
Towards a Mizar Environment for Isabelle:
Foundations and Language

Cezary Kaliszyk
University of Innsbruck

cezary.kaliszyk@uibk.ac.at

Karol Pąk
University of Białystok
pakkarol@uwb.edu.pl

Josef Urban
Czech Technical University in Prague

josef.urban@gmail.com

Abstract
In this paper we explore the possibility of emulating the Mizar en-
vironment as close as possible inside the Isabelle logical frame-
work. We introduce adaptations to the Isabelle/FOL object logic
that correspond to the logic of Mizar, as well as Isar inner syn-
tax notations that correspond to these of the Mizar language. We
show how Isabelle types can be used to differentiate between the
syntactic categories of the Mizar language, such as sets and Mizar
types including modes and attributes, and show how they interact
with the basic constructs of the Tarski-Grothendieck set theory. We
discuss Mizar definitions and provide simple abbreviations that al-
low the introduction of Mizar predicates, functions, attributes and
modes using the Isabelle/Pure language elements for introducing
definitions and theorems. We finally consider the definite and in-
definite description operators in Mizar and their use to introduce
definitions by “means” and “equals”. We demonstrate the usabil-
ity of the environment on a sample Mizar-style formalization, with
cluster inferences and “by” steps performed manually.

Keywords Mizar, Isabelle, object logic, Isar.

1. Introduction
The Mizar system has been developed rather independently of the
mainstream tactical proof assistants for more than forty years. The
development has been started in 1973 by Andrzej Trybulec, who
has been working on his PhD in topology, while simultaneously be-
ing very interested in linguistics. This focus has for a long time dis-
tinguished Mizar from other systems. The main concern has been
from the very beginning to support working mathematicians in pro-
ducing formally verified texts that resemble informal mathematics
as much as possible. Over the forty years, this has led to the devel-
opment of several mathematician-oriented features:

• Jaśkowski-style natural deduction1, trying to approximate the
way informal proofs are written

1 Isabelle/Pure as logical framework and Isabelle/Isar as proof language are
based on a generalized form of Gentzen-style natural deduction.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CPP ’16, January 18–19, 2016, Saint Petersburg, Florida, USA.
Copyright is held by the owner/author(s).
ACM [to be supplied].
http://dx.doi.org/10.1145/???

• rich term and formula language based on a dedicated parser
allowing a number of complex notational constructs

• rather standard mathematical foundations: first-order logic and
set theory

• linguistically motivated dependent soft type system and type
inference mechanisms, completely independent of “computer-
science inventions”2 such as (typed) lambda calculus

• LATEX-like compilation (batch) mode reporting many errors at
once rather than an interactive mode

• a lot of research on the notion of logical “obviousness” [3,
24], motivating the fast Mizar refutational “by” checker which
uniformly discharges all low-level proof obligations, rather than
requiring the users to master – or even program – sophisticated
custom tactics.

Combined with many experiments in formalizing more and
more complicated mathematical texts, the system has been used
for early development of one of the largest formal mathematical
libraries. By 2002, the system allowed a rather faithful formaliza-
tion of many parts of mathematics, the largest one being the col-
laborative formalization of most of the graduate Compendium of
Continuous Lattices [2].

Following the “discovery of Mizar” during the QED project [22]
discussions and workshops, Harrison has pioneered work on bring-
ing some of the Mizar features to tactical proof assistants. This
in particular concerns the declarative proof style ported in his
Mizar Mode for HOL [5]. A number of such Mizar-like environ-
ments have later appeared in tactical proof assistants. However
with the exception of Harrison’s implementation of the Mizar “by”
prover, they are usually limited to emulating to various extent the
Jaśkowski-style natural deduction and its Mizar implementation.
The foundations, the formula/term languages and the LCF-style
tactics have typically not been influenced by Mizar. This is true
also for the Isar language [31] and proof style predominately used
in Isabelle today.

1.1 Contributions
In this work we start to develop a rather faithful emulation of the
Mizar logic in the Isabelle logical framework (Section 2). We ini-
tially focus on emulating in Isabelle the Mizar term and formula
language, including the Mizar soft typing constructs (Sections 3,4).
We discuss Mizar definitional mechanisms and provide abbrevia-
tions that allow faithful introduction of Mizar predicates, functions,

2 Some mathematicians tend to think that systems for formal mathematics
should be designed by and for working mathematicians, not by and for com-
puter scientists. Andrzej Trybulec was certainly one of them, occasionally
being quite critical of making complicated science from what should be
simple and intuitive for non-experts.



attributes and modes using the Pure definition syntax, including the
resulting proof obligations corresponding to Mizar (Sections 5,7).
This already allows us to state the exact Mizar logical foundations
– the Tarski-Grothendieck set theory (Section 6), and to port two
basic Mizar formalizations to the new environment (Section 8).
This includes porting of dozens of Mizar definitions and theorems,
even though we still rely on the rather imperfect correspondence
between the Isar and Mizar natural deduction systems, and on the
rather imperfect correspondence between the Isabelle and Mizar
automation procedures. Such issues and related future work are dis-
cussed in Section 9.

1.2 Related Work
There have been a number of attempts to translate the Mizar logic
to various other formalisms, or to emulate parts of it. The largest
translation of Mizar has been done by Urban [29] to the TPTP
untyped first-order language. It preserves the proof semantics, and
therefore can be used by the MizAR proof advice system [10],
however does not preserve any of the user commands, notations,
and the notations which we plan to look at. A partial-but-efficient
emulation of the Mizar typing mechanisms has been implemented
in the MoMM system [28] based on Schulz’s E prover [25].

