
1

Wikis and Collaborative Systems for
Large Formal Mathematics

Cezary Kaliszyk1? and Josef Urban2??

1 University of Innsbruck, Austria
2 Czech Technical University in Prague

Abstract In the recent years, there have been significant advances in
formalization of mathematics, involving a number of large-scale formal-
ization projects. This naturally poses a number of interesting problems
concerning how should humans and machines collaborate on such deeply
semantic and computer-assisted projects. In this paper we provide an
overview of the wikis and web-based systems for such collaboration in-
volving humans and also AI systems over the large corpora of fully formal
mathematical knowledge.

1 Introduction: Formal Mathematics and its
Collaborative Aspects

In the last two decades, large corpora of complex mathematical knowledge have
been encoded in a form that is fully understandable to computers [7, 13, 14,
17, 30, 38]. This means that the mathematical definitions, theorems, proofs and
theories are explained and formally encoded in complete detail, allowing the
computers to fully understand the semantics of such complicated objects. While
in domains that deal with the real world rather than with the abstract world
researchers might discuss what fully formal encoding exactly means, in computer
mathematics there is one undisputed definition. A fully formal encoding is an
encoding that ultimately allows computers to verify to the smallest detail the
correctness of each step of the proofs written in the given logical formalism.
The process of writing such computer-understandable and verifiable theorems,
definitions, proofs and theories is called Formalization of Mathematics and more
generally Interactive Theorem Proving (ITP).

The ITP field has a long history dating back to 1960s [19], being officially
founded in 1967 by the mathematician N.G. de Bruijn, with his work on the
Automath system [11]. The development of a number of approaches (LCF,
NQTHM, Mizar) followed in the 1970-s, resulting in a number of today’s estab-
lished ITP systems such as HOL (Light) [18], Isabelle [56], Mizar [15], Coq [9],
ACL2 [29] and PVS [42]. This development was often intertwined with the de-
velopment of its cousin field of Automated Theorem Proving [47] (ATP), where
? Supported by the Austrian Science Fund (FWF): P26201.

?? Supported by NWO grant nr. 612.001.208 and ERC Consolidator grant nr. 649043
AI4REASON.

Preprint accepted to SWCS 2014 post-proceedings

2 Cezary Kaliszyk and Josef Urban

proofs of conjectures are attempted fully automatically, without any human as-
sistance. But unlike ATP systems, the ITP systems allow human-assisted formal
theory encoding and proving of theorems that are often beyond the capabilities
of the fully automated systems.

Twenty years ago, the anonymous QED Manifesto [1] proposed to start a
unified encyclopedic effort formalizing all of today’s mathematics. This led to a
lot of discussion about suitable logical foundations for such a unified effort, and to
two QED workshops in 1995 and 1996 [39]. While no such unified foundations and
a top-down managed effort emerged, formal libraries of impressive size have been
built since then with ITPs: the Mizar Mathematical Library (MML) contains
today over 50000 theorems and the Isabelle/HOL and the Flyspeck project (with
the large HOL Light libraries) have some 20000 theorems each. ITP is also
becoming an indispensable technology for verifying complex software-assisted
proofs, and other complicated (e.g., hardware and software) designs. Other exact
sciences, such as economics [36] and physics [2] have started to be fully formally
encoded recently.

Recent examples of the large projects in formal mathematics include the
completed formal proofs of the Kepler conjecture (Flyspeck) [17], the Odd Or-
der theorem [14], the Four Color theorem [13], and verification of more than
a half of the Compendium of Continuous Lattices textbook [7]. Verification of
the seL4 kernel [30] and the CompCert compiler [38] show comparable progress
in full-scale verification of complicated software. Such projects are often linked
to various advances in verification technology, such as strong automation meth-
ods [24,26,32] that allow less and less verbose formal proofs, however, ITP still
remains very labor-intensive. For example, the Flyspeck project is estimated to
take 20 person-years, and the Feit-Thompson project took about twice as much.

This means that such large projects in formal mathematics have also very
important collaboration aspects. Sometimes they may be managed in a very
tight top-down manner, with the formal terminology, naming conventions and
majority of stated lemmas being designed by the project leaders, and only the
proofs are written by other team members. This has many advantages in con-
sistency, similar for example to the one-man (or one-committee) design of the
“upper ontologies” in common-sense reasoning projects such as SUMO [41] and
CYC [45]. Sometimes such total top-down control is however missing, and the
projects or libraries grow much more chaotically, similar to the way how Wiki-
pedia grows, i.e., only with a basic set of rules for contributing and a lot of
later (possibly collaborative) refactoring of the formal terminology, statements,
proofs, and theories.

The combination of all these aspects makes formal mathematics a very in-
teresting domain for several reasons:

1. It allows collaboration of experts from very different mathematical areas,
both professionals and students and amateurs. As long as the formal proofs
are correct, nobody needs to be interested about who wrote them and how,
and if they understood the defined concepts correctly. All this consistency
and proof checking is ensured by the underlying ITP systems. This power of

Wikis and Collaborative Systems for Large Formal Mathematics 3

objectivity has been noted by John McCarthy who proposed to transfer such
mechanisms to other sciences and venues of lives.3

2. In a similar way, it allows collaboration with machines, particularly AI and
ATP systems. Such systems can use very strong semantic search methods
such as automated theorem proving, to assist the humans. Again, the final
correctness and consistency of such strong machine assistance is checked by
the ITP systems.

3. It has all kinds of relations to less formal domains. A very interesting topic is
how to present the formal proofs to humans, and also how to assist humans
as much as possible with converting informal mathematics into formal. The
latter includes all kinds of specialized editors and authoring environments.
Such editors and environments may support various semantic features, can be
web-based, allow hyperlinking and inter-linking via Semantic Web techniques
to more fuzzy concepts defined in Wikipedia and DBpedia, etc. A related
interesting topic is how to connect and re-use the formalizations done in
various formal systems, or using various libraries.

