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Abstract

In this paper we describe our combined statistical/semantic parsing method based on the
CYK chart-parsing algorithm augmented with limited internal typechecking and external
ATP filtering. This method was previously evaluated on parsing ambiguous mathematical
expressions over the informalized Flyspeck corpus of 20000 theorems. We first discuss the
motivation and drawbacks of the first version of the CYK-based component of the algorithm,
and then we propose and implement a more sophisticated approach based on better statistical
model of mathematical data structures.

1 Introduction

Computer-understandable (formal) mathematics is today still quite far from taking over the
mathematical mainstream. Despite the impressive formalizations such as Flyspeck [5], Feit-
Thompson [4], seL4 [11], CompCert [13], and CCL [2], and the progress in general automation
over such large formal corpora, formalizing proofs is still largely unappealing to mathematicians.
While the research on AI and strong automation over large theories has taken off in the last
decade and automation improvements are today coming from several directions, there has been so
far very little progress in automating the understanding of informal LATEX-written and ambiguous
mathematical writings.

Recently, we have proposed to try to change this state of affairs by learning how to parse
informal mathematics from aligned informal/formal corpora [10]. Such learning can be addi-
tionally combined with strong semantic filtering methods such as typechecking and large-theory
ATP. Suitable aligned corpora are appearing today, the major example being Flyspeck and in
particular its alignment (by Hales) with the detailed informal Blueprint for Formal Proofs [5].
Very recently [9] we have implemented the first version of a statistical/semantic parsing toolchain
that learns parsing rules from many pairs of ambiguous/nonambiguous Flyspeck formulas, and
combines statistical parsing of new ambiguous formulas with internal semantic pruning and ex-
ternal proving/disproving step. The resulting parsing/proving system trained on all of Flyspeck
is available online1 and can be used for experimenting with parsing ambiguous statements.

In this short paper we explain in more detail the particular statistical learning/parsing
approach based on the CYK chart parsing algorithm [14] for probabilistic context-free grammars
(PCFG) that we have been using (Sec. 2.1), and focus on some drawbacks of the context-
free approach that can negatively influence the statistical learning and parsing performance
(Sec. 2.2). We demonstrate this on a simple example, where the PCFG setting is not strong
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enough to eventually learn the correct parsing (Sec. 3.1). Then we propose and implement
a modification of CYK that takes into account larger parsing subtrees and their probabilities
(Sec. 3.2). This modification is motivated by an analogy with large-theory reasoning systems.
There, the precision of the probabilistic selection of the right premises for a new conjecture can
typically be significantly improved by considering the large number of term and formula subtrees
of the data, rather than just characterizing formulas and their similarity by the bare symbols
appearing in them. Finally, we report the first measurements done with the new implementation
and discuss future work (Sec. 3.3).

2 Training Statistical Parsing on Aligned Corpora

2.1 PCFG

Given a large corpus of corresponding informal/formal (ambiguous/nonambiguous or LATEX/HOL)
formulas, how do we automatically train an AI system that will correctly parse the next informal
formula into a formal one?

Our domain differs from the natural-language domains, where millions of examples of paired
(e.g., English/German) sentences are available for training machine translation, the languages
have many more words (concepts) than in mathematics, and the sentences to a large extent
also lack the recursive structure that is frequently encountered in mathematics. Given that we
currently have only thousands of the informal/formal examples, we have decided against using
purely statistical alignment methods based on n-grams, and rather investigated methods that
can learn how to compose larger parse trees from smaller ones based on those encountered in
the limited number of examples that we have.

One well-known approach ensuring this kind of compositionality is the use of CFG (Context
Free Grammar) parsers. This approach has been widely used, e.g., for word-sense disambiguation
in natural languages, which is another linguistic area close to our informal/formal task. An
advantage of this approach is the existence of a parsing algorithm that works in polynomial
complexity wrt. the size of the parsed sentence and the input grammar. A well-known and
frequently used example is the CYK (Cocke–Younger–Kasami) chart-parsing algorithm [14],
using bottom-up parsing and dynamic programming. By default CYK requires the CFG to be
in the Chomsky Normal Form (CNF), and the transformation to CNF can cause an exponential
blow-up of the grammar. However, an improved version of CYK can be used that gets around
this issue [12].

A CFG-based parser obviously needs for its work the input grammar – the set of all grammar
rules that can be used for parsing. In linguistic applications such grammar is typically extracted
from grammar trees which correspond to the correct parses of natural-language sentences. Great
efforts have been made in the linguistic community to create large treebanks of such correct
parses – typically taking years of manual annotation work. The grammar rules extracted from
the treebanks are typically ambiguous: there are multiple possible parse trees for a particular
sentence. This is why CFG is extended by adding a probability to each grammar rule, resulting in
PCFG (Probabilistic CFG). During the PCFG parsing of an ambiguous sentence, each resulting
parse tree is assigned its probability, which allows to focus on the few parses that are most
probable wrt. the treebank of training examples. The grammar rule probabilities can be trained
e.g. by the inside-outside algorithm [1].
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2.2 Using PCFG for learning informal/formal alignment

We have so far experimented with several ways how to set up the parsing grammar and its
learning. The most low-level approach consists of using the simplest HOL Light lambda calculus
internal term structure [6], where terms and types are annotated with only a few nonterminals
such as: Comb (application), Abs (abstraction), Const (higher-order constant), Var (variable),
Tyapp (type application), and Tyvar (type variable). This has led to many possible parses in
the context-free setting, because the top-level learned rules become very universal, e.g:

Comb -> Const Var.

