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Abstract The considerable mathematical knowledge encoded by the Flyspeck project
is combined with external automated theorem provers (ATPs) and machine-learning
premise selection methods trained on the Flyspeck proofs, producing an AI system
capable of proving a wide range of mathematical conjectures automatically. The
performance of this architecture is evaluated in a bootstrapping scenario emulat-
ing the development of Flyspeck from axioms to the last theorem, each time using
only the previous theorems and proofs. It is shown that 39% of the 14185 theorems
could be proved in a push-button mode (without any high-level advice and user
interaction) in 30 seconds of real time on a fourteen-CPU workstation.

The necessary work involves: (i) an implementation of sound translations of the
HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-
order, and typed higher-order, (ii) export of the dependency information from HOL

Light and ATP proofs for the machine learners, and (iii) choice of suitable repre-
sentations and methods for learning from previous proofs, and their integration as
advisors with HOL Light. This work is described and discussed here, and an initial
analysis of the body of proofs that were found fully automatically is provided.
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1 Introduction and Motivation

“It is the view of some of us that many people who could have easily contributed

to project QED have been distracted away by the enticing lure of AI or AR.”

– The QED Manifesto

“So it will take 140 man-years to create a good basic library for formal mathe-

matics.”

– Freek Wiedijk [86]

“We will encourage you to develop the three great virtues of a programmer:

laziness, impatience, and hubris.”

– Larry Wall, Programming Perl [83]

“And in demonstration itself logic is not all. The true mathematical reasoning is

a real induction [...]”

– Henri Poincaré, Science and Method [63]

1.1 Large-Theory Automated Reasoning and HOL Light

Use of external first-order automated theorem provers (ATPs) like Vampire [46],
E [67], SPASS [85], and recently also SMT (satisfiability modulo theories) solvers
like Z3 [24] for (large-theory) formalization has been developed considerably in
the recent decade. Particularly in the Isabelle community, the Sledgehammer [13,15]
bridge to such external tools is getting increasingly popular. This helps to further
develop various parts of the technology involved. ATPs have recently gained the
ability to quickly load large theories over large signatures and work with them [38].
Methods for automated selection of relevant knowledge and for proof guidance
are actively developed [76], together with specialized automated systems targeted
at particular mathematical domains [2, 7, 64]. Formats and translation methods
handling more formalization-friendly foundations are being defined [16,27,70], and
metasystems that decide which ATP, translation method, strategy, parallelization,
and premises to use to solve a given problem with limited resources are being
designed [59, 80]. Cooperation of humans and computers over large corpora of
formal knowledge is an interesting field, allowing exploration of new AI systems
and combinations of different AI techniques that can attempt to encode concepts
like analogy and intuition, and rigorously evaluate their usefulness. Perhaps not
only Hilbert and Turing, but also the formality-opposing and intuition-oriented
Poincaré1 [63] would have been interested to learn about the new “semantic AI
paradise” of such large corpora of fully computer-understandable mathematics
(from which we do not intend to be expelled).

The HOL Light [34] system is probably the first among the existing well-known
interactive theorem provers (ITPs) which has integrated and extensively used a
general ATP procedure, the MESON tactic [36]. Hurd has developed and bench-
marked early bridges [39, 40] between HOL and external systems, and his Metis

system [41] has also become a significant part of the Isabelle/Sledgehammer bridge

1 2012 is not just the year of Turing [32], but also of Poincaré, whose ideas about creativity
and invention involving random, intuition-guided exploration confirmed by critical evaluation
quite correspond to what AI systems like MaLARea [80] try to emulate in large formal theories.
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to ATPs [60]. Using the very detailed Otter/Ivy [53] proof objects, Harrison also
later implemented a bridge from HOL Light to Prover9 [52]. HOL Light however
does not yet have a general bridge to large-theory ATP/AI (“hammer”2) meth-
ods, similar to Isabelle/Sledgehammer or MizAR [78, 79], which would attempt to
automatically solve a new goal by selecting relevant knowledge from the large li-
brary and running (possibly customized/trained) external ATPs on such premise
selections. HOL Light seems to be a natural candidate for adopting such methods,
because of the amount of work already done in this direction mentioned above,
and also thanks to HOL Light’s foundational closeness to Isabelle/HOL. Also, thanks
to the Flyspeck project [31], HOL Light is becoming less of a “single, very knowl-
edgable formalizer” tool, and is getting increasingly used as a “tool for interested
mathematicians” (such as the Flyspeck team in Hanoi3) who may know the large
libraries much less and have less experience with crafting their own proof tactics.
For such ITP users it is good to provide a small number of strong methods that
allow fast progress, which can perhaps also complement the declarative modes [87]
pioneered by HOL Light [35] in the LCF world.

1.2 Flyspeck as an Interesting Corpus for Semantic AI Methods

The purpose of the Flyspeck project is to produce a formal proof of the Kepler Con-
jecture [33,45]. The Flyspeck development (which in this paper always means also
the required parts of the HOL Light library) is an interesting corpus for a number
of reasons. First, it formalizes considerable parts of standard mathematics, and
thus exposes a large body of interconnected mathematical reasoning to all kinds
of semantic AI methods and experiments. Second, the formalization is done in a
relatively directed way, with the final goal of the Kepler conjecture in mind. For
example, in the Mizar library4 (and even more in other collections like the Coq

contribs5), articles may be contributed as isolated developments, and only much
later (or never) re-factored into a form that makes them work well with related
developments. Such refactoring is often a nontrivial process [66]. In a directed
development like Flyspeck, such integrity is a concern from the very beginning,
and this concern should result in the theorems working better together to justify
new conjectures that combine the areas covered by the development. Third, the
language of HOL Light is in a certain sense simpler than the language of Mizar

and Coq (and to a lesser extent also than Isabelle/HOL), where one typically first
needs to set up the right syntactic/type-automation environment to be able to
formulate new conjectures in advanced areas. This greater simplicity (which may
come at a cost) makes it possible to write direct (yet advanced) queries to the
AI/ATP (“hammer”) system in the original language, without much additional
need for specifying the context of the query. This could make such “hammer”
more easy to try for interested mathematicians, and allow them to explore formal
mathematics and Flyspeck. And fourth, Flyspeck is accompanied with an informal
(LATEX) text that is often cross-linked to the formal concepts and theorems devel-
oped in HOL Light. With sufficiently strong automated reasoning over the library,

2 Larry Paulson is guilty of introducing this “striking” terminology.
3 http://weyl.math.pitt.edu/hanoi2009/Participants/
4 www.mizar.org
5 http://coq.inria.fr/V8.2pl1/contribs/bycat.html

http://weyl.math.pitt.edu/hanoi2009/Participants/
www.mizar.org
http://coq.inria.fr/V8.2pl1/contribs/bycat.html
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this cross-linking opens the way to experiments with alignment (and eventual
semi-automated translation) between the informal and formal Flyspeck texts, us-
ing corpus-driven methods for language translation, assisted by such an AI/ATP
“hammer” as an additional semantic filter/advisor.

1.3 The Rest of the Paper

The work reported here makes several steps towards the above goals:

1. Sound and efficient translations of the HOL Light formulas to several ATP
(TPTP) formalisms are implemented (Section 2). This includes the untyped
first-order (FOF) format [71], the polymorphic typed first-order (TFF1) for-
mat [16], and the typed higher-order (THF) format [27,69].

2. Dependency information is exported from the Flyspeck proofs (Section 3). This
allows experiments with re-proving of theorems by 17 different ATPs/SMTs
from their HOL Light dependencies, and provides an initial dataset for machine
learning of premise selection from previous proofs.

3. Several feature representations characterizing HOL Light formulas are proposed,
implemented, and used for machine-learning of premise selection. Several pre-
processing methods are developed for the dependency data that are used for
learning. The trained premise-selection systems are integrated as external ad-
visors for HOL Light. A prototype system answering real-time mathematical
queries by running various parallel combinations of the premise selectors and
ATPs is built and made available as an online service. See Section 4.

The methods are evaluated in Section 5, and it is shown that by running in parallel
the most complementary proof-producing methods on a 14-CPU workstation, one
now has a 39% chance to prove the next Flyspeck theorem within 30 seconds in
a fully automated push-button mode (without any high-level advice). 50% of the
Flyspeck theorems can be re-proved within 30 seconds by a collection of 7 ATP
methods (run in parallel) if the HOL Light proof dependencies are used. 56% of the
theorems could be proved by the union of all methods tried in the evaluation. An
initial analysis of these sets of proofs is given in Section 6. It is shown that the
proofs produced by the learning-advised ATPs can occasionally develop ideas that
are very different from the original HOL Light proofs, and that the learning-advised
ATPs can sometimes produce simpler proofs and discover duplications in the li-
brary. Section 7 discusses related work and Section 8 suggests future directions.

2 Translation of HOL Light Formulas to ATP formats

The HOL logic differs from the formalisms used by most of the existing ATP and
SMT systems. The main differences to first-order logic are the use of the polymor-
phic type system, and higher-order features (guarded by the type system) such as
quantification (abstraction) over higher-order objects and currying. On the other
hand, the logic is made classical and comes with a straightforward intended inter-
pretation in ZFC. Translation of this logic (and its type-class extension used by
Isabelle/HOL) to ATP formalisms has been an active research topic started already
in the 90s. Prominent techniques, such as lambda lifting, suitable type system
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translation methods, etc., have been described several times [12, 36, 39, 40, 56].
Therefore this section assumes familiarity with these techniques, and only briefly
summarizes the logic and the translation approaches considered, and their particu-
lar suitability for the experiments over the HOL Light corpora. For a comprehensive
recent overview and discussion of this topic and the issues related to the trans-
lation see Blanchette’s thesis [12]. In particular, it contains the arguments about
the soundness and (in)completeness of the translation methods that we eventually
chose.

2.1 Summary of the HOL Logic

HOL Light uses the HOL logic [62]: an extended variant of Church’s simple type
theory [21]. Type variables (implicitly universally quantified) are explicitly added
to the language (providing polymorphism), together with arbitrary type operators
(constructors of compound types like ‘int list’ and ‘a set’). In the HOL logic,
the terms and types are intended to have a standard set-theoretical interpreta-
tion in HOL universes. A HOL universe U is a set of non-empty sets, such that U
is closed under non-empty subsets, finite products and powersets, an infinite set
I ∈ U exists, and a choice function ch over U exists (i.e., ∀X ∈ U : ch(X) ∈ X) .
The subsets, products, and powersets together also yield function spaces. A fre-
quently considered example of a HOL universe is the set Vω+ω \ {0},6 with ch

being its (ZFC-guaranteed) selector, and I = ω. The standard U-interpretation of
a monomorphic (i.e., free of type variables) type σ is a set JσK ∈ U , a polymorphic

(i.e., containing type variables) type σ with n type variables is interpreted as a
function JσK : Un → U , and the arrow operator observes the standard function-
space behavior (lifted to appropriate mappings for polymorphic types) on the type
interpretations. The standard interpretation of a closed monomorphic term t : σ
is an element of the set JσK ∈ U , and a closed polymorphic term (with n type
variables) t : σ with JσK : Un → U is interpreted as a (dependently typed) func-
tion assigning to each n-tuple [X1, . . . , Xn] ∈ Un an element of JσK([X1, . . . , Xn]).
The HOL logic’s type signature starts with the built-in nullary type constants
ind, interpreted as the infinite set I, and bool (type of propositions), interpreted
as a chosen two-element set in U (its existence follows from the properties of a
HOL universe). The term signature initially contains the polymorphic constants
=α→α→bool, and ε(α→bool)→α, interpreted as the equality and selector on each set
in U . The inference mechanisms start with a set of standard primitive inference
rules, later adding the axioms of functional extensionality, choice (implying the
excluded middle in the HOL setting), and infinity. New type and term construc-
tors can be introduced by simple definitional extension mechanisms, which are in
HOL Light also used to introduce the standard logical connectives and quantifiers.
The result is a classical logic system that is in practice quite close to set theory,
differing from it mainly by the built-in type discipline (allowing also complete
automation of abstraction) and by more frequent use of total functions to model
mathematical objects. For example, predicates are modelled as total functions to
bool on types, and sets are in HOL Light identified with (unary) predicates. The

6 Vω+ω is the ω + ω-th set of von Neumann’s (cumulative) hierarchy of sets obtained by
iterating the powerset operation starting with the empty set ω+ω times. This shows that the
HOL logic is in general weaker than ZFC.
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main issues for translation are the type system and the automated reification (ab-
straction) mechanisms that are not immediately available in first-order logic and
may be encoded in more or less efficient and complete ways.