The rest of this paper is organized as follows. Section 2 summarizes the main
differences between encyclopedic efforts like Wikipedia and the reality of formal
mathematics. In Section 3 we introduce formal mathematical wikis and their
main components, such as formal verification, suitable rendering, versioning,
editing, and semantic assistance. Section 4 then discusses the examples of today’s
formal wikis and their various features and subsystems.

2 Some Obstacles to Wikis for Formal Mathematics

In the informal world, Wikipedia can today be largely considered as The World
Encyclopedia written in a collaborative wiki style, covering vast number of topics
and serving more semantics projects such as DBpedia and Wikidata, which can
in turn be considered to be the hub of the Semantic Web. In formal mathematics,
there is unfortunately no such unique resource, despite the early QED proposals
and efforts. Whether such fragmentation is necessary is not clear, however, the
following factors largely contribute to this state.

Disagreement about the logical and mathematical foundations. Mathematicians
and logicians have different opinions about what should be the most convenient
and the most correct foundations for mathematics, ranging from philosophical
topics such as constructive versus classical logic, to more practical topics such
as using higher-order logic (HOL) versus set theory versus type theory. There
are logical frameworks (such as Isabelle [56] or Twelf [48]) that try to cater for
everybody, however those may be viewed as an additional burden by some, and
their universality, practicality and foundations may be further questioned. The
most widely used systems today commit to just one foundational framework.

3 http://www-formal.stanford.edu/jmc/future/objectivity.html

http://www-formal.stanford.edu/jmc/future/objectivity.html

4 Cezary Kaliszyk and Josef Urban

Disagreement about the formal language and its mechanisms. This is very similar
to the disagreement about the appropriateness of various programming languages
for various projects. Analogously to that, the chance of all formalizers ultimately
agreeing on some of the current formal languages is quite small.

Disagreement about how formal concepts should be defined and mathematics
should be built. Even when within common foundations and when using a com-
mon formal language and an ITP system, there are sometimes different ap-
proaches to formalizing mathematics. In the Coq system, there are several defin-
itions of real numbers, algebraic hierarchies (monoids, groups, rings, fields, mod-
ules, etc.) have been built in several competing ways, etc. In the Mizar Math-
ematical Library, there are several definitions of graphs, categories, and other
structures, and parallel theorems about these parallel concepts. Again, this is
quite analogous to the current state in programming, where several program-
ming libraries/projects may address the same task differently, according to the
tastes and opinions of its implementors. Unlike in Wikipedia, one usually does
not prefer to present the different implementations side-by-side within one lib-
rary, because that makes the library less focused and compact, possibly leading
the library’s users to confusion and multiple efforts in the same direction.

All these issues have considerable impact on the kind of collaborative tools that
can be useful for formalization of mathematics. Around 2004, inspired by the
success of Wikipedia, various proposals started to appear suggesting to speed up
the relatively slow formalization efforts by wiki-like methods.4 Ten years later,
it is however still not completely clear what is the right combination of features
suitable for fast collaborative formalization. We discuss the main components in
the next section. While a number of interesting wiki systems have been produced
for less formal mathematics, knowledge engineering, research support, and re-
lated domains [8, 37, 40, 57], so far there has been no successful attempt to port
such systems to the fully formal setting.

3 Formal Wikis and Their Main Components

Traditionally, formal mathematics used to be constructed locally by a single
author, either in an editor or in a toplevel5 of an interactive theorem prover.
The prover immediately checks the steps, using its proof rules and the previous
knowledge available in the formal libraries, which are locally installed. After the
formal definitions, theorems and proofs are written in a file, the file is typically
checked again in batch mode by the prover and included in the locally installed
library. Various methods have evolved for making one’s results available to oth-
ers. For a long time this would be just an e-mail to library managers, who would

4 http://wiki.mizar.org/twiki/bin/view/Mizar/MizarWishlist
5 Many proof assistants have been implemented inside programming language inter-
preters and inherit their toplevels.

http://wiki.mizar.org/twiki/bin/view/Mizar/MizarWishlist

Wikis and Collaborative Systems for Large Formal Mathematics 5

then distribute the new library version using FTP or WWW. In the last dec-
ade, a major step towards fast collaborative development was done by switching
to version control systems (VCS), which have become also one of the building
blocks of today’s formal wikis.

In general, a formal wiki would typically address the following six components
to various extent:

Formal verification on the server. This is the defining element of the formal-
ization process. Each text that is submitted to a formal wiki will first be eval-
uated with respect to a particular formal verifier (i.e., a proof assistant, ITP)
implementing the logic rules and checking the statements and proofs with re-
spect to the logic and the available formal library. Various result statuses of the
formal verification are possible. For example, the formal text might be correctly
parsed (all concepts are known and used in a correct way), but not completely
proof-checked (some proofs make logical inferences that the proof checker cannot
understand, perhaps requiring to refine some steps). Or changes in one part of
the library might invalidate another part of the library, putting the library as a
whole into an inconsistent state. Depending on the results of the verification, the
wiki might either completely reject the text, or accept it with some status, usu-
ally also updating its existing library with the text, and/or possibly performing
some other actions such as branching the development automatically.

Formal library or libraries available on the server, used to supply mathematical
terminology and theorems needed for verification of more advanced texts. This
is one of the main ways in which interactive theorem proving differs from com-
pletely automated theorem proving, where all the information needed for proving
a particular statement is typically included in one file. Such large formal librar-
ies are typically stored efficiently in some pre-compiled fast-loadable format, and
their parts are loaded into the interactive provers using various inclusion mech-
anisms. One of the major issues that need to be addressed in formal wikis is
the updating, refactoring and maintenance of such libraries of formal concepts,
theorems and proofs, their versioning and suitable rendering.

