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Abstract

As the knowledge available in the computer understandable proof corpora grows, recog-
nizing repeating patterns becomes a necessary requirement in order to organize, synthe-
size, share, and transmit ideas. In this work, we automatically discover patterns in the
libraries of interactive theorem provers and thus provide the basis for such applications
for proof assistants. This involves detecting close properties, inducing the presence of
matching concepts, as well as dynamically evaluating the quality of matches from the
similarity of the environment of each concept. We further propose a classification process,
which involves a disambiguation mechanism to decide which concepts actually represent
the same mathematical ideas.

We evaluate the approach on the libraries of six proof assistants based on different
logical foundations: HOL4, HOL Light, and Isabelle/HOL for higher-order logic, Coq
and Matita for intuitionistic type theory, and the Mizar Mathematical Library for set
theory. Comparing the structures available in these libraries our algorithm automatically
discovers hundreds of isomorphic concepts and thousands of highly similar ones.

Keywords: proof assistant libraries; library alignment; higher-order logic; type theory;
set theory; dynamical systems

1. Introduction

1.1. Context
With the diversity of interactive theorems provers (Harrison et al., 2014), the lack

of interoperability is a growing issue. Formalized proofs originating from one prover are
hardly reusable in a different one. Discovering and identifying the structures that occur
in multiple libraries becomes an important step to better interoperability as the libraries
of theorem provers grow.

Email addresses: thibault.gauthier@uibk.ac.at (Thibault Gauthier),
cezary.kaliszyk@uibk.ac.at (Cezary Kaliszyk)

URL: http://cl-informatik.uibk.ac.at/users/tgauthier/ (Thibault Gauthier),
http://cl-informatik.uibk.ac.at/cek/ (Cezary Kaliszyk)

Preprint submitted to Journal of Symbolic Computation July 18, 2017



The benefits of links between different structures have since long been known by
mathematicians (Corry, 2012). Algebraic structures such as fields (Rotman, 2010) en-
able mathematicians to transport properties from real to complex numbers. Moreover
the whole field of category theory has been about generalization (Awodey, 2006) with
recent techniques such as classifying a topos of a theory as very powerful transfer mech-
anism (Univalent Foundations Program, 2013). In computer programming, oriented-
object languages (Meyer, 1988) can share a method across many object instances using
inheritance. Both examples shows how an interconnected structure is beneficial for better
insights and faster development.

To this end, we develop an algorithm that automatically evaluates the similarity
between formalized concepts (units of thought). This is achieved by inferring the math-
ematical properties they possess, which is a reflection of the structure they describe or
belong to.

1.2. Challenges
Aligning libraries comes with a set of challenges. The mere fact that common mathe-

matical structures have been (re-)formalized in each proof assistant makes this initiative
conceivable.

The first difficulty is to express the mathematical properties uniformly. The mul-
tiplicity of the logics of the studied provers make this step quite complicated. Indeed,
they have often different degree of support for lambda-abstractions, polymorphism, type
classes, type hierarchies, algebraic hierarchies, etc. Those features produce some idiosyn-
cratic constructions in the formal developments in each prover.

The next step is to define and recognize which mathematical concepts appear in the
library. There may be for instance types, constants, subterms, formula subtrees or even
proof tactics. Our goal will be to define what are the unit concepts and which ones are
a combination of those concepts. Another issue is that some concepts are defined many
times inside one library. Indeed different integer representations can be more suitable for
some applications (like code extraction (Haftmann et al., 2013)). Conversely, a concept
can belong to many different structures. It is especially common in the traditional
set theoretic approach, where the empty set ∅ also stands for the natural number 0.
This is realized by most formalizations of set theory, for example in the foundations of
Mizar (Grabowski et al., 2015) and Isabelle/ZF (Paulson, 2016).

Having delimited our notion of “concepts”, we wish to derive their similarities. A
uniform representation for the properties makes it easy to infer which concepts share the
same properties. We would like to emphasize here that the approach is more effective
and more comprehensive than looking only at their definitions. Already for minimally
different definitions, recognizing that they represent the same concept is not straightfor-
ward. This becomes very hard when definitions are foundationally different, for instance
the real numbers may be defined through Dedekind cuts or Cauchy sequences. More-
over, the similarity measure may indicate for example the discovery of the underlying
ring structures of integers and real numbers, which would not be possible if we restrict
to the discovery of perfect matches only. Furthermore, the context in which the concept
is expressed can be essential. To capture its influence, we also study the interconnections
between properties inside a library that allow finding similar relations between concepts
in different libraries.
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We hope that solving these issues will create libraries of alignments suitable for the
different types of applications envisioned.

