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Abstract. Sledgehammer integrates automatic theorem provers in the proof as-
sistant Isabelle/HOL. A key component, the relevance filter, heuristically ranks
the thousands of facts available and selects a subset, based on syntactic similar-
ity to the current goal. We introduce MaSh, an alternative that learns from suc-
cessful proofs. New challenges arose from our “zero-click” vision: MaSh should
integrate seamlessly with the users’ workflow, so that they benefit from machine
learning without having to install software, set up servers, or guide the learning.
The underlying machinery draws on recent research in the context of Mizar and
HOL Light, with a number of enhancements. MaSh outperforms the old rele-
vance filter on large formalizations, and a particularly strong filter is obtained by
combining the two filters.

1 Introduction

Sledgehammer [27] is a subsystem of the proof assistant Isabelle/HOL [25] that dis-
charges interactive goals by harnessing external automatic theorem provers (ATPs). It
heuristically selects a number of relevant facts (axioms, definitions, or lemmas) from
the thousands available in background libraries and the user’s formalization, translates
the problem to the external provers’ logics, and reconstructs any machine-found proof
in Isabelle (Sect. 2). The tool is popular with both novices and experts.

Various aspects of Sledgehammer have been improved since its introduction, no-
tably the addition of SMT solvers [7], the use of sound translation schemes [8], close co-
operation with the first-order superposition prover SPASS [9], and of course advances in
the underlying provers themselves. Together, these enhancements increased the success
rate from 48% to 64% on the representative “Judgment Day” benchmark suite [9, 10].

One key component that has received little attention is the relevance filter. Meng and
Paulson [23] designed a filter, MePo, that iteratively ranks and selects facts similar to
the current goal, based on the symbols they contain. Despite its simplicity, and despite
advances in prover technology [9, 14, 30], this filter greatly increases the success rate:
Most provers cannot cope with tens of thousands of formulas, and translating so many
formulas would also put a heavy burden on Sledgehammer. Moreover, the translation
of Isabelle’s higher-order constructs and types is optimized globally for a problem—
smaller problems make more optimizations possible, which helps the automatic provers.

Coinciding with the development of Sledgehammer and MePo, a line of research
has focused on applying machine learning to large-theory reasoning. Much of this work



has been done on the vast Mizar Mathematical Library (MML) [1], either in its orig-
inal Mizar [22] formulation or in first-order form as the Mizar Problems for Theorem
Proving (MPTP) [33]. The MaLARea system [34,38] and the competitions CASC LTB
and Mizar@Turing [31] have been important milestones. Recently, comparative studies
involving MPTP [2, 20] and the Flyspeck project in HOL Light [17] have found that
fact selectors based on machine learning outperform symbol-based approaches.

Several learning-based advisors have been implemented and have made an impact
on the automated reasoning community. In this paper, we describe a tool that aims to
bring the fruits of this research to the Isabelle community. This tool, MaSh, offers a
memoryful alternative to MePo by learning from successful proofs, whether human-
written or machine-generated.

Sledgehammer is a one-click technology—fact selection, translation, and recon-
struction are fully automatic. For MaSh, we had four main design goals:

• Zero-configuration: The tool should require no installation or configuration steps,
even for use with unofficial repository versions of Isabelle.

• Zero-click: Existing users of Sledgehammer should benefit from machine learning,
both for standard theories and for their custom developments, without having to
change their workflow.

• Zero-maintenance: The tool should not add to the maintenance burden of Isabelle.
In particular, it should not require maintaining a server or a database.

• Zero-overhead: Machine learning should incur no overhead to those Isabelle users
who do not employ Sledgehammer.

By pursuing these “four zeros,” we hope to reach as many users as possible and keep
them for as long as possible. These goals have produced many new challenges.

MaSh’s heart is a Python program that implements a custom version of a weighted
sparse naive Bayes algorithm that is faster than the naive Bayes algorithm implemented
in the SNoW [12] system used in previous studies (Sect. 3). The program maintains a
persistent state and supports incremental, nonmonotonic updates. Although distributed
with Isabelle, it is fully independent and could be used by other proof assistants, auto-
matic theorem provers, or applications with similar requirements.

This Python program is used within a Standard ML module that integrates machine
learning with Isabelle (Sect. 4). When Sledgehammer is invoked, it exports new facts
and their proofs to the machine learner and queries it to obtain relevant facts. The main
technical difficulty is to perform the learning in a fast and robust way without interfering
with other activities of the proof assistant. Power users can enhance the learning by
letting external provers run for hours on libraries, searching for simpler proofs.