2.2 The MESON Translation

An obvious first idea for generating FOL ATP problems from HOL Light problems
was to re-use parts of the already implemented MESON tactic. This tactic tries
to justify a given goal G with a supplied list of premises P1, ..., Pn by calling a
customized first-order ATP implemented in HOL Light, which is based on the model
elimination method invented by Loveland [49], later combined with a Prolog-like
search tree [50]. The implementation of the MESON tactic in HOL Light first applies a
number of standard translation techniques (such as β-reduction followed by lambda
lifting, skolemization, introduction of the apply functor,7 etc.) that transform the
HOL goal (together with the supplied premises) to a clausal FOL goal (or multiple
goals). An interesting (and MESON-specific) part of the transformation is a rather
exhaustive and heuristic instantiation of the (often polymorphic) premises (called
POLY_ASSUME_TAC), described below. The clausal FOL goal is then passed to the core
ATP. If the core ATP succeeds, it returns a proof, which is then translated into HOL

Light proof steps. The transformation from HOL to FOL is heuristic, incomplete,
and tuned for relatively small problems. An interesting feature of MESON is that
the core ATP does not treat equality specially (as is quite common in tableau
provers), which in turn allows using multiple instantiated versions of equality (e.g.,
on lists and on real numbers) inside one problem. Such equational separation, when
combined with the heuristic instantiation of other polymorphic constants done by
MESON, then prevents the core ATP from doing ill-typed inferences without the
necessity for any additional type guards.

The most interesting part of the translation heuristically instantiates the (pos-
sibly polymorphic) premises P1, ..., Pn and adds them to the goal G. This is done
iteratively, building a new temporary goal Gi (where G0 = G) from each premise
Pi and the previous goal Gi−1 as follows. All (possibly polymorphic) constants are
collected from Pi and Gi−1, and the set of all their pairs is created. When such
a pair {cP , cG} consists of two (symbolically) equal constants, the type of cP is
matched to the type of cG, and if a substitution σ exists (i.e., TypecP σ = TypecG),
it is added to the resulting set Σi of type substitutions. Each type substitution
from Σi is then applied to Pi, and all such resulting instances of Pi are added as
assumptions to Gi−1, yielding Gi. The set of assumptions of the goal Gi is thus
typically greater than that of Gi−1, and the same typically holds for the set of
constants in Gi, which will be in turn used to instantiate Pi+1.

This procedure is quite effective for the small problems that MESON normally
handles. However, for problems with many premises and many polymorphic con-
stants this turns out to be very inefficient. While re-using MESON allowed the quick
initial exploration of using external ATPs and advisors described in [44], this ineffi-
ciency practically excluded the (seemingly straightforward) use of the unmodified
MESON procedure as an (at least basic) translation method for generating ATP

7 Identity is used by MESON as the apply functor.
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problems with many premises. This is why the experiments presented here use
different translations, described below.

Completeness of the translation from HOL to FOL is in general hard to achieve
in an efficient way. The MESON translation is incomplete in several ways. The goal’s
proper assumptions are not monomorphised, and the free variables of polymorphic
types are not used in the same way as the polymorphic constants. For example,
given the premise:

∀P : α→ bool. ∀x : α. Px

and a goal that does not mention α, the premise will never be instantiated to the
type present in the goal, and thus will not be usable for MESON.

2.3 Translation to the TFF1 and FOF Formats

There is a “simple” solution to the instantiation blow-up experienced with the
MESON translation: avoid heuristic instantiation as a pre-processing step, and in-
stead let the ATPs handle it as a part of the ATP problems. This technique is
used in the Mizar/MPTP translation [72, 73, 75], where the (dependent and unde-
cidable) soft type system cannot be separated from the core predicate logic. The
relevant heuristics can instead be developed (and experimented with) on the level
of ATPs. Indeed, for example the SPASS system includes a number of ATP tech-
niques for both complete and incomplete work with (auto-detected) types [17,84].
This approach has been in the recent years facilitated by developing type-aware
TPTP standards such as TFF0, TFF1, and THF, which – unlike related type-
aware efforts like DFG [30] and KIF [28] – seem to be more successful in being
adopted by ATP and tool developers. In the case of the recent TFF1 standard [16]
adding HOL-like polymorphic types to first-order logic, a translation tool to the
FOF and SMT formats has been developed in 2012 by Andrei Paskevich as part of
the Why3 system [25], simplifying the first experiments with the non-instantiating
translation.

The translation to TFF1 proceeds similarly to the MESON translation, but with-
out applying the POLY_ASSUME_TAC. The problem formulas are β-reduced, the re-
maining lambda abstractions are again removed using lambda lifting, and the
apply functor is heuristically introduced. The particular heuristic for this is the
one used by Meng and Paulson, i.e., for each higher-order constant c the minimum
arity nc with which it appears in a problem is computed, and the first nc arguments
are always passed to c directly inside the problem. If the constant is also used with
more arguments in the problem, apply is used. Blanchette [12] reports that this
optimization works fairly well for Isabelle/Sledgehammer, and gives a simple exam-
ple when it introduces incompleteness. As an example of the translation to the
TFF1 format, consider the re-proving problem8 for the theorem Float.REAL_EQ_-

INV9 proved as part of the Jordan curve theorem formalization,10 whose HOL Light

proof is as follows:

8 By a re-proving problem, we mean the ATP problem consisting of the translated HOL Light
theorem together with the premises used in its original HOL Light proof.

9 http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/i/p/09895.p
10 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Jordan/float.html#REAL_EQ_INV

http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/i/p/09895.p
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Jordan/float.html#REAL_EQ_INV
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let REAL_EQ_INV = prove(‘∀x y. ((x:real = y) ⇐⇒ (inv(x) = inv (y)))‘,
((REPEAT GEN_TAC))
THEN (EQ_TAC)
THENL [((DISCH_TAC THEN (ASM_REWRITE_TAC[])));
(* branch 2*) ((DISCH_TAC))

THEN ((ONCE_REWRITE_TAC [(GSYM REAL_INV_INV)]))
THEN ((ASM_REWRITE_TAC[]))]);;

The dependency tracking (see Section 3.1.2) has found the following dependencies
of the theorem:11

AND_DEF FORALL_DEF IMP_DEF REAL_INV_INV REFL_CLAUSE TRUTH

Tactics_jordan.unify_exists_tac_example

From these dependencies, only REAL_INV_INV has nontrivial first-order content (a
list of the trivial facts has been collected and is used for such filtering). The problem
creation additionally adds three facts encoding properties of (HOL) booleans, and
also the functional extensionality axiom (EQ_EXT). In the original HOL Light syntax
the re-proving problem looks as follows:

% ORIGINAL: Float.REAL_EQ_INV

% Assm: EQ_EXT: !f g. (!x. f x = g x) ==> f = g

% Assm: BOOL_CASES_AX: !t. (t <=> T) \/ (t <=> F)

% Assm: NOT_CLAUSES_WEAK_conjunct1: ~F <=> T

% Assm: REAL_INV_INV: !x. inv (inv x) = x

% Assm: TRUTH: T

% Goal: !x y. x = y <=> inv x = inv y

After applying β-reduction, lambda lifting (none in the example), and introducing
the apply functor (called here happ), this is transformed (still as HOL terms) into
the following:

% PROCESSED

% Assm: !f g. (!x. happ f x = happ g x) ==> f = g

% Assm: !t. (t <=> T) \/ (t <=> F)

% Assm: ~F <=> T

% Assm: !x. inv (inv x) = x

% Assm: T

% Goal: !x y. x = y <=> inv x = inv y

The application functor happ was only used for the function variables in the ex-
tensionality axiom (EQ_EXT). The function inv is always used with one argument
in the problem, so it is never wrapped with happ. Finally, the TFF1 TPTP export
declares the signature of the symbols and type operators, and adds the corre-
sponding guarded quantifications to the formulas. The apply functor is called i in
the TFF1 export (for concise output in case of many applications in a goal), and
it explicitly takes also the type arguments (A and B in aEQu_EXT). This (making
the implicit type variables explicit) is in TFF1 done for any symbol that remains
polymorphic. We reserve the predicate p for translation between Boolean terms
and formulas. This is done in the same way as in [56].

11 Tactics_jordan.unify_exists_tac_example is just ‘T=T‘. The name is accidental.
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HOL Light allows one identifier to denote several different underlying constants.
In the running example, inv is such an overloaded identifier and denotes the inverse
operations on several different types. To deal with such identifiers different names
are used for each underlying constant separately in the TFF1 export signature, so
that the identifiers can be printed using their non-overloaded names like real_inv.

% TYPES

tff(tbool, type, bool:$tType).

tff(tfun, type, fn:($tType * $tType) > $tType).

tff(treal, type, real:$tType).

% CONSTS

tff(cp, type, p : (bool > $o)).

tff(chapp, type, i:!>[A:$tType,B:$tType]: ((fn(A,B) * A) > B)).

tff(cF, type, f:bool).

tff(crealu_inv, type, realu_inv:(real > real)).

tff(cT, type, t:bool).

% AXIOMS

tff(aEQu_EXT, axiom, ![A : $tType,B : $tType]:

![F:fn(A,B),G:fn(A,B)]:(![X:A]:i(A,B,F,X) = i(A,B,G,X) => F = G)).

tff(aBOOLu_CASESu_AX, axiom, ![T:bool]:(T = t | T = f)).

tff(aNOTu_CLAUSESu_WEAKu_conjunct1, axiom, (~ (p(f)) <=> p(t))).

tff(aREALu_INVu_INV, axiom, ![X:real]:realu_inv(realu_inv(X)) = X).

tff(aTRUTH, axiom, p(t)).

tff(conjecture, conjecture, ![X:real,Y:real]:

(X = Y <=> realu_inv(X) = realu_inv(Y))).

Problems in this format can be already given to the Why3 tool, which can translate
them for various SMT solvers and ATP systems, and call the systems on the
translated form. This was initially used both for ATPs working with the FOF
format and for the SMTs. Currently, we only use Why3 for preparing problems for
Yices, CVC3, and AltErgo. The translation to the FOF format was later implemented
independently of Why3, to avoid an additional translation layer for the strongest
tools, and in particular to be able to run the ATPs with different parameters and
in a proof-producing mode. The procedure is however the same as in Why3, and
the resulting FOF form will be as follows.

% Goal: !x y. x = y <=> inv x = inv y

fof(aEQu_EXT, axiom, ![A,B]: ![F, G]:

(![X]: s(B,i(s(fun(A,B),F),s(A,X))) = s(B,i(s(fun(A,B),G),s(A,X)))

=> s(fun(A,B),F) = s(fun(A,B),G))).

fof(aBOOLu_CASESu_AX, axiom,

![T]: (s(bool,T) = s(bool,t) | s(bool,T) = s(bool,f))).

fof(aNOTu_CLAUSESu_WEAKu_conjunct1, axiom,

(~ (p(s(bool,f))) <=> p(s(bool,t)))).

fof(aREALu_INVu_INV, axiom,

![X]: s(real,realu_inv(s(real,realu_inv(s(real,X))))) = s(real,X)).

fof(aTRUTH, axiom, p(s(bool,t))).

fof(conjecture, conjecture, ![X, Y]: (s(real,X) = s(real,Y) <=>

s(real,realu_inv(s(real,X))) = s(real,realu_inv(s(real,Y))))).

This translation uses the (possibly quadratic) tagging of terms with their types
(with “s” as the tagging functor), used, e.g., in Hurd’s work.
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2.4 Translations to Higher-Order Formats

The recently developed TPTP THF standard can be used to encode problems
in monomorphic higher-order logic. This allows experimenting with higher-order
ATPs like LEO2 [9] and Satallax [19], in addition to the standard ATPs working
in the first-order formalism. The translation to THF needs to perform only one
step: monomorphisation. As explained in 2.2, this is however a nontrivial task, and
the MESON tactic approach is already in practice too exhaustive for problems with
many premises.

After developing the TFF1 and FOF translation, some initial experiments were
done to produce a monomorphisation heuristic that behaves reasonably on prob-
lems with many premises. This heuristic is now as follows. The constants that
can be used to instantiate the premises are extracted only once from the goal at
the start of the procedure. Every premise can be instantiated using these goal
constants, but the premises themselves are not further used to grow this set. This
means that the procedure is even less complete than MESON, however the procedure
is linear in the number of premises, and it is therefore possible to use it even with
large numbers of advised premises. In practice, it is rarely the case that a premise
can be instantiated in more than one way. A simple example when this happens
is in the THF problem12 created for the theorem I_O_ID,13 where the particular
goal and premise (both properties of the identity function) are as follows:

Assm: I_THM: !x. I x = x

Goal: I_O_ID: !f. I o f = f /\ f o I = f

The exact types inferred by the standard HOL (Hindley-Milner [37]) type inference
for the goal are as follows:

∀f : A→ B. IB→B o f = f ∧ f o IA→A = f

Since the identity function appears in the goal both with the type A→A and with
the type B→B, the following two instances of the premise I_THM are created by
the THF translation:

% TYPES

thf(ta, type, a : $tType).

thf(tb, type, b : $tType).

thf(ci0, type, i0 : (a > a)).

thf(ci, type, i : (b > b)).

% AXIOMS

thf(aIu_THMu_monomorphized0, axiom, ![X:a]:((i0 @ X) = X)).

thf(aIu_THMu_monomorphized1, axiom, ![X:b]:((i @ X) = X)).