1.3. Applications
The principal application of our work is transferring theorems between libraries. Deep

embeddings (Jacquel et al., 2015) are typically best-suited to check the soundness of the
provers and prove meta-theorems about the system studied. Yet, the imported theorems
are difficult to integrate with the current developments since they are created at differ-
ent logical levels. Therefore, shallow embeddings (Myreen and Davis, 2014) that can be
obtained through reflection (Keller and Werner, 2010) are preferred. Even then, if no
concept mapping is performed, the potential risk is to create parallel developments on
the same set of concepts. And additionally to the unnecessary repetitions, the equiva-
lence between the two sets would have to be proven, which may not be possible. From
our discovered alignments, it is possible to lift the set of mappings found to theorems
and proofs. This yields a possible translation that can be used to import a library into
another system in a sensible manner by reusing the common concepts. Still, each trans-
lated theorem needs to be derived in the other prover and porting proofs is a difficult
process due to the possible differences in definitions. In our previous work (Gauthier and
Kaliszyk, 2015), we relied on the matching algorithm to transfer proof knowledge between
two HOL systems and evaluated how it improved the success of a machine-learning based
proving framework HOL(y)Hammer (Kaliszyk and Urban, 2014).

The second set of applications arises from the fact that our alignment procedure
could also be used effectively within a single library. A first practical use is the removal
of duplicate constants and theorems. Another possibility is to hyper-link similar objects
to create a better proving environment. Moreover, the properties shared by similar
concepts can be combined into a structure and the concepts made instances of this
structure. In the case of types, this could lead to a possible refactoring of the type
hierarchy present in the system which could be essential to share proofs across different
domains. Proof assistants attempt to maximize sharing. This idea is most visible in proof
assistants based on type theory such as Lean (de Moura et al., 2015) where its automation
relies on its library structure. But it has been at the basis of one of the earliest proof
assistant Mizar (Bancerek et al., 2015). Using fuzzy mappings inside one library, initial
experiments on the possibility of producing new conjectures from analogues of theorems
of a related domain were performed in (Gauthier et al., 2016). Finally, various proof
refactoring techniques (Whiteside et al., 2011; Dietrich et al., 2013; Klein, 2014) rely on
similarities between concepts, such as these found here. Also refactoring may benefit
from the patterns in the formalizations revealed by our algorithm.

1.4. Contributions
This paper is an extended version of our work presented at CICM 2014 (Gauthier

and Kaliszyk, 2014) which introduced a simple concept matching algorithm for a single
foundation (higher-order logic). In this paper we present many extensions of this work,
which allow much better automatic discovery of isomorphic and similar structures in
multiple formal mathematical libraries based on different foundations. Specifically the
contributions of this work are:
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• We design a fixpoint algorithm with various scoring functions for automatic dis-
covery of similar concepts and theorems in and across proof assistant libraries. We
find thousands of mappings between concepts. These include one-to-many map-
pings where concepts are related to multiple counterparts.

• We build properties and concepts from the objects of formal libraries: theorems,
constants and subterms. During this step, we experiment with various degrees of
normalization and an optional conceptualization of subterms, as well as different
level of type inclusion.

• We evaluate the proposed approaches on the libraries originating from 6 interac-
tive theorem provers based on different foundations including set theory and type
theory. We translate them into a common representation, manually aligning the
term representations of the different logics.

• We give an interpretation of the correlation between matches used in our fixpoint
algorithm, and show that it can also be a key idea to produce sensible mappings
for formulas.

• We investigate the possibility of using an intermediate library as a translation
between two libraries by constructing transitive matches.

• We define various degree of subjective similarities given by the mappings. The
highest degree is defined as an optimal match. It happens when the two related
objects represent the same object conceptually.

• We describe a classification algorithm that decides which matches are optimal. We
produce hundreds of such optimal matches for each pair of libraries.

1.5. General principles of the algorithm
Our algorithm takes as an input the objects of two proof assistant libraries. These

objects are types, constants and theorems. We do not consider the proofs. The aim of
the algorithm is to recognize the constants (including types), or more generally subterms,
representing the same (and/or related) concept occurring in different libraries. We will
use properties such as associativity or nilpotence, extracted from the term representation
of theorems to evaluate the similarity of two constants. A general guideline is that the
more properties two constants have in common the more similar they are. In addition
to this main idea, relations between similarity pairs together with a number of heuristics
help refine the accuracy of our similarity measures. This means, that we will use a self-
improving mechanism, called dynamical scoring, where each similarity pair is influenced
by the similarities of other pairs. For instance, the strength of a matching between <
and ⊂ is correlated with the degree of similarities of the constants 0 and ∅. The result is
a list of pair of constants, sorted by their similarity scores. On top of that, a procedure
can be applied to decide if the best scoring match should be in the final mappings. This
procedure relies on additional techniques such as disambiguation or type coherence. If
the choice is not delayed, the score of the match is raised or diminished according to the
decision. This in turn influences further applications of the dynamical scoring algorithm.
An overview of the proposed procedure is presented in Fig. 1.
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Library 1 Library 2

Theorems Theorems

Patterns Patterns

Theorem and constant pairs

Pairing theorems with same patterns

Abstraction, conceptualization and normalization

Export and apply logical mappings

Negative setPositive set

Dynamical scoring

Decision on the best constant match

delayed: select next match

yes no

Figure 1: Workflow graph

1.6. Plan
The rest of this paper is organized as follows. In Section 2 we explain the process of

creating concepts and properties inside one prover. We describe how we match properties
and deduce similarity scores between concepts in Section 3. In Section 4 we evaluate each
step of our approach. We next describe additional techniques applied on top of the scoring
procedure that improve the quality of our results (Section 5). We discuss related work in
Section 6. In Sections 7 and 8 we conclude and present an outlook on the future work.

