
System Description: E.T. 0.1

Cezary Kaliszyk?1, Stephan Schulz2, Josef Urban??3, and Jiří Vyskočil4

1 University of Innsbruck, Austria
2 DHBW Stuttgart

3 Radboud University Nijmegen
4 Czech Technical University in Prague

Abstract. E.T. 0.1 is a meta-system specialized for theorem proving
over large first-order theories containing thousands of axioms. Its design
is motivated by the recent theorem proving experiments over the Mizar,
Flyspeck and Isabelle data-sets. Unlike other approaches, E.T. does not
learn from related proofs, but assumes a situation where previous proofs
are not available or hard to get. Instead, E.T. uses several layers of
complementary methods and tools with different speed and precision
that ultimately select small sets of the most promising axioms for a given
conjecture. Such filtered problems are then passed to E, running a large
number of suitable automatically invented theorem-proving strategies.
On the large-theory Mizar problems, E.T. considerably outperforms E,
Vampire, and any other prover that does not learn from related proofs.
As a general ATP, E.T. improved over the performance of unmodified E
in the combined FOF division of CASC 2014 by 6%.

1 Introduction

The latest release of the TPTP benchmark library [22], TPTP 6.1.0, contains
20646 problems for theorem provers. More than a third of these problems have
more than 100 axioms, more than 10% (2664) have more than 1000 axioms, and
more than 5% (1231) have more than 10000 axioms.

Traditional (pre-1990) automated theorem proving (ATP) did not focus on
such large problems. First experience with larger problems came from Quaife’s
work in the early 1990s [19]. Quaife identified the selection of relevant axioms as
a possible way to handle large specifications, but did not offer detailed solutions.

Currently, large ATP problems are coming from ATP-to-ITP (interactive
theorem provers) linkups (hammers [3]) such as Sledgehammer [16], HolyHam-
mer [12,11] and MizAR [9], and common-sense reasoning [18] (or reasoning with
the world’s knowledge [25]) problems. Another interesting recent source of larger
ATP problems is the work in Tarskian geometry by Beeson and Wos [2], con-
taining in some cases over 300 clauses. We strongly believe that today’s age of
Big Data will lead to more and more large-theory problems, including problems
generated from Wikipedia [6], biology textbook encoding [5], and other science
? Supported by the Austrian Science Fund FWF grant P26201.

?? Supported by NWO grant nr. 612.001.208.



domains. Strong and practically usable methods and systems for proving large
problems will be crucial for meaningful use of ATP in these new domains.

In the context of ATP/ITP cooperation, a number of methods have been de-
veloped recently to attack large problems. In pure ATP systems there has so far
been basically just one (highly successful) method for dealing with large prob-
lems: the SInE heuristic invented by Hoder, implemented first as a standalone
filter [29] and then inside Vampire [15,7] and E [20].

This paper describes E.T., a general large-theory ATP system based on E.
It uses a combination of several methods transferred from the recent AITP5

research. In Section 6 we show that the first version of E.T. already performs
very well on large problems from the MPTP2078 benchmark, improving over
plain E and Vampire by 98% resp. 22%. When used as a general ATP, E.T. has
improved the performance of plain E in the combined FOF division of CASC
2014 by 6%. E.T. is available at http://mws.cs.ru.nl/~urban/et10.

2 Overview of E.T.

E.T. is intended for solving ATP problems that have one defining feature: they
contain a large fraction of axioms that are not necessary for proving the con-
jecture. A secondary aspect of such large problems is that they often contain
lemmas that can be used to construct alternative proofs. Thus it is useful to
have a portfolio of complementary strategies that can select different promising
axiom subsets and optimize the proof search over them.

We assume a setting in which a sequence of independent problems is presented
to the system. In partcular, we do not assume that many related problems are
being solved so that one could use consistent symbol and formula names and
previous proofs in learning how to prove the next problems. Neither do we assume
that common axioms are pre-loaded and expensively pre-processed once. Instead,
the reading and preprocessing is done independently for each query.