The first Mizar style proof mode for an LCF theorem prover
has been created by Harrison [5], who also ported the (untyped
version of) the Mizar “by” prover. Kunčar [12] has worked on re-
covering the Mizar system in the type system of HOL Light. As in
here, the ultimate motivation was to eventually emulate sufficiently
many Mizar mechanisms into an LCF-style proof assistant, how-
ever many parts are still missing.

The statements of the theorems in the whole Mizar Mathemati-
cal Library (MML) have been exported to the MMT logical frame-
work [7]. This allows the use of various MMT services for MML,
such as searching the library or providing proof advice, however
does not include an independent verification of the proofs or proof
automation.

Isabelle already has an object logic Isabelle/ZF [19] based on
set theory. Already the foundational axioms of ZF differ from
those of Tarski-Grothendieck, and the type system introduced by
Mizar is very different from any of the existing object logics in
Isabelle. Furthermore, the library of Isabelle/ZF and the automation
provided is quite different from our emulation.

Agerholm and Gordon [1] compare the possible representations
of ZF set theory in HOL and Isabelle. The approach to implement
set theory as an object logic over HOL has been further extended
by Obua in HOLZF [16]. There, the axioms of set theory are added
on top of higher-order logic. This has been further explored by
his ProofPeer system, where the underlying higher-order logic is
limited to a minimum [17].

Finally there are many automated translations between proof
assistants, including the import of proofs from OpenTheory [6] and
HOL Light including Flyspeck [9] to Isabelle/HOL, as well as an
interpretation of Isabelle/HOL proofs in Isabelle/ZF [11].

2. Preliminaries
2.1 Logical Frameworks and Isabelle
Most proof assistants are based on a single fixed logic. This is in
contrast to logical frameworks, which are designed to allow ex-
pressing various logics and provide practical support for reasoning
in these logics. The most known logical frameworks are LF (with
its most current implementations being Twelf [26] and MMT [23])
and Isabelle [33].

Isabelle is a generic theorem prover designed to support a va-
riety of different logical systems. Its kernel, implemented in Stan-
dard ML, provides a meta-logic called “Pure”, which is a version

of simple type theory with shallow polymorphism. This meta-logic
presents the user with a very limited number of logical operators
necessary to implement object logics: equality, implication, con-
junction, and the universal quantifier.

A number of object logics have been implemented in Isabelle,
including Isabelle/HOL, Isabelle/ZF [19], Isabelle/TLA [14], Is-
abelle/CTT, and Isabelle/LCF. Paulson [18] provides an introduc-
tion to the various object logics implemented in Isabelle, discussing
the choices made when implementing the object logics.

2.2 Mizar
The current incarnation of Mizar has developed since 1973 from
many experiments with various parts of the system [13], including
the foundations, type system, syntax and proof checking. In 1989,
starting with the focus on the development of the MML, most of
these parts have become rather fixed.

The logic is classical first-order logic with a minimal addition of
second-order schemes (schematic axioms and theorems) that need
to be explicitly instantiated by the user. Types are not foundational
in this logic. Semantically, types are just first-order predicates with
some automation attached. Such automation typically consists of
user-programmable Horn clauses [15, 28], propagating various (pa-
rameterized) properties (adjectives) in the Mizar terms in a bottom-
up way. As in other typed systems, Mizar types are also used for
early type-checking, i.e., prohibiting expressions that do not type.

The proof system is Jaśkowski-style natural deduction [8, 21],
complemented with a very limited, but fast (and type-aware) refu-
tational first-order prover – the Mizar by [34]. The language also
includes constructs for (conservatively) defining predicates, func-
tions, and types, stating (and proving) their properties such as re-
flexivity and commutativity, and declaring (and proving) the type-
automation clauses.

This logic could be used with various axioms, but in MML
everything is based on the axioms of the Tarski-Grothendieck set
theory. This is a proper strengthening of ZFC, adding the Tarski’s
axiom A [27] (the last axiom in Fig. 1). This axiom implies the
Axiom of Choice (AC) and provides arbitrarily large strongly inac-
cessible cardinals and thus models of ZFC, which is used to avoid
proper classes in some formalizations. In addition to AC, Mizar
adds a global choice function. Related to the soft type system is
an extensive notational system, allowing both ad-hoc and paramet-
ric overloading, synonyms, antonyms, complex symbols, and other
linguistic features such as various fixities and argument hiding for
closely mimicking mathematical vernacular.

3. Mizar Logic in Isabelle
In order to provide in Isabelle the basic Mizar language, we first
import the Isabelle object logic FOL, and augment it with the Mizar
logical notations implies, iff, or, and not. We also define an if-then-
else construction used inside Mizar definitions (written in Mizar
if-otherwise).

The Isabelle object logic FOL defines a type of Boolean propo-
sitions o. We additionally introduce two Isabelle types necessary
for the Mizar foundations: an Isabelle type for Mizar concrete set
instances s and an Isabelle type of Mizar type expressions ty. A
value of the type ty in Mizar is formally either an adjective cluster3

or a full type expression4. This means that it can also be a bare at-
tribute (such as empty), a single adjective (such as non empty), or

3 http://mizar.org/language/syntax.html#
Adjective-Cluster
4 http://mizar.org/language/syntax.html#
Type-Expression



a bare radix type5 (constructed from a parameterized mode6 such
as Element of NAT). The construction of Mizar-like compound
types will be performed on the Isabelle term level inside the ty type.
When the context is clear we will say just (Mizar) type instead of
(Mizar) type expression, and cluster instead of adjective cluster.