2. Creating properties and concepts from theorems

The only prerequisite of our algorithms is a common term representation of theorems
in the considered proof assistant libraries. This requirement is immediately satisfied
when considering matching of concepts in different formalizations or proof libraries of one
system, but it may be harder to satisfy for libraries or proof assistants based on different
foundations. We focus on the term structures, or the syntactic structures rather than the
the semantics of the formulas in order to work across the different logical foundations.
The term structures are exported from the internal term representation in each prover
and thus contains implicit arguments and coercions that are not visible in the external
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syntax. This additional information makes detecting alignments more challenging but
produces more precise mappings.

We believe that aligning concepts using this approach rather than providing a deep
embedding is more appropriate. Indeed, the proof assistants have been meant to help
proof developers and therefore their syntax is usually designed to correspond to standard
mathematics. This also implies that the libraries created by the users often state theorems
in a similar way. Moreover, each formal proof library is completely self-sufficient which
means that basic types, such as integers, real numbers, or sets, are likely to be defined
in all the proof libraries, which asserts that certain concept alignments do exist. Since
the logical operators are often tied with intricacies of the logic, they usually need to be
recognized and mapped manually (see Section 4.1). In all our experiments we will assume
that the representation of the terms corresponds to a version of type theory that includes
the basic predicate logic and equality. Therefore, we manually recognize the constants
∀,∃,⇒,¬,∧,∨,⇔,=. We additionally map the the type of propositions, which we will
denote as $o and the type of all types $t. The names $o and $t are the TPTP (Sutcliffe
et al., 2012) notations used for the two types. These mappings actually collapse the
type hierarchy. This however has no consequence for the algorithm: the intent is to
discover concept similarities, and only proving or disproving their equality requires a
sound system. Furthermore, even if the found concept pairs are not equivalent, but only
similar, such pairs are still often useful.

With a common representation of theorems, we can identify the theorems that are
instances of the same property. Since two statements may represent the same property
even if they are presented in different forms, we normalize the statements of the theorems.
Furthermore, the found properties should not depend on the name of the constants
present in the statement, therefore constants should be abstracted after normalization.
From this intuition, we now give a formal definition of a property.

Definition 1 (Property). Given a set of terms T , and a normalization method N : T →
T , a property P of a theorem T ∈ T is defined by:

P =def λC1, . . . , Cn. N(T )

where C1, . . . , Cn are the non-logical constants appearing in N(T ) ordered by a left out-
ermost traversal of N(T ). Two properties will be said equal if they are α-equivalent.

Definition 2 (Derived matchings). Two theorems T1 and T2 which share the same prop-
erty P are called a matching pair of theorems. Let (T1, T2) be a a matching pair of theo-
rems with normalized forms N(T1) = P (D1, . . . , Dn) and N(T2) = P (E1, . . . , En). The
matching pairs of constants (D1, E1), . . . , (Dn, En) are induced by the pair (T1, T2). We
will also say that two constants D and E have the same property if they occur at the
same position in two equal properties. The similarity of D and E will be measured by
the number and quality of these properties.

Remark. The distinction made in our previous work (Gauthier and Kaliszyk, 2014) be-
tween patterns of theorems and properties of constants is now subsumed by this single
definition. Patterns of theorems are now also called properties. The distinction between
different positions inside a property is now defined implicitly by the process of induc-
ing pairs of constants. These changes lead to a much more concise description and a
significant gain in memory and speed for our algorithms.
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Example. Given the below theorems T1 and T2, their respective normalizations, and the
properties extracted from their statements:

T1 : ∀x : num. x+ 0 = x T2 : ∀x : real. x = x× 1

N(T1) : ∀x : num. x = x+ 0 N(T2) : ∀x : real. x = x× 1

P1 : λnum,+, 0. ∀x : num. x = x+ 0 P2 : λreal,×, 1. ∀x : real. x = x× 1

The properties P1 and P2 are α-equivalent, therefore the theorems T1 and T2 form a
matching pair of theorems, and the following three matching pairs of constants are de-
rived:

num↔ real, +↔ ×, 0↔ 1

The purpose of a normalization method is to maximize the number of shared prop-
erties without sacrificing the characteristics of each individual one. This is typically
done by rewriting the theorems into a normal form and by extending the types of the
considered concepts. We will first focus on the rewriting based methods: computing
conjunctive normal forms, reordering commutative and associative-commutative connec-
tives, and normalizing subterms. Then we will discuss different levels of typing that can
be applied and how they interact with the normalization methods.