This setting corresponds to the FOF division of CASC, which uses problems
of various origins. It excludes some of the strongest and most obvious learn-
ing methods [13] possible in the “Large Theory Batch” scenario, where many
problems share a background theory. However, ideas can still be transferred.
For example, strategy invention as done by BliStr [28] can be used on sets of
problems that do not share symbols and formula names.6

Similarly, one can use a number of symbolic and statistical methods success-
fully used in AITP for extracting useful feature characterizations of the large
number of formulas. This has to be done much faster when solving a single large
problem, making use of a layered architecture where the layers have different
speed/precision trade-offs. Such layered (also called early-exit) approaches have
been explored in information retrieval and particularly in web-search ranking
5 We will use AITP as an abbreviation for the ATP/ITP cooperation, hinting also at
the AI aspects of that topic.

6 Although never publicly described, similar methods used are one of the main dark
sources of Vampire’s success.

http://mws.cs.ru.nl/~urban/et10


systems [4], from which large-theory systems like E.T. can draw useful analo-
gies. The extracted features are then used in E.T. as an input to several premise
selection algorithms, such as our custom version of the Meng-Paulson filter
(MePo) [17] and a non-learning version of the distance-weighted k-nearest neigh-
bor (k-NN) algorithm [10]. The high-level description of E.T.’s processing chain
is as follows:

1. The large input problem (potentially containing millions of axioms) is first
reduced to several thousands of axioms using three differently parameterized
(and reasonably complementary) non-strict versions of E’s fast generalized
SInE filter (see Section 4.1). Further processing is done with the union of
these three filtered versions. This first reduction takes about 10 s for a prob-
lem with 500000 axioms. This speed is achieved by sharing several SInE pre-
processing steps between the differently parameterized SInE selection passes.

2. Very long formulas are removed to prevent blow-ups in the following stages.7
3. If the original problem is in FOF, the reduced problem is clausified, removing

very long clauses to prevent blow-ups in the feature generation phase.
4. Several tools are used to compute features of the formulas (or clauses) in the

reduced problems. The current version can use as features symbols, (variable-
normalized) shared terms, and all matching terms. See Section 3.

5. Several external premise selectors such as MePo and k-NN (Section 4) use
these (probabilistically normalized) features to rank the axioms according
to their estimated relevance to the conjecture, and problems with varied
numbers of the top-ranking axioms are written.

6. Such problems are then (sequentially)8 passed to E, which then typically
applies much more restrictive SInE filtering to them, followed by a pool of
the large-theory ATP strategies (Section 5).

3 Feature Generators

The feature generators are run on the problems reduced by the first fast SInE
layer to several thousand formulas or clauses. Apart from using symbols as fea-
tures, E.T. also enumerates all terms and subterms in the reduced problems’ for-
mulas, using E’s fast shared term banks. Different variable normalization schemes
can be used to increase or decrease the sharing of such features across formulas,
providing different term-based similarity metrics.

A recent addition to the pool of such feature generators is a fast imple-
mentation of discrimination trees, enumerating for each formula φ all terms in
all formulas, that are more general than the terms in φ. Such features (when
suitably probabilistically weighted) provide a better concept of similarity of for-
mulas than any other syntactic features used so far [14]. This feature generator
7 The current limit for formula/clause size is 5kb. This filters out only a few of formulas
from the large corpora of interest, and in practice does not influence completeness.

8 E.T. runs its strategies sequentially by default. It is also possible to run the strategies,
premise selectors, and feature extractors in parallel when more cores are available.



is the reason why the formula and clause sizes need to be kept below certain
size (to prevent high quadratic factors), keeping the enumeration of matching
terms within seconds for the reduced problem. For the weighting of features, we
use the fast IDF scheme that adds practically no overhead while significantly
improving the similarity metrics [10].

4 Premise Selectors

Since no previous proofs are available when running E.T., it relies on premise
selectors that do not learn from related proofs. In particular, we use a number
(currently 28) of differently parameterized E’s generalized SInE filters limited to
symbolic features in phase #1 and phase #6, and our modified version of the
MePo filter using the more expensive features in phase #5. These two methods
are briefly described below. Some additional performance is gained (see Table 2)
by adding in phase #5 a non-learning version of the distance-weighted k-nearest
neighbor (k-NN) algorithm [10], where each formula φ only carries the informa-
tion that it is useful for proving facts with high feature overlap with φ.

