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Abstract. Many tableaux provers that follow Stickel’s Prolog Technol-
ogy and lean have been relying on the Prolog compiler for an efficient
term representation and the implementation of unification. In particu-
lar, this is the case for leanCoP, the only tableaux prover that regularly
takes part in the CASC, the yearly ATP competition. On the other hand,
the most efficient superposition provers are typically written in low-level
languages, reckoning that the efficiency factor is significant.

In this paper we discuss low-level representations for first-order tableaux
theorem proving and present the Bare Metal Tableaux Prover, a C im-
plementation of the exact calculus used in the leanCoP theorem prover
with its cut semantics. The data structures are designed in such a way
that the prove function does not need to allocate any memory. The code
is less elegant than the Prolog code, albeit concise and readable. We also
measure the constant factor that a high-level programming language in-
curs: the low-level implementation performs 18 times more inferences per
second on an average TPTP CNF problem. We also discuss the imple-
mentation improvements which could be enabled by complete access to
the internal data structures, such as direct manipulation of backtracking
points.

1 Introduction

Connection tableaux is a well-studied calculus for automating first-order classical
logic proofs. An implementation of this calculus, the leanCoP [10] theorem prover,
achieves noteworthy performance while keeping the code compact. Since 2007
leanCoP 2.0 [9] has been regularly taking part in the CASC yearly ATP compe-
tition, typically performing average in the first-order theorems category [14,15].

leanCoP is implemented in Prolog and relies on the Prolog engine to imple-
ment terms, syntactic equality checking, unification, and backtracking efficiently
(a number of Prolog compilers and interpreters are supported). The implemen-
tation follows the lean approach: clauses are stored in the Prolog database to
make use of Prolog’s indexing. On the one hand, this allows for elegant and
very concise code: the main prove function of leanCoP needs only about 20 lines
of code. On the other hand, the optimizations possible in the implementation
might be limited by what can be realized in an elegant way in Prolog. This is
in sharp contrast with the provers that typically win the first-order division of
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CASC [15]: They are either entirely implemented in low-level languages, such as
C in case of E-Prover [13], C++ in case of Vampire [6], or include an efficient
low-level core, such as a SAT-solver used inside iProver [5]. Even if some of the
low-level implementations perform worse than leanCoP, the low-level implemen-
tations of the best performing provers suggest, that the constant factor implied
by the choice of the programming language may be significant.

To evaluate this factor, we reimplemented the core of the leanCoP theorem
prover, together with its cut semantics, in C. Starting our experiment, we ex-
pected the Prolog compilers to optimize the code very well, consequently we
were not sure that a low-level implementation would be faster. Already with a
simple implementation, we observed a significant improvement w.r.t. the number
of performed inferences per second. This made us experiment with the low-level
implementation further: We used a memory-efficient representation of terms and
clauses. We added perfect sharing of terms and clauses. We used the Robinson’s
unification algorithm [12] with simple repetition checking, as is was shown to
be most effective for first-order theorem proving in practice [2]. We made sure
all functions satisfy the requirements of sibling-call optimization (a restriction
of tail-call optimization supported by most C compilers) and made sure that no
memory is allocated throughout the core proving process.

The C equivalent of the Prolog prove function is much less elegant, however
it is significantly more efficient: We have modified the low-level implementation
and the Prolog implementation of the leanCoP calculus, to ensure that they cre-
ate the same matrix for the same CNF problems and confirmed that the two
implementations perform precisely the same inferences on the same problems.
For connection tableaux proofs, the code produced by an optimizing C com-
piler can perform 18 times more inferences per second than that produced by a
Prolog compiler. The imperative implementation also enables optimizations and
modifications to the algorithm that are not easily possible in Prolog.

The rest of the paper is structured as follows: In section 2 we present leanCoP
and its calculus. In section 3 we discuss the choices made in the implementation
of our Bare Metal Tableaux Prover and present the code of the core loop. In
section 4 we evaluate the implementation and compare it with a Prolog imple-
mentation on a large subset of TPTP. Finally in section 5 we discuss modifi-
cations and optimizations to the algorithm that are enabled by an imperative
implementation and conclude.