Mizar types are semantically predicates over sets, however the
syntactic constructs available for Mizar types differ a lot from those
used for Mizar predicates. Mizar types can occur as arguments of
certain constructions (is, be, being, and the), while Mizar predi-
cates are directly applied to terms. We introduce the same distinc-
tion using the Isabelle type system. This distinction is introduced
together with constants that let us convert between the two (at-
tribute and typexp will convert predicates over sets to Mizar types,
and prefix_is will verify that the given set satisfies the predicate
represented by the type). In certain Isabelle object logics (most no-
tably HOL, ZF, and CCL) a similar distinction between sets and
predicates is introduced using two constants (Collect and member
or mem). This has a number of advantages, the most important be-
ing stronger automation. (In the context of Isabelle/HOL this sepa-
ration is also necessary for general code generation [4]).

typedecl s
typedecl ty

We next introduce the Isabelle meta-level constants. These con-
stants will be axiomatized, with the following intentional mean-
ings. tys allows the construction of Mizar types and clusters from
adjectives (or from other clusters and radix types). Note that this
is more liberal than in Mizar: only a single radix type is allowed
there in each type expression.7 This more liberal setting (free mix-
ing of types and clusters) applies also to the following constants.
non-ty constructs the negated adjective from an attribute. prefix-is
given a set and a type returns a proposition, which is valid if the set
belongs to the Mizar type (checking this is equivalent to the appli-
cation of the predicate represented by the Mizar type). Attributes
and modes are built using the constants attribute and typexp re-
spectively. Their Isabelle types are the same, but modes require the
existence (non-emptiness) precondition, which will we will discuss
when introducing the axiomatization below. Finally, we introduce
the definite and indefinite description operators the1 and prefix-
the, with the former defined for any predicate, and the latter defined
only for Mizar types.

consts
tys :: ty ⇒ ty ⇒ ty
non-ty :: ty ⇒ ty
prefix-is :: s ⇒ ty ⇒ o
attribute :: (s ⇒ o) ⇒ ty
typexp :: (s ⇒ o) ⇒ ty
the1 :: (s ⇒ o) ⇒ s
prefix-the :: ty ⇒ s

We next introduce the axioms that define these constants. In the
following axiomatization we will already use the infix syntax is
for the constant prefix-is, the syntax the for the constant prefix-the
and the empty infix constant _ for the constant tys. The way these

5 http://mizar.org/language/syntax.html#Radix-Type
6 The distinction between, e.g., a mode and radix type (or an attribute and
an adjective) is the same as between a functor and a term or a predicate and
an atomic formula. The former is always the constructor of the latter logical
object. The terminology is however often mixed up.
7 There have been many discussions in the Mizar team about merging the
concepts of attributes and modes when the former started to allow explicit
(visible) arguments in the same way as modes do. However having only
a single “most specific radix type” is still a significant part of the Mizar
type-checking algorithms.

notations are properly introduced without introducing a high-level
of syntax ambiguity will be explained in Section 4. The meanings
of the below axioms are as follows: A set is in a compound Mizar
type if it satisfies all the adjectives and the radix type. A set belongs
to the negated adjective non when it does not satisfy the underlying
adjective. Adjectives and radix types correspond to predicates, but
the latter require existence. Finally the description operators are
axiomatized as usual.

axiomatization where
tys[simp]: x is d1 d2 iff x is d1 & x is d2 and
non-ty[simp]: x is non d iff not x is d and
attr-spec[simp]:
A = attribute(P) =⇒ (x is A) iff P(x) and

typexp-property:
A = typexp(P) =⇒
∃ x. P(x) =⇒
x is A iff P(x) and

the1-property:
∃ x. P (x) =⇒

(∀ x y. P (x) ∧ P (y) implies x = y) =⇒
P (the1 (P)) and

the-property[simp]: ∃ x. x is d =⇒ (the d) is d

As the Mizar types are now introduced, we can also introduce
the Mizar quantifiers. Mizar universal and existential quantification
requires specifying the Mizar type of the introduced bound vari-
able. For this we introduce two constants Ball and Bex. We define
them in a very similar way to the bounded quantifiers present in Is-
abelle/HOL and Isabelle/ZF, however instead of predicates we use
the given Mizar types. We additionally introduce the usual automa-
tion for these quantifiers (introduction and elimination rules with
the Isabelle attributes [intro!], [dest], etc).

definition Ball :: ty ⇒ (s ⇒ o) ⇒ o where
[simp]: Ball(D, P) iff (∀ x. x is D implies P(x))

definition Bex :: ty ⇒ (s ⇒ o) ⇒ o where
[simp]: Bex(D, P) iff (∃ x. x is D & P(x))

4. Notations
In order to make the emulated environment more similar to the
Mizar system, we further introduce notations for the basic constants
axiomatized in the previous section that correspond to the Mizar
notation.

