confluence can
be established using tcap (nonconfluence -tcap) or using tree automata
(nonconfluence -tree).

• cr -dup. This takes a (left-linear) confluence problem as input and tries
to join all critical pairs. If successful, it produces a diagram problem as
output, which consists of Rd/Rnd, together with a set of joining valleys
for the critical pairs.

• rule labeling. This processor works on diagram problems; it computes a
rule labeling with the goal of making the critical pair diagrams decreasing.
It produces a new diagram problem (with the set of labels extended) as
output.

• decreasing. This processor takes a diagram problem, checks that there is
no termination problem left to solve, and whether all the critical diagrams
are joined decreasingly. If that works out, the problem is marked as
confluent.

The last three processors may seem obscure; but note that, if they are used
in sequence, they implement the rule-labeling technique for left-linear TRSs.
(Left-linear TRSs are non-duplicating, hence Rd/Rnd is trivially terminating.)
These three steps are separated so that all labelings from Chapter 4 can be
implemented without reimplementing the basic pre- and postprocessing each
time.

A.2.2 The Strategy Language
The strategy allows combining processors into more complex processors. Its
syntax has the following grammar, where p is a basic processor, n denotes a
count, t is a floating point number designating a timeout, and c is a condition.

s ::= p | (s) | s ; s | s | s | s || s | s ? | s + | s * | s *n | s [t] | s !

| if c then s else s

The semantics are as follows.

• p. Invokes a basic processor (e.g., cr -kb).

152

A.3 Experiments

• (s). Same as s.

• s1 ; s2. Sequencing. The processor s1 is executed. If this is successful, s2
is performed for every resulting subproblem.

• s1 | s2. Alternative. s1 is tried; if s1 is unsuccessful, s2 is tried instead.

• s1 || s2. Parallel alternative. The subprocessors s1 and s2 are tried in
parallel. The combined processor succeeds if either subprocessor succeeds,
and the resulting subproblems are taken from the first subprocessor to
succeed.

• s ?. Option. The processor s is executed. If it succeeds then the subprob-
lems produced by s are taken as subproblems of s ?. Otherwise, the input
problem is returned unmodified.

• s *. Repeat processor multiple times. The processor s is executed. If it
succeeds, the produced subproblems are all subjected to s *, whereas upon
failure, the input problem is returned. For example, sorted -order*
will decompose a confluence problem as much as possible by iterated
application of the order-sorted decomposition.

• s +. Repeat one or more times. This is similar to s *, but the combined
processor fails if the first application of s fails.

• s *n. This is also similar to s *, but puts an upper bound of the number
of times s is applied to subproblems.

• s [t]. Timeout. The processor s is run for at most t seconds. If t seconds
elapse without s succeeding, the processor is terminated, and s [t] fails.

• s !. Finalize. This checks that after s has run successfully, no subproblems
are left, and fails otherwise.

• if c then s1 else s2. Conditional. This construct can be used to check
various properties of the input problem, like trs (verify that the input
problem a TRS), left-linear (verify that the input TRS left-linear), etc.
A complete list of available predicates is printed by csi.sh -P.

A.3 Experiments
In this section, we try to assess the power of the techniques described in this
thesis, and our tool. To this end, we performed experiments using the 276 TRSs
from the Cops database2 of confluence problems, as of January 2015.

Figure A.3 shows the gain in power by adding various techniques to a basic
strategy that essentially consists of the Knuth-Bendix criterion, strong closedness
(for linear TRSs) and parallel closedness (for left-linear TRSs). We then enabled
the order-sorted decomposition (os) based on the layer framework (Chapter 5),

2http://coco.nue.riec.tohoku.ac.jp/cops/

153

http://coco.nue.riec.tohoku.ac.jp/cops/

A CSI – A Confluence Tool

basic +os +lab +os,lab +ground ncr +aut

yes 73 80 104 114 84 0 0
no 0 0 0 0 7 29 47
maybe 203 196 172 162 185 247 229

Figure A.3: Power gain through various techniques in CSI.

full -os -lab -par -ground -aut

yes 155 150 139 154 154 155
no 47 47 47 47 47 31
maybe 74 79 90 75 75 90

Figure A.4: Power loss through various techniques in CSI.

the labeling technique (lab) for decreasing diagrams (Chapter 4), and the
decision procedure for ground TRSs (Chapter 6). Furthermore we compare a
basic non-confluence technique (with the non-joinability test based on tcap) to
the automata based non-confluence check.