Versioning. Often one wants to see older versions of various files in the library,
track the changes done by various users, or even try to work with a non-default
version of the library. For example MediaWiki, Wikipedia’s internal wiki engine,
uses sequential numbering of files (independent of other files), and for every
change, the id of the user that made the change is stored with the file. View-
ing of differences and histories is possible, although more limited than in more
advanced versioning systems. This simplicity can also be an advantage: Wiki-
pedia does not include branches, tags, etc., and the casual user does not need
to understand such features. On the other hand, more advanced version control
systems operate with the concept of change sets (or commits), which seem more
appropriate when several files need to be simultaneously modified (for example
when renaming some function) in order for the library to be in a consistent
state. If such library consistency is the main concern which is strictly enforced,

6 Cezary Kaliszyk and Josef Urban

the Wikipedia-style file-based version control is insufficient, and such advanced
version control systems with simultaneous multi-file commits are a necessity.

(Semantic) Rendering. Many interactive provers include documentation gen-
erators that process raw prover input files and generate rendered output. The
output of a documentation generator is usually HTML or PDF format, with
HTML being of particular interest for wikis. Links between files and items are
created, different conceptual elements of the prover input are colored in different
color, and sometimes mathematical formulas are rendered in a graphical way.
Since we are dealing with a very semantic domain, various sorts of information
can be added to make the proofs more understandable by the readers, various
dependencies can be explicitly shown, etc. While the authors of formal articles
typically know how to read the raw formal texts, the HTML presentation (often
including MathML) is one of the main aspects of formal wikis that make formal
mathematics accessible to newcomers. One of the main reasons is the typical
brevity of the formal language which is often optimized for writing rather than
reading, and the ubiquitous overloading of mathematical symbols like +, whose
particular meaning in a particular context might be very hard to decipher for a
casual reader. For example, the large Mizar Mathematical library defines about
200 different uses of the symbol + (for example addition introduced for nat-
ural numbers and addition in a group with addition use this symbol). Suitable
HTML rendering can link such symbols to their definitions, or even allow their
immediate preview by mechanisms such as mouse-over tooltips. In a similar way,
aligning with various less formal resources such as textbooks is possible, and also
aligning with Semantic Web resources such as Wikipedia or DBpedia.

Editing. While not strictly necessary, it is very useful to have a server part that
allows interactive editing of the formal text in a way that resembles local work.
Formal proof editors typically offer many advanced semantic features, such as
stepping through a proof with the interactive prover and rendering the resulting
proof state. Having some of the most used features as a part of the web-based
editor is likely to make immediate browser-based updates of the wiki much more
attractive for casual readers.

(Semantic) Assisting tools. Searching for suitable previously defined ter-
minology and suitable theorems is one of the main activities when formalizing
mathematics. The better this process is assisted, the more efficient are the au-
thors of formal articles. As any user of today’s web search engines knows, server-
based technology allows much more sophisticated search tools that can make
use of much more expensive processing steps than the user’s machine, and that
can also benefit from processing much more data than is available on the user’s
machine. A typical example would be suggesting hints for a new proof based on
machine learning on the large libraries of previous proofs stored in the wikis,
or running dozens of automated theorem provers on a particular interactively
entered goal, making use of a large (“cloud-based”) parallelization on the server.

Wikis and Collaborative Systems for Large Formal Mathematics 7

4 Examples of Formal Wikis and Related Systems

The existing examples and prototypes of formal mathematical wikis (and related
systems) can be broadly divided by whom they serve and what is their primary
purpose.

4.1 Targeted Formal Wikis: Mizar Wiki and Others

Wikis for a particular formal library or a formalization project are perhaps the
most visible examples of a wiki-like formal-proof technology. The main example
is the Mizar wiki prototype [3,53]. It implements fast parallelized server verific-
ation, library update and versioning on the server, and HTML rendering for the
Mizar system and its large formal library. The HTML rendering can produce all
kinds of additional semantic information such as linking symbols to their defin-
itions, showing of the proof state after each proof step, linking of theorems and
concepts to Wikipedia and DBpedia, etc.

The verification and rendering are implemented just as hooks to an advanced
distributed version control system (DVCS, git in this case). This allows the
authors to work with the wiki locally, collaborate with others using just the
DVCS features, and replicate and distribute the wiki very easily, just as if it
was a standard software project. The distinguished Mizar wiki server receives
updates from authorized users (as git pushes), using authorization systems such
as gitolite6, and verifies the updates prior to including them into the main or
other branch.

The verification against a particular branch of the large library is done using
a smart copy-on-write filesystem such as ZFS or BTRFS, making it possible to
keep many versions (possibly for many users) of the large library and compiled
files on the server without significant space overhead and repetition of work
and making the cloning and creation of new (possibly experimental) versions
very cheap and fast. The fast cloning also serves for the verification process,
which necessarily first has to update the existing library before the library gets
formally re-verified. If the re-verification fails, resulting in the rejection of the
library update, the new ZFS or BTRFS clone is simply deleted, and the library
lives in its original state. If the particular update of a particular version of the
library satisfies the verification policy (and the library is thus in some kind of
a consistent state after the update), the library is also re-rendered and made
available for browsing and further updates.

Updates can be done either using a web interface or by power-users via git.
The updates from git can be used for multifile updates (such as library-scale
symbol renaming) that would break the library consistency if done on a file-by-
file basis. Rudimentary search tools exist for the Mizar wiki, however most of the
advanced semantic search functions are not yet integrated with it, and instead
run as separate tools produced for distinguished versions of the Mizar library.
Similarly, only basic web editing is implemented.
6 http://gitolite.com/

http://gitolite.com/

8 Cezary Kaliszyk and Josef Urban

Similar early prototype wiki has been built for Coq [3], and a number of
formalization projects and libraries share today some of these features. For ex-
ample the Coq Users’ Contributions7 are managed inside a VCS, automatically
compiled and rendered, however the versioning and user submission are quite re-
stricted. The Isabelle Archive of Formal Proofs8 (AFP) allows authors to update
their entries via a DVCS (mercurial) and also provides automated server-based
checking, however the HTML rendering is very limited, and the users typic-
ally cannot update other entries. In this sense, the archive resemble an evolving
online journal, rather than a massively collaborative wiki or a software project.

