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Abstract As a present to Mizar on its 40th anniversary, we develop an AI/ATP
system that in 30 seconds of real time on a 14-CPU machine automatically proves
40% of the theorems in the latest official version of the Mizar Mathematical Library
(MML). This is a considerable improvement over previous performance of large-
theory AI/ATP methods measured on the whole MML. To achieve that, a large
suite of AI/ATP methods is employed and further developed. We implement the
most useful methods efficiently, to scale them to the 150000 formulas in MML.
This reduces the training times over the corpus to 1–3 seconds, allowing a simple
practical deployment of the methods in the online automated reasoning service for
the Mizar users (MizAR).

1 Introduction and Motivation

Since 2003 the Mizar Mathematical Library1 (MML) has been used as a repository
for developing AI/ATP methods for solving formally stated (computer-understandable)
conjectures in general large-theory mathematics [28–30]. By large theories we mean
theories with many concepts, definitions, theorems and lemmas, over which many
related conjectures are posed, and where it is not immediately clear which of the
previous facts will (not) be useful for a proof of a conjecture. The number and
strength of the methods developed has been growing, however the methods were
often developed and evaluated on smaller benchmarks such as the MPTP Chal-
lenge2 and MPTP2078 [1]. Recently, we have tried to develop a strong suite of
AI/ATP methods that scale to the whole June 2012 version of the Flyspeck [7, 8]
development [14, 15], containing more than 14000 theorems. The best methods
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using the accumulated data have been recently deployed in an online (“cloud-
based”) AI/ATP service for HOL Light [9] formalizations [12, 16]. When running
the 14 strongest methods in parallel, 47% of the Flyspeck theorems can be proved
in 30 seconds without any user interaction. To a significant extent, this perfor-
mance is achieved by learning from the large number of previous proofs various
high-level [22, 32] and low-level [14, 33] guiding methods for state-of-the-art ATP
and SMT systems such as Vampire [19], E [25] and Z3 [3]. A similar work has been
recently undertaken with Isabelle [21].

We believe that this performance is a milestone on the way to John McCarthy’s
AI and QED dream of “Heavy Duty Set Theory”, i.e., a sufficiently smart AI/AT-
P/ITP system that can without forcing mathematicians to struggle with various
current technologies of explicit “proof programming” automatically understand
and check reasoning steps done on the level that is commonly used in mathemati-
cal proofs. If such a system is developed, the current barrier preventing computer
understanding of common mathematical proofs will to a large extent disappear,
and mathematics (and thus all human exact thinking) may enter an era of ubiq-
uitous computer understanding and strong AI assistance.

In this work we employ, further develop, and evaluate a suite of scalable
AI/ATP methods on the whole Mizar library, containing nearly 58000 theorems.
The main experimental result (Section 3) is that the 14 strongest methods run in
parallel for 30 seconds prove 40.6% of the 58000 Mizar theorems without any user
interaction. If users are also allowed to manually select the relevant premises used
then by the ATPs, the performance grows to 56.2%. Our hope is that this perfor-
mance may significantly lower the barrier to formalizing mathematics in the Mizar

system [6], which has a long history of targeting mathematicians with its standard
logical foundations, intuitive proof style, and linguistic closeness to mathematical
vernacular. The various methods used to achieve this performance are described
in Section 2. Section 3 discusses the experiments and results obtained with the
methods, Section 4 takes a brief look at the data obtained from the automatically
found proofs, Section 5 briefly describes the first integration of the methods in the
MizAR online service [34], and Section 6 discusses future work and concludes.

2 Learning Proof Guidance From the MML

The general idea behind the large-theory ATP-for-ITP systems that started to be
developed in the last decade is to combine (i) translations between the ATP and
ITP formalisms with (ii) high-level premise selection methods [1] and (iii) state-
of-the-art ATP systems which can be further strengthened and tuned in various
ways for the large-theory setting. For the translation from the Mizar logic to TPTP
we re-use the existing MPTP translation [29,30]. After several initial experiments
with various ATPs and their versions, we have decided to limit the set of ATPs
to Vampire 3.0, Z3 4.0, and E 1.8 run using the Epar scheduler and strategies [33].
This combination also worked well for the experiments with Flyspeck. In this work,
the main focus is on (ii), i.e., on deploying and improving for MML the suite of
scalable high-level premise selection methods which we have recently developed for
the whole Flyspeck corpus, containing over 20000 formulas. Here premise selection