A particularly strong filter, MeSh, is obtained by combining MePo and MaSh. The
three filters are compared on large formalizations covering the traditional application
areas of Isabelle: cryptography, programming languages, and mathematics (Sect. 5).
These empirical results are complemented by Judgment Day, a benchmark suite that
has tracked Sledgehammer’s development since 2010. Performance varies greatly de-
pending on the application area and on how much has been learned, but even with little
learning MeSh emerges as a strong leader.



2 Sledgehammer and MePo

Whenever Sledgehammer is invoked on a goal, the MePo (Meng–Paulson) filter selects
n facts φ1, . . . ,φn from the thousands available, ordering them by decreasing estimated
relevance. The filter keeps track of a set of relevant symbols—i.e., (higher-order) con-
stants and fixed variables—initially consisting of all the goal’s symbols. It performs the
following steps iteratively, until n facts have been selected:

1. Compute each fact’s score, as roughly given by r/(r+ i), where r is the number of
relevant symbols and i the number of irrelevant symbols occurring in the fact.

2. Select all facts with perfect scores as well as some of the remaining top-scoring
facts, and add all their symbols to the set of relevant symbols.

The implementation refines this approach in several ways. Chained facts (inserted into
the goal by means of the keywords using, from, then, hence, and thus) take absolute
priority; local facts are preferred to global ones; first-order facts are preferred to higher-
order ones; rare symbols are weighted more heavily than common ones; and so on.

MePo tends to perform best on goals that contain some rare symbols; if all the
symbols are common, it discriminates poorly among the hundreds of facts that could
be relevant. There is also the issue of starvation: The filter, with its iterative expansion
of the set of relevant symbols, effectively performs a best-first search in a tree and may
therefore ignore some relevant facts close to the tree’s root.

The automatic provers are given prefixes φ1, . . . ,φm of the selected n facts. The order
of the facts—the estimated relevance—is exploited by some provers to guide the search.
Although Sledgehammer’s default time limit is 30 s, the automatic provers are invoked
repeatedly for shorter time periods, with different options and different number of facts
m ≤ n; for example, SPASS is given as few as 50 facts in some slices and as many as
1000 in others. Excluding some facts restricts the search space, helping the prover find
deeper proofs within the allotted time, but it also makes fewer proofs possible.

The supported ATP systems include the first-order provers E [29], SPASS [9], and
Vampire [28]; the SMT solvers CVC3 [4], Yices [13], and Z3 [24]; and the higher-order
provers LEO-II [5] and Satallax [11].

Once a proof is found, Sledgehammer minimizes it by invoking the prover repeat-
edly with subsets of the facts it refers to. The proof is then reconstructed in Isabelle by
a suitable proof text, typically a call to the built-in resolution prover Metis [16].

Example 1. Given the goal

map f xs = ys =⇒ zip (rev xs) (rev ys) = rev (zip xs ys)

MePo selects 1000 facts: rev_map, rev_rev_ident, . . . , add_numeral_special(3). The
prover E, among others, quickly finds a minimal proof involving the 4th and 16th facts:

zip_rev: length xs = length ys =⇒ zip (rev xs) (rev ys) = rev (zip xs ys)
length_map: length (map f xs) = length xs

Example 2. MePo’s tendency to starve out useful facts is illustrated by the following
goal, taken from Paulson’s verification of cryptographic protocols [26]:

used []⊆ used evs



A straightforward proof relies on these four lemmas:
used_Nil: used [] =

⋃
B parts (initState B)

initState_into_used: X ∈ parts (initState B) =⇒ X ∈ used evs
subsetI: (

∧
x. x ∈ A =⇒ x ∈ B) =⇒ A⊆ B

UN_iff : b ∈
⋃

x∈A B x ←→ ∃x∈A. b ∈ B x

The first two lemmas are ranked 6807th and 6808th, due to the many initially irrele-
vant constants (

⋃
, parts, initState, and ∈). In contrast, all four lemmas appear among

MaSh’s first 45 facts and MeSh’s first 77 facts.

3 The Machine Learning Engine

MaSh (Machine Learning for Sledgehammer) is a Python program for fact selection
with machine learning.1 Its default learning algorithm is an approximation of naive
Bayes adapted to fact selection. MaSh can perform fast model updates, overwrite data
points, and predict the relevance of each fact. The program can also use the much slower
naive Bayes algorithm implemented by SNoW [12].