4.2 Wikis Focused on Editing Support: ProofWeb

To use a proof assistant, one needs to install some software. In the case of HOL
Light one needs OCaml with a particular version of CamlP5 compiled with special
flags (different than those used by popular Linux distributions), and HOL Light
code itself, possibly with checkpointing software. To use an interface to access the
prover, one needs the Emacs mode and one of the supported Emacs versions. The
process described above is already complicated, not to mention other operating
systems and architectures, or additional desirable patches and libraries, or less
commonly used provers. The first web interface to the Coq system, LogiCoq [43],
would not provide any support for editing: the whole buffer would be sent with
standard HTTP request and refreshes the whole page.

ProofWeb [22] provides a web-interface to various proof assistants, that al-
lows ProofGeneral-style [6] interaction. It implements a client-server architec-
ture with a minimal lightweight client interpreted by the browser, a specialized
HTTP server and background HTTP based communication between them. The
key element of the architecture is the asynchronous DOM modification technique
(sometimes referred to as AJAX - Asynchronous JavaScript and XML or Web
application). The client part is stored on the server, and when the user accesses
the interface page, it is downloaded by the browser, which is able to interpret it
without any installation. The user of the interface, accessing it with the browser,
does not need to do anything when a modification is done on the server. Every
time the user accesses a prover, the version of the prover that is currently in-
stalled on the server is used. The user can access any of the provers installed
on the server (ProofWeb supports Coq, Isabelle, Matita, Lego, Plastic, and has a
minimal support for HOL Light).

The first wiki for Coq that integrated formal text editing with proof assistant
feedback [10] was implemented as an extension of the MediaWiki engine, that used
ProofWeb for editing pages and rendered the completed articles with Coqdoc in
the viewing mode allowing LATEX snippets. The convenience of a centralized
proof assistant environment made it also appealing for teaching (Fig. 1). By
defining special tactics for basic logical rules and proof tree rendering code [28]

7 http://www.lix.polytechnique.fr/coq/pylons/contribs/index
8 http://afp.sourceforge.net/

http://www.lix.polytechnique.fr/coq/pylons/contribs/index
http://afp.sourceforge.net/

Wikis and Collaborative Systems for Large Formal Mathematics 9

File Display Templates Backward Forward

Require Import ProofWeb.
Parameter p q r : Prop.
Theorem example_1_13 :
(p /\ q -> r) -> p -> (q -> r).
Proof.

imp_i H1.
imp_i H2.
imp_i H3.
imp_e (p /\ q).
exact H1.
con_i.
exact H2.
exact H3.

2 subgoals

H1 : p /\ q -> r
H2 : p
H3 : q
============================
p

subgoal 2 is:
q

... ...
─── ───
p q
──────── ∧i

[p ∧ q → r]H1 p ∧ q
────────────────────── →e

r
────────────────────── →i[H3]

q → r
────────────────────── →i[H2]

p → q → r
─────────────────────── →i[H1]
(p ∧ q → r) → p → q → r

Figure 1: The ProofWeb interface editing a Coq proof script with a Gentzen-style
proof tree.

ProofWeb became a convenient tool for various computer courses and has been
to date used in 49 courses at 12 universities [20].

A dedicated web interface has also been developed for Matita [5]. Apart
from allowing Unicode input and syntax highlighting, it can better exploit the
hypertextual document structure offered by the prover, by providing various
annotations and active elements. Similarly the Clide [46] interface is a web-
reimplementation of the Isabelle interface. It provides a document-oriented in-
teraction with the prover, and allows collaborative editing of an Isabelle script:
the edit operations performed by each user are immediately propagated to all.

4.3 Meta Wikis: Agora, Flyspeck Wiki, and Others

While it has so far turned out to be hard to make a one-for-all formalization
system and a formal library, the efforts to make a unified interface to different
corpora of existing formal mathematics have never stopped.

A recent example is the Agora wiki prototype by Tankink [50]. Here, the user
combines informal narratives written in the Creole syntax with antiquotations
that allow transclusion of formal texts from an arbitrary formal library that has
been suitably annotated using the OMDoc ontology developed by Lange [34,35].
This ontology provides a wide supply of types of mathematical knowledge items,
as well as types of relations between them, e.g. that a proof proves a theorem.
It is a reimplementation of the conceptual model of the OMDoc XML markup

10 Cezary Kaliszyk and Josef Urban

language [31] for the purpose of providing semantic Web applications with a
vocabulary of structures of mathematical knowledge.

Regardless of the exact details of the formal systems involved, and their
output, the annotation process generally yields HTML+RDFa, which uses the
OMDoc ontology as a vocabulary. For example, if the formal document contains
an HTML rendition of the Binomial Theorem, Agora expects the following result
(where the prefix oo: has been bound to the URI of the OMDoc ontology9):

...

...

The “. . . ” in this listing represent the original HTML rendition of the formal
text, possibly including the information that was used to infer the annotations
now captured by the RDFa attributes. @about assigns a URI to the annotated
resource; here, we use fragment identifiers within the HTML document.

The corresponding RDF annotation has been so far done for the Mizar,
Flyspeck and Coq libraries. For instance in Mizar this was done as a part of
the XSL transformation that creates HTML from the Mizar’s custom semantic
XML format [51]. While the OMDoc ontology defines vocabulary that seems
suitable also for many Mizar internal proof steps, the current Mizar implement-
ation only annotates the main top-level Mizar items, together with the top-level
proofs. Even with this limitation this has already resulted in about 160000 an-
notations exported from the whole MML. The existing Mizar HTML namespace
was re-used for the names of the exported items, such that, for example, the
Brouwer Fixed Point Theorem:10

:: $N Brouwer Fixed Point Theorem
theorem Th14:
for r being non negative (real number), o being Point of TOP-REAL 2,

f being continuous Function of Tdisk(o,r), Tdisk(o,r)
holds f has_a_fixpoint

proof ...