is the task of choosing a subset of all available facts (premises), which is most
likely to lead to a successful automated deduction proof of a given conjecture.
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The currently strongest premise selection methods for large-theory mathemat-
ics are data-driven [26]: instead of explicit programming of all aspects of knowledge
selection, data-driven methods extract (learn) significant parts of such complicated
algorithms from the existing large libraries of solutions (proofs). This shift from
explicit (theory-driven) programming of AI heuristics to learning AI algorithms
from data is to a large extent responsible for the recent successes in AI domains
such as web search, consumer choice prediction, autonomous car driving, etc. But
this also means that extracting good training data from the MML is equally im-
portant as the methods that learn premise selection on such data. Interestingly, in
large-theory ATP there is a full positive feedback loop [31] between the amoun-
t/quality of the data and the strength of the methods: not only more/better data
produce stronger methods (which is the standard data-driven argument), but also
stronger proving methods produce more/better data in the form of proofs. This is
quite a unique property of this very expressive and fully semantic AI domain, born
quite recently thanks to the development on large formal mathematical libraries
such as the MML [36]. The main body of our work thus consists of the following
steps:

1. Obtaining from the MML suitable data (proof dependencies) on which premise
selection methods can be trained.

2. Developing, training and testing such premise selection methods and their pa-
rameters on a small random subset of the MML.

3. Iterating steps (1) and (2), i.e., using the most successful methods to get more
proofs, and training further methods on them.

2.1 Obtaining Proof Dependencies from the MML

There are 57897 Mizar theorems and unnamed toplevel lemmas in the most recent
official MML 4.181.1147. This set is canonically (chronologically) ordered by the
MML order of articles, and by the (chronological) order of theorems in the arti-
cles. This ordering also applies to the about 90000 other Mizar formulas (typically
encoding the type system and other automations known to Mizar) used in the
problems. Our goal is to prove automatically as many of the 57897 theorems as
possible, using at each point all the available formulas and all information about
previous theorems and their proofs.

The human-written Mizar proofs contain explicit information about the theo-
rems and definitions used. This information is however incomplete. For re-playing
the Mizar proofs with ATPs, a lot of “background” knowledge (typically about
typing of terms) needs to be explicitly added. The MPTP system adds such back-
ground formulas heuristically in a fixpoint manner, by looking at the set of symbols
in the problem and adding the appropriate typing formulas. The average size of
an ATP problem constructed in this way by MPTP is 328 formulas, while the
average number of the explicit Mizar proof references is only 12. In [1] we have
constructed a computationally expensive method (using the Mizar checker) that
reduces the number of the background formulas 2–3 times. However, the measured
performance gain from that method when re-proving with ATPs the MPTP2078
problems was only about 4%, and in [2] it was found that the ATPs still typically
do not use many of the Mizar-needed background formulas. Since learning from
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the minimized ATP proofs is typically superior [15, 22], in the current work we
decided to skip the expensive Mizar-based proof minimization, and focus on using
the ATP proofs of the heuristically constructed re-proving problems coming from
the Mizar theorems. This decision was influenced by older preliminary 20-second
testing using an Intel Xeon 2.67 GHz server, in which Vampire 1.8 proved 20302 of
the MPTP-constructed theorem problems, Epar proved 20324, and together they
proved 23141, i.e., 40% of the theorems.

Table 1 shows the gradual growth of the set of ATP-computed proof dependen-
cies that we mainly use for learning. The first set is obtained by running Vampire

3.0 for 300 seconds3 on the MPTP-constructed re-proving problems. The addi-
tional 1677 solutions in the second set are obtained by learning premise selection
on the first set, and running ATPs for 120 seconds again on various most relevant
slices of the re-proving problems (we always include the explicit Mizar references
in such pruned ATP problems). The following passes no longer prune the MPTP-
constructed re-proving problems. They just use the premise selectors trained on
the previous passes to suggest the most relevant premises, regardless of the original
Mizar proofs, and re-learn from the newly obtained proofs in several iterations as in
the MaLARea system [31, 35]. Such iterations are also quite expensive to compute
for a new development. However, we have shown in [16] that this information can
be in large libraries efficiently re-used and does not need to be computed for every
version again. As in [15], the difference to the original MaLARea iterations is that
at each premise-selection point only the chronologically previous proofs are used
for learning. This corresponds to the ultimate deployment scenario, when always
only the library proofs written so far are known.