2 leanCoP and Restricted Backtracking

leanCoP implements a clause connection tableaux calculus [7,10] presented in
Fig. 1. The Reduction rule connects a literal on the current path with the com-
plement of the literal to solve. The Extension rule performs a clausal extension
step unifying one of the newly attached literals with the complement of the lit-
eral to solve. The basic calculus is additionally extended by a lemma rule, that
allows to solve a literal that is identical to a previously solved one.
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{}, M, Path
Axiom

C, M, {}
M

Start where C ∈M,C is positive

C, M, Path ∪ {L2}
C ∪ {L1}, M, Path ∪ {L2}

Reduction where σ(L1) = σ(L2)

C2 \ {L2}, M, Path ∪ {L1} C, M, Path

C ∪ {L1}, M, Path
Extension where

σ(L1) = σ(L2),
σ is rigid,

C1 ∈M,L2 ∈ C2,
C2 is a copy of C1

with variables renamed

Fig. 1. The clause connection calculus used in leanCoP.

In the following, we will shortly explain the Prolog implementation of the
calculus in leanCoP and explain restricted backtracking. The prove function,
presented in Fig. 2, takes as the first argument the clause to prove. If the clause
is empty, the proof succeeds (line 1). Otherwise the clause is split into the first
literal Lit and the rest of the clause Cla. The algorithm first checks for regularity
(line 5). Next, one of the three cases needs to be fulfilled: either the literal Lit is
among the already covered lemmas (line 7), or its complement – NegLit – unifies
with a literal on the path (line 9), or NegLit unifies with one of the literals in the
matrix1 and the rest of the unifying clause is recursively provable (lines 13–16).
If any of the above three alternatives is successful, we still need to continue with
the rest of the clause, which is done by a recursive call to prove (line 19).

An important part of the algorithm implemented by leanCoP is the restriction
of the search space by the means of a Prolog cut (line 18). Cut is a Prolog
built-in predicate that always succeeds, but cannot be backtracked. The most
successful strategy in leanCoP uses cut after the application of lemma, reduction,
and extension rules. This restricts the backtracking, allowing for significantly
increased number of successfully solved TPTP problems [9]. However, as the
strategies that involve cut introduce incompleteness, they are typically used in
combination with complete strategies.

3 Low-level Implementation

We have implemented an equivalent of the Prolog prove predicate in C in-
cluding all the necessary prerequisites: CNF literals, clauses, syntactic equality
checking, unification, and Prolog backtracking. In this section we discuss these
components. The low-level implementation does not include a TPTP problem
parser and the preparation of the matrix, as these typically are not costly in

1 leanCoP stores an association table between toplevel predicates and the rests of the
clauses. It is referred to as matrix.
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1 prove([],_,_,_,_,[]).

2
3 prove([Lit|Cla],Path,PathLim,Lem,Set,Proof) :-

4 Proof=[[[NegLit|Cla1]|Proof1]|Proof2],

5 \+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),

6 (-NegLit=Lit;-Lit=NegLit) ->

7 ( member(LitL,Lem), Lit==LitL, Cla1=[], Proof1=[]

8 ;

9 member(NegL,Path), unify_with_occurs_check(NegL,NegLit),

10 Cla1=[], Proof1=[]

11 ;

12 lit(NegLit,NegL,Cla1,Grnd1),

13 unify_with_occurs_check(NegL,NegLit),

14 ( Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

15 \+ pathlim -> assert(pathlim), fail ),

16 prove(Cla1,[Lit|Path],PathLim,Lem,Set,Proof1)

17 ),

18 ( member(cut,Set) -> ! ; true ),

19 prove(Cla,Path,PathLim,[Lit|Lem],Set,Proof2).

Fig. 2. The prove function of leanCoP.

comparison with the proving process. The matrix and an initial clause are the
arguments to the C prove function. In our implementation these are prepared
by the higher-level code originating from HOL Light [4].

Term representation In order to achieve an efficient low-level algorithm, we
start with a term representation with full sharing. As we do not use discrim-
ination trees, flatterms were not considered. Each term consists of a tag and
an array of pointers to term arguments. The tag stores a 32-bit signed integer
and the length of the argument array. Negative tags represent functions and
constants, while positive ones represent variables. Terms are transmitted to the
low-level implementation bottom-up. The chosen term representation is similar
to that of Prolog implementations [17,1] or E-prover [13]2.