We first need to introduce a syntax for Mizar types. The Isabelle
system provides an extensible parser for the inner syntax, which
is based on context free priority grammars [32]. It is possible not
only to add terminals to the grammar, but also to add nonterminals
together with production rules for them, as well as rewrite rules
that work on the parse trees that are separate from the grammar
(these rewrite rules in the form of parse and print translations
are denoted by ⇀ and ↽). We will use these mechanisms to
allow expressions such as x is non empty set in such a way
that it does not clash with other notation. For this we introduce a
syntax nonterminal for Mizar compound types tys. We will use this
nonterminal in the syntax of constants that allow compound types
and translate the occurrence of this nonterminal to the constant tys.
We introduce both be and is as infix notations for prefix_is together
with appropriate precedences.

nonterminal tys
syntax
Mizar.prefix-is :: s ⇒ tys ⇒ o (infix be 90)
Mizar.prefix-is :: s ⇒ tys ⇒ o (infix is 90)
Mizar.prefix-the :: tys ⇒ s (the - [79] 80)
:: ty ⇒ tys (-)



-tys :: ty ⇒ tys ⇒ tys (- - [90,90] 100)
translations
-tys(d, ds) ⇀↽ CONST tys(d, ds)

Now the following are valid Isabelle/Mizar expressions, the
constants tys and prefix-non are inserted in the appropriate places
and the notations do not clash with the usual Isabelle function
application.

term x is set
term x is empty set
term x is non empty Element of NAT
term x is one-to-one non onto Function of A,B
term the empty set

We also introduce three syntax nonterminals representing a
group of variables, a typed group of variables and a group of typed
variable groups, together with syntax translations that allow the
usual Mizar quantifier format for-holds and ex-st. The type given
for a typed variable group is duplicated for every variable in the
group. We finally introduce input-only syntax for Mizar’s reverse
meta-implication provided used for formulating schemes.8

With these notations, the following are allowed by the Isabelle
parser, and they have their intentional meanings: the quantifiers are
interpreted as Ball and Bex with appropriate Mizar types. Thanks
to the use of the Isabelle syntax translation mechanisms, these are
also printed in the Mizar syntax in the Isabelle output (including
printed goal-states).

term P & Q iff Z implies (not P implies R or W)
term for x,y being set,z being object holds P(x,y,z)
term ex y being even Element of NAT st Q(y)
term P provided Q

5. Between Logic and Set Theory
The first article in the Mizar Mathematical Library, called Hidden,
is an axiomatic (not verified by the Mizar checker) article which
introduces the basic concepts needed in an axiomatization of set
theory: sets, set membership, and equality. The article first intro-
duces two Mizar modes: object and set. set is a subtype of object.
The type object is a relatively new addition to Mizar’s types. It was
introduced to hide some “objects” from the Mizar type automations
concerning sets. For example, often one does not want to know that
real numbers are sets with some internal structure. However, it is
still provable in Mizar that everything is a set.

These modes are translated to an Isabelle representation, to-
gether with an implication between them and the existence of the
elements in them. The first interesting difference between our for-
malization and Mizar, is the fact that Mizar axiomatizes the exis-
tence of an object and of a set, while we only axiomatize the former
and will be able to prove the latter in the next Section, Sec. 6.

axiomatization
object :: ty and
set :: ty

where
object-exists[simp]: ex x being object and
hidden-mode[simp,intro]: x is set =⇒ x is object

Mizar next introduces the constant equality and axiomatizes it
as a reflexive and symmetric relation. This is not enough to axiom-
atize equality in a logical framework, as without substitutivity we
cannot even derive transitivity of equality. Furthermore, it would

8 http://mizar.org/language/syntax.html#
Scheme-Block

not permit the use of the Isabelle simplifier, and as we do not im-
plement any Mizar-like automation, this would make the use of the
emulated system very cumbersome. Therefore we re-use the equal-
ity of Isabelle/FOL, and only introduce the notation for inequality
used by Mizar:

abbreviation
not-equal :: s ⇒ s ⇒ o (infix <> 50) where
x <> y ≡ not (x = y)

Finally the article introduces the set membership constant in,
whose properties will be defined by the Tarski-Grothendieck ax-
iomatization discussed in the next section.

consts
prefix-in :: s ⇒ s ⇒ o (infix in 50)

6. Tarski-Grothendieck Set Theory
We can now proceed with the introduction of the Tarski-Grothendieck
axioms of set theory. The Mizar code of the articles TARSKI_0
(basic axioms of set theory) and TARSKI_A (Tarski’s Axiom A)
is presented alongside with our Isabelle axiomatization in Fig. 1.
There are several differences between the two axiomatizations, ne-
cessitated by the first version of the setting which we use to emulate
Mizar in Isabelle. They are as follows:

• Our Isabelle emulation so far needs to explicitly mention all
the variables. This is visible for example in tarski-0-2, where
the explicit quantification over X and Y is necessary. In Mizar
these free variables become explicitly universally quantified at
the outermost scope.

• Mizar uses the reserve mechanism to remember the default
types of free variables. Mizar typed quantifications are now in-
ternally represented as Isabelle predicates (assumptions in case
of universal quantifiers), and we do not yet have a mechanism
similar to Mizar reservations in place. Therefore we explicitly
use the being syntax in every quantifier. This is visible in tarski-
0-5, where we need to say ex Y being set st in place of ex Y
st.

• In order for the scope of quantifiers to maximally extend to
the right, their Isabelle precedence is very low. This perfectly
matches the Mizar desired bindings, but requires additional
parentheses around quantifiers in more complex logical formu-
lae.

• The application of a predicate to arguments uses the same
syntax as the Isabelle usual application syntax, namely P(x, y)
rather than the Mizar P[x, y].

