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Abstract. PRocH3 is a proof reconstruction tool that imports in HOL
Light proofs produced by ATPs on the recently developed translation of
HOL Light and Flyspeck problems to ATP formats. PRocH combines sev-
eral reconstruction methods in parallel, but the core improvement over
previous methods is obtained by re-playing in the HOL logic the detailed
inference steps recorded in the ATP (TPTP) proofs, using several inter-
nal HOL Light inference methods. These methods range from fast variable
matching and more involved rewriting, to full first-order theorem proving
using the MESON tactic. The system is described and its performance is
evaluated here on a large set of Flyspeck problems.

1 Introduction, Motivation, and Related Work

Independent verification of proofs found by Automated Theorem Provers (ATPs)
is not an uncommon topic in automated reasoning research. Systems like IVY [4]
rely on very detailed proof output from ATPs (Otter, Prover9), which is then
independently replayed and checked by a trusted system (ACL2). This technique
has been used several times, e.g., for replaying the MESON and Otter/Prover9
proofs in HOL Light, replaying the Otter/Prover9 proofs in Mizar, and replay-
ing the Metis proofs in HOL and Isabelle. The GDV [7] tool is even parametric:
any ATP system understanding TPTP can be used for independent verification.
The Metis/Isabelle combination has been used also as a part of the Sledgeham-
mer [5] tool that uses arbitrary ATPs to discharge Isabelle proof obligations. If
an ATP proof is found, and Metis can reconstruct the proof NeededLemmas `
Conjecture, then metis(NeededLemmas) is a valid Isabelle tactic, that is in
practice used as an ATP proof importer. In HOL Light, MESON can be used in the
same way for importing the proofs found by ATPs on FOL problems produced
by the recently developed “HOL(y)Hammer” (HH) tool [3].

However, Metis and MESON are on average weaker than state-of-the art ATPs
like Vampire and E. As ATPs and premise-selection tools get stronger, the ability
of Metis and MESON to reconstruct (in short time usable in large ITP libraries) the
ATP proof just from the proof premises decreases. Also, proofs in ITP systems
like Isabelle, HOL Light and Mizar should (eventually) strive for human readabil-
ity. Even if the strength of Metis and MESON grew, a single call to them would get
hard to understand, requiring further explanation. These reasons motivate our
work on a general tool that reconstructs TPTP proofs in HOL Light, using not
just the proof premises, but also the steps recorded in the TPTP proof format.
3 Proch (pronounced as “prokh”) means “dust/powder” in Polish. The proof is (also)
reconstructed from fine-grained inference dust.



2 Using Existing Approaches on HOL Light Problems

In total, the experiments with ATP-proving of HOL Light and Flyspeck theorems
described in [3] have produced 7247 proofs when using Vampire, E (run under the
Epar [9] scheduler) and Z3, sometimes with high timelimits (900s). Only Vampire
and E produce full TPTP proofs, but Z3 also prints the necessary premises (un-
sat core). These proofs are pseudo/cross-minimized, i.e., each proof was re-run
by all ATPs using the proof premises only, while the number of proof premises
was decreasing. Using the resulting sets of premises, Epar can find 6318 proofs
in 30s. This set is used for further evaluations here. Table 1 shows the perfor-
mance of the potential proof-importing tools, i.e., MESON, Metis, and Prover9 run
with 300s time limit. Note that (unlike MESON) both Metis and Prover9 are just
run externally, i.e., not reconstructing a valid HOL proof. As mentioned above,

Table 1: MESON, Metis, and Prover9 with 300s on the 6318 Epar proofs
method MESON Metis Prover9

replayed 5255 4595 4672
replayed (%) 83.1 72.7 73.9

low proof times are important for working with large ITP libraries containing
(tens of) thousands of theorems, each typically proved using several of the low-
level (MESON, Metis, Mizar “by”, etc.) “atomic” calls. Table 2 therefore shows the
performance of the above methods when using only 1 second for reconstruction.

Table 2: MESON, Metis, and Prover9 with 1s on the 6318 Epar proofs.
method MESON Metis Prover9

replayed 5014 2803 4111
replayed (%) 79.3 44.3 65.0

Particularly the numbers obtained for Metis are considerably worse than the
numbers obtained so far with Metis-based proof reconstruction in Sledgeham-
mer [1], where only 10% of ATP proofs are lost by Metis. One possible reason is
that Metis has been well-integrated with Sledgehammer, e.g., by using customized
Sledgehammer-generated term orderings. Another part of explanation could be
that the proofs found by HH on Flyspeck are on average harder than the proofs
found by Sledgehammer on the Judgement Day benchmark. The reasons can be
that the Judgement Day benchmark consists of goals that are on average easier,
the HH premise selection might be more precise (allowing more involved ATP
proofs), and also ATP systems like Vampire and E have been strengthened since
the time of the Judgement Day evaluation.