The effect of the rewriting based methods is illustrated on a running example. For
clarity, type information is omitted, constants are not abstracted.

Example. (Running) The constants ×, alt_pi, s, 0, cos and fst respectively stand for
multiplication, π, successor, zero, cosine and projection on the first argument.

∀y x. x = alt_pi × (s (s 0))⇒ cos x = fst 0 y

2.1. Conjunctive normal forms
First, we split the theorems into separate conjuncts even when they appear under

quantifiers. Each conjunct can be considered as separate theorems from this point. We
then rewrite every theorem statement to conjunctive normal forms. In this normaliza-
tion we assume classical logic, however if this is not desired, it is possible to consider
intuitionistic clausification (Otten, 2005). As the focus is on proof libraries that can be
expressed in type theory, we preserve the equivalences⇔ and consider them as equalities
between propositions.

Example. (Running) ∀y x. ¬(x = alt_pi× (s (s 0))) ∨ cos x = fst 0 y

2.2. Subterms
Certain concepts are declared as a constant in one proof library but left as a con-

struction over simpler concepts in another. The number 1 can be defined as a single
constant one (in Proofpower), by the successor of zero S(0) in all the libraries that use
a unary representation of numbers or by a binary representation (for examle BIT1(0)).
In some cases it is only clear from the context, whether a certain subterm is supposed
to represent a single constant or a more complex construction. Consider the HOL4
type prod(real, real). It is used to represent the complex numbers as well as pair of
reals (Gauthier and Kaliszyk, 2015).
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Matching of whole subterms also enables us to automatically factor type arguments.
Type arguments are usually the first arguments of a function, therefore thanks to curry-
fication we can find subterms that represent type instances of constants. This approach
works even with the type classes of Isabelle/HOL. For instance, in the experiments we
will discover that the subterm zeronat in Isabelle/HOL is similar to the constant 0 of
type num in HOL Light.

Because it is impractical to consider all possible subterms as a concept, we will impose
some practical restrictions. First, the selected subterms must be formed from function
applications and constants only, in particular they do not contain any variables. Second,
we only select a subterm if it appears sufficiently frequently in a proof library. Moreover,
a subterm is more likely to represent a concept if it is smaller and the conceptualization
of big subterms reduces the complexity of the pattern. So, a simple heuristic is to check
whether the subterm appears in a number of theorems greater or equal to two times its
size.

Every time a subterm substitution is applicable, we duplicate theorem statements.
The substitutions replace the selected subterms by newly defined constants. A simple
type inference mechanism on a subterm is used to determine the type of its defined
constant, in case types at constant positions are required. We will only use maximal
substitutions, where a maximal number of replacements is performed with the one with
the largest subterms applied first, since they are the most likely to produce new matching
pairs of theorems.

Example. (Running)
By creating a new constant definition c =def s (s 0), we obtain:

∀y x. ¬(x = alt_pi× c) ∨ cos x = fst 0 y

Since different substitutions may lead to different pairs, it would be also interesting
to consider matching large sets of terms with many possible substitutions. As we do
not focus on one representation of terms, the applicability of various term indexing
techniques (Graf, 1996; Ramakrishnan et al., 2001; Schulz, 2013) for arbitrary proof
assistant terms is left open.

Equivalent concepts. In an effort to minimize the number of equivalent concepts inside
one library, we identify constants that are in the same equivalence class of the equality
relation. In practice, it requires recognizing theorems of the forms of c1 = c2 in or-
der to extract an equality relation and replacing constants of an equivalence class by a
new constant representing them. The process of conceptualization of subterms is per-
formed before the construction of the equality relation. Therefore constants representing
subterms will also be identified with members of their equivalent class.

Example. (Running)
Relevant equalities found in the library after conceptualization: 2 = c, π = alt_pi.
Substitution by a unique representative of the equivalent class induced by the equalities:

∀y x. ¬(x = π × 2) ∨ cos x = fst 0 y
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2.3. Associativity and commutativity
Rewriting terms modulo associativity and commutativity in the higher-order setting

has been studied by Walukiewicz (1998). The simplifiers of certain proof assistants,
including HOL Light and Isabelle, implement procedures for normalizing terms modulo
AC as part of their simplifiers. The proof checker Dedukti (Dowek et al., 2003) allows
reasoning modulo equations (Blanqui, 2003) which can include AC, therefore contains
an algorithm for normalizing λΠ terms modulo such equations.

The requirements of our algorithm are slightly different than of these above. The usual
requirement is to reduce α-equivalent terms to the same normal forms given a number
of AC rules and a total ordering <ord on ground terms. This order can be constructed
by comparing top constructors and in case of equality recusively comparing subterms.
In our context, however, the names of the non-logical constants (and variables) should
not influence the term ordering. This is because the properties must be independent of
the names of the used constants. Therefore the AC normalization procedure works on
abstracted terms where different abstraction symbols are used for constants and types.