3.1 Basic Concepts
MaSh manipulates theorem proving concepts such as facts and proofs in an agnostic
way, as “abstract nonsense”:

• A fact φ is a string.
• A feature f is also a string. A positive weight w is attached to each feature.
• Visibility is a partial order ≺ on facts. A fact φ is visible from a fact φ ′ if φ ≺ φ ′,

and visible through the set of facts Φ if there exists a fact φ ′ ∈Φ such that φ � φ ′.
• The parents of a fact are its (immediate) predecessors with respect to ≺.
• A proof Π for φ is a set of facts visible from φ .

Facts are described abstractly by their feature sets. The features may for example
be the symbols occurring in a fact’s statement. Machine learning proceeds from the
hypothesis that facts with similar features are likely to have similar proofs.

3.2 Input and Output
MaSh starts by loading the persistent model (if any), executes a list of commands, and
saves the resulting model on disk. The commands and their arguments are

learn fact parents features proof
relearn fact proof
query parents features hints

The learn command teaches MaSh a new fact φ and its proof Π. The parents spec-
ify how to extend the visibility relation for φ , and the features describe φ . In addition
to the supplied proof Π `φ , MaSh learns the trivial proof φ `φ ; hence something is
learned even if Π = /0 (which can indicate that no suitable proof is available).

1 The source code is distributed with Isabelle2013 in the directory src/HOL/Tools/Sledge-

hammer/MaSh/src.



The relearn command forgets a fact’s proof and learns a new one.
The query command ranks all facts visible through the given parents by their pre-

dicted relevance with respect to the specified features. The optional hints are facts that
guide the search. MaSh temporarily updates the model with the hints as a proof for the
current goal before executing the query.

The commands have various preconditions. For example, for learn, φ must be
fresh, the parents must exist, and all facts in Π must be visible through the parents.

3.3 The Learning Algorithm

MaSh’s default machine learning algorithm is a weighted version of sparse naive Bayes.
It ranks each visible fact φ as follows. Consider a query command with the features
f1, . . . , fn weighted w1, . . . ,wn, respectively. Let P denote the number of proofs in which
φ occurs, and pj ≤ P the number of such proofs associated with facts described by fj
(among other features). Let π and σ be predefined weights for known and unknown
features, respectively. The estimated relevance is given by

r(φ , f1, . . . , fn) = ln P + ∑
j : pj 6=0

wj
(
ln(π pj) − ln P

)
+ ∑

j : pj=0
wj σ

When a fact is learned, the values for P and pj are initialized to a predefined weight τ .
The models depend only on the values of P, pj, π , σ , and τ , which are stored in dic-
tionaries for fast access. Computing the relevance is faster than with standard naive
Bayes because only the features that describe the current goal need to be considered,
as opposed to all features (of which there may be tens of thousands). Experiments have
found the values π = 10, σ =−15, and τ = 20 suitable.

A crucial technical issue is to represent the visibility relation efficiently as part of
the persistent state. Storing all the ancestors for each fact results in huge files that must
be loaded and saved, and storing only the parents results in repeated traversals of long
parentage chains to obtain all visible facts. MaSh solves this dilemma by complement-
ing parentage with a cache that stores the ancestry of up to 100 recently looked-up facts.
The cache not only speeds up the lookup for the cached facts but also helps shortcut the
parentage chain traversal for their descendants.

4 Integration in Sledgehammer

Sledgehammer’s MaSh-based relevance filter is implemented in Standard ML, like most
of Isabelle.2 It relies on MaSh to provide suggestions for relevant facts whenever the
user invokes Sledgehammer on an interactive goal.

4.1 The Low-Level Learner Interface

Communication with MaSh is encapsulated by four ML functions. The first function
resets the persistent state; the last three invoke MaSh with a list of commands:

2 The code is located in Isabelle2013’s files src/HOL/Tools/Sledgehammer/sledgehammer_

mash.ML, src/HOL/TPTP/mash_export.ML, and src/HOL/TPTP/mash_eval.ML.



MaSh.unlearn ()

MaSh.learn [( fact1, parents1, features1, proof1), . . . ,
( factn, parentsn, featuresn, proofn)]

MaSh.relearn [( fact1, proof1), . . . , ( factn, proofn)]
suggestions = MaSh.query parents features hints

To track what has been learned and avoid violating MaSh’s preconditions, Sledge-
hammer maintains its own persistent state, mirrored in memory. This mainly consists
of the visibility graph, a directed acyclic graph whose vertices are the facts known to
MaSh and whose edges connect the facts to their parents. (MaSh itself maintains a vis-
ibility graph based on learn commands.) The state is accessed via three ML functions
that use a lock to guard against race conditions in a multithreaded environment [41] and
keep the transient and persistent states synchronized.