3 PRocH System Description

The HH tool runs in parallel several (now 14) AI/ATP combinations on a given
HOL problem, and if a proof is found, it is pseudo/cross-minimized by further
parallel running of the ATPs (and their strategies). PRocH then follows by trying
in parallel several (old and new) proof reconstruction methods. Unlike the above
methods that can only use the ATP proof premises to find their own detailed
proof, the most complicated of the PRocH’s methods (hh_recon) also tries to
reconstruct in HOL Light the TPTP proofs created by the ATP systems. In this
its closest relative is the isar_proof Sledgehammer function described in [5],
from which it probably differs by complete reliance on type annotations. In some
sense, PRocH’s hh_recon is so far less ambitious than isar_proof, because it
does not yet attempt to write a HOL proof script. This also allows to treat some
constructs (e.g., higher-order application) differently from isar_proof during
the reconstruction. PRocH’s use is now similar to HOL’s MESON tactic, i.e., a call
to hh_recon[HOLPremises] will try to justify a given HOL conjecture by going
through the following stages (described more in the following subsections):

1. Translation to FOL: A HOL Light problem in the form HOLPremises `
HOLConjecture is translated to an untyped FOF TPTP problem, where
part of the FOF encoding of terms are annotations encoding their HOL type.

2. Running ATPs: An external ATP is run on the first-order problem producing
a TPTP proof.

3. Parsing: The untyped FOF and CNF formulas in the TPTP proof are parsed
back into typed HOL terms (making use of the encoded type annotations).
This part also has to handle skolemization.

4. Replaying: The justification structure of the TPTP proof is replayed on the
parsed HOL Light terms, resulting in a valid HOL Light proof.

3.1 Translation to FOL and Producing FOL Proofs

The translation to FOL is described in [3], but we show a brief example here.
The translation has to encode higher-order features like lambda abstraction, cur-
rying, quantification over function variables and their application. As a leading
example, consider the following higher-order theorem FORALL_ALL4

∀P l. (∀x. ALL (P x) l) ⇐⇒ ALL (λs. ∀x. P x s) l

saying that each x-image of a binary relation (predicate) P(x,y) contains (is true
for) all elements of a list l iff for all elements s of l the unary predicate “P(x,s)
is true for all x” is true. To express this in FOL, first the lambda function
is lifted from the context (its definition is created and used as an antecedent)
and the higher-order applications are made explicit as follows:

∀l P F. (∀s. happ F s ⇐⇒ (∀x. happ (happ P x) s))
=⇒ ((∀x. ALL (happ P x) l) ⇐⇒ ALL F l)

4 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/lists.html#FORALL_ALL

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/lists.html#FORALL_ALL


The formulas before and after the lambda-lifting and happ-introduction con-
versions are logically equivalent in the HOL logic,5 and such conversions are
used to change the initial HOL proof state into a form ConvHOLPremises `
ConvHOLConjecture that will later correspond to the formulas reconstructed
from the ATP proof. After these conversions, the implicit polymorphic HOL
type domains (A,B) are explicitly introduced as variables and quantified over,
and type annotations are added for all HOL terms using the s and p wrappers
(and happ is shortened to i), resulting in the following FOF formula:

![A,B,L,P,F]:
(![S]:(p(s(bool,i(s(fun(B,bool),F),s(B,S))))

<=> ![X]:p(s(bool,i(s(fun(B,bool),i(s(fun(A,fun(B,bool)),P),s(A,X))),
s(B,S)))))

=>
(![X]:p(s(bool,all(s(fun(B,bool),i(s(fun(A,fun(B,bool)),P),s(A,X))),

s(list(B),L))))
<=> p(s(bool,all(s(fun(B,bool),F),s(list(B),L))))))