4.1 Generalized SInE in E

E has native support for axiom selection in large theories. It implements a
parametrized and efficient version of Hoder’s SInE algorithm [7]. SInE is a fixed
point algorithm. It starts with an initial set of formulas deemed necessary for the
proof (usually including at least the conjecture), and successively adds formulas
related to formulas already included, until a fixpoint is reached. Relatedness is
based on sharing of at least one function- or predicate symbol between already
selected clauses/formulas and new candidates. If all symbols are used, this cor-
responds to a classical relevance relation. However, this typically selects sets of
clauses that are much larger than necessary, and only has limited utility.

Hoder correctly conjectured that rare symbols forge a stronger bond than
common symbols, as formulas that share rare symbols are more likely to be part
of the same microtheory. Using only the rarest symbols in a formula to find
related clauses or formulas turned out to be too strict a relation. Thus, to allow
the relaxation of this criterion, Hoder used a benevolence parameter that allows
not just the symbol with the lowest frequency to be used for the relatedness
relation, but also symbols wich occur up to a certain factor more often. E adds
the generosity concept, which always uses the n least frequent symbols.

E allows the following parametrization of its SInE implementation.

– Frequency can be based on counting formulas/clauses containing a symbol,
or on counting individual (sub-)terms.

– The initial set of the fixpoint process can consist of just the conjecture, or it
can also include formulas defined as additional hypotheses for a particular
proof problem by the user via the TPTP formula role.

– Benevolence and generosity can be set.



– While SInE usually runs to a fixpoint, E can terminate the process after a
pre-determined number of iterations

– E also allows hard limits on the axiom set size, either in absolute terms, or
as a fraction of the original specification.

This generalized SInE algorithm is implemented in E proper, where it is
supported by a meta-level automatic parameterization. It also is available as a
stand-alone tool that will efficiently apply several different parameterizations,
sharing as much of the work as is possible. This includes parsing, frequency
counting, and indexing of clauses and formulas by function symbol.

In E.T., SInE is used in two phases:

1. In phase #1 when the following non-strict (manually adjusted) SInE filters
are used to make the later more expensive filters reasonably fast9:

GSinE(CountFormulas, hypos, 3, , , 1500, 1.0)
GSinE(CountFormulas, hypos, 1.2, , , 1500, 1.0)
GSinE(CountFormulas, hypos, 30, , , 1500, 1.0)

This phase takes about 10 s for problems with 500000 axioms, leaving enough
time for the next phases when using 60 s time limit.

2. In phase #6, SInE is used in most of the E strategies that are ultimately run
on the problems prepared by the previous filters. The parameters for SInE in
these strategies are listed in Table 2. They are designed (jointly with other
ATP parameters) automatically by the BliStr loop on suitable samples of
large-theory problems (in this case Flyspeck and the 1000 Mizar@Turing
training problems). The parameters that can be varied are the benevolence,
number of iterations, and the absolute maximum axiom size. The rest of the
parameters are fixed to the same values as in the non-strict filters above.

4.2 MePo3

MePo3 is an algorithm for assigning predicted relevance based on the Meng-
Paulson relevance filter (MePo) [17] modified in several ways.

The algorithm is implemented as a recursive function which is given as input
the set of all axioms A a set of weighted features F together with an increment
number p. The initial value of F (F0) are the features of the conjecture C, i.e.,
F0 = F (C), where F (φ) denotes features of a formula φ. The weights of the
initial features are set to 1. Each recursive call i (i > 0) first computes the
cosine distance between the remaining (not yet chosen) axioms in A and the
given feature vector Fi−1. The axioms are then sorted by this distance, and the
p axioms with the smallest distance are included in MePo3’s answer. For each
axiom φ included in the answer, its features F (φ) weighted by a factor of φ’s
distance to Fi−1 are added to Fi−1, resulting in Fi which is then passed to the
next recursive call. The algorithm is inspired by the Meng-Paulson filter, however
we have introduced several changes:
9 Parameters are used in the order given above. Missing parameters use E’s built-in
default values.