The names of constants are abstracted in the theorems, but they are important in
the induced pairs of constants. In particular, when both arguments of a commutative
constant are α-equivalent, the term ordering cannot compare the two possible orderings
of the whole term. Consider for example the theorem statement g(x) = h(x), where g
and h are constants and x is a variable. Then in theory we would need to create both
versions. As this may be explosive in case of large applications of AC connectives, we
have not implemented this yet.

In the following enumeration, we present AC normalizations used in our experiments.
At each level, the AC properties of more constants is considered and formulas are rewrit-
ten accordingly.

1. No normalization, even the order of subterms applied to the logical constants is
preserved.

2. Normalization based on AC of the logical constants only. For this ordering:

λx. (x = π × 2) <ord λx. (π × 2 = x)
λx y. cos x = fst 0 y <ord fst 0 y = λx y. cos x

λx y. ¬(x = π × 2) ∨ cos x = fst 0 y <ord λx y. cos x = fst 0 ∨ ¬(x = π × 2)
∀x y. ¬(x = π × 2) ∨ cos x = fst 0 y <ord ∀y x. ¬(x = π × 2) ∨ cos x = fst 0 y

We get by applying rewrites starting from the deeper subtrees (innermost):

∀x y. ¬(x = π × 2) ∨ cos x = fst 0 y

3. The set of all constants that have an associative or a commutative property in the
corresponding proof library. This become imprecise in higher-order foundations,
where AC properties may be stated using higher-order predicates (for example
associative(+)). We get by applying rewrites starting from the deeper (innermost)
subtrees: The constant × is commutative, but since constants are abstracted the
ordering cannot distinguish between π × 2 and 2 × π. So the running example is
left unchanged.
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4. Finally we add the commutativity of all constants. This means that given a func-
tion, the procedure reorders its arguments (possibly more than 2) so that the
resulting term is minimal in the term ordering. If λy. fst y 0 <ord λy. fst 0 y then
the normalized form of the running example becomes:

∀x y. ¬(x = π × 2) ∨ cos x = fst y 0

The last normalization may seem strange at first as it creates an inconsistent normal-
ization. However, it does allow for matching concepts which are stated with differently
ordered arguments in different libraries.

2.4. Typing Information
In order to find more matches, we also try to normalize the type information across

the different proof libraries. We consider four levels of typing available before term
normalization and we depict their effect on the following example.

Example. (Typing) In this statement, the constants hd, list, int and 0 respectively stand
for head, type constructor for lists, integer and zero.

∃ l : list int. hd int l = 0

1. Type erasure. The type matches can be recovered using the types of the constants
involved in a matching and applying type coherence (see Section 5.1).

∃ l. hd int l = 0

2. Simple types. We create a simple type (one constant) for each unique formula
occurring on the left of a type judgment. This approach can be useful if we consider
their types, for example when matching constants with dependent types of Coq
against set theory constants typed using the Mizar soft type system. Given a new
constant definition d =def list int, the typing example normalizes to:

∃ l : d. hd int l = 0

3. Variable types. Including the types of all variables is enough to recover all types in
simple type theory; however it is not enough to recover all types in more intricate
type systems.

∃ l : list int. hd int l = 0

4. Constant types. This combines the previous approach with the types of constant
at each positions inside the terms. In this last typing example, $t is written t for
simplicity.

∃ l : (list : t⇒ t) (int : t). (hd : (∀a : t. (list : t⇒ t) a⇒ a)) (int : t) l = (0:(int : t))

The proposed type levels of typing are recursive, which means that the types are
themselves constants whose types are also included in the formula until a defined type,
including the basic types of propositions $o and types $t, is reached. The later typing
levels are available only to the proof libraries where they are meaningful. In our case
study, this implies that the fourth typing information level is not available for Mizar. In
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Mizar’s soft type system a term does not have a unique type, and checking whether a
term belongs to a type does require theorem proving. It would be possible to make use
of the cluster-rounding algorithms implemented by the Mizar checker (Trybulec, 2007),
even so with terms belonging to many types, this would not match to any of the other
considered proof libraries so far.

Using the different levels of typing information increases the accuracy of patterns and
allows the use of more precise settings, which limit the number of ambiguous matches.
However, additional typing information increases the number of missed matches, that
would require type alignments not detected by our algorithm.

3. Similarity

Pairs of constants have an intrinsic similarity based on the number of properties they
share as well as the quality of the theorem pairs that created those properties. Various
heuristics helps us value the similarity of these pairs of theorems. The most important
heuristic for a pair of theorems is the quality of the induced pairs of constants. The
correlations between pairs of concepts is captured by our scoring functions. Applying
these functions iteratively result in a dynamical system, where the confidence on a pair
of concepts evolves relative to the influence of the other pairs. The propagation of this
effect stops when the system reaches a stable state, which it always does as demonstrated
in Section 3.6. When a stable state is reached, the similarity between concepts should
correspond to inherited higher scores.