• A Mizar scheme becomes a regular theorem (or axiom), but
the type requirements of the scheme A() -> set become an
Isabelle theorem assumption A is set. This can be seen on the
TARSKI_0:sch 1 scheme.

With the first Mizar axiom, saying that every object is a set, we
can now prove that there exists a set:

theorem set-exists[simp]: ex x being set

This is a straightforward consequence of object-exists, the-
property, and tarski-0-1:

proof−
have (the object) is set

using object-exists the-property tarski-0-1 by auto
thus ?thesis by auto

qed



:: Set axiom
theorem :: TARSKI_0:1

for x being object holds x is set;

:: Extensionality axiom
theorem :: TARSKI_0:2

(for x being object holds x in X iff x in Y) implies X = Y;

:: Axiom of pair
theorem :: TARSKI_0:3

for x,y being object ex z being set st
for a being object holds

a in z iff a = x or a = y;

:: Axiom of union
theorem :: TARSKI_0:4

for X being set
ex Z being set st

for x being object holds
x in Z iff ex Y being set st x in Y & Y in X;

:: Axiom of regularity
theorem :: TARSKI_0:5

x in X implies ex Y st Y in X &
not ex x st x in X & x in Y;

:: Fraenkel’s scheme
scheme :: TARSKI_0:sch 1
Replacement { A() -> set, P[object,object] }:

ex X st for x holds
x in X iff ex y st y in A() & P[y,x]

provided
for x,y,z being object

st P[x,y] & P[x,z] holds y = z;

:: Tarski’s axiom
theorem :: TARSKI_A:1

ex M st N in M &
(for X,Y holds X in M & Y c= X implies Y in M) &
(for X st X in M ex Z st Z in M &

for Y st Y c= X holds Y in Z) &
(for X holds X c= M implies

X,M are_equipotent or X in M);

— Set axiom
axiomatization where tarski-0-1:
for x being object holds x is set

— Extensionality axiom
axiomatization where tarski-0-2:
for X,Y being set holds
(for x being object holds x in X iff x in Y) implies X = Y

— Axiom of pair
axiomatization where tarski-0-3:
for x,y being object holds ex z being set st
for a being object holds
a in z iff a = x or a = y

— Axiom of union
axiomatization where tarski-0-4:
for X being set holds
ex Z being set st
for x being object holds
x in Z iff (ex Y being set st x in Y & Y in X)

— Axiom of regularity
axiomatization where tarski-0-5:
for x being object,X being set st
x in X holds (ex Y being set st Y in X &
not (ex z being object st z in X & z in Y))

— Fraenkel’s scheme
axiomatization where tarski-0-sch-1:
A is set =⇒ (
ex X being set st for x being object holds
x in X iff (ex y being object st y in A & P(y, x))

provided
for x,y,z being object
st P(x, y) & P(x, z) holds y = z)

— Tarski’s axiom
axiomatization where tarski-a-th-1:
for N being set holds ex M being set st N in M &
(for X,Y being set holds X in M & Y c= X implies Y in M) &
(for X being set st X in M ex Z being set st Z in M &

(for Y being set st Y c= X holds Y in Z)) &
(for X being set holds X c= M implies

X,M are-equipotent or X in M)

Figure 1. TARSKI_0 and TARSKI_A in Mizar and Isabelle/Mizar

7. Mizar Function Definitions
Given the axiomatic Mizar articles which we translated in the
previous two sections, all other articles in the Mizar Mathematical
Library are fully checked by the Mizar checker. The first non-
axiomatic article, TARSKI, introduces the most basic definitions
of set theory, such as a singleton set, a set that contains precisely
two elements, a union of sets, etc.

Mizar definitions are written in definition blocks9, which may
contain multiple declarations of the types of parameters (loci dec-
laration), optional assumptions, and proper definitions using these
declarations. Assumptions are used when the type system is not
strong enough to capture all the definedness conditions just by the
loci declarations.

9 http://mizar.org/language/syntax.html#
Definition-Block

The first kind of definition we are interested in Mizar is the
functor definition10 of meta-level functions (functors in the Mizar
terminology), which use the syntax func. There are two kinds
of meta-level function definitions: definitions by means and by
equals. In both cases, the functor pattern (e.g. { x }), its result type
and the definiens need to be specified. The general method is a
definiens using means, providing a definitional formula for the de-
fined functor. Apart from the bound variables introduced inside the
definiens, the definiens can only use the parameters introduced in
the current definitional block, together with a special variable it,
which marks the occurrences of the functor pattern that is being
defined. Mizar creates from the definiens a definitional theorem,
where every occurrence of it is replaced by the defined functor pat-
tern. Mizar also automatically creates the existence and uniqueness

10 http://mizar.org/language/syntax.html#
Functor-Definition



proof obligations which need to be proved by the author so that the
definitional extension is conservative.

Often the functor definiens has the form it = ... , where it does
not occur on the right-hand side. In this case a simplified method
using the keyword equals can be used. The definiens is then just
a term, and the only possible proof obligation is showing that the
term has the correct result type.