4.2 Learning from and for Isabelle

Facts, features, proofs, and visibility were introduced in Sect. 3.1 as empty shells. The
integration with Isabelle fills these concepts with content.

Facts. Communication with MaSh requires a string representation of Isabelle facts.
Each theorem in Isabelle carries a stable “name hint” that is identical or very similar
to its fully qualified user-visible name (e.g., List.map.simps_2 vs. List.map.simps(2)).
Top-level lemmas have unambiguous names. Local facts in a structured Isar proof [40]
are disambiguated by appending the fact’s statement to its name.

Features. Machine learning operates not on the formulas directly but on sets of fea-
tures. The simplest scheme is to encode each symbol occurring in a formula as its
own feature. The experience with MePo is that other factors help—for example, the
formula’s types and type classes or the theory it belongs to. The MML and Flyspeck
evaluations revealed that it is also helpful to preserve parts of the formula’s structure,
such as subterms [3, 17].

Inspired by these precursors, we devised the following scheme. For each term in the
formula, excluding the outer quantifiers, connectives, and equality, the features are de-
rived from the nontrivial first-order patterns up to a given depth. Variables are replaced
by the wildcard _ (underscore). Given a maximum depth of 2, the term g (h x a), where
constants g, h, a originate from theories T, U, V, yields the patterns

T.g(_) T.g(U.h(_,_)) U.h(_,_) U.h(_,V.a) V.a

which are simplified and encoded into the features

T.g T.g(U.h) U.h U.h(V.a) V.a

Types, excluding those of propositions, Booleans, and functions, are encoded using an
analogous scheme. Type variables constrained by type classes give rise to features cor-
responding to the specified type classes and their superclasses. Finally, various pieces
of metainformation are encoded as features: the theory to which the fact belongs; the
kind of rule (e.g., introduction, simplification); whether the fact is local; whether the
formula contains any existential quantifiers or λ -abstractions.



Guided by experiments similar to those of Sect. 5, we attributed the following
weights to the feature classes:

Fixed variable 20
Constant 16
Localness 8

Type 2
Theory 2
Kind of rule 2

Presence of ∃ 2
Presence of λ 2
Type class 1

Example 3. The lemma transpose (map (map f ) xs)=map (map f ) (transpose xs) from
the List theory has the following features and weights (indicated by subscripts):

List2
List.list2
List.map16
List.map(List.map)16

List.transpose16
List.transpose(List.map)16
List.map(List.transpose)16
List.map(List.map, List.transpose)16

Proofs. MaSh predicts which facts are useful for proving the goal at hand by studying
successful proofs. There is an obvious source of successful proofs: All the facts in
the loaded theories are accompanied by proof terms that store the dependencies [6].
However, not all available facts are equally suitable for learning. Many of them are
derived automatically by definitional packages (e.g., for inductive predicates, datatypes,
recursive functions) and proved using custom tactics, and there is not much to learn
from those highly technical lemmas. The most interesting lemmas are those stated and
proved by humans. Slightly abusing terminology, we call these “Isar proofs.”

Even for user lemmas, the proof terms are overwhelmed by basic facts about the
logic, which are tautologies in their translated form. Fortunately, these tautologies are
easy to detect, since they contain only logical symbols (equality, connectives, and quan-
tifiers). The proofs are also polluted by decision procedures; an extreme example is
the Presburger arithmetic procedure, which routinely pulls in over 200 dependencies.
Proofs involving over 20 facts are considered unsuitable and simply ignored.

Human-written Isar proofs are abundant, but they are not necessarily the best raw
material to learn from. They tend to involve more, different facts than Sledgehammer
proofs. Sometimes they rely on induction, which is difficult for automatic provers; but
even excluding induction, there is evidence that the provers work better if the learned
proofs were produced by similar provers [20, 21].

A special mode of Sledgehammer runs an automatic prover on all available facts
to learn from ATP-generated proofs. Users can let it run for hours at at time on their
favorite theories. The Isar proof facts are passed to the provers together with a few
dozens of MePo-selected facts. Whenever a prover succeeds, MaSh discards the Isar
proof and learns the new minimized proof (using MaSh.relearn). Facts with large Isar
proofs are processed first since they stand to gain the most from shorter proofs.