3.1. Sets of pairs
Before we introduce concrete pair scoring functions, we discuss how the pairs are

computed in order to explain the motivation for the functions.
Given two proof libraries lib1 and lib2, we first compute all the properties. We next

create all possible theorem pairs, by considering all the properties which appear in both
libraries. For each property P we apply the same pairing mechanism. Given n1 theorems
from the library lib1 representing this property, and n2 theorems from the library lib2
which represent the property P , we create n1 ∗ n2 theorem pairs by considering the
Cartesian product of the two sets. In practice, the number of theorems sharing a property
is small compared to the size of the library(see Section 4.2). Therefore the observed time
complexity is less than quadratic with respect to the number of theorems in the library.

The list of all m pairs of theorems is named (tw)1≤w≤m
We then compute the set of induced pairs of constants from each pair of theorems.

The union of these sets is the set of all pairs of constants for our library pair (lib1, lib2).
The list of all n pair of constants is named (cv)1≤v≤n.

Remark. Notice that the variables t and c stand for pairs of theorems and constants
and not single theorems and constants. We will rarely need to access the components of
the pairs, and we will explicitly refer to the first and second component of the pairs in
such cases.
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3.2. Scores
We define the scores of pairs of objects recursively by:

scoret(tw) = coef t(tw)×
n∑
i=1

δ(ci, tw)scorec(ci)

scorec(cv) = g(coef c(cv)×
m∑
j=1

δ(cv, tj)scoret(tj))

where δ is the characteristic function of the relation R “is induced by” defined in Section 2:

δ(c, t) = 1 if c R t and 0 otherwise,

g is a normalization function from R+ to [0; 1[:

g(x) = x

x+ 1

and coef t(tw),coef c(cv) are coefficients based on heuristics defined and justified in Sec-
tion 3.3.

In the following, we will use score and coef when it is clear from the context which
of the scores and coefficients are meant.

The function g guarantees the convergence of the vector sequence generated by the
algorithm (see Section 3.6). It also reduces the difference between good and very good
values providing a smoothing of the scores. This function has a similar role as the sigmoid
in backpropagation neural networks (Hecht-Nielsen, 1988).

3.3. Heuristics
The principal reasons for the choice of the following heuristics for coefficients are

simplicity, trials and errors, and inspiration from the TF-IDF (Jones, 1972) heuristics
for finding the most relevant words in a text. Our heuristics include the coefficients for
the score functions that scale the sum of the scores of their dependent objects (scores
of theorems depends on score of constants and conversely). The coefficient for theorem
pairs is composed of two parts, where the first part estimates the quality of the property
represented by the pair and the second part corresponds to the recursively considered
constants.

In order to estimate the quality of a property, we first compute the frequency of the
property P (tw) of the pair tw in the set of pairs of theorems, i.e. the number of pairs of
theorems representing the property P (tw):

freq(tw) = card{t′w | P (tw) = P (t′w)}

Since rarer properties should get a higher score we compose this evaluation with a
decreasing function.

inv_freq_property(tw) = 1
ln(2 + freq(tw))

where the property P (t) of a pair t is the property of its first component, which is also
equal to the property of its second component.
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The second part of the estimation is based on the constants used in the computation
of the theorem pair score:

ind(tw) = card{c | c R tw}

inv_ind(tw) = 1
ln(2 + ind(tw))

average_const_score(tw) = inv_ind(tw)×
n∑
i=1

δ(ci, tw)scorec(ci)

Remark. If we consider scores as probabilities, it would seem natural to take a product
instead of a sum of these probabilities. However, a general guiding rule is that theorem
pairs should benefit from an additional good matches in its constants pairs, and be penal-
ized by additional bad matches. There are two possibilities of enforcing such constraints.
Either we can take the sum of the scores (which we chose to do) or we can allow the
product of the scores to have a value greater than 1. Given the guiding rule, the simple
interpretation by probabilities does not create a representative model for our scores.

The total score of a theorem can also be computed by multiplying the inverse of the
property frequency by the average constant score:

score(tw) = inv_freq_property(tw)× average_const_score(tw)

This implies that the coefficient of the theorem pair tw is:

coef (tw) = inv_freq_propert(tw)× inv_ind(tw)

We will next give the coefficient for constant scores. If two constants appear in many
theorems, they are more likely to have some common properties, whereas rare constants
with the same amount of properties should be advantaged. Therefore we apply the
following coefficient to the scores of pairs of constants.

freq(d) = card{theorems containing the constant d}

inv_freq_const(cw) = coefc((d1, d2)) = 1
ln(2 + freq(d1)× freq(d2))

where d1 and d2 are the components of the pairs cw.
This coefficient is the only part of the scoring function which requires inspecting the

constants composing a pair.
The inv_freq_property is definitely the most important of these coefficients, which

together with the correlations created by the sums comprises the core of the algorithm.
The other two inv_ind and inv_freq_const are not critical.