Table 1: Improving the dependency data used for training premise selection

Pass ATPs Premise Selection Theorems (%) Dependencies

1 V 300s MPTP re-proving 27842 (48%) 27842
2 V, E, Z3 120s trained on (1), premises limited by (1) 29519 (51%) 30024
3 V, E 120s trained on (2), premises unlimited 30889 (53.4%) 31720
4 V, E 120s trained on (3), premises unlimited 31599 (54.6%) 32976
5 V, E 120s trained on (4), premises unlimited 32010 (55.3%) 35870
6 V, E 120s trained on (5), premises unlimited 32165 (55.6%) 36122

In total, these iterations yield 32165 ATP proofs, and with the final evalu-
ation described in Section 3.2 this number reaches 32557 theorems. This means
that when using either human or AI-based premise selection and their combina-
tions, state-of-the-art ATPs are today able to prove 56.23% of the toplevel MML

theorems. This is a very good motivation for developing good premise-selection
methods.

3 The time limit of 300 seconds has worked well in the previous experiments done over
Flyspeck [15]. Increasing the time limit further does not help significantly and it costs a lot of
resources.



MizAR 40 for Mizar 40 5

2.2 Premise Selection Techniques

The premise selection techniques we start with, are the relatively fast scalable
methods used for Flyspeck in [15]: Naive Bayes (nb) and distance-weighted k-nearest
neighbor [5] (knn). In particular, a family of differently parametrized k-NNs to-
gether with the IDF (inverse document frequency) feature weighting scheme [11]
have recently provided quite significant performance improvement [14]. This is
here extended to naive Bayes (nb_idf). We are interested both in the strongest
possible methods, and also in methods that can be quite weak, but complement
well the stronger methods.

Apart from minor implementational modifications, we characterize each for-
mula with the syntactic features used by MaLARea: symbols, terms and subterms
of the formula. In the most successful methods, all variables in such features are
renamed to just one variable A0 (widening the similarity relation), however to a
smaller extent, also the features with original variables are useful. Following the
recent successful use by MaLARea 0.5 in the 2013 CASC LTB competition [17] we
also add a version of distance-weighted k-NN using the Latent Semantic Index-
ing [4] (LSI) preprocessing of the feature space done efficiently by the gensim [23]
toolkit. We test the LSI preprocessing with 800, 3200, and 6400 topics (lsi_800
.. lsi_6400), and also versions with and without the TF-IDF feature scaling (e.g.,
(lsi_3200ti)).

The next modification of k-NN are various recursive schemes for weighting
the neighbors’ dependencies. The geo_1_F version stops the dependency recursion
at the first level, weighting each dependence of a neighbor N by the factor F ∗
distance(N) (where F ∈ (0, 1)), and taking maximum (instead of sum) of such
weights over all neighbors. The geo_r_F version does full dependency recursion,
weighting the indirect dependencies by F recursionlevel ∗ distance(N), and again
taking maximum over all such factors.

In [22] a linear combination of the strongest learning method with the SInE [10]
heuristic produced very good results. This is an instance of ensemble learning where
multiple base methods are combined into stronger classifiers. We heuristically ex-
plore combinations of the various base methods using various weighting schemes.
In addition to the linear combination, we try geometric, harmonic, and quadratic
average, and also use minimum and maximum of ranks. In particular taking the
minimal rank (comb_min) and the geometric average (comb_geo) of ranks (computed
as additions of logarithms) turn out to be quite successful. This can be explained
in various ways, for example, taking the geometric average is the correct way of
averaging ratios. Since ATPs are very (probably exponentially) sensitive to the
number of axioms, treating the particular aggregated rankings as ratios is quite
likely fitting to our domain (e.g., the ratio between 50th and 60th premise is 1.2,
while the ratio between 10th and 20th premise is 2, whereas the linear distance is
the same in the two cases).

We also try several methods of boosting [24]: using for training of the next
method only those proof dependencies that are badly predicted by the previous
methods. While we believe that there are good reasons why this approach should
help (e.g., our current methods being quite simple and thus hard to fit to more
complicated ideas), so far this has not provided significant improvements.
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All the tested methods4 (apart from LSI (gensim) and SInE (E prover)) are
now uniformly implemented in OCaml, which gives significant speedup over the
initial Perl implementation on the large number of features, labels and examples
used when training over the whole MML (the number of features reaches several
hundred thousand). The most useful methods are further implemented in C++,
making them about twice as fast as their OCaml version. A particularly useful low-
level optimization is the use of partial sorting (based on heapsort) of the scores
according to the number of premises demanded from a particular premise-selection
method. For example, if only 128 premises are needed, the partial sorting is much
more efficient than full sorting of the whole array of 150000 MML formulas.