– MePo3 computes the distance as the cosine distance of the weighted feature
vectors, rather than the proportion of relevant features to irrelevant ones.

– MePo includes in the answer the facts that are nearer to the conjecture than
a given factor. This factor is modified in the recursive calls. This did not
perform well for FOF problems, so we use an included-number in MePo3,

– MePo has a number of special cases that have been built into the algorithm
to optimize for Isabelle/HOL, such as bonuses for elimination rules or facts
present in the simplifier. MePo3 only has no such optimizations, instead
relies on more advanced feature characterizations.

E.T. 0.1 always uses MePo3 with p = 100. The two parameters that are var-
ied are the features used, and the number of best premises selected. The same is
true for the distance-weighted k-NN, where in the simple scenario without previ-
ous proofs the number of best premises selected is always equal to the number of
nearest neighbors k. Both MePo3 and k-NN are implemented efficiently in C++.
Since the problems passed to them are already reduced to several thousands ax-
ioms, running these premise selectors is usually done within seconds, depending
on the number of features used. As in E’s SInE, a lot of work is shared between
the different instances of k-NN and MePo3.

5 E Strategies and Global Optimization

When phase #5 premise selectors have finished, E is run on the filtered problems,
using 36 different strategies (see Table 2). Four of these strategies are taken from
E’s exisiting portfolio, three are various versions of E’s auto mode, which itself
selects strategies based on problem characteristics.

The remaining 29 strategies have been designed automatically by BliStr,
using the Mizar@Turing training problems and a small random sample of the
Flyspeck problems. BliStr finds a small set of strategies that solve as many
training problems as possible. This is done in an infinite loop which interleaves (i)
fast iterative improvement of the strongest strategies on easy problems, (ii) slow
evaluation of the newly invented strategies on all problems, and (iii) subsequent
update of the candidate set of strong strategies and of the set of easy problems
used for the next iterative improvement. The inclusion of the strategies into the
final portfolio was done heuristically, based on their joint (greedy) coverage of
the Mizar@Turing and Flyspeck problems.

6 Experimental Analysis

For the main evaluation we use the MPTP2078 benchmark [1], used for the large-
theory division (Mizar@Turing) of the 2012 CASC@Turing automated reasoning
competition [23]. These are 2078 related large-theory problems (conjectures)
from the development of the general topological proof of the Bolzano-Weierstrass
theorem extracted from the Mizar library. For each conjecture C we assume that
all formulas stated earlier in the development can be used to prove C. This results



ATP E 1.8 (%) Vampire 2.6 (%) E.T. 0.1 (%) Union (%)

Small problems 1213 (58) 1319 (63) 1357 (65) 1416 (68)
Large problems 580 (28) 940 (45) 1148 (55) 1208 (58)
Large/small ratio 0.48 0.71 0.85 0.85

Table 1. ATPs on the large and small MPTP2078 problems, using 60 s time limit.

in large ATP problems that have 1877 axioms on average. For each conjecture
C we also know its ITP (Mizar) proof, from which we can (approximately [1])
determine a much smaller set of axioms that are sufficient for an ATP proof
after the translation from Mizar to TPTP [26,27]. This gives rise to small ATP
problems, where the ATP is significantly advised by the human author of the
ITP proof. These small problems contain only 31 axioms on average.

Table 1 compares the performance of E 1.8, Vampire 2.6, and E.T. 0.1 on the
MPTP2078 problems. All systems are run with 60s time limit on a 32-core server
with Intel Xeon E5-2670 2.6GHz CPUs, 128 GB RAM, and 20 MB cache per
CPU. Each problem is assigned one CPU. On small problems, the three systems
do not differ much. Vampire solves 9% more problems than E, E.T solves 12%
more problems than E and 3% more than Vampire. All systems together can
solve 68% of the small problems. Differences are larger on large problems, where
Vampire solves 62% more problems than E, E.T. solves 98% more problems than
E, and E.T. solves 22% more problems than Vampire. An interesting metric is
the ratio of the number of large problems solved to the number of small problems
solved. For E this ratio is below 0.5, for Vampire it is 0.71, and for E.T. it is
0.85. This suggests that Vampire’s large-theory techniques (primarily SInE) are
much stronger than those used in the default mode of E, and shows that such
techniques in E.T. (i.e., the premise-selection layers) are much more successful
than the other systems.