gets annotated as11

<div about="#T14" typeof="oo:Theorem">
<span rel="owl:sameAs"

resource="http://dbpedia.org/resource/Brouwer_Fixed_Point_Theorem"/> ...
<div about="#PF23" typeof="oo:Proof"> ... </div>

</div>

Apart from the appropriate annotations of the theorem and its proof, an
additional owl:sameAs link is produced to the DBpedia (Wikipedia) “Brouwer_
Fixed_Point_Theorem” resource. Such links are produced for all Mizar theor-
ems and concepts for which the author defined a long (typically well-known)
name using the Mizar ::$N pragma. Such pragmas provide a way for the users
to link the formalizations to Wikipedia (DBpedia, ProofWiki, PlanetMath, etc.),

9 http://omdoc.org/ontology#
10 http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14
11 T14 is a unique internal Mizar identifier denoting the theorem. Th14 is a (possibly

non-unique) user-level identifier (e.g., Brouwer or SK300 would result in T14 too).

http://omdoc.org/ontology#
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14

Wikis and Collaborative Systems for Large Formal Mathematics 11

and the links allow data consumers (like Agora) to automatically mesh to-
gether different (Mizar, Coq, etc.) formalizations using DBpedia as the common
namespace.

A particular instantiation of Agora is the Flyspeck wiki prototype [49] used
for aligning, cross-linking, and potential further joint refactoring of Hales’s in-
formal Flyspeck book [16] about the proof of the Kepler Conjecture, and the
corresponding formal Flyspeck development. This alignment takes advantage of
the following annotated LATEX form (developed by Hales in his book), which
already cross-links informal objects to some of the formal counterparts (form-
ally defined symbols and theorem names living in the formalization):
\begin{definition}[polyhedron]\guid{QSRHLXB}
A \newterm{polyhedron} is the
intersection of a finite number of closed half-spaces in
\ring{R}^n.
\end{definition}

\begin{lemma}[Krein--Milman]\guid{MUGGQUF}
Every compact convex set $P\subset\ring{R}^n$ is the convex hull
of its set of extreme points.
\end{lemma}

where QSRHLXB and MUGGQUF are the identifiers of the formal definition and the-
orem. The text contains many further mappings between informal and formal
concepts, e.g.:
\formaldef{$\op{azim}(x)$}{azim_fan}
\formaldef{M\"obius contour}{is_Moebius_contour}
\formaldef{half space}{closed_half_space, open_half_space}

The wiki relies on MathJaX for rendering the rich informal mathematics, and
on custom transformations from LATEX to the Creole wiki syntax. The formal
text is automatically included as formal Agora islands, and aligned with the
corresponding informal snippets, allowing their simultaneous view.

A related project is the MMT [44] formal logical framework and theory
browser, where different formal libraries together with their foundations are
deeply embedded into the logic of the framework, allowing translations between
them and their (at least theoretical) combined use within the framework. The
associated HTML theory browser already includes versions of the Mizar [21] and
HOL Light libraries [23], however, so far this technology rather serves interested
readers than as an user-updatable collaborative wiki.

Another interesting project that combines statistical and semantic methods
for aligning the terminologies and theorems in different formal libraries has been
started recently [12]. This project shows that quite a lot of such alignment can
be achieved fully automatically based on the structure of the library statements.
Such tools could complement the manual alignment and annotations used by
systems like Agora.

4.4 Server-based Assisting Tools: HOL(y)Hammer and MizAR

In general, collaboration with machines is a very interesting aspect of the fully
formal domain. The large formal libraries can be subjected both to various data-
mining and machine learning methods that are being developed for less semantic

12 Cezary Kaliszyk and Josef Urban

domains such as web search. On the other hand, one can also use very strong se-
mantic search methods such as automated theorem proving (ATP), to assist the
humans with finding proofs. Since the final correctness and consistency of such
strong machine assistance is checked by the ITP systems (which are today very
secure), one can use very efficiently implemented AI/ATP tools as parts of such
toolchains, without a risk of introducing an incorrect proof due to implementa-
tional errors. The two main examples of such server-based assistance systems are
the HOL(y)Hammer system serving the HOL Light users, and the MizAR system,
serving the Mizar users. Since the two systems are otherwise quite similar, below
we only explain their workings for the case of HOL(y)Hammer. The details of
MizAR can be found in [26,54,55].

HOL(y)Hammer is an online AI/ATP service for formal (computer-under-
standable) mathematics encoded in the HOL Light system. The service allows
its users to upload or modify and automatically process an arbitrary formal
development (project) based on HOL Light, and to attack with automated the-
orem provers arbitrary conjectures that use the concepts defined in some of the
uploaded projects. For that, the service uses several automated reasoning sys-
tems combined with several premise selection methods [33] trained on all the
project proofs. The projects that are readily available on the server for such
query answering include the recent versions of the Flyspeck, Multivariate Ana-
lysis and Complex Analysis libraries. The wiki-like features include upload and
modification of existing projects, git-based versioning, HTML rendering of the
libraries and their optional linking to Wikipedia and DBpedia and production
of the OMDoc-based annotations for systems like Agora. The service runs on a
48-CPU server, currently employing in parallel for each task 7 AI/ATP combin-
ations and 4 decision procedures that contribute to its overall performance. The
current version of the system can prove about 40% of all Flyspeck toplevel lem-
mas fully automatically, thus significantly speeding up the formalization efforts.

The overall problem solving architecture without the updating functions is
shown in Figure 2. The service receives a query (a HOL conjecture to prove, pos-
sibly with local assumptions) generated by one of the clients/frontends (Emacs,
web interface, HOL session, etc.). The parsed query is processed in parallel by
the (time-limited) AI/ATP combinations and the native HOL Light decision pro-
cedures (each managed by its forked HOL Light process, and terminated/killed
by the master process if not finished within its global time limit). Each of the
AI/ATP processes computes a specific feature representation of the query (used
for knowledge selection), and sends such features to a specific instance of a
premise advisor trained (using the particular feature representation) on pre-
vious proofs. Each of the advisors replies with a specific number of premises,
which are then translated to a suitable ATP format, and written to a tem-
porary file on which a specific ATP is run. The successful ATP result is then
(pseudo-)minimized, and handed over to the combination of HOL Light proof-
reconstruction procedures. These procedures again run in parallel, and if any
of them is successful, the result is sent as a particular tactic application to the

Wikis and Collaborative Systems for Large Formal Mathematics 13

Parse

Type Check

Server Client

Input Line
Request

Progress

Evaluate
Features

Decision
Procedures

Tauto

...