2.3 ATPs and Their Low-Level Guidance

No particular development of ATP strategies was done for this work on the whole
MML. However, thanks to the recent CASC competitions containing Mizar divisions
(Mizar@Turing12, CASC LTB 2013) the recent versions of Vampire and Epar seem
to be tuned well for MPTP2078. In particular, a set of strong strategies for E has
been automatically developed by BliStr [33] in 2012 on the 1000 Mizar@Turing12
problems, raising the performance on MPTP2078 over E’s auto-mode by 25%.
A second round of such strategy evolution on these 1000 problems was done for
MaLARea 0.5 in CASC LTB 2013, where additionally a number of strong SInE

strategies were evolved. Vampire 3.0 is on MML 16% stronger than Vampire 2.6.

3 Experiments and Results

3.1 Experiments and Results on a Random Subset of 1930 Problems

Most of the experimental research was done on a random subset of MML consisting
of 1930 theorems (more precisely, every 30th theorem was used). For each of these
theorems, the premise selection methods were trained on all the preceding proof
data (Section 2.1), and chosen numbers (32, 64, 96, 128, 256, 512 and 1024) of the
best-ranked premises were given to the ATPs. Most of the experiments during the
development of the premise selection methods were done with Vampire 3.0. The
final experiments were extended to Epar and Z3. As in [15], the systems were run
with a 30 second time limit on a 48-core server with AMD Opteron 6174 2.2 GHz
CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. In real time, each evaluation
thus took 2–3 hours for one ATP. In total, 70 different premise-selection methods
have been tried on the random sample, see our web page for a detailed listing.5

Table 2 shows the fourteen methods and their parameters that performed best
on the 1930-subset. The Σ-SOTAC (State of the art contribution) is the sum of a
system’s SOTAC over all problems attempted, where for each problem solved by
a system, its SOTAC for the problem is the inverse of the number of systems in
our evaluation that solved this problem. This metric shows how useful a particular
method is in a collection of other methods (in this case all the 70 methods that
have been tried).

4 For their details see http://cl-informatik.uibk.ac.at/users/cek/mizAR/legend.txt
5 http://cl-informatik.uibk.ac.at/users/cek/mizAR/5yp.html

http://cl-informatik.uibk.ac.at/users/cek/mizAR/legend.txt
http://cl-informatik.uibk.ac.at/users/cek/mizAR/5yp.html
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Table 2: 14 best premise selection methods on the 1930-subset

Method Parameters Premises ATP Theorem (%) Σ-SOTAC

comb min 2k 20 20 128 Epar 550 (28.50) 2.41
comb geo 3k 50 00 96 V 544 (28.19) 1.94
lsi 3200ti 8 80 128 Epar 537 (27.82) 2.17
comb geo 1k 33 33 96 V 535 (27.72) 1.60
comb geo 10k 33 33 96 V 533 (27.62) 1.73
comb geo 3k 20 20 96 V 533 (27.62) 1.71
comb geo 3k 33 33 96 V 533 (27.62) 1.63
comb geo 3k 25 25 25 96 V 532 (27.57) 1.62
comb har 2k k200 33 33 256 Epar 532 (27.57) 2.19
comb geo 3k 33 33 96 V 531 (27.51) 1.69
comb geo 3k 50 00 128 V 531 (27.51) 1.76
comb geo 1k 33 33 128 V 529 (27.41) 1.68
knn is040 128 V 528 (27.36) 1.85
knn is 40 96 Epar 528 (27.36) 2.40

Theorem (%): Number and percentage of theorems proved by a system.
Σ-SOTAC: See the explanatory text for this metric.

Table 3 shows the 14 methods that collectively (when computed in a greedy
way)6 cover as many of the 1930 problems as possible. To be as orthogonal as
possible, the methods in this set differ a lot in their parameters, the data trained
on, and the number of best premises given to the ATP. Their joint performance
on this subset is 44%. All the 70 tested methods together solve 968 of the 1930
problems, i.e., 50.155% .