Finally, while there is no TPTP standard yet for the polymorphic HOL logic,
this logic is shared by a number of systems in the HOL family of ITPs. For the
experiments described in 5.1 Isabelle is used in its CASC 2012 THF mode, but it
should be possible to pass the problems to Isabelle directly in some (not necessarily
TPTP) polymorphic HOL encoding. This is has been tried only to a small extent,
and is still future work.

12 http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/i/h/00119.p
13 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/trivia.html#I_O_ID

http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/i/h/00119.p
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/trivia.html#I_O_ID
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3 Exporting Theorem Problems for Re-proving with ATPs

In our earlier initial experiments [44], it was found that the ATP problems created
from the calls to the MESON tactic in the HOL Light and Flyspeck libraries are very
easy for the state-of-the-art ATPs. Some of this easiness might have been caused
by the (generally unsound) merging of different polymorphic versions of equality
used by MESON into just one standard first-order equality.14 However, after a manual
random inspection it still seemed that the ratio of such unsound proofs is low, and
the MESON problems are just too easy. That is why only the set of problems on the
theorem level is considered for experiments here. The theorem level seems to be
quite similar in the major ITPs: theorem is typically not corresponding to what
mathematicians call a theorem, but it is rather a self-sufficient lemma with a formal
proof of several to dozens (exceptionally hundreds) lines that can be useful in other
formal proofs and hence should be named and exported. Since the ITP proofs
can be longer (i.e., they can contain a number of MESON and other subproblems),
proving such theorems fully automatically is typically a challenge, which makes
such problems suitable for ATP benchmarks, challenges, and competitions.

3.1 Collecting Theorems and their Dependency Tracking

In Mizar/MPTP and in Isabelle (done by Blanchette in so far unpublished work)
the ATP problems corresponding to theorems can be produced by collecting the
dependencies (premises) from the proofs (by suitable tracking mechanisms), and
then translating the Premises ` Theorem problem using the methods described in
Section 2. The recent work by Adams in exporting HOL Light to HOL Zero [1] (with
cross-verification as the main motivation) was initially used to obtain the theorem
dependencies for the first experiments with HOL Light in [44], and after that cus-
tom theorem-exporting and dependency-tracking mechanisms were implemented
as described below.

3.1.1 Collecting and Naming of Theorems

The first issue in implementing such mechanism is to decide what is considered
to be a relevant theorem, and what should be its canonical name. In some ITPs,
important statements have labels like lemma, theorem, corollary, etc. This is not
the case in HOL Light, which is implemented in the OCaml toplevel. This means
that every theorem or tactic is just an OCaml value. Some of those values are
assigned names, while some are only created on the fly and immediately forgot-
ten. In the relevant exporting work of Obua [57], every occurrence of the HOL

Light command prove is replaced with a command that additionally records the
name of the stored object. This strategy was used first, and extended to work
with the whole Flyspeck library by also recording the names for the following com-
mands: prove_by_refinement, new_definition, new_recursive_definition, new_-
specification, new_inductive_definition, define_type, and lift_theorem. This
purely syntactic replacement method however turned out to be insufficient for a
number of reasons. First, this method does not provide information about the

14 Note that the typed translation that we use here prevents deriving ill-typed equalities [12].
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scope of names with respect to the OCaml modules. Second, it does not provide
the information whether a name given to a theorem has been declared on the top
level, or inline inside a function (which makes such theorem unusable for proving
other theorems on the toplevel), or even within a function called multiple times
with different arguments (in which case the same name would be assigned to a
number of different theorems). Finally, certain theorems accessible on the top level
are created using other OCaml mechanisms, for example mapping a decision pro-
cedure over a list of terms. Recognizing syntactically theorems created in this way
turned out to be impractical.

That is why a more robust method has been eventually used, based on the
update_database15 recording functionality by Harrison and Zumkeller. This code
accesses the basic OCaml data structures and makes it possible to record the name-
value pairs for all OCaml values of the type theorem in a given OCaml state. Thus, it
is sufficient to load the whole Flyspeck development, and then invoke this recording
functionality.

After some initial experiments with ATP re-proving of the translated prob-
lems, this method was however further modified to be able to keep finer track
of the use of theorems that are conjunctions of multiple facts. Such (often large)
conjunctive theorems are used quite frequently in HOL Light, typically to package
together facts that are likely to jointly provide a useful method for dealing with
certain concepts or certain kinds of problems. For example the theorem ARITH_EQ16

packages together ten facts about the equality of numerals as follows:

let ARITH_EQ = prove
(‘(∀m n. (NUMERAL m = NUMERAL n) ⇐⇒ (m = n)) ∧

((_0 = _0) ⇐⇒ T) ∧
(∀n. (BIT0 n = _0) ⇐⇒ (n = _0)) ∧
(∀n. (BIT1 n = _0) ⇐⇒ F) ∧
(∀n. (_0 = BIT0 n) ⇐⇒ (_0 = n)) ∧
(∀n. (_0 = BIT1 n) ⇐⇒ F) ∧
(∀m n. (BIT0 m = BIT0 n) ⇐⇒ (m = n)) ∧
(∀m n. (BIT0 m = BIT1 n) ⇐⇒ F) ∧
(∀m n. (BIT1 m = BIT0 n) ⇐⇒ F) ∧
(∀m n. (BIT1 m = BIT1 n) ⇐⇒ (m = n))‘,

REWRITE_TAC[NUMERAL; GSYM LE_ANTISYM; ARITH_LE] THEN
REWRITE_TAC[LET_ANTISYM; LTE_ANTISYM; DENUMERAL LE_0]);;

An even more extreme example is the ARITH theorem which conjoins together
all the basic arithmetic facts (there are 108 of them in the current version of
HOL Light). The conjuncts of such theorems are now also named (using a serial
numbering of the form ARITH_EQ_conjunctN), so that the dependency tracking can
later precisely record which of the conjuncts were used in a particular proof. This
significantly prunes the search space for ATP re-proving of the theorems that
previously depended on the large conjunctive dependencies, and also makes the
learning data extracted from dependencies of such theorems more precise.

This method can however result in the introduction of multiple names for a
single theorem (which is just a HOL Light term of type theorem). If that happens (for
this or other reasons), the first name that was associated with the theorem during
the Flyspeck processing is always consistently used, and the other alternative names

15 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Examples/update_database.html
16 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/calc_num.html#ARITH_EQ

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Examples/update_database.html
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/calc_num.html#ARITH_EQ
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are never used. Such consistency is important for the performance of the machine
learning on the recorded proof data.17 The list of all theorems and their names
obtained in this way is saved in a file, and subsequently used in the dependency
extraction and problem creation passes.

3.1.2 Dependency Recording

After the detection and naming of theorems, the recording of proof dependencies
is performed, by processing the whole library again with a patched version of the
HOL Light kernel. This patched version is the proof-recording component of the
new HOL-Import [43], a mechanism designed to transfer proofs from HOL Light to
Isabelle/HOL in an efficient way allowing the export of big repositories like Flyspeck.
The code for every HOL inference step is patched, to record the newly created
theorems. Each theorem is assigned a unique integer counter, and for every new
theorem its dependencies on other theorems (integers) are recorded and exported
to a file. For every processed theorem it is also checked if it is one of the theorems
named in the previous theorem-naming pass. If so, the association of this theorem’s
name to its number is recorded, and again exported to a file.

After this dependency-recording pass, the recorded information is further pro-
cessed by an offline program to eliminate all unnamed dependencies (originating
for example from having multiple names for a single theorem). For every named
theorem its dependencies are inspected, and if a dependency D does not have a
name, it is replaced by its own dependencies (there is no unnamed dependency
that could not be further expanded). This is done recursively, until all unnamed
dependencies are removed. This produces for each named theorem T a minimal
(wrt. the original HOL Light proof) list of named theorems that are sufficient to
prove T .

The numbering of theorems respects the order in which the theorems are pro-
cessed in the Flyspeck development. This total ordering is compatible with (ex-
tends) the partial ordering induced by proof dependencies, and for the experi-
ments conducted here it is assumed to be the chronological order in which the
library was developed. The dependency information given in this chronological or-
der for all 16082 named theorems (of which 1897 are (type) definitions, axioms, or
their parts, and their dependencies are not exported) obtained by processing the
Flyspeck library18 (and its HOL Light pre-requisites) is available online.19 Together
with suitably chosen characterizations of the theorems (see Section 4.1), this con-
stitutes an interesting new dataset for machine-learning techniques that attempt
to predict the most useful premises from the formal library for proving the next
conjecture.

17 For example, the MaLARea system does such de-duplication as a useful preprocessing step
before learning and theorem-proving is started on a large number of related problems.
18 Flyspeck SVN revision 2887 from 2012-06-26 and HOL Light SVN revision 146 from 2012-

06-02 are used for all experiments.
19 http://mws.cs.ru.nl/~mptp/hh1/deps.all

http://mws.cs.ru.nl/~mptp/hh1/deps.all
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3.2 The Data Set of ATP Re-proving Problems

Analogously to Mizar and Isabelle, the re-proving ATP problems for the collected
named theorems are finally produced by translating the Dependencies ` Theorem
problem to the ATP formalisms using the methods described in Section 2, together
with basic filtering of dependencies that have trivial first-order content. 1897 of
the 16082 named theorems do not have a proof (those are definitions and axioms).
For all the remaining 14185 named theorems the corresponding re-proving ATP
problems were created, and are available online20 in the FOF, THF, and TFF1
formats. These problems are used for the ATP re-proving experiments described
in Section 5.1. Smaller meaningful datasets will likely be created from this large
dataset for ATP/AI competitions such as CASC LTB and Mizar@Turing21, anal-
ogously to the smaller MPTP207822 [4] ATP benchmark created from the ATP-
translated Mizar library (MML), and the Judgement Day benchmark [18] created
by ATP translation of a subset of the Isabelle/HOL library.

The average, minimum, and maximum sizes of problems in these datasets are
shown in Table 1, together with the corresponding statistics for the problems ex-
pressed in the original HOL formalism. It can be seen that the number of formulas

Table 1: Sizes of the re-proving ATP problems (in numbers of formulas)

Format Problems Average size Minimum size Maximum size

HOL 14185 42.7 4 510
FOF 14185 42.7 4 510
TFF1 14185 71.9 10 693
THF 14185 78.8 5 1436

in the translated problems is typically at most twice the number of the original
HOL formulas, i.e., the translations are indeed efficient for all the problems. This
was not the case (and became a bottleneck) in the initial experiments using the
more prolific MESON translation. There is no increase in the number of formulas
when translating from the original HOL-formulated problem to the FOF trans-
lation. For the TFF1 and THF translation, formulas declaring the types of the
symbols appearing in the problems are added, and for the THF translation multi-
ple instances of the premises can additionally appear. Table 2 shows the total times
needed for the various exporting phases run over the whole Flyspeck as explained
above. For completeness, the time needed to export characterizations of the the-
orems for external (e.g., machine-learning) tools is also included (see Section 4.1
for the description of the characterizations that are used).

4 Premise Selection

Given a large library like Flyspeck, the interesting ATP/AI task is to prove new
theorems without having to manually select the relevant premises. In the past

20 http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/co_i_f_p_h.tgz
21 http://www.cs.miami.edu/~tptp/CASC/J6/Design.html#CompetitionDivisions
22 http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078

http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/co_i_f_p_h.tgz
http://www.cs.miami.edu/~tptp/CASC/J6/Design.html#CompetitionDivisions
http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
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Table 2: Times of the exporting phases (total, for the whole Flyspeck)

Phase Time (minutes)

standard Flyspeck loading/verification 180
detection and naming of theorems 1
exporting theorem characterizations 5
dependency recording using patched kernel 540
offline post-processing of dependencies 10
creating re-proving ATP problems in FOF 34
creating re-proving ATP problems in TFF1 53
creating re-proving ATP problems in THF 32
total 855

decade, a number of premise selection methods have been developed and exper-
imented with over large theories like Mizar/MML, Isabelle/HOL, SUMO, and Cyc.
See [48,76] for recent overviews of such methods.

ATP problems of this kind are created for Mizar/MML by consistent trans-
lation of the whole MML to TPTP, and then letting external premise selection
algorithms find the most relevant premises for a given theorem t from the large
set of t-allowed premises (typically those theorems and definitions that were al-
ready available when t was being proved, expressed, e.g., as TPTP include files).
For Isabelle/Sledgehammer, the default premise selection algorithm is implemented
inside Isabelle, i.e., it is working on the native Isabelle symbols. Only after the
Sledgehammer premise selection chooses the suitable set of premises, the problem
is translated to a given ATP formalism using one of the several implemented trans-
lation methods. In general, the symbol naming is in Isabelle consistent only before
the translation is applied, and a particular symbol in two translated problems can
have different meanings.