In order to provide both kinds of definitions in our emulation
along with a syntax that resembles that of Mizar, we provide the
following two kinds of notation:

abbreviation (input) means-prefix
(let - func - → - means - [0,0,0] 10)

where let lt func def → dom means cond ≡
def = the1 (λit. lt implies (it is dom & cond(it)))

abbreviation (input) equals-prefix
(let - func - → - equals - [0,0,0] 10)

where let lt func def → dom equals exp ≡
def = the1 (λit. lt implies (it is dom & it = exp))

This allows introducing definitions in the usual Mizar notation
let lt func def → dom means cond. It works as follows. Given
certain constraints lt (type constraints or assumptions) it constructs
an equality between the newly defined term def and the description
operator applied to the implication between the constraints and the
desired definitional property cond. Since the definition needs to
introduce the variable used in the abstraction, namely it, the user
will typically write the definitional property as a lambda abstraction
λit. P(it). The introduction of it in the user input could be avoided
with the help of an Isabelle/ML syntax translation, albeit making
the notation itself much less readable.

In order to let users obtain the typing rules, the definitional
properties and the uniqueness properties implied by user definitions
introduced using func-means and using func-equals we provide
the following two theorems:

lemma means-property:
assumes df: f = the1(λx. Q implies x is D & P(x))
and q: Q
and ex: ex x being D st P (x)
and un:

∧
x y. x is D =⇒ y is D =⇒

P (x) =⇒ P (y) =⇒ x = y
shows f is D & P(f) & (x is D & P(x) implies x = f)

lemma equals-property:
assumes df: f = the1(λx. Q implies x is D & x=g)
and q: Q
and coherence: g is D
shows f is D & f = g

The way these two theorems are currently used is by instantiat-
ing them with the definition and the assumptions of the definition.
They then leave the same proof obligations as those required by
Mizar.

In Fig 2 we present a few first selected Mizar definitions to-
gether with their Isabelle counterparts. Each definition is followed
by a theorem that states all the information derived by our emu-
lation from the user provided obligations. For example in the case
of a definition by fun-means this means, that given the proofs of
existence and uniqueness, the typing rules, the definitional prop-
erty and the uniqueness for the definition are stated. In order to
omit the necessity to state such properties for each constants man-
ually, we use the schematic_theorem mechanism of Isabelle - the
stated properties are automatically derived from the conclusion of
the appropriate definitional theorem. For example in the case of the

definition of a singleton set (tarski-def-1), given the user-provided
proofs of existence and uniqueness:

show ex X being set st for x being object
holds x in X iff x = y

proof−
obtain X where
A1: X is set & (for x being object holds
(x in X iff (x = y or x = y)))

using tarski-0-3 assms by blast
then have X is set &
(for x being object holds x in X iff x = y) by auto

thus ?thesis by auto
qed

fix X1 X2
assume A1: X1 is set and A2: X2 is set and

A3: for x being object holds x in X1 iff x = y and
A4: for x being object holds x in X2 iff x = y

{
fix x
assume Z1: x is object
have x in X1 iff x = y using Z1 A1 A3 by auto
hence x in X1 iff x in X2 using Z1 A2 A4 by auto

}
thus X1 = X2 using tarski-th-2 A1 A2 by blast

The following three Isabelle lemmas become available:

y is object =⇒ {y} is set

y is object =⇒ x is object =⇒ x in {y} iff x = y

y is object =⇒
x is set =⇒ for xa being object holds xa in x iff xa = y
=⇒ x = {y}

With such properties available for all defined constants it is
possible to start proving the various characteristics of the constants
specified in Mizar. For most theorems the Mizar statements are
given in full, and we can prove precisely the same properties in our
emulated Mizar system. However, for a few properties Mizar uses
mathematical names to describe properties, such as commutativity
or asymmetry. In such cases our formalization at the moment needs
to manually state the such theorems, for example:

theorem tarski-def-2-commutativity[simp]:
for x,y being object holds {x,y} = {y,x}

theorem prefix-in-asymmetry[simp]:
for x,X being set holds not (x in X & X in x)

With this we can finish the translation of the Mizar article TARSKI.

8. Schemes, Attributes, and the Hilbert Operator
We next proceed with the Mizar article XBOOLE_0. The article
starts with a proof of a scheme. From our emulation point of view,
the scheme is a regular theorem, and we just use the Mizar keyword
provided for stating its assumptions, enriched in our case by the
type assumptions.

theorem xboole-0-sch-1:
ex X being set st for x being object holds

x in X iff x in A & P(x)
provided
A is set

We also show the proof of this scheme to show the adaptations
we needed to make to all the Mizar proofs:



definition
let y be object;
func { y } -> set means

:: TARSKI:def 1
for x being object holds x in it iff x = y;

definition
let X;
func union X -> set means

:: TARSKI:def 4
x in it iff ex Y st x in Y & Y in X;

definition
let x,y be object;
func [x,y] -> object equals

:: TARSKI:def 5
{ { x,y }, { x } };

definition tarski-def-1 ({-}) where
let y be object
func {y} → set means λit.
for x being object holds x in it iff x = y

definition tarski-def-4 (union - [90] 90) where
let X be set
func union X → set means λit.
for x being object holds
x in it iff (ex Y being set st x in Y & Y in X)

definition tarski-def-5 ([- , -]) where
let x be object & y be object
func [x,y] → object equals
{{x, y}, {x}}