This way the HOL problem ConvHOLPremises ` ConvHOLConjecture is
translated to an untyped FOF TPTP problem FOLPremises ` FOLConjecture,
on which ATPs like E and Vampire are run, producing derivations in the TPTP
format [8]. Unlike the fixed and very detailed Otter/Prover9 IVY format, the
TPTP proof steps may be justified by arbitrary inference method, and thus may
in theory be arbitrarily hard. In practice, for E and Vampire the (overwhelming
number of) proof steps are detailed and easy to check with weak ATPs. Several
interesting steps from E’s proof of FORALL_ALL are as follows:

fof(2,axiom,p(s(bool,t)), file(’f1’, aTRUTH)).
fof(4,axiom, (~(p(s(bool,f)))<=>p(s(bool,t))), file(’f1’, aBOOL_CASES_AX)).
fof(5,conjecture, (![A,B,L,P,F]: ... ), file(’f1’, cFORALL_ALL)).
fof(6,negated_conjecture, ~(![A,B,L,P,F]: ... ),

inference(assume_negation,[status(cth)],[5])).
...
fof(25,negated_conjecture,?[X10]:?[X11]:?[X12]:?[X13]:?[X14]: ...,

inference(variable_rename,[status(thm)],[24])).
fof(26,negated_conjecture,![X15]:(~(p(s(bool,i(s(fun(esk3_0,bool),esk6_0)...,

inference(skolemize,[status(esa)],[25])).
...
cnf(33,plain,(~p(s(bool,f))),inference(cn,[status(thm)],[32,theory(equality)])).
...
cnf(6393,negated_conjecture,(p(s(bool,f))),

inference(spm,[status(thm)],[6320,5512,theory(equality)])).
cnf(6404,negated_conjecture,($false),

inference(sr,[status(thm)],[6393,33,theory(equality)])).
cnf(6405,negated_conjecture,($false),6404,[’proof’]).

5 For HOL speakers, e.g., the happ functor is just the HOL identity, i.e., we use:
happ_def = new_definition ‘(happ : ((A -> B) -> A -> B)) = I‘;;
happ_conv_th = prove (‘!(f:A->B) x. f x = happ f x‘, ... );;
happ_conv = REWR_CONV happ_conv_th;;



Such TPTP proofs produced by ATPs on the type-annotated input are the
starting point for the HOL proof reconstruction. This is done in two stages:
reconstruction of HOL terms/formulas, and reconstruction of the justification
structure (HOL proof).

3.2 Reconstructing Terms and Formulas

The TPTP proof format is first parsed into suitable ML data structures using
a lexer/parser combination created with ocamllex/ocamlyacc. For terms/for-
mulas, parts of the HOL Light parsing mechanisms are re-used. In particular we
gradually construct the intermediate HOL Light preterm structure, on whose
final form the HOL Light retypeckeck function is called to obtain a HOL term.
The preterm is constructed using variable/constant constructors (Varp), binary
applications (Combp), abstractions (Absp), and type annotations (Typing).

Initially, the preterm just mirrors the FOL term structure, and in several
passes the HOL structure is recovered from the type annotations. The recov-
ery process might fail if the ATPs did proof-relevant operations that break the
type annotation, however, at least with the resolution/paramodulation infer-
ences done by E this practically does not happen. The first step is discovery of
HOL type variables in formulas. For every type annotation s(type, term) all
variables (and skolem constants) that appear in the left argument are considered
to be type variables. In the next step, quantifications over such type variables
are removed (they are implicitly universal in the HOL logic). During skolemiza-
tion, type variables might have become arguments to newly introduced skolem
functors. Such type arguments are removed, they are implicit in the HOL logic.

After that the s and p annotations are changed into Typing constructors with
the appropriate types, and HOL Light’s retypeckeck is called on the transformed
preterm to obtain a HOL term.

3.3 Replaying ATP Proofs in HOL Light

As mentioned above, the problem HOLPremises ` HOLConjecture is in HOL
Light first converted (packaging the conversions in HH_TAC) to the equivalent
ConvHOLPremises ` ConvHOLConjecture problem. This problem (proof
state) is then further transformed using the HOL formulas reconstructed from
the ATP proof, and using mechanisms implemented by the HOL Light subgoal
package to handle the ATP proof steps. Given the topologically sorted list of
proof steps, for every proof step a HOL tactic is applied, depending on the type
of the step. Axioms are looked up among the HOL goal assumptions (using their
name) and proved using these assumptions. The negated conjecture is intro-
duced by transforming the goal using HOL’s REFUTE_TAC (“R”) (proof by con-
tradiction). Skolemization steps are justified using HOL’s CHOOSE_TAC (“C”), and
for plain inference steps (SZS status THM) we gradually try three increasingly
complex methods: matching (MATCH_ACCEPT_TAC - “m”), rewriting (REWRITE_-
TAC - “r”), and HOL’s full first-order ATP (MESON_TAC - “1” or “2” depending on
the number of premises). The final contradiction concludes the HOL proof using
HOL’s ACCEPT_TAC (“A”). For the reconstruction of the proof of FORALL_ALL,
the sequence of this steps is as follows: mR1rrC1111111mC1111122222221222A.