Both the Mizar and the Isabelle approach have some advantages and disadvan-
tages. Optimizing the translation (or using multiple translations) as done in Isabelle

can improve the ultimate ATP performance once the premises have been selected.
On the other hand, if the whole library is not translated in a consistent manner
to a common ATP format such as TPTP, ATP-oriented external premise selection
tools like SInE cannot be directly used on the whole library. It could be argued
that the SInE algorithm is relatively close to the Sledgehammer premise selection
algorithm, and can be easily implemented inside Isabelle. However there are useful
premise selection methods for which this is not so straightforward. For example
in the MaLARea system, evaluation of premises in a large common pool of finite
first-order models is an additional semantic premise-characterization method that
improves the overall precision quite significantly [80].23 For such a pool of first-
order models to be useful, the premises have to use symbols consistently also after
the translation to first-order logic. Although various techniques can again be devel-
oped to lift this method to the current Sledgehammer translation setting, they seem
less straightforward than for example a direct Isabelle implementation of SInE. This
discussion currently applies also to the HOL Light ATP translations described in
Section 2. For example, the problem-specific optimization of the arity of symbols

23 Recent evidence for the usefulness of model-based selection methods is the difference (64%
vs. 50% problems solved) between the (otherwise quite similar) systems MaLARea and PS-E
(http://www.cs.ru.nl/~kuehlwein/CASC/PS-E.html) in the 2012 Mizar@Turing competition.

http://www.cs.ru.nl/~kuehlwein/CASC/PS-E.html
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described in 2.3 will in general cause inconsistency on the symbol level between
the FOF translations of two different HOL Light problems.

The procedure implemented for HOL Light is currently a combination of the
external, internal, learning, and non-learning premise-selection approaches. This
procedure assumes the common ITP situation of a large library of (also defini-
tional) theorems Ti and their proofs Pi (for definitions the proof is empty), over
which a new conjecture has to be proved. The proofs refer to other theorems,
giving rise to a partial dependency ordering of the theorems extended into their
total chronological ordering as described for Flyspeck in 3.1.2. For the experiments
it will be assumed that the library was developed in this order. An overview of the
procedure is as follows, and its details are explained in the following subsections.

1. Suitable characterizations (see Section 4.1) of the theorems and their proof
dependencies are exported from HOL Light in a simple format.

2. Additional dependency data are obtained by running ATPs on the ATP prob-
lems created from the HOL Light proof dependencies, i.e., the ATPs are run in
the re-proving mode. Such data are often smaller and preferable [47]. These
data are again exported using the same format as in (1).

3. The (global, first-stage) external premise selectors preprocess (typically train
on) the theorem characterizations and the proof dependencies. Multiple char-
acterizations and proof dependencies may be used.

4. When a new conjecture is stated in HOL Light, its characterization is extracted
and sent to the (pre-trained) first-stage premise selectors.

5. The first-stage premise selectors work as rankers. For a given conjecture char-
acterization they produce a ranking of the available theorems (premises) ac-
cording to their (assumed) relevance for the conjecture.

6. The best-ranked premises are used inside HOL Light to produce ATP (FOF,
TFF1, THF) problems. Typically several thresholds (8, 32, 128, 512, etc.) on
the number of included premises are used, resulting in multiple versions of the
ATP problems.

7. The ATPs are called on the problems. Some of the best ATPs run in a strategy-
scheduling mode combining multiple strategies. Some of the strategies always
use the SInE (i.e., local, second-stage) premise selection (with different parame-
ters), and some other strategies may decide to use SInE when the ATP problem
is sufficiently large.

Loop to improve (2) and (3): It is not an uncommon phenomenon that in the data-
improving step (2) (ATP re-proving from the HOL Light proof dependencies)
an ATP proof could not be found for some theorem Ti, but an alternative proof
of Ti can be found from some other theorems preceding Ti in the chronological
order (which guards such alternative proofs against cycles). To achieve this, the
trained premise selectors can be used also on all theorems that are already in
the library, and the whole ATP/training process can be iterated several times
to obtain as many ATP proofs as possible, and better (and differently) trained
premise selectors for step (3). This is the same loop as in MaLARea.

4.1 Formula Characterizations Used for Learning

Given a new conjecture C, how do mathematicians decide that certain previous
knowledge will be relevant for proving C? The approach taken in practically all
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existing premise-selection methods is to extract from such C a number of suitably
defined features, and use them as the input to the premise selection for C. The
most obvious characterization that already works well in large libraries is the
(multi)set of symbols appearing in the conjecture. This can be further extended
in many interesting ways, using various methods developed, e.g., in statistical
machine translation and web search, but also by methods specific to the formal
mathematical domain. In this work, characterization of HOL formulas by all their
subterms (found useful in MaLARea) was used, and adapted to the typed HOL logic.
For example, the latest version of the characterization algorithm would describe
the HOL theorem DISCRETE_IMP_CLOSED:24

∀s:real^N→bool e.
&0 < e ∧ (∀x y. x IN s ∧ y IN s ∧ norm(y − x) < e =⇒ y = x)
=⇒ closed s

by the following set of strings:

"real", "num", "fun", "cart", "bool", "vector_sub", "vector_norm",
"real_of_num", "real_lt", "closed", "_0", "NUMERAL", "IN", "=", "&0",
"&0 < Areal", "0", "Areal", "Areal^A", "Areal^A - Areal^A",
"Areal^A IN Areal^A->bool", " Areal^A->bool", "_0", "closed Areal^A->bool",
"norm (Areal^A - Areal^A)", "norm (Areal^A - Areal^A) < Areal"

This characterization is obtained by:

1. Normalizing all type variables to just one variable A.
2. Replacing (normalizing) all term variables with their normalized type.
3. Collecting all (normalized) types and their component types recursively.
4. Collecting all (normalized) atomic formulas and their component terms recur-

sively.
5. Including all “proper” term and type constructors (logic symbols like conjunc-

tion are filtered out).

In the above example, real is a type constant, IN is a term constructor, Areal^A->bool
is a normalized type, Areal^A its component type, norm (Areal^A - Areal^A) <

Areal is an atomic formula, and Areal^A - Areal^A is its normalized subterm.

The normalization of variable names is an interesting topic. It is good if the
premise selectors can notice some similarity between two terms with variables,25

which is hard (when using strings) if the variables have different names. On the
other hand, total normalization to just one generic variable name removes also
the information that the variables in a particular subterm were (not) equal. Also,
terms with differently typed variables should be more distant from each other than
those with the same variable types. In total, four versions of variable normalization
were tested:

syms0: All free and bound variables are given the same name A0. This encoding
is the most liberal, i.e., the resulting equality relation on the features is the
coarsest one, allowing the premise selectors to see many similarities.

24 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#
DISCRETE_IMP_CLOSED
25 One could require the similarity to also handle matching, etc. A simple way how to do it

is to generate even more features. This is again left to further general research in this area.

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
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syms: First the free variables are numbered consecutively (A0, A1, etc). Then the
bound variables are named with the subsequent numbers. This results in a
finer notion of similarity than in syms0.

symst: Every variable is renamed to a textual representation of its type, for exam-
ple Anum or Areal. This is again finer than syms0, but different from syms. This
normalization is used in the above example, and also for most of the premise
selection trainings.

symsd: In one symst implementation, the internal HOL Light type variable num-
bering was accidentally used, thus making most of such term features disjoint
between different theorems. The performance was lower, but the method pro-
duces some unique solutions and is included in the evaluation.

In addition to that, several feature exports included also logic symbols. Various
feature characterizations can have different performance on different datasets, and
such characterizations can be also combined together in interesting ways. This
is a rather large research topic that is left as future work for this newly devel-
oped dataset, along with other large-theory datasets. Just including the features
encoding the validity in finite models will be interesting.

4.2 Machine Learning of Premise Selection

All the currently used first-stage premise selectors are machine learning algorithms
trained in various ways on previous proofs. A number of machine learning algo-
rithms can be experimented with today, and in particular kernel-based methods [4]
and ensemble methods [48] have recently shown quite good performance on smaller
datasets such as MPTP2078. However, scaling and tuning such methods to a large
corpus like Flyspeck and to quite a large number of incremental training and test-
ing experiments is not straightforward.26 That is why this work so far uses mostly
the sparse implementation of a multiclass naive Bayes classifier provided by the
SNoW system [20]. SNoW can incrementally train and produce predictions on the
whole Flyspeck library presented in the chronological order in an hour (and often
considerably faster on minimized data). I.e., one new prediction takes a fraction
of a second. In addition to that, several other fast incremental (online) learning
algorithms were briefly tried: the Perceptron and Winnow algorithms provided
also by SNoW, and a custom implementation of the k-nearest neighbor (k-NN)
algorithm. Only k-NN however produced enough additional prediction power. As
already mentioned, the first-stage algorithms are often complemented by SInE as a
second-stage premise selector when the ATP problem is written, and that is why
some (in particular SInE-like) algorithms might look mostly redundant (in the over-
all ATP evaluation) when used at the first stage. This is obviously a consequence
of the particular setup used here.

Two kinds of evaluation are possible in this setting and have been used sev-
eral times for the Mizar data: a pure machine-learning evaluation comparing the
predicted premises with the set of known sufficient premises, and an evaluation
that actually runs an ATP on the predicted premises. While data are available

26 Such scaling up for the large Mizar library is work in progress at the time of writing this
article.
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also for the former, in this paper only the second evaluation is presented, see Sec-
tion 5.2. The main reason for this is that alternative proofs are quite common
in large libraries, and they often obfuscate the link between the pure machine-
learning performance and the final ATP performance. Measuring the final ATP
performance is more costly, however it practically stopped being a problem with
the recent arrival of low-cost workstations with dozens of CPUs.

At a given point during the library development, the training data available
to the machine learners are the proofs of the previously proved theorems in the
library. A frequently used approach to training premise selection is to characterize
each proof Pi of theorem Ti as a (multi)set of theorems {Ti1 , ..., Tim |Tij used in Pi}.
The training example will then consist of the input characterization (features) of
Ti (see 4.1), and the output characterization (called also output targets, classes,
or labels) will be the (multi)set {Ti} ∪ {Ti1 , ..., Tim |Tij used in Pi}. Such training
examples can be tuned in various ways. For example the output theorems may be
further recursively expanded with their own dependencies, the input features could
be expanded with the features of their definitions, various weighting schemes and
similarity clusterings can be tried, etc. This is also mostly left to future general
research in premise-selection learning. Once the machine learner is trained on a
particular development state of the library, it is tested on the next theorem T in
the chronological order. The input features are extracted from T and given to the
trained learner which then answers with a ranking of the available theorems. This
ranking is given to HOL Light, which uses it to produce ATP problems for T with
varied numbers of the best-ranked premises.

4.3 Proof Data Used for Learning

An interesting problem is getting the most useful proof dependencies for learning.
Many of the original Flyspeck dependencies are clearly unnecessary for first-order
theorem provers. For example the definition of the ∧ connective (AND_DEF) is a
dependency of 14122 theorems. Another example are proofs done by decision pro-
cedures, which typically first apply some normalization steps justified by some
lemmas, and then may perform some standard algorithm, again based on a num-
ber of lemmas. Often only a few of such dependencies are needed (i.e., the proofs
found by decision procedures are often unnecessarily “complicated”).

Some obviously unhelpful dependencies were filtered manually, and this was
complemented by using also the data obtained from ATP re-proving (see Sec-
tion 5.1). Vampire, E, and Z3 can together re-prove 43.2% of the Flyspeck theorems
(see Table 5), which is quite a high number, useful for trying to post-process au-
tomatically the remaining dependency data or even to completely disregard them.
The following approaches to combining such ATP and HOL Light dependencies
were initially tried, and combined with the various characterization methods to
get the training data:

minweight (default): Always prefer the minimal ATP proof if available. On the
ATP re-proved theorems collect the statistics about how likely a dependency
in the HOL Light proof is really going to be used by the ATP proof, and use
this likelihood as a weight when ATP proof is not available. When the weight
is 0, use (cautiously) a minimal weight (0.001 or 0.000001) instead.
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nominweight: As minweight, but without a minimal weight. Totally ignore ATP-
irrelevant HOL Light dependencies.

v_pref (e_pref, z_pref): Instead of using the minimal ATP proof, always prefer
the Vampire (E, Z3) proof. Can be combined with both weighting methods.

symsonly: Ignore all proofs. Learn only on examples saying that a theorem is good
for proving itself, i.e., for its feature characterization. The trained system will
thus recommend theorems similar to the conjecture, but not the dependencies
of such theorems.

atponly: Use only the (minimal) ATP proofs for learning. Ignore the HOL Light

proofs completely, and construct only the symsonly training examples for theo-
rems that have no ATP proof. Can be combined with v_pref, e_pref, z_pref.

At some point, a pseudo-minimization procedure started to be applied first to
the ATP proofs: each proof is re-run only with the premises needed for the proof,
and if the number of needed premises decreases, this is repeated until the premise
count stabilizes. Often this further removes unnecessary premises that appeared
in the ATP proof, e.g., by performing unnecessary rewriting steps. This was later
followed by adding cross-minimization: Each proof is re-run (pseudo-minimized)
not just by the ATP that found the proof, but by all ATPs. This can further
improve the training data, and also raise the number of proofs found by a particular
ATP quite considerably, which in turn helps when proofs by a particular ATP
are preferable for learning (see the v_pref approach above). Finally, the learning
and proving can boost each other’s performance: the proofs obtained by using
the advice of the first-generation premise selectors can be added to the training
data obtained from re-proving, and used to train the second generation of premise
selectors. This process can be iterated, but only one iteration was done so far
(using two different prediction methods).