Figure 2. Selected Definitions from Tarski in Mizar and Isabelle/Mizar

assume A0:A is set
let ?Q = λx. λy. (x=y & P(x))
have A1: for x,y,z being object holds
?Q(x, y) & ?Q(x, z) implies y = z by auto

obtain X where
A2:X is set & (for x being object holds x in X iff
(ex y being object st y in A & ?Q(y, x)))

using tarski-sch-1[OF A0 A1] by auto
thus ex X being set st
(for x being object holds x in X iff x in A & P(x))

by auto

The next step in the XBOOLE_0 article is the definition of the
attribute empty. Our emulation of the Mizar definitions of predi-
cates, attributes and modes is analogous to the emulation of functor
definitions described above, and we skip the technical details here
(see the file Mizar.thy for the exact implementation).11 The Isabelle
code used to define the attribute empty looks as follows:

definition xboole-0-def-1[simp]:
let X is set attr X is empty means
not (ex x being object st x in X)

And the provided definitional theorem is:

X is set =⇒ X is empty iff not (ex x being object st x in
X)

The emulation can also be used to introduce the first cluster,
which is a simple theorem that states the existence of the empty
set. This in turn enables us to define the empty set:

theorem xboole-0-cl-1[simp]:
cluster empty for set

definition xboole-0-def-2-prefix ({}) where
func {} → set equals the empty set

In a similar way we can finish the formalization of the Mizar
article XBOOLE_0 in our emulated Mizar. A number of proofs
can be performed completely automatically with the help of the
correctly set up simplifier, introduction and elimination rules, such
as for example:

theorem xboole-0-th-6:
11 The complete formalization is available at http://
cl-informatik.uibk.ac.at/cek/cpp16/

for X,Y being set st X c< Y holds
ex x being object st x in Y & not x in X

For other Mizar statements longer Isar proofs are necessary, for
example:

theorem xboole-0-th-8:
for X,Y being set st X c< Y holds
ex x being object st x in Y & X c= Y\{x}

requires a 26 lines of proof, while the original Mizar proof took
16 lines.

9. Conclusion
We have used the Isabelle logical framework to do the first steps
in rather faithful emulation of the Mizar language and logic. This
includes declaring and axiomatizing Mizar terms, types and related
mechanisms, and providing suitable syntactic conventions corre-
sponding to Mizar. We also provide definitional mechanisms that
already quite faithfully correspond to the original Mizar syntax and
semantics.

The resulting emulation has been used to develop the exact ver-
sion of set theory which Mizar uses, and to show how to formalize
in the Mizar environment the first two non-axiomatic articles in the
MML. This includes 15 Mizar-style definitions including functors
and attributes, 6 registrations (clusters) and 32 proved theorems.
The total size of the development is 40kB.

9.1 Future Work
There is a lot of future work mentioned above. The mechanisms
introduced are quite faithful, but occasionally they are either too
strict or too liberal in comparison with Mizar. Many pieces are still
missing. One obvious gap is exact emulation of the Mizar proof
style, which differs in various aspects from the Isar language. We
have not tried to emulate the Mizar type-inference mechanisms
yet, and neither its core “by” proof checker. We also do not have
mechanisms for working with the Mizar structures, automatically
used properties, redefinitions, etc.

An interesting experiment which is probably not too far now is
to translate the whole MML into the emulated syntax in a similar
way as the TPTP and HTML exports work, and to try to import
and cross-verify large parts in Isabelle. Since today’s ATPs are
strong enough to discharge a vast majority of the Mizar “by”
steps [30], one does not really need to do the rather involved
emulation of the Mizar “by” checker first. A high-level emulation



using Isabelle automation tactics (in particular reusing parts of
the Sledgehammer infrastructure [20]) will likely be sufficient for
importing automatically a large number of Mizar proofs.

Acknowledgements
Kaliszyk has been supported by the Austrian Science Fund (FWF)
grant P26201. Pąk has been supported by the Polish National Sci-
ence Centre grant DEC-2012/07/N/ST6/02147. Urban has been
supported by the ERC Consolidator grant 649043 AI4REASON.

References
[1] S. Agerholm and M. J. C. Gordon. Experiments with ZF set theory in

HOL and isabelle. In E. T. Schubert, P. J. Windley, and J. Alves-Foss,
editors, Higher Order Logic Theorem Proving and Its Applications,
8th International Workshop, volume 971 of Lecture Notes in Computer
Science, pages 32–45. Springer, 1995.

[2] G. Bancerek and P. Rudnicki. A Compendium of Continuous Lattices
in MIZAR. J. Autom. Reasoning, 29(3-4):189–224, 2002.

[3] M. Davis. Obvious logical inferences. In P. J. Hayes, editor, IJCAI,
pages 530–531. William Kaufmann, 1981.

[4] F. Haftmann and T. Nipkow. Code generation via higher-order
rewrite systems. In M. Blume, N. Kobayashi, and G. Vidal, editors,
Functional and Logic Programming, 10th International Symposium,
FLOPS 2010, volume 6009 of Lecture Notes in Computer Science,
pages 103–117. Springer, 2010.

[5] J. Harrison. A Mizar mode for HOL. In J. von Wright, J. Grundy, and
J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th
International Conference, TPHOLs’96, volume 1125 of Lecture Notes
in Computer Science, pages 203–220, Turku, Finland, 1996. Springer-
Verlag.

[6] J. Hurd. The OpenTheory standard theory library. In M. G. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi, editors, NASA Formal
Methods, volume 6617 of LNCS, pages 177–191. Springer, 2011.

[7] M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar mathe-
matical library in OMDoc: Translation and applications. J. Autom.
Reasoning, 50(2):191–202, 2013.

[8] S. Jaśkowski. On the rules of suppositions. Studia Logica, 1, 1934.
[9] C. Kaliszyk and A. Krauss. Scalable LCF-style proof translation. In

S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Proc. of the 4th
International Conference on Interactive Theorem Proving (ITP’13),
volume 7998 of LNCS, pages 51–66. Springer, 2013.