Visibility. The loaded background theories and the user’s formalization, including local
lemmas, appear to Sledgehammer as a vast collection of facts. Each fact is tagged with
its own abstract theory value, of type theory in ML, that captures the state of affairs
when it was introduced. Sledgehammer constructs the visibility graph by using the (very
fast) subsumption order E on theory.



A complication arises because E lifted to facts is a preorder, whereas the graph must
encode a partial order �. Antisymmetry is violated when facts are registered together.
Despite the simultaneity, one fact’s proof may depend on another’s; for example, an
inductive predicate’s definition p_def is used to derive introduction and elimination
rules pI and pE, and yet they may share the same theory. Hence, some care is needed
when constructing � from E to ensure that p_def � pI and p_def � pE.

When performing a query, Sledgehammer needs to compute the current goal’s par-
ents. This involves finding the maximal vertices of the visibility graph restricted to the
facts available in the current Isabelle proof context. The computation is efficient for
graphs with a quasi-linear structure, such as those that arise from Isabelle theories:
Typically, only the first fact of a theory will have more than one parent. A similar com-
putation is necessary when teaching MaSh new facts.

4.3 Relevance Filters: MaSh and MeSh

Sledgehammer’s MaSh-based relevance filter computes the current goal’s parents and
features; then it queries the learner program (using MaSh.query), passing the chained
facts as hints. This process usually takes about one second on modern hardware, which
is reasonable for a tool that may run for half a minute. The result is a list with as many
suggestions as desired, ordered by decreasing estimated relevance.

Relying purely on MaSh for relevance filtering raises an issue: MaSh may not have
learned all the available facts. In particular, it will be oblivious to the very latest facts,
introduced after Sledgehammer was invoked for the last time, and these are likely to
be crucial for the proof. The solution is to enrich the raw MaSh data with a proximity
filter, which sorts the available facts by decreasing proximity in the proof text.

Instead of a plain linear combination of ranks, the enriched MaSh filter transforms
ranks into probabilities and takes their weighted average, with weight 0.8 for MaSh and
0.2 for proximity. The probabilities are rough approximations based on experiments.
Fig. 1 shows the mathematical curves; for example, the first suggestion given by MaSh
is considered about 15 times more likely to appear in a successful proof than the 50th.
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Fig. 1. Estimated probability of the jth fact’s appearance in a proof

This notion of combining filters to define new filters is taken one step further by
MeSh, a combination of MePo and MaSh. Both filters are weighted 0.5, and both use
the probability curve of Fig. 1(a).



Ideally, the curves and parameters that control the combination of filters would be
learned mechanically rather than hard-coded. However, this would complicate and pos-
sibly slow down the infrastructure.

4.4 Automatic and Manual Control

All MaSh-related activities take place as a result of a Sledgehammer invocation. When
Sledgehammer is launched, it checks whether any new facts, unknown to the visibility
graph, are available. If so, it launches a thread to learn from their Isar proofs and update
the graph. The first time, it may take about 10 s to learn all the facts in the background
theories (assuming about 10 000 facts). Subsequent invocations are much faster.

If an automatic prover succeeds, the proof is immediately taught to MaSh (using
MaSh.learn). The discharged (sub)goal may have been only one step in an unstructured
proof, in which case it has no name. Sledgehammer invents a fresh, invisible name for
it. Although this anonymous goal cannot be used to prove other goals, MaSh benefits
from learning the connection between the formula’s features and its proof.

For users who feel the need for more control, there is an unlearn command that re-
sets MaSh’s persistent state (using MaSh.unlearn); a learn_isar command that learns
from the Isar proofs of all available facts; and a learn_prover command that invokes
an automatic prover on all available facts, replacing the Isar proofs with successful
ATP-generated proofs whenever possible.

4.5 Nonmonotonic Theory Changes

MaSh’s model assumes that the set of facts and the visibility graph grow monotonically.
One concern that arises when deploying machine learning—as opposed to evaluating
its performance on static benchmarks—is that theories evolve nonmonotonically over
time. It is left to the architecture around MaSh to recover from such changes. The fol-
lowing scenarios were considered:

• A fact is deleted. The fact is kept in MaSh’s visibility graph but is silently ignored
by Sledgehammer whenever it is suggested by MaSh.