The summary of the training data obtained by these procedures from the proofs
is given in Table 3. Each of the ATP-obtained dependency sets (2–6 in Table 3)
could be complemented by the HOL Light dependencies (1) as described above,
producing differently trained advisors. For example, the best advising method
based on (4) was only using the ATP proofs for training (no adding of HOL Light

dependencies when the ATP proof was missing), preferring proofs by E (e_pref),
using the symst (types instead of variables) characterizations, and choosing the
best 128 premises. The new ATP proofs found using this method were added to
(4), resulting in the dataset (5). The next most complementary advising method to
that (measured before (5) became available) was combining the ATP dependencies
from (2) with the HOL Light dependencies (1) using the nominweight and v_pref

techniques, also using the symst features, and choosing the best 512 premises. The
new ATP proofs found using this method were added to (5), resulting in (6). The
performance of various premise selection methods is discussed in Section 5.

4.4 Communication with the Premise Advisors

There are several modes in which external premise selectors can be used. The
main mode used here for experiments is the offline (batch) mode. In this mode, the
premise selectors are incrementally trained and tested on the whole library depen-
dencies presented as one file in the chronological order. Incremental training/testing

means that the learning system reads the examples from the file one by one, for
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Table 3: Improving the dependency data used for training premise selection

E Vampire Z3 Union
Nr Method thm dep ø thm dep ø thm dep ø thm dep ø

1 HOL deps 14185 61.87
2 ATP on (1), 300s 5393 4.42 4700 5.15 4328 3.55 5837 3.93
3 ATP on (1), 600s∗ 5655 5.80 5697 5.90 4374 3.59 6161 5.00
4 (3) minimized 5646 4.52 5682 4.49 4211 3.47 6104 4.35
5 (4) ∪ 1. advised 6404 4.29 6308 4.17 5216 3.67 6605 4.18
6 (5) ∪ 2. advised 6848 3.90 6833 3.89 5698 3.48 6998 3.81

thm: Number of theorems proved by the given prover.
dep ø: The average number of proof dependencies in the proofs found by the prover.
(1) - HOL deps: Dependencies exported from HOL Light.
(2),(3): Dependencies obtained from proofs by ATPs run on HOL deps.
(4): Cross-minimization of (3).
(5): Added dependencies from new proofs advised by the best learning method (using (4)).
(5): Added dependencies from new proofs advised by the best complementary learning method

(trained on (2) combined with (1)).
(*): The 6161 count in (3) is higher than in the final 900s experiments shown in Table 5. This

is due to a incorrect (cyclic) dependency export for about 60 early HOL Light theorems
used for (2)–(4). For training premise selection the effect of this error is negligible.

each theorem first producing an advice (ranking of previous theorems) based only
on its features, and only after that learning on the theorem’s dependencies and pro-
ceeding to the next example. The rankings are then used in HOL Light to produce
all ATP problems in batch mode. This mode is good for experiments, because the
learning data can be analyzed and pre-processed in various ways described above.
All communication is fully file-based.

Another mode is used for static online advice. In this mode an (offline) pre-
trained premise selector receives conjecture characterizations from HOL Light over
a TCP socket, replies in real time with a ranking of theorems from which HOL Light

produces the ATP problems and calls the ATPs to solve them. This mode has been
initially implemented as a simple online service and can already be experimented
with by interested readers.27

Finally, in a dynamic online mode the premise selector receives also training
data in real time, and updates itself. The currently used learning systems support
this dynamic mode, however, in an online service this mode of interaction requires
some implementation of access rights, user limits, cloning of developments and ser-
vices, etc. This is still future work, close to the recent work on formal mathematical
editors and wikis [3, 42].

5 Experiments

The main testing set in all scenarios is constructed from the 14185 Flyspeck the-
orems. To be able to explore as many approaches as possible, a smaller subset

27 The service runs at colo12-c703.uibk.ac.at on port 8080, example queries are:
echo "CARD {3,4} = 2" | nc colo12-c703.uibk.ac.at 8080 ,
echo "(A DIFF B) INTER C = EMPTY <=> (A INTER C) SUBSET B" | nc
colo12-c703.uibk.ac.at 8080 .
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of 1419 theorems is often used. This subset is stable for all such experiments,
and it is constructed by taking every tenth theorem (starting with 0-th) in the
chronological ordering.

A number of first- and higher-order ATPs and SMT solvers were tried on the
problems. The most extensively used are Vampire 2.6 (called also V below), modified
E 1.6, and Z3 4.0. Proofs are important in the ITP/learning scenarios, so Z3 and E

are (unless otherwise noted) run in a proof-producing mode. In particular for Z3

this costs some performance. E 1.6 is not run in its standard auto-mode, but in a
strategy-scheduling wrapper28 used by the MaLARea system in the Mizar@Turing
large-theory competition.

This wrapper (called either Epar or just E in the tables below) subsequently
tries 14 strategies provided by the second author. These strategies were developed
on the 1000 problems allowed for training large-theory AI/ATP systems before the
Mizar@Turing competition [77]. Some of these strategies have become available in
E 1.6 when it was released after CASC 2012, but E’s auto mode is still tuned for the
TPTP library, and by default it always uses only one “best” (heuristically chosen)
strategy on a problem, shunning so far the temptations of strategy scheduling. Epar
outperforms the old auto-mode of E 1.4 by over 20% on the Mizar@Turing training
problems, and seems to be competitive with Vampire 2.6. Fifteen more systems (or
their versions) were tried to a lesser extent (typically on the 1419-problem subset)
in the experiments. Some of these systems perform very well, and might be used
more extensively later. Sometimes an additional effort is needed to make systems
really useful; for example, proof/premise output might be missing, or additional
mapping to a system’s constructs needs to be done to take full advantage of the
system’s features. In this work such customizations are avoided. All the systems
used are alphabetically listed in Table 4.

Table 4: Names and descriptions of the systems used in the evaluation

System (short) Format Description

AltErgo TFF1 AltErgo version 0.94
CVC3 TFF1 CVC3 version 2.2
E 1.6 FOF E version 1.6pre011 Tiger Hill
Epar (E) FOF E version 1.6pre011 with the Mizar@Turing strategies
iProver FOF iProver version 0.99 (CASC-J6 2012)
Isabelle THF Isabelle 2012 used in CASC 2012 (without LEO2 and Satallax)
leanCoP FOF leanCoP version 2.2 (using eclipse prolog)
LEO2-po2 THF LEO2 version v1.4.2 in the “po 2” proof mode29 (OCaml-3.11.2)
LEO2-po1 THF LEO2 in the standard “po 1” mode (faster)
Metis FOF Metis version 2.3 (release 20101019)
Paradox FOF Paradox version 4.0, 2010-06-29.
Prover9 FOF Prover9 (32) version 2009-11A, November 2009.
SPASS FOF SPASS version 3.5
Satallax THF Satallax version 2.6
Vampire (V) FOF Vampire version 2.6 (revision 1649)
Yices TFF1 Yices version 1.0.34
Z3 FOF Z3 version 4.0

28 https://github.com/JUrban/MPTP2/blob/master/MaLARea/bin/runepar.pl

https://github.com/JUrban/MPTP2/blob/master/MaLARea/bin/runepar.pl
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Unless specified otherwise, all systems are run with 30s time limit on a 48-core
server with AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2
cache per CPU. Each problem is always assigned one CPU. In the tables below,
basic statistics are often computed about the population of the methods used:
Unique solutions found by each method, and its State of the art contribution (SO-

TAC) as defined by CASC.30 A system’s CASC-defined SOTAC will be highest
even if the system solved only one problem (which no other system solved). That
is why also the Σ-SOTAC value is used: the sum of a system’s SOTAC over all
problems attempted. These metrics often indicate how productive it is to add a
particular system or its version to a population of systems. Often it is interesting
to know the best joint performance when running N methods in parallel. Finding
such a best combination is however an instance of the classical NP-hard Maximum
Coverage problem. While it is often possible to use SAT solvers to get an optimal
solution, a greedy algorithm is always consistently used to avoid problems when
scaling to larger datasets. This also allows us to present this joint performance
as a simple greedy (covering) sequence, i.e., a sequence that starts with the best
system, and each next system in such sequence is the system that greedily adds
most solutions to the union of solutions of the previous systems in the sequence.

5.1 Using External ATPs to Prove Theorems from their HOL Light Dependencies

Table 5 shows the results of running Vampire, Epar, Z3, and Paradox on the 14185
FOF problems constructed from the HOL Light proof dependencies. The ATP suc-
cess rate measured on such problems is useful as an upper estimate for the ATP
success rate on the (potentially much larger) problems where all premises from
the whole previous library are allowed to be used. This success rate can be used
later to evaluate the performance of the algorithms that select a smaller number
of the most relevant premises. The time limit for Vampire, Epar and Z3 was rela-
tively high (900s), because particularly Vampire benefits from higher time limits
(compare with Table 7) and the ATP proofs found by re-proving turn out to be
more useful for training premise selectors than the original HOL Light dependencies
(see Section 5.2). Paradox was run for 30 seconds to get some measure of the in-
completeness of the FOF translation. The systems in Table 5 are already ordered
using the greedy covering sequence, i.e., the joint performance of the top two sys-
tems is 41.9%, etc. The counter-satisfiability detected by Paradox is not by default
included in the greedy sequence, since its goal is to find the strongest combination
of proof-finding systems. The Paradox results are however included in the SOTAC
and Unique columns.

Table 6 shows these results restricted to the 1419-problem subset. This provides
some measure of the statistical error encountered when testing systems on the

29 For the experiments that produce proof dependencies (useful, e.g., for learning), we have
used the (so far experimental) version of LEO2 that fully reconstructs the original dependencies
(the “po 2” option). For the rest of the experiments (where proofs are not needed), the standard
version of LEO2 is used. This version is also proof-producing, but some additional work is still
needed to extract the original proof dependencies. This work is currently being done by the
LEO2 developers. The “po 1” version outperforms the “po 2” version.
30 For each problem solved by a system, its SOTAC for the problem is the inverse of the

number of systems that solved the problem. A system’s overall SOTAC is the average SOTAC
over the problems it solves.
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Table 5: Epar, V, Z3 re-proving with 900s and Paradox with 30s (14185 problems)

Prover Theorem (%) Unique SOTAC Σ-SOTAC CounterSat (%) Greedy (%)

Vampire 5641 (39.7) 218 0.403 2273.58 0 ( 0.0) 5641 (39.7)
Epar 5595 (39.4) 194 0.400 2238.58 0 ( 0.0) 5949 (41.9)
Z3 4375 (30.8) 193 0.372 1629.08 2 ( 0.0) 6142 (43.2)
Paradox 5 ( 0.0) 0 0.998 2612.75 2614 (18.4) 6142 (43.2)
any 6142 (43.2) 2614 (18.4)

Theorem (%): Number and percentage of theorems proved by a system.
Unique: Number of theorems proved only by this system.
SOTAC, Σ-SOTAC: See the explanatory text for these metrics.
CounterSat: Number of problems found counter-satisfiable (unprovable) by this system.
Greedy (%): The joint coverage of all the previous systems and this one ordered in a greedy

sequence (see the text).

smaller problem set, and also a comparison of the systems’ performance under
high and low time limits used in Table 7.

Table 6: ATP re-proving with 900s time limit on 10% (1419) problems

Prover Theorem (%) Unique SOTAC Σ-SOTAC CounterSat (%) Greedy (%)

Vampire 577 (40.6) 19 0.403 232.25 0 ( 0.0) 577 (40.6)
Epar 572 (40.3) 23 0.405 231.75 0 ( 0.0) 608 (42.8)
Z3 436 (30.7) 17 0.369 160.75 0 ( 0.0) 625 (44.0)
Paradox 1 ( 0.0) 0 0.997 257.25 257 (18.1) 625 (44.0)
any 625 (44.0) 257 (18.1)

Table 7 shows all tested systems on the 1419-problem subset, ordered by their
absolute performance, and Table 8 shows the corresponding greedy ordering. The
tested systems include also SMT solvers that use the TFF1 encoding and higher-
order provers using the THF encoding. This is why it is no longer possible to
aggregate the counter-satisfiability results (particularly found by Paradox) with
the theoremhood results, and all the derived statistics are only computed using
the Theorem column. While Vampire does well with high time limits in Table 5, it is
outperformed by Z3 and E-based systems (Epar, E 1.6, LEO2-po1) when using only
30 seconds (which seem more appropriate for interactive tools than 300 or even 900
seconds). This suggests that the strategy scheduling in Vampire might benefit from
further tuning on the Flyspeck data. Z3 is not run in the proof-producing mode
in this experiment, which improves its performance considerably. It is not very
surprising (but still evidence of solid integration work) that Isabelle performs best,
as it already combines a number of other systems; see its CASC 2012 description31

for details. An initial glimpse at Isabelle’s unique solutions also shows that 75%
of them are found by the recent Isabelle-specific additions (such as hard sorts) to
SPASS [17] and its tighter integration with Isabelle. This is an evidence that pushing
such domain knowledge inside ATPs (as done recently also with the MaLeCoP

prototype [82]) might be quite rewarding. The joint performance of all systems

31 www.cs.miami.edu/~tptp/CASC/J6/SystemDescriptions.html#Isabelle---2012

www.cs.miami.edu/~tptp/CASC/J6/SystemDescriptions.html#Isabelle---2012
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tested is 50.2% when Isabelle is included, and 47.4% when only the base systems
are allowed. This is quite encouraging, and for example the counter-satisfiability
results suggest that additional performance could be gained by further (possibly
heuristic/learning) work on alternative translations. Pragmatically, the joint re-
proving performance also tells us that when used in the MESON-tactic mode with
premises explicitly provided by the users, a parallel 9-CPU machine running the
nine systems from Table 8 will within 30 seconds (of real time) prove half of the
Flyspeck theorems without any further interaction.