Table 2 sheds more light on how E.T. achieves its performance on large
problems. It lists the first 30 strategies (of 49 total) as tried sequentially by
E.T., together with their success on the small and large problems. On the small
problems, 79% is solved already by the first two strategies that use only non-
strict (or none) SInE filtering. On the large problems, these two strategies solve
however only 34% of the problems, while the next two restrictive strategies solve
40% of the problems (they are given only the problems unsolved by the first two
strategies). The third strategy does only two SInE iterations and takes only 60
best axioms, and the fourth strategy combines MePo (taking 128 best premises)
with similarly restrictive SInE.

The second independent evaluation is the FOF division of CASC-J7 [21].
The results of the E-based ATPs and Vampire are shown in Table 3. The overall
improvement of E.T. (using E version 1.8) over E (newer version 1.9) is 6%
(18 problems more), and on problems with equality this is 9%. There is no
improvement on the problems without equality. This is likely an artifact of E.T.’s
strategy invention being done on Flyspeck and Mizar problems, which almost
always use equality. While Vampire solves 11% more problems than E.T., its



nr. small large selector premises BSInE RSInE LSInE ATP strategy (name)

1 933 331 ful 2.0 500 b57035dec1c1e73fa888146ae569c7cc8f0
2 140 55 ful G-E-.208.C18.F1.SE.CS.SP.PS.S0Y
3 28 262 ful 1.1 2 60 eba37f91665fc364eeb63558058658ee9a1
4 198 mepo3-nrm 128 2.0 2 100 88760aa43d575e84b7030b8a6188f74ba5f
5 43 mepo3-nrm 400 G-E-.208.B07.F1.SE.CS.SP.PS.S0Y
6 40 14 knn-nrm 8 G-E-.208.B07.F1.SE.CS.SP.PS.S0Y
7 30 mepo3-std 64 1.5 3 40 1b33b681d9260087e24d422ea286498f4a4
8 24 mepo3-std 512 1.5 3 40 1b33b681d9260087e24d422ea286498f4a4
9 10 mepo3-nrm 128 1.1 1 60 2af8141978cb6a38e97452761cdbd9e1007
10 29 mepo3-std 64 G-E-.208.C18.F1.SE.CS.SP.PS.S0Y
11 18 mepo3-std 512 1.2 2 20000 my8simple.sine13
12 13 6 knn-nrm 20 1.5 4 100 cfee9ff42189552c6557cda7d36f20820c8
13 7 mepo3-std 512 2.0 500 b57035dec1c1e73fa888146ae569c7cc8f0
14 11 mepo3-std 512 1.1 2 60 eba37f91665fc364eeb63558058658ee9a1
15 1 mepo3-std 512 G-E-.208.B07.F1.SE.CS.SP.PS.S0Y
16 2 knn-nrm 96 1.5 4 100 cfee9ff42189552c6557cda7d36f20820c8
17 8 mepo3-nrm 400 6.0 2 20000 92168ebc2ef464a6f2d6a311a4fa90219fd
18 10 knn-nrm 256 2.0 2 100 37be21ea059a2fcb865621e373a97f33a9d
19 5 knn-nrm 64 5.0 2 60 c284f1f10aedfccc65cdb7d9b1210ef814c
20 13 3 knn-nrm 8 G-E-.200.B02.F1.SE.CS.SP.PI.S0S
21 31 5 knn-nrm 20 G-E-.200.B02.F1.SE.CS.SP.PI.S0S
22 46 ful X-.sauto.schedule
23 8 ful 1.1 1 60 c7bb78cc4c665670e6b866a847165cb4bf9
24 ful 6.0 2 20000 92168ebc2ef464a6f2d6a311a4fa90219fd
25 18 15 cnf 6.0 1 20000 a3154f3180cc47331f1b05c36960c32e480
26 11 3 ful 1.5 4 100 cfee9ff42189552c6557cda7d36f20820c8
27 7 15 cnf 1.2 2 20000 X-.auto.sine03
28 2 1 ful 1.5 4 10 7cec1e0745ab65767d5d930d1f61b255ba3
29 5 6 ful 6.0 1 80 a74b37f2d8b7e35be554fc999f671188cf4
30 32 1 cnf 5.0 6 80 2af8b399ea0b8c22c6fc1b13069ad80214f

