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Summary. The article provides counting derangements of finite sets and
counting non bijective functions. We provide a recursive formula for the number
of derangements of a finite set, together with an explicit formula involving the
number e. We count the number of non-one-to-one functions between to finite
sets and perform a computation to give explicitely a formalization of the birthday
problem. The article is an extension of [10].
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The articles [13], [16], [9], [1], [4], [7], [5], [6], [14], [2], [8], [3], [11], [12], [17], [18],
and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper x denotes a set.

Let us note that every finite O-sequence of Z is integer-valued.
Let n be a natural number. Observe that n! is natural.

Let n be a natural number. One can verify that n! is positive.
Let ¢ be a real number. Observe that exp c is positive.

Let us observe that e is positive.

One can prove the following propositions:

(1) idp has no fixpoint.
(2) For every real number ¢ such that ¢ < 0 holds expc < 1.
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2. ROUNDING

Let n be a real number. The functor round n yields an integer and is defined
as follows:

(Def. 1) roundn = [n+ 5.
We now state two propositions:
(3) For every integer a holds round a = a.

(4) For every integer a and for every real number b such that |a — b < %
holds a = round b.

3. COUNTING DERANGEMENTS

The following propositions are true:

(5) Let n be a natural number and a, b be real numbers. Suppose a <

b. Then there exists a real number ¢ such that ¢ € |a,b| and expa =
exp ¢-(a—b)" 1
(n+1)!

(6) For every positive natural number n and for every real number ¢ such

that ¢ < 0 holds [—n! - S2ECDTT) < 1

Let s be a set. The functor derangements s is defined by:

(>-F _(Taylor(the function exp, Qgr, b, a))(a))xen(n) +

(Def. 2) derangements s = { f; f ranges over permutations of s: f has no fixpoint}.
Let s be a finite set. Observe that derangements s is finite.
One can prove the following propositions:
(7) Let s be a finite set. Then derangementss = {h : s — s: h is one-to-
one A A\, (x €s = h(x)#x)}.

(8) For every non empty finite set s there exists a real number ¢ such that

_ . S+1
¢ €]-1,0[ and derangements s — 3 = 51 22U

. 3! 1
(9) For every non empty finite set s holds |derangementss — 2| < 3.

(10) For every non empty finite set s holds derangements s = round(%).
(11) derangements () = {0}.
(12) derangements{x} = 0.
The function the der seq from N into Z is defined by the conditions (Def. 3).
(Def. 3)(i)  (The der seq)(0) =1,
(ii)  (the der seq)(1) =0, and
(iii)  for every natural number n holds (the der seq)(n +2) = (n+ 1) - ((the
der seq)(n) + (the der seq)(n + 1)).

Let ¢ be an integer and let F' be a finite 0-sequence of Z. Observe that ¢ F'
is finite, integer-valued, and transfinite sequence-like.
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Let ¢ be a complex number and let F' be an empty function. Note that ¢ F'
is empty.
We now state three propositions:
(13) For every finite 0-sequence F' of Z and for every integer ¢ holds ¢- Y F =
S((cF)[(len F —"1))4+c- F(len F —'1).
(14) Let X, N be finite 0-sequences of Z. Suppose len N = len X + 1. Let ¢
be an integer. If N[len X = ¢ X, then )} N =c-Y X + N(len X).

(15) For every finite set s holds (the der seq)(’s) = derangements s.

4. COUNTING NOT-ONE-TO-ONE FUNCTIONS AND THE BIRTHDAY PROBLEM

Let s, t be sets. The functor not-one-to-one(s,t) yielding a subset of t° is
defined as follows:
(Def. 4) not-one-to-one(s,t) = {f : s — t: f is not one-to-one}.
Let s, t be finite sets. Observe that not-one-to-one(s, t) is finite.
The scheme FraenkelDiff deals with sets A, B and a unary predicate P, and
states that:
{f:A— B:not P[f]} = BA\{f: A— B:P[f]}
provided the following condition is met:
e If B=10{, then A= 0.
Next we state three propositions:
(16) For all finite sets s, t such that 5 < £ holds not-one-to-one(s,t) =
=S ?]
G
(17) For every finite set s and for every non empty finite set ¢ such that
S5 =23 and t = 365 holds 2 - not-one-to-one(s, t) > °.
(18) For all non empty finite sets s, ¢ such that 5 = 23 and ¢ = 365 holds
P(not-one-to-one(s, t)) > 3.

~~
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