Table 7: All ATP re-proving with 30s time limit on 10% of problems

Prover Theorem (%) Unique SOTAC Σ-SOTAC CounterSat (%) Processed

Isabelle 587 (41.3) 39 0.201 118.09 0 ( 0.0) 1419
Epar 545 (38.4) 9 0.131 71.18 0 ( 0.0) 1419
Z3 513 (36.1) 17 0.149 76.49 0 ( 0.0) 1419
E 1.6 463 (32.6) 0 0.101 46.69 0 ( 0.0) 1419
LEO2-po1 441 (31.0) 1 0.106 46.85 0 ( 0.0) 1419
Vampire 434 (30.5) 3 0.107 46.44 0 ( 0.0) 1419
CVC3 411 (28.9) 4 0.111 45.76 0 ( 0.0) 1419
Satallax 383 (26.9) 7 0.130 49.69 1 ( 0.0) 1419
Yices 360 (25.3) 0 0.097 35.06 0 ( 0.0) 1419
iProver 348 (24.5) 0 0.088 30.50 9 ( 0.6) 1419
Prover9 345 (24.3) 0 0.087 30.07 0 ( 0.0) 1419
Metis 331 (23.3) 0 0.085 28.23 0 ( 0.0) 1419
SPASS 326 (22.9) 0 0.081 26.46 0 ( 0.0) 1419
leanCoP 305 (21.4) 1 0.092 27.96 0 ( 0.0) 1419
AltErgo 281 (19.8) 1 0.100 28.14 0 ( 0.0) 1419
LEO2-po2 53 ( 3.7) 0 0.082 4.34 0 ( 0.0) 1419
Paradox 1 ( 0.0) 0 0.059 0.06 259 (18.2) 1419
any 712 (50.1) 259 (18.2) 1419

Table 8: Greedy sequence for Table 7 (with and without Isabelle)
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Sum % 41.3 46.9 48.8 49.3 49.6 49.9 50.0 50.1 50.1
Sum 587 666 693 700 705 709 710 711 712
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Sum % 38.4 42.7 45.3 46.0 46.6 47.1 47.2 47.3 47.4
Sum 545 607 644 654 662 669 671 672 673
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5.2 Using External ATPs to Prove Theorems with Premise Selection

As described in Section 4, there are a number of various approaches and pa-
rameters influencing the training of the premise selectors. These parameters were
gradually (but not exhaustively) explored, typically on the 1419-problem subset.
Several times the underlying training data changed quite significantly as a result
of the data-improving passes described in Section 4.3. Some of these passes were
evaluating the best prediction methods developed so far on all 14185 problems.
All the experiments were limited to Vampire, Epar, and Z3. For most of the ex-
periments (and unless otherwise noted) the first-stage premise selection is used to
create problems with 8, 32, 128, and 512 premises. This slicing (i.e., taking the
first N premises) can be later fine-tuned, as done below in Section 5.2.2 for the
best premise selection method.

Table 9 shows an initial evaluation of 16 different learning combinations trained
on ATP proofs obtained in 300s, complemented by the HOL Light proof dependen-
cies (the second and first pass in Table 3). The two exceptions are the symst+symsonly
combination, which ignores all proofs, and the syms+old+000001 combination, which
uses older ATP-re-proving data obtained by running each ATP only for 30s (about
700 ATP proofs less). Each row in Table 9 is a union of twelve 30s ATP runs: Vam-

pire, Epar, and Z3 used on the 8, 32, 128, and 512 slices. After this initial evaluation,
the symst (types instead of variables) characterization was preferred, trivial sym-
bols were always pruned out, and Winnow and Perceptron were left behind. It is
of course possible that some of these methods are useful as a complement of bet-
ter methods. Preferring Vampire proofs helps the learning a bit, for reasons that
are not yet understood. To get the joint 39.5% performance, in general 192-fold
(= 16 × 12) parallelization is needed. This number could be reduced, but first
better training methods were considered.

5.2.1 Further Premise Selection Improvements

Complementing the ATP dependency data with the (possibly discounted) HOL

Light dependencies seems to be a plausible method. Even if the HOL Light depen-
dencies are very redundant, the redundancies should be weighted down by the
information learned from the large number of ATP proofs, and the remaining HOL

Light dependencies should be in general more useful than no information at all.
A possible explanation of why this approach might still be quite suboptimal (in
the ATP setting) is that the HOL Light proofs are often not a good guidance for
the ATP proofs, and may push the machine learners in a direction that is ATP-
infeasible. A small hint that this might be the case is the good performance of the
nominweight method in Table 9. This method completely ignores all HOL Light de-
pendencies that were never used in previous ATP proofs. This suggested to test the
more radical atponly approach, in which only the ATP proofs are used for train-
ing. This approach improved the best method from 29.4% to 31.9%, and added 25
newly solved problems (1.8%) to those solved by the 16 methods in Table 9. These
results motivated further work on getting as many (and as minimal) ATP proofs
as possible, producing the methods tagged as m10, m10u and m10u2 in the tables
below. These methods were trained on the proofs obtained by 10-minute (hence
m10) ATP runs that were further upgraded by the advised proofs as described in
Section 4.3. The best m10u2 method raised the performance by further 0.5%, and
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Table 9: 16 premise selection methods trained on ATP proofs complemented with
HOL proofs

Method Theorem (%) Unique SOTAC Σ-SOTAC Processed

B+symst+v_pref+nominweight 418 (29.4) 2 0.093 38.98 1419
B+symst 410 (28.8) 0 0.089 36.65 1419
B+syms0 406 (28.6) 0 0.084 33.99 1419
B+symst+triv 405 (28.5) 3 0.094 37.98 1419
B+syms 402 (28.3) 0 0.083 33.48 1419
B+syms+triv+nominweight 397 (27.9) 1 0.083 32.98 1419
B+syms0+triv 397 (27.9) 0 0.078 30.82 1419
B+syms+triv+v_pref 396 (27.9) 0 0.081 31.99 1419
B+syms+triv 393 (27.6) 0 0.077 30.13 1419
B+syms+triv+z_pref 392 (27.6) 1 0.082 32.09 1419
B+syms+triv+e_pref 392 (27.6) 0 0.078 30.45 1419
B+symsd 382 (26.9) 3 0.097 37.08 1419
B+syms+old+000001 376 (26.4) 14 0.129 48.34 1419
B+symst+symsonly 302 (21.2) 17 0.141 42.55 1419
W+symst 251 (17.6) 9 0.141 35.37 1419
P+symst 195 (13.7) 6 0.144 28.13 1419
any 561 (39.5) 1419

B,W,P: Naive Bayes, Winnow, Perceptron.
triv: Logical (trivial) symbols like conjunction are included.
old+000001: Using older 30-second ATP data, and a minimal weight of 0.000001 for irrelevant

HOL dependencies (the default weight was 0.001).

the learning on the advised proofs in different ways made these methods again
quite orthogonal to the previous ones.

Even though Winnow and Perceptron performed poorly (as expected from
earlier unpublished experiments with MML), they added some new solutions. This
motivated one simple additional experiment with the classic k-nearest neighbor (k-
NN) learner, which computes for a new example (conjecture) the k nearest (in a
given feature distance) previous examples and ranks premises by their frequency in
these examples. This is a fast (“lazy” and trivially incremental) learning method
that can be easily parameterized and might for some parameters behave quite
differently from naive Bayes. For large datasets a basic implementation gets slow
in the evaluation phase, but on the Flyspeck dataset this was not yet a problem
and full training/evaluation processing took about the same time as naive Bayes.
Table 10 shows the performance of three differently parameterized k-NN instances,
and Table 11 shows 8 different k-NN-based methods that together prove 29% of
the problems. As expected, k-NN performs worse than naive Bayes, but much
better than Winnow and Perceptron. The 160-NN and 40-NN methods indeed
produce somewhat different solutions, and they are sufficiently orthogonal to the
previous methods and both contribute to the performance of the final best mix of
14 prediction/ATP methods.

5.2.2 Performance of different premise slices

Fig. 1 shows how the ATP performance changes when using different numbers
of the best-ranked premises. This is again evaluated in 30 seconds on the 1419-
problem subset, i.e., Vampire’s performance is likely to be better (compared to
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Table 10: Three instances of k-nearest neighbor on the 1419-problem subset

Method Theorem (%) Unique SOTAC Σ-SOTAC Processed

KNN160+m10u+atponly 391 (27.5) 84 0.512 200.33 1419
KNN40+m10u+atponly 330 (23.2) 10 0.403 132.83 1419
KNN10+m10u+atponly 244 (17.1) 6 0.360 87.83 1419
any 421 (29.6) 1419

Table 11: Greedy sequence using k-NN-based premise selectors

Method KNN160+512e KNN40+32e KNN160+512v KNN40+512e

Sum % 21.7 25.5 26.7 27.4
Sum 309 363 379 390

... KNN160+128z KNN160+128e KNN10+512v KNN10+512e

... 28.1 28.4 28.8 29.0

... 399 404 409 412

Epar) if a higher time limit was used. To a certain extent this graph serves also as
a comparison of the first-stage premise selection (in this case naive Bayes trained
on the minimized proofs) with the second-stage premise selection (various SInE

strategies tried by the ATPs). Z3 has no second-stage premise selection, and af-
ter 250 premises the performance drops quite quickly (12.4% with 256 premises
vs. 6.2% with 740 premises). For Vampire this drop is more moderate (18.1% vs.
12.9%). Epar stays over 20% with 512 premises, and drops only to 15.6% with 2048
premises. Thus, 512 premises seems to be the current “margin of error” for the
first-stage premise selection that can be (at least to some extent) offset by using
SInE at the second stage.

Table 12 shows for this premise selection method the joint performance (in
greedy steps) of all premise slicings, when for each slice the union of all ATPs’
solutions is taken. Only 17 slices are necessary (when using the greedy approach);
the remaining 8 slices do not contribute more solutions. In general, this union
would take 3 ∗17 = 51 ATP runs, however only 28 ATP runs are actually required
to achieve the maximum 36.4% performance. These runs are not shown in full
here, and instead only the first 14 runs that yield 35% are shown in Table 13.
Assuming a 14-CPU server, 35% is thus the 30-second performance when using
only one (the best) premise selection method.

5.2.3 The Final Combination and Higher Time Limits

It is clear that the whole learning/ATP AI system can (and will) be (self-)improved
in various interesting ways and for long time.32 When the number of small-scale
evaluations reached several hundred and the main initial issues seemed corrected,

32 In 2008, new proofs were still discovered after a month of running MaLARea on the whole
MML. Analyzing the proofs and improving such AI over an interesting corpus gets addictive.
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Fig. 1: Performance of different premise slices (in % of the 1419 problems)
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Table 12: Greedy covering sequence for m10u2 slices (joining ATPs)

Method 128 1024 40 256 64 24 740 430 ...

Sum % 27.2 30.2 32.9 33.9 34.5 34.9 35.3 35.5 ...
Sum 386 429 467 482 490 496 501 504 ...

... 92 2048 184 218 154 52 32 12 4

... 35.7 35.8 36.0 36.0 36.1 36.2 36.2 36.3 36.4

... 507 509 511 512 513 514 515 516 517

Table 13: Greedy covering sequence for m10u2 limited to 14 slicing/ATP methods

Method 154e 52v 1024e 16e 300v 92e 64z

Sum % 24.1 27.4 29.8 31.1 32.0 32.6 33.1
Sum 343 390 423 442 455 464 471

... 256z 256e 184v 32v 2048e 128v 24z

... 33.5 33.8 34.1 34.3 34.6 34.8 35.0

... 476 480 484 488 491 494 497

an overall evaluation of the (greedily) best combination of 14 methods was done
on the whole set of 14185 Flyspeck problems using a 300s time limit. These 14
methods together prove 39% of the theorems when given 30 seconds in parallel
(see Table 14), which is also how they are run in the online service. The large
scale evaluation is shown in Table 15 and Table 16. Table 15 sorts the methods by
their 300s performance, and Table 16 computes the corresponding greedy covering
sequence. Comparison with Table 14 shows that raising the CPU time to 300s
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helps the individual methods (2.7% for the best one), but not so much the final
combination (only 0.3% improvement).