nr, small, large: order of the strategy; performance on small/large problems
premises: number of best-ranked premises used by the strategy (for MePo and k-NN)
SInE: BSInE – Benevolence; RSInE – Iteration limit; LSInE – Absolute axiom limit.
Selectors: ful – reduced FOF (after phase #1); cnf – reduced FOF clausified (after

phase #3); (mepo3|knn)-std – MePo3 or k-NN using symbols and shared terms
with numbered variables (de Bruijn indeces); (mepo3|knn)-nrm – MePo3 or k-NN
using symbols and matching terms with all variables renamed to one.

Strategies: The names of BliStr strategies are usually content-based hashes. The
names of the original E strategies mirror their main parameters.

Table 2. The first 30 E.T. strategies run sequentially on the large and small MPTP2078
problems (60 s total time). E.T. exits immediatelly when a strategy finds a proof,
therefore the success rates of the strategies are not directly comparable.

ATP Vampire 2.6 E.T. 0.1 E 1.9 VanHElsing 1.0

FOF with Equality 234/250 224/250 205/250 199/250
FOF without Equality 141/150 115/150 116/150 111/150

FOF total 375/400 339/400 321/400 310/400
Table 3. Vampire and E-based ATPs on the CASC-J7 FOF division.



margin over E.T. on the equational problems is reduced to only 4%. Quite likely,
Vampire’s advantage on the problems without equality comes from splitting
improvements and integration of SAT-solving [8,30].

7 Conclusion and Future Work

E.T. 0.1 shows very good performance on large problems, while being competitive
on the problems from the standard FOF category of CASC. The performance is
achieved without relying on slow preprocessing phases and learning from related
proofs, however this requires a layered architecture with several filtering phases
with different speed/precision trade-offs, and very efficient implementation of
the core algorithms, using a lot of sharing and indexing data-structures. The
other important aspects of E.T.’s performance are (i) relatively sophisticated
features that provide good characterization of formulas, allowing more precise
high-level approximation of the search problem, (ii) three non-learning state-
of-the-art premise selection methods that complement each other, and (iii) a
number of complementary automatically designed large-theory search strategies.

Future work may include addition of further non-learning selection methods
such as the model-based selection used in SRASS [24], re-use of the strongest
lemmas between the strategies, and, e.g., integration of the more expressive
features into E’s SInE and into E’s clause-evaluation heuristics. Some of the
techniques developed for E.T. could be also transferred back to learning systems
like MaLARea and the AITP hammers.
References
1. J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban. Premise selection

for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning,
52(2):191–213, 2014.

2. M. Beeson and L. Wos. OTTER proofs in Tarskian geometry. In S. Demri, D. Ka-
pur, and C. Weidenbach, editors, IJCAR, volume 8562 of LNAI, pages 495–510,
2014.

3. J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards
QED. Submitted, http://www4.in.tum.de/~blanchet/h4qed.pdf, 2015.

4. B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and
J. Degenhardt. Early exit optimizations for additive machine learned ranking
systems. In B. D. Davison, T. Suel, N. Craswell, and B. Liu, editors, WSDM,
pages 411–420. ACM, 2010.

5. V. K. Chaudhri, D. Elenius, A. Goldenkranz, A. Gong, M. E. Martone, W. Webb,
and N. Yorke-Smith. Comparative analysis of knowledge representation and reason-
ing requirements across a range of life sciences textbooks. J. Biomedical Semantics,
5:51, 2014.

6. U. Furbach, I. Glöckner, and B. Pelzer. An application of automated reasoning in
natural language question answering. AI Commun., 23(2-3):241–265, 2010.