Table 3: The top 14 methods in the greedy sequence on the 1930-subset

Method Parameters Deps Premises ATP Sum % Sum

comb min 2k 20 20 ATP6 128 Epar 28.497 550
comb qua k200 3k 33 33 ATP4 512 V 32.798 633
comb geo 3k 33 33 ATP3 64 V 35.959 694
lsi 3200ti 8 80 ATP6 128 Z3 37.461 723
geo r 99 ATP6 64 V 38.653 746
knn 200 ATP1+Mizar 1024 V 39.741 767
nb idf010 ATP6 128 Epar 40.725 786
comb min 20 20 ATP2 128 V 41.347 798
comb geo 3k 50 00 ATP3 1024 V 41.969 810
knn is040 ATP1 1024 Epar 42.487 820
knn is 40 ATP6 96 Z3 43.005 830
geo 1 66 ATP3 1024 V 43.420 838
lsi 6400 8 120 ATP1 64 V 43.782 845
geo 1 33 ATP3 256 V 44.093 851

6 Such greedy (covering) sequence of methods starts with the best method, and each next
method in such sequence is the one that greedily adds most solutions to the union of solutions
of the previous methods in the sequence.



8 Cezary Kaliszyk, Josef Urban

3.2 Experiments and Results on the Whole MML

When the developed methods on the 1930-subset reached sufficiently high joint
performance, we evaluated the most useful 14 methods on the whole MML, again
with a 30-second time limit. This took about one week of real time on our server.
The performance of these methods is shown in Table 4. The methods are ordered
there from top to bottom already by their position in the greedy covering sequence
for the whole MML. The table says that running these fourteen methods in parallel
for 30 seconds gives a 40.6% chance of solving an MML theorem without any user
interaction. The best previous result in such fully automated learning/proving over
the whole MML was 18%, achieved in [2] by running Vampire 0.6 for 20 seconds
(using about twice as fast Intel Xeon machine than our AMD server) on 200 best-
ranked premises proposed by the SNoW system using the Naive Bayes learner.
Since this was just a single method, a fair comparison is with the best method
developed here, which solves 27.3%, i.e. 50% more problems. One of the reasons
for this improvement are obviously the better training data developed here by the
six MaLARea-style proving/learning passes over the MML.

It should be however noted that much better results than 18% have been
achieved on smaller benchmarks such as MPTP2078, where more expensive meth-
ods such as kernel-based learning [22] could be applied. Comparison with those
results is however possible only in a high-level way: we use different MML ver-
sion here, different versions of the ATPs, coarser slices of the best premises, and
we do not limit the premises only to those available in the 33 articles used for
MPTP2078. The best result on MPTP2078 reported in [20] was 823 problems
(out of 2078) solved with 70 premises, Vampire 0.6 and 5s on an Intel Xeon ma-
chine. The best new performance on the 2061 problems corresponding to the 33
MPTP2078 articles in the current MML is 1059 problems solved in 30 seconds by
Epar using 128 best premises.7 To make a bit closer comparison, we test the current
best-performing method on the 2061 problems also with the old Vampire 0.6 and
5 seconds on the old Intel machine, solving 726 problems. This is practically the
same result as the performance of the best old kernel-based method (combined
with SInE) on the MPTP2078 benchmark when using 128 premises. This seems to
be an evidence (modulo all the differences named above) that the methods based
on fast scalable learning techniques such as k-NN can with enough care catch up
with the existing kernel-based techniques. Quite likely, this is however not the last
word, and we hope to get further improvements by scaling up and strengthening
the kernel-based and related methods.

4 Proofs

We have briefly compared the shortest ATP proofs found with the correspond-
ing MML proofs. For this, we only consider the 28892 named Mizar theorems for
which we have obtained either a human or AI-advised ATP proof. The complexity
metric used for a human-written Mizar proof is just the number of proof lines in
the Mizar article, while for the ATP proofs we use the number of dependencies.8

7 The detailed results restricted to the 2061 problems are at http://cl-informatik.uibk.
ac.at/users/cek/mizl/mptp2k.html.

8 These choices can obviously be questioned, but as a first comparison they are useful enough.

http://cl-informatik.uibk.ac.at/users/cek/mizl/mptp2k.html
http://cl-informatik.uibk.ac.at/users/cek/mizl/mptp2k.html
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Table 4: 14 most covering methods on the whole MML, ordered by greedy coverage.