Table 14: The top 14 methods in the greedy sequence for 30s small-scale runs

Prover Sum % Sum

B+symst+m10u2+atponly+154e 24.1 343
KN40+symst+m10u+atponly+32e 28.6 407
B+symst+m10u2+atponly+1024e 31.2 443
B+v_pref+triv+128e 33.1 471
B+symst+m10u2+atponly+92v 34.4 489
W+symst+128e 35.3 501
B+symst+m10u+atponly+32z 35.9 510
B+syms0+triv+512e 36.5 519
B+all000001+old+triv+128v 37.2 528
KN160+symst+m10u+atponly+512z 37.6 534
W+symst+32z 37.9 539
B+symst+m10u2+atponly+128e 38.3 544
B+symst+m10+vs+pref+atponly+128z 38.6 549
B+symst+32z 39.0 554

Table 15: The top 14 methods from Table 14 evaluated in 300s on all 14185 prob-
lems

Prover Theorem (%) Unique SOTAC Σ-SOTAC

B+symst+m10u2+atponly+154e 3810 (26.8) 33 0.157 597.89
B+symst+m10u2+atponly+128e 3799 (26.7) 25 0.153 580.70
B+symst+m10u2+atponly+92v 3740 (26.3) 95 0.167 623.03
B+symst+m10u2+atponly+1024e 3280 (23.1) 206 0.198 649.52
B+syms0+triv+512e 3239 (22.8) 101 0.170 551.90
B+v_pref+triv+128e 2814 (19.8) 36 0.143 401.27
B+all000001+old+triv+128v 2475 (17.4) 50 0.149 367.86
KN40+symst+m10u+atponly+32e 2417 (17.0) 78 0.160 386.90
B+symst+m10+v_pref+atponly+128z 2257 (15.9) 33 0.138 311.74
B+symst+m10u+atponly+32z 2191 (15.4) 43 0.139 304.77
KN160+symst+m10u+atponly+512z 1872 (13.1) 37 0.145 270.58
W+symst+128e 1704 (12.0) 56 0.164 279.34
B+symst+32z 1408 ( 9.9) 16 0.118 166.09
W+symst+32z 711 ( 5.0) 9 0.124 88.40
any 5580 (39.3)

5.3 Union of Everything

Tables 17 shows the “union of everything”, i.e., the union of problems (limited to
the 1419-problem subset) that could either be proved by an ATP from the HOL

Light dependencies or by the premise selection methods. Together with Table 7 and
Table 8 this also shows how much the ATP proofs obtained by premise selection
methods complement the ATP proofs based only on the HOL Light dependencies.
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Table 16: The greedy sequence for Table 15 (300s runs on all problems)

Prover Sum % Sum

B+symst+m10u2+atponly+154e 26.8 3810
B+symst+m10u2+atponly+1024e 30.1 4273
B+symst+m10u2+atponly+92v 33.0 4686
KN40+symst+m10u+atponly+32e 34.8 4938
B+syms0+triv+512e 36.2 5148
B+all000001+old+triv+128v 36.9 5247
B+symst+m10u+atponly+32z 37.5 5332
W+symst+128e 38.1 5411
KN160+symst+m10u+atponly+512z 38.4 5454
B+v_pref+triv+128e 38.7 5492
B+symst+m10+v_pref+atponly+128z 38.9 5528
B+symst+m10u2+atponly+128e 39.1 5553
B+symst+32z 39.2 5571
W+symst+32z 39.3 5580

The methods’ running times are not comparable: the re-proving used 30s for each
system, while the data for advised methods are aggregated across E, Vampire and
Z3, and across the four premise slicing methods. This means that they in general
run in 12×30 seconds (although typically only one or two slices are needed for the
final joint performance). The number of Flyspeck theorems that were proved by
any of the many experiments conducted is thus 56.5% when Isabelle is considered,
and 54.7% otherwise.

Table 17: Covering sequence (without and with Isabelle) for all methods used

Prover Sum % Sum

Epar 38.4 545
B+syms+triv 44.7 635
Z3 48.2 684
Satallax 50.7 720
B+v_pref+atponly 52.1 740
LEO2-po1 52.6 747
CVC3 53.0 753
B+symsonly+triv 53.4 758
B+symst+m10+nominwght 53.6 762
KN40+symst+m10u+atponly 53.9 765
B+syms0 54.1 768
W+symst 54.2 770
B+symst+m10u2+atponly 54.4 772
Vampire 54.4 773
leanCoP 54.5 774
B+symst 54.6 775
B+symst+triv 54.6 776
AltErgo 54.7 777

Prover Sum % Sum

Isabelle 41.3 587
B+symst+m10u2+atponly 48.4 687
Z3 52.0 738
Epar 53.0 753
B+syms 54.0 767
B+symsonly+triv 54.5 774
Satallax 54.9 780
B+symst+m10+nominwght 55.3 785
CVC3 55.6 790
W+symst 55.8 793
KN40+symst+m10u+atponly 56.0 796
B+v_pref+atponly 56.2 798
LEO2-po1 56.3 799
leanCoP 56.3 800
B+symst 56.4 801
B+symst+triv 56.5 802
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6 Initial Comparison of the Advised and Original Proofs

There are 6162 theorems that can be proved by either Vampire, Z3 or E from the
original HOL dependencies. Their collection is denoted as Original. There are 5580
theorems (denoted as Advised) that can be proved by these ATPs from the premises
advised automatically. It is interesting to see how these two sets of ATP proofs
compare. In this section, a basic comparison in terms of the number of premises
used for the ATP proofs is provided. A more involved comparison and research of
the proofs using the proof-complexity metrics developed for MML in [5] is left as
an interesting future work. The intersection of Original and Advised contains 4694
theorems. Both sets of proofs are already minimized as described in Section 4.3.
The proof dependencies were extracted33 and the number of dependencies was
compared. The complete results of this comparison are available online,34 sorted
by the difference between the length of the Original proof and the Advised proof.
To make it easier to explore the differences described in the next subsections,
the Flyspeck and HOL Light Subversion repositories were merged into one (git)
repository, and (quite imperfectly) HTML-ized35 by a simple heuristic Perl script.
A simple CGI script36 can be used to compare the dependencies needed for the
(minimized) advised ATP proof with the dependencies needed for the ATP proof
from the original HOL Light premises, and also with the actual HOL Light proof.

6.1 Theorems Proved Only with Advice

The list of 885 theorems proved only with advice is available online37 sorted by
the number of necessary premises. The last theorem in this order (CROSS_BASIS_-
NONZERO)38 used 34 premises for the advised ATP proof, while its HOL Light proof
is just a single invocation of the VEC3_TAC tactic39 (which however brings in 121
HOL Light dependencies, making re-proving difficult). The following two short ex-
amples show how the advice can sometimes get simpler proofs.

1. Theorem FACE_OF_POLYHEDRON_POLYHEDRON states that a face of a polyhedron
(defined in HOL Light generally as a finite intersection of half-spaces) is again a
polyhedron:

∀s:real^N→bool c. polyhedron s ∧ c face_of s =⇒ polyhedron c

The HOL Light proof40 takes 23 lines and could not be re-played by ATPs, but
a much simpler proof was found by the AI/ATP automation, based on (a part

33 See http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_of_atp_proofs_from_hol_deps.txt
and http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_from_advised_atp_proofs.txt.
34 http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_comparison.txt
35 http://mws.cs.ru.nl/~mptp/hol-flyspeck/index.html
36 e.g., http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX_MUL_CNJ
37 http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/aonly_by_length.txt
38 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=CROSS_BASIS_NONZERO
39 An interesting future work is to integrate calls to such tactics into the learning/ATP

framework, or even to learn their construction (from similar sequences of lemmas used on
similar inputs). The former task is similar to optimizing SMT solvers and tools like MetiTarski.
40 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_POLYHEDRON_
POLYHEDRON

http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_of_atp_proofs_from_hol_deps.txt
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_from_advised_atp_proofs.txt
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_comparison.txt
http://mws.cs.ru.nl/~mptp/hol-flyspeck/index.html
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX_MUL_CNJ
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/aonly_by_length.txt
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=CROSS_BASIS_NONZERO
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_POLYHEDRON_POLYHEDRON
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_POLYHEDRON_POLYHEDRON
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of) the FACE_OF_STILLCONVEX theorem: a face t of any convex set s is equal to
the intersection of s with the affine hull of t. To finish the proof, one needs just
three “obvious” facts: Every polyhedron is convex (POLYHEDRON_IMP_CONVEX), the
intersection of two polyhedra is again a polyhedron (POLYHEDRON_INTER), and affine
hull is always a polyhedron (POLYHEDRON_AFFINE_HULL):

FACE_OF_STILLCONVEX:
∀s t:real^N→bool. convex s =⇒
(t face_of s ⇐⇒ t SUBSET s ∧ convex(s DIFF t) ∧ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX: ∀s:real^N→bool. polyhedron s =⇒ convex s
POLYHEDRON_INTER:
∀s t:real^N→bool. polyhedron s ∧ polyhedron t =⇒ polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL: ∀s. polyhedron(affine hull s)

2. Theorem FACE_OF_AFFINE_TRIVIAL states that faces of affine sets are trivial:

∀s f:real^N→bool. affine s ∧ f face_of s =⇒ f = ∅ ∨ f = s

The HOL Light proof41 takes 19 lines and could not be re-played by ATPs. The ad-
vised proof finds a simple path via previous theorem FACE_OF_DISJOINT_RELATIVE_-

INTERIOR saying that nontrivial faces are disjoint with the relative interior, and
theorem RELATIVE_INTERIOR_UNIV saying that any affine hull is equal to its relative
interior. The rest is again just use of several “basic facts” about the topic (skipped
here):

FACE_OF_DISJOINT_RELATIVE_INTERIOR:
∀f s:real^N→bool. f face_of s ∧ ¬(f = s) =⇒ f INTER relative_interior s = ∅

RELATIVE_INTERIOR_UNIV: ∀s. relative_interior(affine hull s) = affine hull s

6.2 Examples of Different Proofs

Finally, several examples are shown where the advised ATP proof differs from the
ATP proof reconstructed from the original HOL Light dependencies.

1. Theorems COMPLEX_MUL_CNJ42 and COMPLEX_NORM_POW_2 stating the equality of
squared norm to multiplication with a complex conjugate follow easily from each
other (together with the commutativity of complex multiplication COMPLEX_MUL_-

SYM). The proof of COMPLEX_MUL_CNJ in HOL Light (below) re-uses the longer proof
of COMPLEX_NORM_POW_2. The advised ATP proof directly uses COMPLEX_NORM_POW_2,
but (likely because COMPLEX_MUL_SYM was never used before) first unfolds the defi-
nition of complex conjugate and then applies commutativity of real multiplication.

let COMPLEX_MUL_CNJ = prove
(‘∀z. cnj z * z = Cx(norm(z)) pow 2 ∧ z * cnj z = Cx(norm(z)) pow 2‘,
GEN_TAC THEN REWRITE_TAC[COMPLEX_MUL_SYM] THEN
REWRITE_TAC[cnj; complex_mul; RE; IM; GSYM CX_POW; COMPLEX_SQNORM] THEN
REWRITE_TAC[CX_DEF] THEN AP_TERM_TAC THEN BINOP_TAC THEN
CONV_TAC REAL_RING);;

COMPLEX_NORM_POW_2: ∀z. Cx(norm z) pow 2 = z * cnj z
COMPLEX_MUL_SYM: ∀x y. x * y = y * x

41 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_AFFINE_
TRIVIAL
42 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX_MUL_CNJ

http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_AFFINE_TRIVIAL
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_AFFINE_TRIVIAL
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX_MUL_CNJ
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2. Theorem disjoint_line_interval43 states that the left endpoints of two unit-
long integer-ended intervals on the real line have to coincide if the intervals share
a point strictly inside them. This suggests case analysis, which is what the longer
HOL Light proof (omitted here) seems to do. The advisor instead gets the proof in
a single stroke by noticing a previous theorem saying that the left endpoint is the
floor function which is constant for the points inside such intervals:

disjoint_line_interval:
∀(x:real) (y:real). integer x ∧ integer y ∧

(∃ (z:real). x < z ∧ z < x + &1 ∧ y < z ∧ z < y + &1) =⇒ x = y

FLOOR_UNIQUE: ∀x a. integer(a) ∧ a ≤ x ∧ x < a + &1 ⇐⇒ (floor x = a)

3. Theorem NEGLIGIBLE_CONVEX_HULL_344 states that the convex hull of three points
in R3 is a negligible set. In HOL Light this is proved from the general theorem
NEGLIGIBLE_CONVEX_HULL stating this property for any finite set of points in Rn
with cardinality less or equal to n. Instead of justifying this precondition, a shorter
proof is found by the advised ATP that saw an analogous theorem about the affine
hull, the inclusion of the convex hull in the affine hull, and the preservation of
negligibility under inclusion.