4 Evaluation
Table 4 shows 1s evaluation of the reconstruction methods tried on the 6318
Epar proofs. The methods (tactics) are described in Table 3.6 PRocH tries (after
the HH conversion) three methods in parallel, i.e., its total CPU time can be 3s.
This is not very significant for the comparison, see the 300s results of MESON and
Prover9 in Table 1. The methods in Table 4 are ordered from top to bottom by a
greedy covering sequence (the last column), where the next method always adds
most to the previous methods. The unique number of solutions, SOTAC and
Σ−SOTAC [3] are metrics that show the usefulness in the whole population.
Table 3: Names and descriptions of the tactics tried for proof reconstruction.
Method Description

PRocH HH conversion, then parallel replay with HH_RECON, MESON, and Prover9.
MESON Standard MESON_TAC conversion then MESON and its replay.
SIMP SIMP_TAC: Simplification by repeated conditional contextual rewriting.
Prover9 Standard Prover9 conversion then Prover9 and its proof replay.
REWRITE REWRITE_TAC: goal simplification by repeated unconditional rewriting.
INT_ARITH Basic algebra and linear arithmetic over the integers.
COMPLEX_FIELD Basic “field” facts over the complex numbers.

Table 4: Performance of reconstruction tactics run in 1s on 6318 Epar proofs.
Prover Theorem (%) Unique SOTAC Σ−SOTAC Greedy (%)

PRocH 5687 (90.0) 418 0.404 2298.50 5687 (90.0)
MESON 5014 (79.3) 118 0.367 1839.30 5862 (92.7)
SIMP 2384 (37.7) 54 0.290 692.30 5968 (94.4)
INT_ARITH 407 ( 6.4) 4 0.236 95.95 5972 (94.5)
REWRITE 1540 (24.3) 3 0.249 382.87 5975 (94.5)
COMPLEX_FIELD 84 ( 1.3) 2 0.270 22.68 5977 (94.6)
Prover9 2208 (34.9) 1 0.293 646.40 5978 (94.6)

The performance of the three submethods used by PRocH are shown in Ta-
ble 5. They are again ordered by their greedy covering sequence. The HH pre-
processing significantly improves the Prover9-based replay, but more important
for the overall performance gain is the large number (406, i.e., 6.4% of 6318) of
unique solutions contributed by HH_RECON. Finally, the performance of PRocH
and MESON is compared in Figure 1 depending on the count of premises in the
reconstructed proof. As the number of premises goes up (ATP proofs get more
involved), PRocH becomes more and more necessary.

Table 5: Performance of the three submethods used by PRocH.
Prover Theorem (%) Unique SOTAC Σ−SOTAC Greedy (%)

HH + Prover9 4737 (74.9) 253 0.412 1954.00 4737 (74.9)
HH + HH_RECON 4299 (68.0) 406 0.421 1811.50 5499 (87.0)
HH + MESON 4737 (74.9) 188 0.406 1921.50 5687 (90.0)

6 We tried more tactics, but they did not find more solutions. Higher times help very
little, see: http://cl-informatik.uibk.ac.at/users/cek/recon_stats.html

http://cl-informatik.uibk.ac.at/users/cek/recon_stats.html


Fig. 1: PRocH and MESON dependence on premise nr. (Epar proof nr. in brackets).
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5 Conclusion and Future Work
96.4% of the 6318 Epar proofs are reconstructed in 300s by some of the methods.
To a great extent this validates the AI/ATP proof methods developed in [3],
which were so far only verified by manual checking that the most striking (much
shorter) AI/ATP proofs are really valid. 94.4% of the 6318 Epar proofs are recon-
structed in 1s by one of the five (sub)methods run in parallel, i.e., the top three
methods from Table 4, where PRocH consists of the three parallel submethods
from Table 5. This makes the replay of more involved proofs fast and practical.

It would be good to postprocess the verbose ATP proofs into more compact,
structured [11], and human-readable proofs that would be stored directly as
HOL Light code. Running proof-shortening tools in a loop is a simple method
that already helps a lot, e.g., when importing Otter/Prover9 proofs into Mizar.
Tools for lemma and concept introduction [6,10] can be experimented with, and
with stronger AI/ATP assistance are becoming more and more important.
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