As we want to preserve full sharing also in the presence of renaming, we intro-
duce term offsets. Each first-order literal or clause will store its term arguments
together with an integer offset, which represents a value that is implicitly added
to all the variables in the literal or clause. All algorithms that operate on terms,
literals, and clauses will need to compute variable offsets. We also implement
full sharing for clauses: each clause is a reference to an array of literals, together
with the position in this array. As literals are solved, only the position and offset
are changed, no clause copies are required.

2 In E-Prover it is the negative indices rather than positive ones that represent vari-
ables. We chose to use positive ones for variables, since they can directly be used as
indices in the substitution array.
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Global substitution One of the differentiating features of connection tableaux
proof search algorithmsis the fact, that a single global substitution suffices. As
unification produces new variable assignments, these are added to the global
substitution. Similarly, when backtracking, a certain number of most recent as-
signments is removed. We represent the global substitution in a way, that allows
all substitution operations (addition of an assignment, lookup, and retracting
a most recent assignment) in constant time. To do so, we use an array and a
stack (the stack is implemented as an array and an integer). The array stores
pairs of terms and integer offsets and represents the actual substitution. The
stack remembers the variables (integers) that have been assigned most recently.
In order to add an assignment to the substitution, the array is updated and the
assigned variable is added to the stack. To backtrack the assignment, the most
most recent index is popped from the stack and this assignment is removed from
the array.

Equality and Unification Checking the equality of terms with offsets under
the substitution is straightforward: A helper stack stores pairs of terms (together
with offsets) that need to be checked for equality. When a pair of terms is popped
from the stack, the encountered variables are resolved in the substitution. If the
two are applications of the same function symbol, the pointers to the arguments
are pushed on the stack.

In a similar way we implement Robinson’s unification algorithm [12] for terms
with offsets. It is known to perform very well for practical first-order theorem
proving [2]. The offsets allow our single implementation to cover both unification
with and without renaming.

Prolog backtracking To implement the semantics of Prolog backtracking we
use two stacks. We call these stacks alternatives and promises. The alternatives
stack keeps all the possible backtracking points, while the promises stack keeps
the information about the calls to prove that need to be done after our current
one is successful. We improve on the idea of using two stacks which we presented
before [4] by making the code tail-recursive and ensuring that no memory needs
to be allocated.

Each alternative entry stores a tuple consisting of a pointer to a clause, the
number of entries on the path, the number of lemmas, the number of substitu-
tion entries, the number of promises, and the actual number of the alternative
matrix entry. To represent the path, lemmas, and substitution it suffices to store
an integer that represents the size of each respective stack. Storing an alternative
consists of storing the current pointers and numbers to the stack of alternatives
and can be done in constant time. Whenever the current goal fails, we pop an
alternative from the stack, change the state to match that saved in the alterna-
tive entry and call the prove function. In order to restore the state, apart from
changing the integer variables, the path, lemmas, and substitution need to be
restored. In case of the path and the lemmas, it is enough to update the stack
size: no array updates are needed. In case of the substitution, the given number
of most recent entries need to be removed from the array. Since each entry in
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the substitution array needed to be added in constant time, the whole operation
of switching to an alternative can be done in constant amortized time.

Each promise entry keeps a tuple consisting of a clause, path, lemmas, new
lemma, and the number of alternatives. Once again the path, lemmas, and alter-
natives can be stored as single integers. As the goal succeeds, when switching to
the next promised goal, we also need to realize the cut after an extension step.
This is done by forgetting a number of most recent alternatives and can be done
by updating the size of the alternatives stack to the stored one.

Core prove function The code of the core prove loop (equivalent of the Prolog
prove function) is presented in Fig. 3. The backtracking mechanism needs to be
able to switch back to three different parts of the function (checking for regu-
larity, reduction, and extension steps). Thus, we implement the prove function
as three functions that call each other recursively: prove, extend, and reduce.
Sibling call optimization implemented by modern C compilers produces code
that does not allocate stack frames. The three functions return a boolean, that
indicates whether the proposition was proved, if so the proof can be inspected
in the global arrays.