[10] C. Kaliszyk and J. Urban. MizAR 40 for Mizar 40. J. Autom.
Reasoning, 55(3):245–256, 2015. . URL http://dx.doi.org/
10.1007/s10817-015-9330-8.

[11] A. Krauss and A. Schropp. A mechanized translation from higher-
order logic to set theory. In M. Kaufmann and L. C. Paulson, editors,
Interactive Theorem Proving (ITP 2010), volume 6172 of LNCS, pages
323–338. Springer, 2010.

[12] O. Kunčar. Reconstruction of the Mizar type system in the HOL Light
system. In J. Pavlu and J. Safrankova, editors, WDS Proceedings of
Contributed Papers: Part I – Mathematics and Computer Sciences,
pages 7–12. Matfyzpress, 2010.

[13] R. Matuszewski and P. Rudnicki. Mizar: the first 30 years. Mechanized
Mathematics and Its Applications, 4:3–24, 2005.

[14] S. Merz. Mechanizing TLA in Isabelle. In R. Rodošek, editor,
Workshop on Verification in New Orientations, pages 54–74, Maribor,
July 1995. Univ. of Maribor.

[15] A. Naumowicz. Enhanced Processing of Adjectives in Mizar. In
A. Grabowski and A. Naumowicz, editors, Computer Reconstruction
of the Body of Mathematics, volume 18(31) of Studies in Logic, Gram-
mar and Rhetoric, pages 89–101. University of Białystok, 2009.

[16] S. Obua. Partizan games in Isabelle/HOLZF. In K. Barkaoui, A. Cav-
alcanti, and A. Cerone, editors, Theoretical Aspects of Computing -
ICTAC 2006, Third International Colloquium, volume 4281 of Lec-
ture Notes in Computer Science, pages 272–286. Springer, 2006.

[17] S. Obua, J. D. Fleuriot, P. Scott, and D. Aspinall. Type inference for
ZFH. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge,
editors, Intelligent Computer Mathematics - International Conference,
CICM, volume 9150 of Lecture Notes in Computer Science, pages 87–
101. Springer, 2015.

[18] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science (1990), pages 361–386, 1990.

[19] L. C. Paulson. Set theory for verification: I. From foundations to
functions. J. Autom. Reasoning, 11(3):353–389, 1993.

[20] L. C. Paulson and J. C. Blanchette. Three years of experience with
sledgehammer, a practical link between automatic and interactive the-
orem provers. In G. Sutcliffe, S. Schulz, and E. Ternovska, editors, The
8th International Workshop on the Implementation of Logics, IWIL
2010, volume 2 of EPiC Series, pages 1–11. EasyChair, 2010.

[21] F. J. Pelletier. A brief history of natural deduction. History and
Philosophy of Logic, 20:1 – 31, 1999.

[22] qed. The QED Manifesto. In A. Bundy, editor, International Confer-
ence on Automated Deduction (CADE 1994), volume 814 of LNCS,
pages 238–251. Springer, 1994.

[23] F. Rabe. A logical framework combining model and proof
theory. Mathematical Structures in Computer Science, 23(5):
945–1001, 2013. . URL http://dx.doi.org/10.1017/
S0960129512000424.

[24] P. Rudnicki. Obvious Inferences. J. Autom. Reasoning, 3(4):383–393,
1987.

[25] S. Schulz. E - A Brainiac Theorem Prover. AI Commun., 15(2-3):
111–126, 2002.

[26] C. Schürmann. The twelf proof assistant. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, volume 5674
of Lecture Notes in Computer Science, pages 79–83. Springer, 2009.

[27] A. Tarski. Über unerreichbare Kardinalzahlen. Fundamenta Mathe-
matica, 30:68–89, 1938. URL http://matwbn.icm.edu.pl/
ksiazki/fm/fm30/fm30113.pdf.

[28] J. Urban. MoMM - fast interreduction and retrieval in large libraries
of formalized mathematics. Int. J. on Artificial Intelligence Tools, 15
(1):109–130, 2006.

[29] J. Urban. MPTP 0.2: Design, implementation, and initial experiments.
J. Autom. Reasoning, 37(1-2):21–43, 2006.

[30] J. Urban and G. Sutcliffe. Atp-based cross-verification of Mizar
proofs: Method, systems, and first experiments. Mathematics in Com-
puter Science, 2(2):231–251, 2008. . URL http://dx.doi.org/
10.1007/s11786-008-0053-7.

[31] M. Wenzel. Isar - A generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
and L. Théry, editors, Theorem Proving in Higher Order Logics, 12th
International Conference, TPHOLs’99, volume 1690 of Lecture Notes
in Computer Science, pages 167–184. Springer, 1999.

[32] M. Wenzel. The Isabelle/Isar reference manual, 2015.
[33] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In

O. A. Mohamed, C. A. Muñoz, and S. Tahar, editors, Theorem Prov-
ing in Higher Order Logics, 21st International Conference, TPHOLs
2008, volume 5170 of Lecture Notes in Computer Science, pages 33–
38. Springer, 2008.

[34] F. Wiedijk. CHECKER - notes on the basic inference step in Mizar.
available at http://www.cs.kun.nl/∼freek/mizar/by.dvi, 2000. URL
http://www.cs.kun.nl/~freek/mizar/by.dvi.