In a similar vain, Figure A.4 shows the loss in power when certain techniques
are removed from CSI’s full strategy. The techniques removed are the order-sorted
decomposition (os), the labeling (lab), only the parallel version of the labeling
(par), the decision procedure for ground TRSs (ground), and the automata
based non-confluence check (aut).

It is interesting to note that the full strategy can handle almost all ground
TRSs handled by the decision procedure. The remaining example is

a→ b a→ f(a) b→ f(f(b)) f64(b)→ b

which was specifically designed to thwart confluence proofs that work by joining
critical pairs. (It is R64 from Section 6.3.)

The labeling for parallel steps is also fairly weak compared to the standard
labeling technique. The example gained is Example 4.56, which has the redeem-
ing property of not being constructed for this purpose; furthermore, none of the
competitor tools (ACP, CoLL, Saigawa) could show confluence of that TRS at
the time of writing this.

A typical example gained by the order-sorted decomposition is

f(x, y)→ x f(x, y)→ f(x, g(y)) g(x)→ h(x)
F(g(x), x)→ F(x, g(x)) F(h(x), x)→ F(x, h(x))

from [4], where after decomposing the TRS, rules involving f end up in a
different component than those involving F, separating the (non-left-linear,
non-terminating) system into a left-linear TRS and a terminating TRS, which
are two classes for which powerful confluence techniques exist.

Finally, a system where the tree automata based non-joinability criterion is
beneficial is

f(a, a)→ c f(b, x)→ f(x, x) f(x, b)→ f(x, x) a→ b

154

A.3 Experiments

CSI ACP CoLL Saigawa

yes 155 186 63 126
no 47 52 0 27
maybe 74 26 141 82

Figure A.5: Comparing CSI to ACP, CoLL and Saigawa.

from [32], which has a non-joinable peak

c←− f(a, a) −→ f(b, a) −→ f(b, b)

where the right term f(b, b) can only reach itself. However, since that term
allows rule applications at the root, tcap is not strong enough to handle this
TRS, while tree automata have no trouble at all.

As a final comparison, Figure A.5 compares CSI to its competitor tools,
showing that it currently holds a solid second place.

155

	Introduction
	Preliminaries
	Abstract Reduction Systems
	Term Rewriting
	Terms and Contexts
	Term Rewrite Systems
	Termination
	Confluence
	Redex Patterns

	Tree Automata

	Abstract Decreasing Diagrams
	Introduction
	Involutive Monoids
	Proof Orders and Confluence
	Proof Orders via French Strings
	A Monotone Order

	Church-Rosser Modulo
	Decreasing Diagrams
	Incompleteness

	Point-Decreasing Diagrams
	Point-Step Decreasing Diagrams
	Commutation and Extended Decreasingness
	Conclusion

	Labeling Diagrams Decreasingly
	Introduction
	Labeling Plain Rewrite Steps
	Linear TRSs
	Left-linear TRSs

	Labeling Parallel Rewrite Steps
	Assessment
	Interrelationships
	Related work

	Implementation
	Conclusion

	Confluence with Layer Systems
	Introduction
	Layer Systems
	Confluence by Layer Systems
	Proof Setup
	Local Decreasingness of Peaks involving Tall Steps
	Local Decreasingness of Short Steps
	Proof of Main Theorems

	Applications
	Modularity
	Layer-Preservation
	Quasi-Ground Systems
	Currying
	Many-sorted Persistence

	Order-sorted Persistence
	Confluence via Order-sorted Persistence
	Order-sorted Persistence for Left-linear Systems
	Variable-restricted Layer Systems
	Many-sorted Persistence by Variable-restricted Layer Systems
	Order-sorted Persistence by Variable-restricted Layer Systems

	Related Work
	Order-sorted Persistence
	Modularity
	Constructivity

	Conclusion

	Deciding Confluence of Ground TRSs
	Introduction
	Testing Confluence
	Flattening
	Rewrite Closure
	Congruence Closure
	Confluence Conditions
	Computation of Confluence Conditions

	Experiments
	Conclusion

	Certifying Non-Confluence
	Introduction
	State-Compatible Automata
	Definitions
	Soundness and Completeness
	Deciding R(L(A)) L(A)

	Relation to Quasi-Deterministic Automata
	Confluence
	Match-Bounds
	A Short Introduction to Match-Bounds
	Adapting Raise-Consistency
	Quasi-Compatibility

	Conclusion

	Conclusion
	Publications
	Bibliography
	CSI – A Confluence Tool
	Getting Started
	Features
	Processors
	The Strategy Language

	Experiments