The prove function first checks if the clause is empty (line 2). If so, we can
proceed with the promises. Next, if there is the same literal in the clause and on
the path we continue with an alternative (lines 3–6). Finally, if there is a lemma
that matches the current literal, we continue with the rest of the clause (lines
7–11) otherwise we continue to the reduce function (line 12).

The reduce function takes a starting position in the path as an argument. It
tests all the literals on the path starting at the given position for unification with
the negated literal. If successful, we continue by a recursive call to the prove

function with the rest of the clause, additionally storing a backtracking point
(lines 17–19). The backtracking point stores the information that it should call
reduce with the index of the next literal on the path. If no path literal unifies,
we proceed to the extend function (line 22).

The extend function iterates over all matrix entries matching the negated
predicate symbol, starting entry given as the argument (lines 25–40). It first
checks for iterative deepening termination condition if the clause is non-ground
(line 27). Next it tries to unify the literal with the matrix clause. If successful,
it stores a backtracking point in the alternatives and the rest of the clause as a
promise (lines 29–30) and continues with the rest of the matrix clause. Renaming
of the clause is performed by changing the offset value. If extend did not find a
clause that would unify with the literal, we backtrack to an alternative.

4 Evaluation

To compare the efficiency of the low-level implementation with a Prolog one, we
made sure that the implementations start with the same CNF. As leanCoP’s Pro-
log parser can only parse FOF problems, and only those which contain at most
one conjecture, we selected all the CNF problems in TPTP version 6.0.0 that
contain precisely one conjecture and transformed them to FOF using tptp4X.
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1 bool prove() {

2 if (cl_start == cl_len) return try_promise();

3 for (int i = cl_start; i < cl_len; ++i)

4 for (int j = 0; j < path_len; ++j)

5 if (lit_eq(path[j], cl[i], cl_off))

6 return try_alternative();

7 for (int i = 0; i < lem_len; ++i)

8 if (lit_eq(lem[i], cl[cl_start], cl_off)) {

9 cl_start++;

10 return prove();

11 }

12 return reduce(path_len - 1);

13 }

14 bool reduce(int n) {

15 for (; n >= 0; --n) {

16 if (neg_unify(path[n].t,path[n].o, cl[cl_start], cl_off)) {

17 cl_start++;

18 return prove();

19 }

20 }

21 return extend(0);

22 }

23 bool extend(int i) {

24 int pred = negate(cl[cl_start]->f);

25 for (; i < db_len[pred]; ++i) {

26 struct db_entry dbe = db[pred][i];

27 if (path_len >= path_lim && dbe.vars > 0) continue;

28 if (lit_unify(cl[cl_start], cl_off, dbe.lit1, sub_off)) {

29 store_alternative(true, i+1, old_sub);

30 store_promise();

31 path[path_len].t = cl[cl_start];

32 path[path_len++].o = cl_off;

33 cl = dbe.rest;

34 cl_start = 0;

35 cl_len = dbe.rest_len;

36 cl_off = sub_off;

37 sub_off += dbe.vars;

38 return prove();

39 }

40 }

41 return try_alternative();

42 }

Fig. 3. The core of the C implementation consists of three functions: prove checks
regularity and lemmas, while reduce and extend implement the corresponding rules.

Additionally, to make sure the order of the equality axioms is the same, we
used tptp4X to include the equality axioms, and changed the name of the equal-
ity predicate. We modified the source code of leanCoP 2.1 in two ways: only one
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TPTP Number of inferences Maximum depth number of
Category low-level Prolog ratio low-level Prolog ratio problems

ALG 7.54 0.25 29.57 11.13 9.38 1.19 55
BOO 7.06 0.57 12.38 28.29 22.54 1.26 100
COL 8.80 0.76 11.64 26.13 20.16 1.30 119
GEO 14.90 0.38 39.38 6.83 5.65 1.21 118
GRP 10.85 0.78 13.94 19.59 16.67 1.18 593
LAT 3.80 0.51 7.39 27.58 23.57 1.17 259
LCL 6.01 0.43 13.96 155.60 88.97 1.75 454
NUM 17.73 0.14 127.60 13.95 8.73 1.60 94
RNG 12.55 0.89 14.13 19.07 16.28 1.17 76
SET 13.91 0.20 68.50 7.22 6.04 1.19 260