Method Parameters Prems. ATP Σ-SOTAC Theorem (%) Greedy (%)

comb min 2k 20 20 128 Epar 1728.34 15789 (27.3) 15789 (27.2)
lsi 3200ti 8 80 128 Epar 1753.56 15561 (26.9) 17985 (31.0)
comb qua 2k k200 33 33 512 Epar 1520.73 13907 (24.0) 19323 (33.4)
knn is 40 96 Z3 1634.50 11650 (20.1) 20388 (35.2)
nb idf010 128 Epar 1630.77 14004 (24.2) 21057 (36.4)
knn is 80 1024 V 1324.39 12277 (21.2) 21561 (37.2)
geo r 99 64 V 1357.58 11578 (20.0) 22006 (38.0)
comb geo 2k 50 50 64 Epar 1724.43 14335 (24.8) 22359 (38.6)
comb geo 2k 60 20 1024 V 1361.81 12382 (21.4) 22652 (39.1)
comb har 2k k200 33 33 256 Epar 1714.06 15410 (26.6) 22910 (39.6)
geo r 90 256 V 1445.18 13850 (23.9) 23107 (39.9)
lsi 3200ti 8 80 128 V 1621.11 14783 (25.5) 23259 (40.2)
comb geo 2k 50 00 96 V 1697.10 15139 (26.1) 23393 (40.4)
geo r 90 256 Epar 1415.48 14093 (24.3) 23478 (40.6)

These statistics, sorted by the largest difference between these metrics is available
online9, together with the ATP dependencies used for this comparison10. For ex-
ample the first entry says that the ATP proof of the theorem REARRAN1:2411 has a
534-lines long Mizar proof, while the shortest ATP proof found has only 5 depen-
dencies. Indeed, this greatest AI/ATP-found proof shortening is valid, thanks to
a symmetry between the concepts used in this theorem and a previously proved
theorem REARRAN1:1712 which can be established quite quickly from the concepts’
definitions. The Mizar proof instead proceeds by repeating the whole argument
from scratch, modifying it at appropriate places to the symmetric concepts. The
AI/ATP toolchain has thus managed to succinctly express the difference between
the two theorems in a very explicit and operational way, while the human authors
probably were on some level also aware of the symmetry, but were not able to
capture it so precisely and succinctly. In some sense, the AI/ATP system has thus
managed to find, precisely formulate, and productively use a new mathematical
trick.

This comparison, showing such most striking shortenings, is also useful for
heuristic checking of the correctness of the whole translation/AI/ATP toolchain.
By random inspection of a dozen of such shortenings, no suspicious proofs were
found, i.e., all the inspected ATP proofs could be replayed in Mizar. On the other
hand, some of the ATP proofs can get very long, and may be probably already
quite hard to understand without further refactoring and presentation methods.

Finally, the Mizar proof length expressed in terms of the lines of code can
also serve as another metric for measuring the performance of the ATP meth-
ods. The total number of the Mizar source lines used for the proofs of the 52248
named toplevel theorems is 1297926. The sum of the Mizar proof lines of the 28892
named theorems that were proved automatically (either from human or AI-selected
premises) is 300914. This means that on average 23.2% of the proof lines can be
“written automatically”, if such automation is called on the toplevel named theo-

9 http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/00prdiff15.html
10 http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/00atpdeps
11 http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/rearran1.html#T24
12 http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/rearran1.html#T17

http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/00prdiff15.html
http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/00atpdeps
http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/rearran1.html#T24
http://mizar.cs.ualberta.ca/~mptp/mml4.181.1147/html/rearran1.html#T17
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rems. This is a metric that in some sense complements the 56.23% ratio obtained
in Section 2.1, showing that the ATPs are much better in proving the Mizar-easy
theorems. On the other hand, the 23.2% average would be obviously improved a lot
if also the proof-local lemmas were included in the experiments, and the number
of lines corresponding to such lemmas was appropriately included in the statistics.

5 Integration with MizAR

The new optimized C++ versions of the premise selectors are sufficiently fast to
train on the whole MML in 1–3 seconds. This simplifies the integration of the
methods in the MizAR service. For each query, the premise selectors are always
first trained on the whole MML and also on the features and proof dependencies
added from the current article.13 After such training, the premise selectors are
presented with the conjecture features, to which they respond by ranking the
available theorems according to their relevance for the conjecture. The several
premise selection methods with their corresponding ATPs are run in parallel, and
if successful, the result is communicated to the user. The main MizAR server (Intel
Xeon 2.67 GHz) is considerably faster than the AMD machines used for most of
the experiments.