7. K. Hoder and A. Voronkov. Sine qua non for large theory reasoning. In N. Bjørner
and V. Sofronie-Stokkermans, editors, CADE, volume 6803 of LNCS, pages 299–
314. Springer, 2011.

8. K. Hoder and A. Voronkov. The 481 ways to split a clause and deal with propo-
sitional variables. In M. P. Bonacina, editor, CADE, volume 7898 of LNCS, pages
450–464. Springer, 2013.

http://www4.in.tum.de/~blanchet/h4qed.pdf


9. C. Kaliszyk and J. Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning, 55(3):245–
256, 2015.

10. C. Kaliszyk and J. Urban. Stronger automation for Flyspeck by feature weighting
and strategy evolution. In J. C. Blanchette and J. Urban, editors, PxTP 2013,
volume 14 of EPiC Series, pages 87–95. EasyChair, 2013.

11. C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with Flyspeck.
J. Autom. Reasoning, 53(2):173–213, 2014.

12. C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL Light.
Mathematics in Computer Science, 9(1):5–22, 2015.

13. C. Kaliszyk, J. Urban, and J. Vyskočil. Machine learner for automated reasoning
0.4 and 0.5. CoRR, abs/1402.2359, 2014. PAAR’14, to appear.

14. C. Kaliszyk, J. Urban, and J. Vyskočil. Efficient semantic features for automated
reasoning over large theories. In Q. Yang and M. Wooldridge, editors, Proc. of the
24th International Joint Conference on Artificial Intelligence (IJCAI’15), pages
3084–3090. AAAI Press, 2015.

15. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In N. Shary-
gina and H. Veith, editors, CAV, volume 8044 of LNCS, pages 1–35. Springer, 2013.

16. D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban. MaSh: Machine learning
for Sledgehammer. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP,
volume 7998 of LNCS, pages 35–50. Springer, 2013.

17. J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-generated
resolution problems. J. Applied Logic, 7(1):41–57, 2009.

18. A. Pease and S. Schulz. Knowledge engineering for large ontologies with Sigma
KEE 3.0. In S. Demri, D. Kapur, and C. Weidenbach, editors, IJCAR, LNAI,
pages 519–525, 2014.

19. A. Quaife. Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers, 1992.

20. S. Schulz. System description: E 1.8. In K. L. McMillan, A. Middeldorp, and
A. Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735–743. Springer, 2013.

21. G. Sutcliffe. Proceedings of the 7th IJCAR ATP system competition.
http://www.cs.miami.edu/~tptp/CASC/J7/Proceedings.pdf.

22. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

23. G. Sutcliffe. The 6th IJCAR automated theorem proving system competition -
CASC-J6. AI Commun., 26(2):211–223, 2013.

24. G. Sutcliffe and Y. Puzis. SRASS - a semantic relevance axiom selection system.
In F. Pfenning, editor, CADE, volume 4603 of LNCS, pages 295–310, 2007.

25. G. Sutcliffe, M. Suda, A. Teyssandier, N. Dellis, and G. de Melo. Progress towards
effective automated reasoning with world knowledge. In H. W. Guesgen and R. C.
Murray, editors, FLAIRS. AAAI Press, 2010.

26. J. Urban. MPTP - Motivation, Implementation, First Experiments. Journal of
Automated Reasoning, 33(3-4):319–339, 2004.

27. J. Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom.
Reasoning, 37(1-2):21–43, 2006.

28. J. Urban. BliStr: The Blind Strategymaker. CoRR, abs/1301.2683, 2013.
29. J. Urban, K. Hoder, and A. Voronkov. Evaluation of automated theorem proving

on the Mizar Mathematical Library. In ICMS, pages 155–166, 2010.
30. A. Voronkov. AVATAR: the architecture for first-order theorem provers. In A. Biere

and R. Bloem, editors, CAV, volume 8559 of LNCS, pages 696–710. Springer, 2014.

http://www.cs.miami.edu/~tptp/CASC/J7/Proceedings.pdf

	System Description: E.T. 0.1