Comb -> Const Const.

Comb -> Comb Comb.

So far, the type information does not help to constrain the applications, and the last rule allows
a series of several constants to be given arbitrary application order, leading to uncontrolled
explosion.

That is why we have first re-ordered and simplified the HOL Light parse trees to propagate
the type information at appropriate places where the context-free rules have a chance of providing
meaningful pruning information. For example, the raw HOL Light parse tree for theorem

REAL_NEGNEG: !x. --(--x) = x

is as follows (see also the tree in Fig. 1):

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")) (Tyapp "bool")))

(Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun" (Tyapp "real") (Tyapp "fun"

(Tyapp "real") (Tyapp "bool")))) (Comb (Const "real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp

"real"))) (Comb (Const "real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0"

(Tyapp "real"))))) (Var "A0" (Tyapp "real")))))

Note that the CFG rules for this tree are often very general: e.g., the top-level node produces
the rule Comb -> Const Abs, etc. After our re-ordering and simplification the parse tree used
for grammar generation becomes (see also Fig. 2):

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" real_neg ("(Type real)" real_neg ("(Type real)" (Var A0)))) = ("(Type real)"

(Var A0))))))

The CFG rules extracted from this transformed tree become quite a bit more meaningful,
e.g., the two rules:

"(Type bool)" -> "(Type real)" = "(Type real)".

"(Type real)" -> real_neg "(Type real)".

say that equality of two reals has type bool, and negation applied to reals yields reals. Such
“typing” rules restrict the number of possible parses much more than the general “application”
rules extracted from the original HOL Light tree, while still having a non-trivial generalization
(learning) effect that is needed for the compositional behavior of the information extracted from
the trees. For example, once we learn that the variable “u” is mostly parsed as a real number,
we will be able to apply real_neg to “u” even if the particular subterm ‘‘-- u’’ has never
yet been seen in the training examples, and the probability of this parse will be relatively high.
In other words, having the HOL types as “semantic categories” (corresponding e.g. to the word
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Figure 1: HOL Light parse tree

senses when using PCFG for word-sense disambiguation) seems to be quite a reasonable first
choice for the experiments, even though one could probably come up with even more appealing
semantic categories based on more involved statistical and semantic analysis of the data.

We should also note that ambiguous notation, such as ‘‘--’’, is wrapped in the training
trees in its disambiguated “semantic” nonterminal – in this case $#real_neg. While the type
annotation might often be sufficient for disambiguation, such explicit disambiguation nontermi-
nal is both more precise and allows easier extraction of the HOL semantics from the constructed
parse trees. The actual tree used for training the grammar is thus as follows (see also Fig. 3):

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" ($#real_neg --) ("(Type real)" ($#real_neg --) ("(Type real)" (Var A0))))

($#= =) ("(Type real)" (Var A0))))))

Once the PCFG is learned from such data, we use the CYK algorithm with additional internal
lightweight semantic checks to parse ambiguous formulas. These semantic checks are performed
to require compatibility of the types of free variables in parsed subtrees. The most probable
parse trees are then given to HOL Light and typechecked there, which is followed by proof and
disproof attempts by the HOL(y)Hammer system [7], using all the semantic knowledge available
in the Flyspeck library (about 22k theorems). See Fig. 4 for the overall structure of the system.
The first large-scale disambiguation experiment conducted over “ambiguated” Flyspeck in [9]
showed that about 40% of the ambiguous sentences have their correct parses among the best 20
parse trees produced by the trained parser. This is encouraging, but certainly invites further
research in improving the statistical/semantic parsing methods.
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"(Type bool)"

! "(Type (fun real bool))"
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"(Type real)" "(Type bool)"

Var
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Var

A0
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Figure 2: Transformed tree of REAL_NEGNEG

3 Adding Context

A major limiting issue when using PCFG-based parsing algorithms is the context-freeness of the
grammar. In some cases, no matter how good are the training data, there is no way how to set
up the parsing rules probabilities so that the required parse will have the largest probability.

3.1 Example

Consider the following term:

1 * x + 2 * x.

with the following simplified grammar tree (Fig. 5) as our training data (treebank):

(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

From the grammar tree we extract the following CFG:

S -> Num .

Num -> Num + Num

Num -> Num * Num

Num -> 1

Num -> 2

Num -> x

If we use this grammar for parsing the original (non-bracketed) sentence, we obtain the
following five possible parse trees:
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"(Type bool)"

! "(Type (fun real bool))"
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Figure 3: The tree of REAL_NEGNEG used for actual grammar training

INPUT
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and
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Figure 4: The statistical/semantic parsing toolchain.
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S

Num .