• A fact is renamed. Sledgehammer perceives this as the deletion of a fact and the
addition of another (identical) fact.

• A theory is renamed. Since theory names are encoded in fact names, renaming a
theory amounts to renaming all its facts.

• Two facts are reordered. The visibility graph loses synchronization with reality.
Sledgehammer may need to ignore a suggestion because it appears to be visible
according to the graph.

• A fact is introduced between two facts φ and φ ′. MaSh offers no facility to change
the parent of φ ′, but this is not needed. By making the new fact a child of φ , it is
considered during the computation of maximal vertices and hence visible.

• The fact’s formula is modified. This occurs when users change the statement of a
lemma, but also when they rename or relocate a symbol. MaSh is not informed of
such changes and may lose some of its predictive power.



More elaborate schemes for tracking dependencies are possible. However, the ben-
efits are unclear: Presumably, the learning performed on older theories is valuable and
should be preserved, despite its inconsistencies. This is analogous to teams of humans
developing a large formalization: Teammates should not forget everything they know
each time a colleague changes the capitalization of some basic theory name. And should
users notice a performance degradation after a major refactoring, they can always in-
voke unlearn to restart from scratch.

5 Evaluations

This section attempts to answer the main questions that existing Sledgehammer users
are likely to have: How do MaSh and MeSh compare with MePo? Is machine learning
really helping? The answer takes the form of two separate evaluations.3

5.1 Evaluation on Large Formalizations

The first evaluation measures the filters’ ability to re-prove the lemmas from three for-
malizations included in the Isabelle distribution and the Archive of Formal Proofs [19]:

Auth Cryptographic protocols [26] 743 lemmas
Jinja Java-like language [18] 733 lemmas
Probability Measure and probability theory [15] 1311 lemmas

These formalizations are large enough to exercise learning and provide meaningful
numbers, while not being so massive as to make experiments impractical. They are
also representative of large classes of mathematical and computer science applications.

The evaluation is twofold. The first part computes how accurately the filters can
predict the known Isar or ATP proofs on which MaSh’s learning is based. The second
part connects the filters to automatic provers and measures actual success rates.

The first part may seem artificial: After all, real users are interested in any proof
that discharges the goal at hand, not a specific known proof. The predictive approach’s
greatest virtue is that it does not require invoking external provers; evaluating the im-
pact of parameters is a matter of seconds instead of hours. MePo itself has been fine-
tuned using similar techniques. For MaSh, the approach also helps ascertain whether
it is learning the learning materials well, without noise from the provers. Two (slightly
generalized) standard metrics, full recall and AUC, are useful in this context.

For a given goal, a fact filter (MePo, MaSh, or MeSh) ranks the available facts and
selects the n best ranked facts Φ = {φ1, . . . ,φn}, with rank(φj) = j and rank(φ) = n+1
for φ /∈Φ. The parameter n is fixed at 1024 in the experiments below.

The known proof Π serves as a reference point against which the selected facts and
their ranks are judged. Ideally, the selected facts should include as many facts from the
proof as possible, with as low ranks as possible.

Definition 1 (Full Recall). The full recall is the minimum number m∈ {0, . . . ,n} such
that {φ1, . . . ,φm} ⊇Π, or n+1 if no such number exists.

3 Our empirical data are available at http://www21.in.tum.de/~blanchet/mash_data.tgz .

http://www21.in.tum.de/~blanchet/mash_data.tgz


MePo MaSh MeSh
Full rec. AUC Full rec. AUC Full rec. AUC

Isar proofs Auth 430 79.2 190 93.1 142 94.9
Jinja 472 73.1 307 90.3 250 92.2
Probability 742 57.7 384 88.0 336 89.2

ATP proofs Auth 119 93.5 198 92.0 68 97.0
Jinja 163 90.4 241 90.6 84 96.8
Probability 428 74.4 368 85.2 221 91.6

Fig. 2. Average full recall and average AUC (%) with Isar and ATP proofs

Definition 2 (AUC). The area under the receiver operating characteristic curve (AUC)
is given by ∣∣{(φ ,φ ′) ∈Π× (Φ−Π) | rank(φ)< rank(φ ′)}

∣∣
|Π| · |Φ−Π|

Full recall tells how many facts must be selected to ensure that all necessary facts are
included—ideally as few as possible. The AUC focuses on the ranks: It gives the prob-
ability that, given a randomly drawn “good” fact (a fact from the proof) and a randomly
drawn “bad” fact (a selected fact that does not appear in the proof), the good fact is
ranked before the bad fact. AUC values closer to 1 (100%) are preferable.