The service thus always updates itself with new data: the conjecture is always a
part of a particular Mizar article, which is submitted as a whole to the system. How-
ever, in comparison with the recently produced HOL Light service (HOL(y)Hammer),
the updating is so far more limited. We do not yet try to get (for better train-
ing) the minimized ATP proofs of the article’s theorems that precede the current
conjecture. One reason is that, unlike in HOL(y)Hammer, the MizAR service allows
anonymous uploads of whole articles, but does not yet keep such projects persis-
tent. Adding such persistence should make the computing and minimization of
ATP proofs less expensive, because such data can then be quite efficiently cached
and re-used (see Section 3 of [16]).

Another difference to the HOL Light setting is the very common use of local
constants (eigenvariables) in the Jaśkowski-style Mizar proofs. The large-scale ex-
periments (and thus also the training data obtained from them) presented here
only deal with the set of toplevel Mizar theorems which do not contain such proof-
local constants. This has two different effects when proving the proof-local lemmas
that contain such constants:

1. The local assumptions and lemmas about such constants are naturally preferred
by the premise selectors (in particular when using weighting schemes such
as TF-IDF [14]), because such local constants (which always have a distinct
internal name) and the terms containing them are rare. This is good, because
such local lemmas are typically quite relevant to the local conjecture.

2. The feature representation of the proof-local lemmas may become quite dis-
tant (in the various metrics used by k-NN) from the general theorems that
are needed to justify such lemmas, because many terms in the lemmas are in-
stantiated with the local constants. This may be a serious problem, preventing
finding the relevant theorems.

13 In the MizAR service, the conjecture is always submitted with the whole Mizar article in
which the conjecture is stated.
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We use a simple method to counter (2): We generalize all local constants in such
proof-local conjectures to variables. The term features of such generalized versions
of the lemmas are used together with the standard term features. This is clearly
just a first step, the general task of getting features that indicate for example the
(lack of) the instantiation relationship between two formulas is quite interesting,
and various syntactic and semantic methods are possible [18]. Further experiments
and evaluation of such issues, as well as of the user-perceived strengthening of the
MizAR service are left as future work.

6 Conclusion, Future Work and Thanks

The main result of this work is the 40.6% success rate in proving the toplevel
Mizar theorems fully automatically. This has been achieved by several iterations
of implementing better premise selection methods, using them to obtain better
training data, and using such data to further improve the performance of the
learning methods. The methods were implemented very efficiently, allowing their
easy deployment in the MizAR service. We believe that such strong AI/ATP sys-
tems are very useful tools that make formal mathematics much more accessible,
and their gradual strengthening is today one of the most promising paths towards
the eventual adoption of computer-assisted mathematics (and exact science) by
mainstream mathematicians (and exact scientists).

The main body of future work is thus further strengthening of the various parts
(e.g., features/labels and the whole learning setup, machine-learning techniques,
ATPs) of the AI/ATP methods. Also, more advanced proof reconstruction such
as [13, 27] is still missing for Mizar. With longer and longer ATP proofs, human-
friendly transformations and presentations of such proofs are becoming more and
more important tasks that will quite likely also benefit from learning the “human-
friendliness” from large repositories of human-oriented proofs such as the MML.

Thus it seems that the forty years of incessant and stubborn designing and
building of the human-oriented formal mathematical language and large library
by the Mizar team, and in particular by the recently deceased Mizar gurus Andrzej
Trybulec and Piotr Rudnicki, have already resulted in one of the most interesting
AI corpora currently available to mankind. It will be quite hard for the historians
to properly enumerate all their inventions that led to the current state of the art.
We would like to thank Andrzej and Piotr for this lifelong Opus Magnum, for their
infatuating dreams, their wide and never-ending interest in science (and science
fiction), and for their great sense of fun combined with high doses of self-criticism,
down-to-earth common sense, caution and modesty, that made them into such
great scientists, hackers, teachers, debaters, critics, and friends.
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21. Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. MaSh:
Machine learning for Sledgehammer. In Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie, editors, Proc. of the 4th International Conference on Interactive Theo-
rem Proving (ITP’13), volume 7998 of LNCS, pages 35–50. Springer, 2013.
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