3.4. A dynamical system
In this section we will discuss the relation between our algorithm and dynamical sys-

tems, which are algorithms that iteratively refine the interrelated scores. Our algorithm
starts by assigning the value 1 for each pair of constants. Next, it calculates a score for
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each pair of theorems which in turn gives a new score to the pair of constants. This
process is then repeated until a fixpoint is reached.

Our experiments will confirm the effectiveness of this approach, however first we will
present a theoretical point of view, where we consider the iterative process as a dynamical
system. This will reveal more about how pairs of concepts are connected. And the study
of properties such as convergence and regional uniqueness, will give us the assurances
about the termination of the process and its sensitivity to initial conditions. Finally some
important but non-critical conjectures will be made for a global uniqueness and the rate
of convergence.

In order to distinguish the different steps of the algorithm we will add the second
argument to the score functions, referring to the scores at time t as score(x, t). We can
now express the scores of each pairs of concepts at time t + 1 in function of the pairs
of each concepts at time t. In the following, (Xt)t∈N = (xti)1≤i≤n ∈ R+n stands for the
series of successive vectors of scores of constants. Since we can express the scores of pairs
of theorems in function of these vectors, we derive the following relation between scores
of constants at time t+ 1 and t:

xt+1
v =def scorec(cv, t+ 1) = g(

m∑
j=1

lv,jscoret(tj , t))

where
lv,j = coef c(cv)δ(cv, tj)

Similarily

score(tj , t) =
n∑
i=1

kj,ix
t
i

where
kj,i = coef (tj)δ(ci, tj)

By linearity we obtain:

xt+1
v = g(

m∑
j=1

(
n∑
i=1

lv,jkj,ix
t
i)) = g(

n∑
i=1

(
m∑
j=1

lv,jkj,ix
t
i)) = g(

n∑
i=1

(
m∑
j=1

lv,jkj,i)xti)

Given the coefficients av,i =
∑m
j=1 lv,jkj,i we have:

xt+1
v = g(

n∑
i=1

av,ix
t
i) =def fv(x

t
0, . . . , x

t
n)

Essentially, each component at time t + 1 is given by a linear function of the com-
ponents at time t combined with the normalization function g. We name this combined
function function fv. We denote by f the compound function defined by Xt+1 = f(Xt).
The linear part A = (av,i)1≤v,i≤n of f is called the correlation matrix of our system.

Remark. We restrict our study to non-negative scores, since f is stable in R+n and the
starting value is in R+n.
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Famous examples of dynamical system include the Mandelbrot fractal which reveals
the complexity of determining convergence regions, the double rod pendulum and the
Lorentz attractor which show extreme sensibility to the initial conditions.

The theory of dynamical systems appears naturally in many scientific domains. Vari-
ous parameters that affect the stability of such system are presented by Barbarossa (2011)
in order to understand biological mechanisms. The relationship between dynamical sys-
tems and Markov chains, hinted by the correlation matrix that resembles a transition
matrix, was studied by Attal (2010) in the context of open physical systems.

Our system was designed to be a discrete strongly-monotone multi-dimensional non-
linear dynamical system. This implies that our system is non-chaotic and posseses many
other general properties of strongly-monotone systems, Hirsch (1988).

3.5. Correlations

0nat ↔ 0

≤nat↔≤

nat ↔ nat

nat ↔ set

0nat ↔ ∅

≤nat↔⊆

Figure 2: Part of the correlation graph of Isabelle/HOL-Mizar matches with stronger correlations drawn
with wider arrows.

We will now show how scores interacts with each other. Two pairs of constants are
correlated if they are induced by the same pair of theorems. The number and quality
of those pairs of theorems decide the strength of the correlation. This is measured
by the coefficients av,i of the correlation matrix (see Section 3.4). In Fig 2, a graph
representing a part of the correlation matrix created by aligning Isabelle/HOL with Mizar
is depicted. This graph is almost symmetric. The reason for the asymmetry is that
the coefficient inv_freq_const gives a small penalty to pairs having constants appearing
in many theorems (see Section 3.3). Thus the influence received by a pair with rarer
constants is slightly stronger. A time lapse representation of the dynamic scoring reveals
how it is affected by correlations in Fig 3. It demonstrates that scores continuously
update by taking into account changes in the other pairs through those correlations.

3.6. Soundness of the algorithm
To be confident that our algorithm terminates and to determinate if the choice of

the initial of the arbitrary conditions influences the result of our algorithm, we prove
15
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Figure 3: Scores of the best 100 constant pairs when matching Coq with HOL4 after 1,2,4 loops, ordered
by their rank after 16 loops. The graph after 16 iterations is not presented here as it would be very close
to the 4 loops curve.

some properties of stability of the dynamical system namely convergence and regional
uniqueness.

3.6.1. Proof of convergence
Theorem 3 (Bounded property). The image of f is in [0; 1[n.

Proof: The image of g is in [0; 1[. Therefore the image of each fv is in [0; 1[ because
av,i ∈ R+. The thesis follows. �

Definition 4 (Less or equal). Let X = (xi)1≤i≤n and Y = (yi)1≤i≤n be in R+n.