Compute
Advice

Write TPTP
problem

Run ATP
Prover

For all
strategies

Extract
Used Deps Minimize

(repeat)

ATP
advice

Reconstruction Strategies

Rewrite Simplify MESON

....

Tactic

Arith
over R

Arith
over C

Theorem
Symbols

Theorem
Deps

k-Nearest
Neighbour

Prover
Deps

Epar
Z3

Vampire

TSTP
proof

External
processes and data

Naive
Bayes

Neural
Networks

Tactic

Figure 2: Overview of the HOL(y)Hammer problem solving functions

frontend. In case a native HOL Light decision procedure finds a proof, the result
(again a particular tactic application) can be immediately sent to the frontend.

Since formal projects frequently modify their terminology and theorem names,
and updating all the AI/ATP data on the server is expensive, HOL(y)Hammer has
introduced recursive content-based encoding of the formal theorem and symbol
names [52] for all projects and for re-using information across different projects
and their versions. This is implemented as follows:

1. The name of every defined symbol is replaced by the content hash (we use
MD5) of its variable-normalized definition containing the full types of the
variables. This definition already uses content hashes instead of the previ-
ously defined symbols. This means that symbol names are no longer relevant
in the whole project, neither white space and variable names.

14 Cezary Kaliszyk and Josef Urban

2. The name of each theorem is also replaced by the content hash of its (ana-
logously normalized) statement.

3. The proof-dependency data extracted in the content encoding from all pro-
jects are copied to a special “common” directory.

4. Whenever a project P is started or modified, we find the intersection of
the content-encoded names of the project’s theorems with such names that
already exist in other projects/versions.

5. For each of such “already known” theorems T in P , we re-use for the AI/ATP
systems its “already known” proofs D that are compatible with P ’s proof
graph. This means, that the names of the proof dependencies of T in D must
also exist in P (i.e., these theorems have been also proved in P , modulo the
content-naming), and that these theorems precede T in P in its chronological
order of library development (otherwise we might get cyclic training data for
P).

This procedure very significantly improves the live updates of the projects, be-
cause typically over 90% of the library’s new version remains the same after
these normalization steps [25].

5 Conclusions

The world of formal mathematical wikis is still very young, and it is even hard
to say that there is a single most advanced system or that a particular wiki-
like system has been largely adopted by the formal community. In this article
we have therefore tried to summarize the topics that have emerged recently,
when the venerable fifty-year old field of formalization of mathematics, with
its venerable history of efforts such as QED, got interested in the collaborative
wiki-like technologies.

Some of the pieces of the technology have already made it to the formal
mainstream. Examples are advanced version control systems that have additional
verification and rendering features. Other wiki-related techniques, such as web-
based editing supported by verification in ProofWeb, or strong semantic advisors
such as HOL(y)Hammer and MizAR have also already found some adopters. The
various meta-wiki ideas and ideas linking the formal libraries with semantic web
and informal mathematics are however still waiting to be fully developed and
utilized.

There are many interesting topics that this brief overview has not dealt with.
For example, change propagation is an important research topic and fine-grained
dependency tracking can very significantly improve the speed of consistency
checking of library updates [4]. Strong semantic assistance can include semi-
automated translations between the informal and formal mathematics, with the
outlook of gradually training smarter and smarter natural-language-understanding
tools for mathematics on such aligned corpora [27]. And very interesting topics
arise with future – hopefully wiki-supported – formalizations of other exact sci-
ences such as physics. There, the many possible models of the (never completely
known) real world need to somehow formally co-exist, while still being linked to

Wikis and Collaborative Systems for Large Formal Mathematics 15

accessible informal explanations about their relations to the underlying reality
that they try to capture.

Perhaps the biggest challenge of formal mathematical wikis thus today seem
to be the varied and evolving treatments of formality. While fully formal and
computer-verified mathematics has made great steps forward in the last decade,
there is still no agreement on the ultimate formalism. This includes the particular
steps and stages that should link informal and formal knowledge and smoothly
proceed in a wiki-like way from one to the other. On the other hand, formal
mathematics and the strong semantic tools that have become available for its
assistance are already clearly showing how disruptive for our way of doing science
could be frameworks that achieve very smooth transition from informal (human-
understandable) to formal (machine-understandable) scientific knowledge.

6 Acknowledgments

The following colleagues have collaborated with us on various aspects of formal
wikis and on a number of formal wiki-related systems mentioned in this paper:
Mark Adams, Jesse Alama, Grzegorz Bancerek, Kasper Brink, Johan Commelin,
Pierre Corbineau, Thibault Gauthier, Herman Geuvers, Mihnea Iancu, James
McKinna, Michael Kohlhase, Christoph Lange, Lionel Mamane, Florian Rabe,
Piotr Rudnicki, Geoff Sutcliffe, Carst Tankink, Jiri Vyskocil and Freek Wiedijk.
Thanks to the anonymous SWCS referees for their valuable comments.

References

1. The QED Manifesto. In Alan Bundy, editor, CADE, volume 814 of LNCS, pages
238–251. Springer, 1994.

2. Sanaz Khan Afshar, Umair Siddique, Mohamed Yousri Mahmoud, Vincent Arav-
antinos, Ons Seddiki, Osman Hasan, and Sofiène Tahar. Formal analysis of optical
systems. Mathematics in Computer Science, 8(1):39–70, 2014.