Num + Num

Num * Num

1 x

Num * Num

2 x

Figure 5: Example grammar tree

(S (Num (Num 1) * (Num (Num (Num x) + (Num 2)) * (Num x))) .)

(S (Num (Num 1) * (Num (Num x) + (Num (Num 2) * (Num x)))) .)

(S (Num (Num (Num 1) * (Num (Num x) + (Num 2))) * (Num x)) .)

(S (Num (Num (Num (Num 1) * (Num x)) + (Num 2)) * (Num x)) .)

(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

Only the last tree however corresponds to the training tree. The problem is that no matter
what probabilities we add to the grammar rules, we cannot make the priority of + smaller than
the priority of *: a context-free grammar forgets the context and cannot remember and apply
complex mechanisms such as priorities. The probability of all parsed trees is in this case always
the same:

p(S -> Num .) × p(Num -> Num + Num) × p(Num -> Num * Num) × p(Num -> Num * Num)×
p(Num -> 1) × p(Num -> 2) × p(Num -> x) × p(Num -> x)

While the example does not strictly imply the priorities as we know them, it is clear that we
would like the grammar to prefer parse trees that are in some sense more similar to the training
data. One method that is frequently used for dealing with similar problems in the NLP domain
is grammar lexicalization [3] where additional terminal can be appended to nonterminals and
propagated from the subtrees, thus creating many more possible (more precise) nonterminals.
This approach however does not solve the particular problem with operator priorities. We
also believe that considering probabilities of larger subtrees in the data as proposed below is
conceptually cleaner.

3.2 Considering Subtrees

The underlying idea is a simple analogy with the n-gram statistical machine-translation models,
or with the large-theory premise selection systems where characterizing formulas by all subterms
and subformulas typically considerably improves the performance of the algorithms [8]. While
considering subtrees may initially seem computationally involved, we believe that by using good
indexing datastructures it becomes feasible, solving some the PCFG problems mentioned above
in a reasonably clean way.
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In more detail, the idea is as follows. We will extract not just subtrees of depth 2 from the
treebank (as is done by PCFG), but all subtrees of certain depth. So far we work with depth 3,
but other depths and approaches (e.g., frequency-based rather than depth-based) are possible.
During the CYK parsing we will adjust the probabilities of the parsed subtrees also according
to the subtree statistics extracted from the treebank. The extracted subtrees will be technically
treated as new “grammar rules” of the form:

root of the subtree -> list of the children of the subtree

We will learn the probabilities of these new grammar rules, formally treating the nonterminals on
the left-hand side as different from the old nonterminals when counting the probabilities (this
is the current technical solution, which can be modified in the future). Since the right-hand
side of the new grammar rules contains whole subtrees, we will be able to compute the parsing
probabilities using more context/structural information than in PCFG.

In our example, after the extraction of all subtrees of depth 3 followed by a suitable adjust-
ment of their probabilities, we would get a new “extended PCFG”. This grammar could again
parse all the five different parse trees as above, but they would have different probabilities, and
the training tree would obviously be the most probable one. For example the probability of the
original treebank parse would be:

p(Num -> (Num 1)) × p(Num -> (Num x))×
p(Num -> (Num 2)) × p(Num -> (Num x))×

p(Num -> (Num Num * Num) + (Num Num * Num))×
p(S -> Num .)

On the other hand, the probability of some of the parses (e.g., the first two when using the
original algorithm) would remain unmodified, because in these parses there are no subtrees of
depth 3 from the training tree.

3.3 Technical Implementation

We use a discrimination tree D to store the subtrees from the treebank and to quickly look
them up during the chart parsing. When a particular cell in the chart is finished (we know
all its parses), we go through all its parses and try to look up their subtree of depth 3 in
the discrimination tree D. If we succeed, we recompute the probability according to the new
“subtree grammar rule”, compare the resulting probability with the old one, and keep the better
one.

The subtree lookup is logarithmic, however the number of subtrees we may need to look up
can grow quite a lot in the worst case. This is why we have kept the depth at 3 so far. We
have not done an extensive evaluation yet, however preliminary experiments with depth 3 and
limiting CYK to the best 10 parses show that the new implementation is actually a bit faster
than the old one. In particular, when training on all 21873 Flypeck trees and testing on 11911 of
them, the new version is about 23% faster than the old one (10342.75s vs 13406.97s total time).
The new version also fails to produce at least a single parse less often than the old version (631
vs 818).

This likely means that the subtrees help to promote the correct parse, which in the old version
is considered at some point too improbable to make it into the top 10 parses and consequently
thrown away by the greedy optimization. The correct (training) parse appears among the best
10 parses in 39% of the 11911 examples for the old algorithm (their average rank there being
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2.68), and in 58% cases of the 11911 examples for the new algorithm (their average rank there
being 1.97). While this is just a preliminary evaluation where we use the training data also
for testing and do not run external typechecking and ATPs, this improvemnt in the parsing
precision is very promising. Thorough experimental evaluation and further optimization of the
set of subtrees used by the algorithm is future work.
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