For each of the three formalizations (Auth, Jinja, and Probability), the evaluation
harness processes the lemmas according to a linearization (topological sorting) of the
partial order induced by the theory graph and their location in the theory texts. Each
lemma is seen as a goal for which facts must be selected. Previously proved lemmas,
and the learning performed on their proofs, may be exploited—this includes lemmas
from imported background theories. This setup is similar to the one used by Kaliszyk
and Urban [17] for evaluating their Sledgehammer-like tool for HOL Light. It simulates
a user who systematically develops a formalization from beginning to end, trying out
Sledgehammer on each lemma before engaging in a manual proof.4

Fig. 2 shows the average full recall and AUC over all lemmas from the three for-
malizations. For each formalization, the statistics are available for both Isar and ATP
proofs. In the latter case, Vampire was used as the ATP, and goals for which it failed
to find a proof are simply ignored. Learning from ATP proofs improves the machine
learning metrics, partly because they usually refer to fewer facts than Isar proofs.

There is a reversal of fortune between Isar and ATP proofs: MaSh dominates MePo
for the former but performs slightly worse than MePo for the latter on two of the formal-
izations. The explanation is that the ATP proofs were found with MePo’s help. Nonethe-
less, the combination filter MeSh scores better than MePo on all the benchmarks.

Next comes the “in vivo” part of the evaluation, with actual provers replacing ma-
chine learning metrics. For each goal from the formalizations, 13 problems were gener-

4 Earlier evaluations of Sledgehammer always operated on individual (sub)goals, guided by the
notion that lemmas can be too difficult to be proved outright by automatic provers. However,
lemmas appear to provide the right level of challenge for modern automation, and they tend to
exhibit less redundancy than a sequence of similar subgoals.
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Fig. 3. Success rates for a combination of provers on Auth + Jinja + Probability

ated, with 16, 23 (≈ 24.5), 32, . . . , 724 (≈ 29.5), and 1024 facts. Sledgehammer’s transla-
tion is parameterized by many options, whose defaults vary from prover to prover and,
because of time slicing, even from one prover invocation to another. As a reasonable
uniform configuration for the experiments, types are encoded via the so-called polymor-
phic “featherweight” guard-based encoding (the most efficient complete scheme [8]),
and λ -abstractions via λ -lifting (as opposed to the more explosive SK combinators).

Fig. 3 gives the success rates of a combination of three state-of-the-art automatic
provers (Epar 1.6 [36], Vampire 2.6, and Z3 3.2) on these problems. Two versions of
MaSh and MeSh are compared, with learning on Isar and ATP proofs. A problem is
considered solved if it is solved within 10 s by any of them, using only one thread.
The experiments were conducted on a 64-bit Linux server equipped with 12-core AMD
Opteron 6174 processors running at 2.2 GHz. We observe the following:

• MaSh clearly outperforms MePo, especially in the range from 32 to 256 facts. For
91-fact problems, the gap between MaSh/Isar and MePo is 10 percentage points.
(The curves have somewhat different shapes for the individual formalizations, but
the general picture is the same.)

• MaSh’s peak is both higher than MePo’s (44.8% vs. 38.2%) and occurs for smaller
problems (128 vs. 256 facts), reflecting the intuition that selecting fewer facts more
carefully should increase the success rate.

• MeSh adds a few percentage points to MaSh. The effect is especially marked for
the problems with fewer facts.

• Against expectations, learning from ATP proofs has a negative impact. A closer
inspection of the raw data revealed that Vampire performs better with ATP (i.e.,
Vampire) proofs, whereas the other two provers prefer Isar proofs.

Another measure of MaSh and MeSh’s power is the total number of goals solved for
any number of facts. With MePo alone, 46.3% of the goals are solved; adding MaSh and
MeSh increases this figure to 62.7%. Remarkably, for Probability—the most difficult
formalization by any standard—the corresponding figures are 27.1% vs. 47.2%.