let NEGLIGIBLE_CONVEX_HULL_3 = prove
(‘∀a b c:real^3. negligible (convex hull a,b,c)‘,
REPEAT GEN_TAC THEN MATCH_MP_TAC NEGLIGIBLE_CONVEX_HULL THEN
SIMP_TAC[FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY; DIMINDEX_3] THEN
ARITH_TAC);;

NEGLIGIBLE_CONVEX_HULL:
∀s:real^N→bool. FINITE s ∧ CARD(s) ≤ dimindex(:N) =⇒ negligible(convex hull s)

NEGLIGIBLE_AFFINE_HULL_3: ∀a b c:real^3. negligible (affine hull a,b,c)
CONVEX_HULL_SUBSET_AFFINE_HULL: ∀s. (convex hull s) SUBSET (affine hull s)
NEGLIGIBLE_SUBSET:
∀s:real^N→bool t:real^N→bool. negligible s ∧ t SUBSET s =⇒ negligible t

4. Theorem BARV_CIRCUMCENTER_EXISTS45 says that under certain assumptions, a
particular point (circumcenter) lies in a particular set (affine hull). The HOL Light

proof unfolds some of the assumptions and takes 14 lines. The advisor just found
a related theorem MHFTTZN3 which under the same assumptions states that the
singleton containing the circumcenter is equal to the intersection of the affine hull
with another set. The rest are two “obvious” facts about elements of intersections
(IN_INTER) and elements of singletons (IN_SING):

43 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Vol1.disjoint_line_
interval
44 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=NEGLIGIBLE_CONVEX_
HULL_3
45 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Rogers.BARV_
CIRCUMCENTER_EXISTS

http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Vol1.disjoint_line_interval
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Vol1.disjoint_line_interval
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=NEGLIGIBLE_CONVEX_HULL_3
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=NEGLIGIBLE_CONVEX_HULL_3
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Rogers.BARV_CIRCUMCENTER_EXISTS
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Rogers.BARV_CIRCUMCENTER_EXISTS
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BARV_CIRCUMCENTER_EXISTS: ∀V ul k. packing V ∧ barV V k ul =⇒
circumcenter (set_of_list ul) IN affine hull (set_of_list ul)

MHFTTZN3: ∀V ul k. packing V ∧ barV V k ul =⇒
((affine hull (voronoi_list V ul)) INTER (affine hull (set_of_list ul)) =
circumcenter (set_of_list ul) )

IN_SING: ∀x y. x IN y:A ⇐⇒ (x = y)
IN_INTER: ∀s t (x:A). x IN (s INTER t) ⇐⇒ x IN s ∧ x IN t

5. An example of the reverse phenomenon (i.e., the advised proof is more com-
plicated than the original) is theorem BOUNDED_CLOSURE_EQ46 saying that a set in
Rn is bounded iff its closure is bounded. The harder direction of the equivalence
was already available as theorem BOUNDED_CLOSURE, and was used both by the HOL

Light and the advised proof. The easier direction was in HOL Light proved by the-
orems CLOSURE_SUBSET and BOUNDED_SUBSET saying that any set is a subset of its
closure and any subset of a bounded set is bounded. The advised proof instead
went through a longer path based on theorems CLOSURE_APPROACHABLE, IN_BALL

and CENTRE_IN_BALL to show that every element in a set is also in its closure, and
then unfolded the definition of bounded and showed that the bound on the norms
of closure elements can be used also for the original set.

let BOUNDED_CLOSURE_EQ = prove
(‘∀s:real^N→bool. bounded(closure s) ⇐⇒ bounded s‘,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUNDED_CLOSURE] THEN
MESON_TAC[BOUNDED_SUBSET; CLOSURE_SUBSET]);;

BOUNDED_CLOSURE: ∀s:real^N→bool. bounded s =⇒ bounded(closure s)
BOUNDED_SUBSET: ∀s t. bounded t ∧ s SUBSET t =⇒ bounded s
CLOSURE_SUBSET: ∀s. s SUBSET (closure s)

CLOSURE_APPROACHABLE:
∀x s. x IN closure(s) ⇐⇒ ∀e. &0 < e =⇒ ∃y. y IN s ∧ dist(y,x) < e

IN_BALL: ∀x y e. y IN ball(x,e) ⇐⇒ dist(x,y) < e
CENTRE_IN_BALL: ∀x e. x IN ball(x,e) ⇐⇒ &0 < e
bounded: bounded s ⇐⇒ ∃a. ∀x:real^N. x IN s =⇒ norm(x) ≤ a

6.3 Remarks

The average number of HOL Light proof dependencies restricted to the set of the-
orems re-proved by ATPs is 34.54, i.e., there are on average about nine times
more dependencies in a HOL Light proof than in the corresponding ATP proof (see
Table 3). This perhaps casts some light on how learning-assisted ATP currently
achieves its performance. A large human-constructed library like Flyspeck is often
dense/redundant enough47 to allow short proofs under the assumption of perfect
(and thus inhuman) premise selection. Such short proofs can be found even by the
quite exhaustive methods employed by most of the existing ATPs. The smarter
the premise selection and the stronger the search inside the ATPs, the greater the

46 http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=BOUNDED_CLOSURE_EQ
47 As long as such libraries are human-constructed, they will remain imperfectly organized

and redundant. No “software engineering” or other approach can prevent new shortcuts to be
found in mathematics, unless an exhaustive (and infeasible) proof minimization is applied.

http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=BOUNDED_CLOSURE_EQ
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chance that such proofs will end up inside the ATP’s time-limited search enve-
lope. The outcome of using such advisors extensively could be “better-informed”
mathematics that has shorter proofs which use a variety of lemmas much more
than the basic definitions and theorems. Whether such mathematics is easier for
human consumption is not clear. Already now mathematical texts sometimes op-
timize proof length by lemma re-use to an extent that may make the underlying
ideas less visible. Perhaps this is just another case where the strong automation
tools will eventually help to understand how human cognition works.

The ATP search is quite unlike the much less exhaustive search done by deci-
sion procedures, and also unlike the human proofs, where the global economy of
dependencies is not so crucial once a fuzzy high-level path to the goal gets some
credibility. Both the human and the decision-procedure proofs result in more re-
dundant (“sloppier”) proofs, which can however be more involved (complicated)
than what the ATPs can achieve even with optimal premise selection. Learning
such (precise or fuzzy) high-level pathfinding is an interesting next challenge for
large-theory AI/ATP systems. With the number of proofs and theory develop-
ments to learn from available now in the HOL/Flyspeck, Mizar/MML, and Isabelle

corpora, and the already relatively strong performance of the “basic” AI/ATP
methods that are presented in this paper, these next steps seem to be worth a try.

7 Related Work and Contributions

Related work has been mentioned throughout the paper, and some of the pa-
pers cited provide recent overviews of various aspects of our work. In particular,
Blanchette’s PhD thesis and [14] give a detailed overview of the translation meth-
ods for the (extended) HOL logic used in Isabelle. See [48, 76] for recent overviews
of large-theory ATP methods, and [81] for a summary of the work done over MML

and its AI aspects.
Automated theorem proving over large theories goes back at least to Quaife’s

large developments [65] with Otter [54]48 (continued to some extent by Belin-
fante [8]). Most of the ATP/ITP combinations developed in 1990s used ATPs
on user-restricted search space. Examples include the ATPs for HOL (Light) by
Harrison and Hurd mentioned above, similar work for Isabelle by Paulson [58], in-

tegration of CLAM with HOL [68] and integration of ATPs with the Omega proof
assistant [55]. Dahn, Wernhard and Byliński exported Mizar/MML into the ILF for-
mat [23], created (small) ATP problems from several Mizar articles, and researched
ATP-friendly encodings of Mizar’s dependent and order-sorted type system [22].
Large-theory ATP reappeared in 2002 with Voronkov’s and Riazanov’s customized
Vampire answering queries over the whole SUMO ontology [61], and Urban’s MoMM

(modified E) authoring tool [74] using all MML lemmas for dependently-typed sub-
sumption of new Mizar goals. Since 2003, experiments with (unmodified) ATPs
over large libraries have been carried out for MML [73] (using machine learning
for premise selection) and for Isabelle/HOL (using the symbol-based Sledgehammer

heuristic for premise selection). A number of large-theory ATP methods and sys-
tems (e.g., SInE, MaLARea, goal-oriented heuristics inside ATPs) have been devel-

48 An interesting case is McAllester’s Ontic [51]. The whole library is searched automatically,
but the automation is fast and intentionally incomplete.
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oped recently and evaluated over large-theory benchmarks and competitions like
CASC LTB and Mizar@Turing. A comprehensive comparison of ATP and Mizar

proofs was recently done in [5]. As here, the average number of Mizar proof depen-
dencies is higher than the number of ATP dependencies, however, the difference
is not as striking as for HOL Light (a very different method is used to get the Mizar

dependencies).

The work described here adds HOL Light and Flyspeck to the pool of systems and
corpora accessible to large-theory AI/ATP methods and experiments. A number
of large-theory techniques are re-used, sometimes the Mizar, Isabelle and CASC
LTB approaches are combined and adapted to the HOL Light setting, and some
of the techniques are taken further. The theorem naming, dependency export,
problem creation, and advising required newly implemented HOL Light functions.
The machine learning adds k-nearest neighbor, and the feature characterization
was improved by replacing variables in terms with their HOL types. A MaLARea-
like pass interleaving ATP with learning was used to obtain as many ATP proofs
as possible, and the proofs were postprocessed by pseudo- and cross-minimization.
Unlike in MaLARea, this was done in a scenario that emulates the growth of the
library, i.e., no information about the proofs of later theorems was used to train
premise selection for earlier theorems. Motivated by the recent experiments over
the MPTP2078 benchmark, the machine learning was complemented by various
SInE strategies used by E and Vampire. The strategy-scheduling version of E using
the strategies developed for Mizar@Turing was tested for the first time in such large
evaluation. A significant effort was spent to find the most orthogonal ingredients
of the final mix of premise selectors and ATPs: in total 435 different combinations
were tested. The resulting 39% chance of proving the next theorem without any
user advice is a landmark for a library of this size. While a similar number was
achieved in [48] on the much smaller MPTP2078 benchmark with a lower time
limit, only 18% success rate was recently reported in [5] for the whole MML in this
fully push-button mode.49 None of those evaluations however combined so many
methods as here. The improvement over the best method (proving 24.1% theorems
in 30s and 26.8% in 300s) shows that such combinations significantly improve the
usability of large-theory ATP methods for the end users.

8 Future Work

Stronger machine learning (kernel/ensemble, etc.) methods and more suitable char-
acterizations (e.g., addition of model-evaluation features and more abstract fea-
tures) are likely to further improve the performance. The prototype online service
could be made customizable by learning from users’ own proofs. So far only three
ATPs are used by the service, but many other systems can eventually be added,
possibly with various custom mappings to their logics. The translation methods
can be further experimented with: either to get a symbol-consistent first-order
translation (to allow, e.g., the model-evaluation features), or to get less incom-
plete translations. Proof reconstruction is currently work in progress. A simple
and obvious approach is to try MESON with the minimized set of dependencies.

49 A similar large-scale evaluation for Isabelle would be interesting. It is not clear whether the
current “Judgement Day” benchmark contains goals on the same (theorem) level of granularity.
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When it is ready, unsound translations can be added to the pool of methods as
was originally done in Isabelle Isabelle [56]. Training ATP-internal guidance on the
corpus for prototype learning/ATP systems like MaLeCoP will be interesting, and
perhaps also further tuning of ATP strategies for systems like E.

The power of the combined system probably already now makes it interesting
as a complementary semantic aid/filter for first experiments with statistical trans-
lation methods between the informal Flyspeck text and the Flyspeck formalization.
The cases of machine translation (as in Google Translate) and natural-language
query answering (as in IBM Watson) have recently demonstrated the power of
large-corpus-driven methods to automatically learn such translation/understand-
ing layers from uncurated imperfect resources such as Wikipedia. In other words,
large bodies of mathematics (and exact science) such as arXiv.org are unlikely
to become computer-understandable by the current painstaking human encoding
efforts and additions of further and further logic complexity layers that increase
the formalization barrier both for humans and AI systems. Large-scale (world-
knowledge-scale) formalization for (mathematical) masses is hard to imagine as
one large “perfectly engineered” knowledge base in which everyone will know per-
fectly well where their knowledge fits. Such attempts seem to be as doomed as the
initial attempts (in the Stone Age of Internet) to manually organize the World
Wide Web in one concise directory. Gradual world-scale formalization seems more
likely to happen through simpler logics that can be reasonably crowd-sourced (e.g.,
as Wikipedia was), assisted by AI (learning/ATP) methods continuously training
and self-improving on cross-linked formal/semiformal/informal corpora expressed
in simple formalisms that can be reasonably explained to such automated/AI
methods.
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