3. Jesse Alama, Kasper Brink, Lionel Mamane, and Josef Urban. Large formal wikis:
Issues and solutions. In James H. Davenport, William M. Farmer, Josef Urban, and
Florian Rabe, editors, Symposium on Intelligent Computer Mathematics (CICM
2011), volume 6824 of LNCS, pages 133–148. Springer, 2011.

4. Jesse Alama, Lionel Mamane, and Josef Urban. Dependencies in formal mathem-
atics: Applications and extraction for Coq and Mizar. In Johan Jeuring, John A.
Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and
Volker Sorge, editors, Intelligent Computer Mathematics (CICM 2012), volume
7362 of LNCS, pages 1–16. Springer, 2012.

5. Andrea Asperti and Wilmer Ricciotti. A web interface for Matita. In Jo-
han Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka,
Makarius Wenzel, and Volker Sorge, editors, Intelligent Computer Mathematics
(CICM 2012), volume 7362 of LNCS, pages 417–421. Springer, 2012.

6. David Aspinall. Proof General: A generic tool for proof development. In Susanne
Graf and Michael I. Schwartzbach, editors, 6th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS 2000), volume
1785 of LNCS, pages 38–42. Springer, 2000.

16 Cezary Kaliszyk and Josef Urban

7. Grzegorz Bancerek and Piotr Rudnicki. A Compendium of Continuous Lattices in
MIZAR. J. Autom. Reasoning, 29(3-4):189–224, 2002.

8. Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe. KnowWE: a Se-
mantic Wiki for knowledge engineering. Appl. Intell., 35(3):323–344, 2011.

9. The Coq Proof Assistant. http://coq.inria.fr.
10. Pierre Corbineau and Cezary Kaliszyk. Cooperative repositories for formal proofs.

In Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang Windsteiger, ed-
itors, Proc. of the 6th International Conference on Mathematical Knowledge Man-
agement (MKM’07), volume 4573 of LNCS, pages 221–234. Springer Verlag, 2007.

11. N.G. de Bruijn. The mathematical language AUTOMATH, its usage, and some of
its extensions. In M. Laudet, editor, Proceedings of the Symposium on Automatic
Demonstration, pages 29–61, Versailles, France, December 1968. Springer-Verlag
LNM 125.

12. Thibault Gauthier and Cezary Kaliszyk. Matching concepts across HOL libraries.
In Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef
Urban, editors, Intelligent Computer Mathematics (CICM 2014), volume 8543 of
LNCS, pages 267–281. Springer, 2014.

13. Georges Gonthier. The four colour theorem: Engineering of a formal proof. In
Deepak Kapur, editor, Computer Mathematics, 8th Asian Symposium, ASCM
2007, Singapore, December 15-17, 2007. Revised and Invited Papers, volume 5081
of LNCS, page 333. Springer, 2007.

14. Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould
Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent
Théry. A machine-checked proof of the Odd Order Theorem. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie, editors, ITP, volume 7998 of
LNCS, pages 163–179. Springer, 2013.

15. Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell.
J. Formalized Reasoning, 3(2):153–245, 2010.

16. Thomas Hales. Dense Sphere Packings: A Blueprint for Formal Proofs, volume
400 of London Mathematical Society Lecture Note Series. Cambridge University
Press, 2012.

17. Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison,
Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason
Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef
Urban, Ky Khac Vu, and Roland Zumkeller. A formal proof of the Kepler conjec-
ture. CoRR, abs/1501.02155, 2015.

18. John Harrison. HOL Light: A tutorial introduction. In Mandayam K. Srivas and
Albert John Camilleri, editors, FMCAD, volume 1166 of LNCS, pages 265–269.
Springer, 1996.

19. John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem
proving. In Jörg H. Siekmann, editor, Computational Logic, volume 9 of Handbook
of the History of Logic, pages 135 – 214. North-Holland, 2014.

20. Maxim Hendriks, Cezary Kaliszyk, Femke van Raamsdonk, and Freek Wiedijk.
Teaching logic using a state-of-the-art proof assistant. Acta Didactica Napocensia,
3(2):35–48, June 2010.

21. Mihnea Iancu, Michael Kohlhase, Florian Rabe, and Josef Urban. The Mizar Math-
ematical Library in OMDoc: Translation and applications. J. Autom. Reasoning,
50(2):191–202, 2013.

http://coq.inria.fr

Wikis and Collaborative Systems for Large Formal Mathematics 17

22. Cezary Kaliszyk. Web interfaces for proof assistants. In S. Autexier and C. Ben-
zmüller, editors, Proc. of the Workshop on User Interfaces for Theorem Provers
(UITP’06), volume 174[2] of ENTCS, pages 49–61, 2007.

23. Cezary Kaliszyk and Florian Rabe. Towards knowledge management for HOL
Light. In Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr Sojka,
and Josef Urban, editors, Intelligent Computer Mathematics (CICM 2014), volume
8543 of LNCS, pages 357–372. Springer, 2014.

24. Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with
Flyspeck. J. Autom. Reasoning, 53(2):173–213, 2014.

25. Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP service for HOL
Light. Mathematics in Computer Science, 9(1):5–22, 2015.

26. Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning,
55(3):245–256, 2015.

27. Cezary Kaliszyk, Josef Urban, Jirí Vyskocil, and Herman Geuvers. Developing
corpus-based translation methods between informal and formal mathematics: Pro-
ject description. In Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr
Sojka, and Josef Urban, editors, Intelligent Computer Mathematics (CICM 2014),
volume 8543 of LNCS, pages 435–439. Springer, 2014.

28. Cezary Kaliszyk and Freek Wiedijk. Merging procedural and declarative proof. In
Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, editors, Proc. of the Types
for Proofs and Programs International Conference (TYPES’08), volume 5497 of
LNCS, pages 203–219. Springer Verlag, 2008.

29. Matt Kaufmann and J. Strother Moore. An ACL2 tutorial. In Otmane Aït Mo-
hamed, César A. Muñoz, and Sofiène Tahar, editors, 21st International Conference
on Theorem Proving in Higher Order Logics, TPHOLs 2008, volume 5170 of LNCS,
pages 17–21. Springer, 2008.

30. Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification
of an operating-system kernel. Commun. ACM, 53(6):107–115, 2010.

31. Michael Kohlhase. OMDoc - An Open Markup Format for Mathematical Docu-
ments [version 1.2], volume 4180 of LNCS. Springer, 2006.

32. Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban.
MaSh: Machine learning for Sledgehammer. In Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie, editors, ITP 2013, volume 7998 of LNCS, pages
35–50. Springer, 2013.

33. Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom
Heskes. Overview and evaluation of premise selection techniques for large theory
mathematics. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR,
volume 7364 of LNCS, pages 378–392. Springer, 2012.

34. Christoph Lange. OMDoc ontology. http://kwarc.info/projects/docOnto/omdoc.

html, 2011.
35. Christoph Lange. Ontologies and languages for representing mathematical know-

ledge on the semantic web. Semantic Web, 4(2):119–158, 2013.
36. Christoph Lange, Colin Rowat, and Manfred Kerber. The ForMaRE project -

formal mathematical reasoning in economics. In Jacques Carette, David Aspinall,
Christoph Lange, Petr Sojka, and Wolfgang Windsteiger, editors, Intelligent Com-
puter Mathematics (CICM 2013), volume 7961 of LNCS, pages 330–334. Springer,
2013.

http://kwarc.info/projects/docOnto/omdoc.html
http://kwarc.info/projects/docOnto/omdoc.html

18 Cezary Kaliszyk and Josef Urban

37. Christoph Lange and Josef Urban, editors. Proceedings of the ITP 2011 Workshop
on Mathematical Wikis (MathWikis), number 767 in CEURWorkshop Proceedings,
Aachen, 2011.

38. Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

39. Roman Matuszewski, editor. The QED Workshop II, 1995. Warsaw University
Technical Report No. L/1/95.

40. Grzegorz J. Nalepa. Collective knowledge engineering with semantic wikis. J. UCS,
16(7):1006–1023, 2010.

41. Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS, pages
2–9, 2001.

42. Sam Owre and Natarajan Shankar. A brief overview of PVS. In Otmane Aït
Mohamed, César A. Muñoz, and Sofiène Tahar, editors, 21st International Con-
ference on Theorem Proving in Higher Order Logics, TPHOLs 2008, volume 5170
of LNCS, pages 22–27. Springer, 2008.

43. Loïc Pottier. LogiCoq, 1999.
URL: http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq.

44. Florian Rabe. The MMT API: A generic MKM system. In Jacques Carette,
David Aspinall, Christoph Lange, Petr Sojka, and Wolfgang Windsteiger, editors,
Intelligent Computer Mathematics (CICM 2013), volume 7961 of LNCS, pages
339–343. Springer, 2013.

45. D. Ramachandran, Reagan P., and K. Goolsbey. First-orderized ResearchCyc:
Expressiveness and Efficiency in a Common Sense Knowledge Base. In Shvaiko P.,
editor, Proceedings of the Workshop on Contexts and Ontologies: Theory, Practice
and Applications, 2005.

46. Martin Ring and Christoph Lüth. Collaborative interactive theorem proving with
clide. In Gerwin Klein and Ruben Gamboa, editors, 5th International Conference
on Interactive Theorem Proving, ITP 2014, volume 8558 of LNCS, pages 467–482.
Springer, 2014.

47. John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reas-
oning (in 2 volumes). Elsevier and MIT Press, 2001.

48. Carsten Schürmann. The Twelf proof assistant. In Stefan Berghofer, Tobias Nip-
kow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher
Order Logics, TPHOLs 2009, volume 5674 of LNCS, pages 79–83. Springer, 2009.

49. Carst Tankink, Cezary Kaliszyk, Josef Urban, and Herman Geuvers. Formal math-
ematics on display: A wiki for Flyspeck. In Jacques Carette, David Aspinall, Chris-
toph Lange, Petr Sojka, and Wolfgang Windsteiger, editors, Intelligent Computer
Mathematics (CICM 2013), volume 7961 of LNCS, pages 152–167. Springer, 2013.

50. Carst Tankink, Christoph Lange, and Josef Urban. Point-and-write - documenting
formal mathematics by reference. In Johan Jeuring, John A. Campbell, Jacques
Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker Sorge, editors,
Intelligent Computer Mathematics (CICM 2012), volume 7362 of LNCS, pages
169–185. Springer, 2012.

51. Josef Urban. XML-izing Mizar: Making semantic processing and presentation of
MML easy. In Michael Kohlhase, editor, MKM, volume 3863 of LNCS, pages
346–360. Springer, 2005.

52. Josef Urban. Content-based encoding of mathematical and code libraries. In
Christoph Lange and Josef Urban, editors, Proceedings of the ITP 2011 Workshop
on Mathematical Wikis (MathWikis), number 767 in CEURWorkshop Proceedings,
pages 49–53, Aachen, 2011.

http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq

Wikis and Collaborative Systems for Large Formal Mathematics 19

53. Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers. A wiki for Mizar:
Motivation, considerations, and initial prototype. In Serge Autexier, Jacques
Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and
Alan P. Sexton, editors, Intelligent Computer Mathematics (CICM 2010), volume
6167 of LNCS, pages 455–469. Springer, 2010.

54. Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for
Mizar formalizations. J. Autom. Reasoning, 50:229–241, 2013.

55. Josef Urban and Geoff Sutcliffe. Automated reasoning and presentation support
for formalizing mathematics in Mizar. In Serge Autexier, Jacques Calmet, David
Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton,
editors, Intelligent Computer Mathematics (CICM 2010), volume 6167 of LNCS,
pages 132–146. Springer, 2010.

56. Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle frame-
work. In Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors,
TPHOLs, volume 5170 of LNCS, pages 33–38. Springer, 2008.

57. Lee Worden. WorkingWiki: a MediaWiki-based platform for collaborative research.
In Lange and Urban [37], pages 63–73.

	Wikis and Collaborative Systems for Large Formal Mathematics