MePo MaSh MeSh

E 55.0 49.8 56.6
SPASS 57.2 49.1 57.7
Vampire 55.3 49.7 56.0
Z3 53.0 51.8 60.8
Together 65.6 63.0 69.8

Fig. 4. Success rates (%) on Judgment Day goals

5.2 Judgment Day

The Judgment Day benchmarks [10] consist of 1268 interactive goals arising in seven
Isabelle theories, covering among them areas as diverse as the fundamental theorem
of algebra, the completeness of a Hoare logic, and Jinja’s type soundness. The evalu-
ation harness invokes Sledgehammer on each goal. The same hardware is used as in
the original Judgment Day study [10]: 32-bit Linux servers with Intel Xeon processors
running at 3.06 GHz. The time limit is 60 s for proof search, potentially followed by
minimization and reconstruction in Isabelle. MaSh is trained on 9852 Isar proofs from
the background libraries imported by the seven theories under evaluation.

The comparison comprises E 1.6, SPASS 3.8ds, Vampire 2.6, and Z3 3.2, which
Sledgehammer employs by default. Each prover is invoked with its own options and
problems, including prover-specific features (e.g., arithmetic for Z3; sorts for SPASS,
Vampire, and Z3). Time slicing is enabled. For MeSh, some of the slices use MePo or
MaSh directly to promote complementarity.

The results are summarized in Fig. 4. Again, MeSh performs very well: The overall
4.2 percentage point gain, from 65.6% to 69.8%, is highly significant. As noted in a
similar study, “When analyzing enhancements to automatic provers, it is important to
remember what difference a modest-looking gain of a few percentage points can make
to users” [9, §7]. Incidentally, the 65.6% score for MePo reveals progress in the under-
lying provers compared with the 63.6% figure from one year ago.

The other main observation is that MaSh underperforms, especially in the light of
the evaluation of Sect. 5.1. There are many plausible explanations. First, Judgment Day
consists of smaller theories relying on basic background theories, giving few oppor-
tunities for learning. Consider the theory NS_Shared (Needham–Shroeder shared-key
protocol), which is part of both evaluations. In the first evaluation, the linear progress
through all Auth theories means that the learning performed on other, independent pro-
tocols (certified email, four versions of Kerberos, and Needham–Shroeder public key)
can be exploited. Second, the Sledgehammer setup has been tuned for Judgment Day
and MePo over the years (in the hope that improvements on this representative bench-
mark suite would translate in improvements on users’ theories), and conversely MePo’s
parameters are tuned for Judgment Day.

In future work, we want to investigate MaSh’s lethargy on these benchmarks (and
MeSh’s remarkable performance given the circumstances). The evaluation of Sect. 5.1
suggests that there are more percentage points to be gained.



6 Related Work and Contributions

The main related work is already mentioned in the introduction. Bridges such as Sledge-
hammer for Isabelle/HOL, MizAR [37] for Mizar, and HOL(y)Hammer [17] for HOL
Light are opening large formal theories to methods that combine ATPs and artificial
intelligence (AI) [20,35] to help automate interactive proofs. Today such large theories
are the main resource for combining semantic and statistical AI methods [39].5

The main contribution of this work has been to take the emerging machine-learning
methods for fact selection and make them incremental, fast, and robust enough so
that they run unnoticed on a single-user machine and respond well to common user-
interaction scenarios. The advising services for Mizar and HOL Light [17, 32, 33, 37]
(with the partial exception of MoMM [32]) run only as remote servers trained on the
main central library, and their solution to changes in the library is to ignore them or
relearn everything from scratch. Other novelties of this work include the use of more
proof-related features in the learning (inspired by MePo), experiments combining MePo
and MaSh, and the related learning of various parameters of the systems involved.

7 Conclusion

Relevance filtering is an important practical problem that arises with large-theory rea-
soning. Sledgehammer’s MaSh filter brings the benefits of machine learning methods to
Isabelle users: By decreasing the quantity and increasing the quality of facts passed to
the automatic provers, it helps them find more, deeper proofs within the allotted time.
The core machine learning functionality is implemented in a separate Python program
that can be reused by other proof assistants.

Many areas are calling for more engineering and research; we mentioned a few al-
ready. Learning data could be shared on a server or supplied with the proof assistant.
More advanced algorithms appear too slow for interactive use, but they could be op-
timized. Learning could be applied to control more aspects of Sledgehammer, such as
the prover options or even MePo’s parameters. Evaluations over the entire Archive of
Formal Proofs might shed more light on MaSh’s and MePo’s strengths and weaknesses.
Machine learning being a gift that keeps on giving, it would be fascinating to instrument
a user’s installation to monitor performance over several months.
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5 It is hard to envisage all possible combinations, but with the recent progress in natural lan-
guage processing, suitable ATP/AI methods could soon be applied to another major aspect of
formalization: the translation from informal prose to formal specification.
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