SWW 16.67 0.74 22.60 11.08 9.21 1.20 71

all 9.84 0.54 18.37 39.39 25.93 1.52 2936

Table 1. Number of inferences (in millions) and maximum depth (non-ground path
length limit) reached by the two implementations in 60 seconds averaged over each
TPTP category with at least 50 problems and averaged over all TPTP problems. Only
the problems for which cut does not yield a proof are considered. The full version
of the table with all individual problems and all categories is available at: http://

cl-informatik.uibk.ac.at/users/cek/tableaux15/

strategy is selected and literals in clauses are not reordered. We chose to focus on
the [cut, conj, nodef] strategy. The evaluations have been done on a server
with 48 AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM and 0.5 MB L2 cache
per CPU. Each ATP problem is assigned a single core. In an initial evaluation
we tested SWI-Prolog version 6.6.6 against ECLiPSe 5.10. With the former being
able to solve 2 more of the problems, we focus on it in all further evaluations in
the paper. Similarly we compared GCC 4.9 against Clang 3.5, again with a small
advantage of the former.

We patched both implementations to increase an inference counter at every
extension step and print the number of inferences and the maximum path length
at every iterative deepening step. We show the average numbers of inferences for
all the problems that were not solved in 60 seconds by either of the implementa-
tions in Table 1 averaged by TPTP category and globally. We focus on the non
solved problems, as for the solved ones the numbers of inferences and the depth
of the proofs are same. For a small number of problems in geometry (GEO001-4,
GEO002-4) the numbers of inferences are the same for the two implementations,
however in the majority of problems, the low-level implementation is able to per-
form significantly more inferences, with the biggest difference for GRP015-1: the
low-level code can perform 31 million inferences, while the Prolog code can do
only 3,341 inferences. This directly corresponds to reaching a higher maximum
path length in the iterative deepening: the low-level implementation can reach
a path length that is on average 52% longer than the Prolog one.

A different way in which the performance of the two implementation can be
compared, is to directly look at the numbers of solved problems. This is done

http://cl-informatik.uibk.ac.at/users/cek/tableaux15/
http://cl-informatik.uibk.ac.at/users/cek/tableaux15/
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Implementation Theorems Unique

low-level 693 37
Prolog 656 0

Table 2. Numbers of problems solved by the two implementations in 60 seconds.

in Table 2, the low-level version solved 37 new TPTP problems, which is 5.6%
more than the Prolog one.

5 Conclusion

We implemented the core of the leanCoP theorem prover, together with its cut
semantics, in C. We optimized the representations of terms and substitution, as
well as the algorithms of equality checking and unification in the implementation.
We evaluated the efficiency of the generated C code against the Prolog code on
on a large subset of TPTP CNF problems. We were surprised by the difference:
The low-level implementation can on average perform 18 times more inferences
per second than the Prolog one. This corresponds to 5.6% more TPTP problems
solved by a single strategy.

The C implementation is reasonably concise, totalling 350 lines of code. This
includes 42 LoC in the core prove function, 61 LoC implementing Prolog back-
tracking, and 172 LoC for the shared terms, clauses, and unification. The C im-
plementation together with the high-level parsing code and the complete statis-
tics are available at:

http://cl-informatik.uibk.ac.at/~cek/tableaux15.

The use of imperative data structures allows random access. This means further
optimizations and experiments are possible, that would be hard to achieve in
Prolog, such as:

– backtracking points can be introduced only when needed (for example if a
unification returns a non-empty substitution, or if it is more general than a
previous one);

– the path can be traversed in the opposite direction, changing the introduced
alternatives;

– reordering of literals in clauses, as done by randoCoP [11], can be done
completely in place.

– cut can remove a different number of backtracking points, than that specified
by the semantics of the Prolog cut, which could give rise to half-cut or double-
cut strategies;

Other future work ideas involve the integration of some of the advanced
strategies for tableaux proving, such as those implemented in Setheo [8], or
combining our implementation with fast low-level machine learning algorithms [3]
for internal proof guidance [16].

http://cl-informatik.uibk.ac.at/~cek/tableaux15
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