X ≤ Y ⇔def ∀i ∈ J1;nK. xi ≤ yi

Remark. This is a partial order.

Definition 5 (Increasing).
X = (xi)1≤i≤n ∈ R+n and Y = (yi)1≤i≤n ∈ R+n.
A function f : R+n → R+m is increasing when:

X ≤ Y ⇒ f(X) ≤ f(Y )
16



Theorem 6 (Increasing property). f is increasing.

Proof: The function g is increasing and av,i ∈ R+, therefore each function fv is increas-
ing. The thesis follows. �

Theorem 7 (Existence).

(X0 ∈ R+n ∧X0 ≤ X1)⇒ (∃X lim. lim
t→∞

Xt = X lim)

Proof: By induction. We have X0 ≤ X1 by assumption. Suppose Xt ≤ Xt+1. Thus
by the increasing property, Xt+1 = f(Xt) ≤ f(Xt+1) = Xt+2. Therefore, the sequence
(Xt)t∈N is increasing.

Each function fv restricted to non-negative real numbers has its image in [0; 1[. By an
easy induction using the bounded property, each component of X = (xi)1≤i≤n ∈ Rn and
Y = (yi)1≤i≤n ∈ Rn is increasing and bounded in R which implies that each of them
converges and so does the full sequence. �

Theorem 8 (Existence: decreasing case).

(X0 ∈ R+n ∧X0 ≥ X1)⇒ (∃X lim. lim
t→∞

Xt = X lim)

Proof: Analogous to the previous theorem. �

Remark. Although X0 ≤ X1 (or X0 ≥ X1) is only a sufficient condition, there exist
sequences that do not converge if this assumption is omitted. 2-cycles are examples of
such sequences.

Corollary 9. The point I0 = (1, . . . , 1) is converging.

Proof: The image I1 of I0 is in [0; 1[n thus I1 < I0. �

Theorem 10 (Regional uniqueness). If there exists a sequence (Xt)t∈N such that

lim
t→∞

Xt = X lim

then
∀Y. X lim ≤ Y ≤ X0 ⇒ lim

t→∞
f t(Y ) = X lim.

Proof: Since f t is increasing and X lim is a fixpoint for f :

f t(X lim) ≤ f t(Y 0) ≤ f t(X0)

X lim ≤ Y t ≤ Xt

By the squeeze theorem on each component limt→∞ Y t = X lim . �
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Corollary 11. All points in the higher-dimensional rectangle defined by I lim and I0

converge to the same limit:

∀Y. (I lim ≤ Y ≤ I0 ⇒ Y lim = lim
t→∞

Y t = I lim)

Remark. All previous results still hold if we replace f by a function f ′ provided that it
is defined on R+n, increasing and its image is in [0; 1[n.

Remark. There are at most 2n fixpoints because a simple substitution of variables creates
a polynomial in one variable of degree at most 2n. This occurs for example when all
components are independent of each others. Indeed, each equation can have 2 solutions
which implies 2n fixpoints.

The uniqueness of the attracting point is important, because it ensures that for almost
all starting values in R+∗n, the final scores are the same. It is easy to prove that is true
for n = 1 and we conjecture that it is true in general.

Notation 12 (Global uniqueness). Almost all points in R+n converge to a unique
fixpoint in R+n.

3.6.2. Rate of convergence
To estimate the rate of convergence, we need to look at the eigenvalues of the linear

operator l that approximates our differentiable function f near the fixpoint reached
by I0. These eigenvalues determine the structure of the phase space and may yield
very different outcomes depending on the parameters (Barbarossa, 2011). Assuming the
global uniqueness property, the fixpoint is locally attractive which implies the following
conjecture.

Notation 13 (Local stability). All eigenvalues of the linear operator l have module less
than 1.

A consequence of this property for our algorithm is that it converges linearly in the
region R with an error bounded by rn where r is a positive real smaller than 1. Therefore
the scores computed at each iteration become more precise. In our experiments we will
stop the recursion when the difference between the scores in two steps is below 0.001.
The results in Table 5 shows that it takes about 30 iterations to reach such state.

3.7. Translation: scoring substitutions
Since translations is one of the most important application of aligning libraries, we

give here a small preview of how it would work.
To illustrate this, we take the same example Fig 2. Let us suppose that we would like

to translate a theorem containing the constants 0nat ,≤nat and nat from Isabelle/HOL
to Mizar. Our objective will then be to find an counterpart for each of the constant in
the theorem in Mizar. We will call such the set of such mappings a substitution. Since
there are multiple possibilities for each counterpart, the number of possible substitutions
grows exponentially. Therefore, we need to figure out which ones are the best.

A simple method is to just take the highest scoring pairs involving those constants.
However, it can lead to an incoherent translation since each match is considered inde-
pendently. In our example, it may translate nat to nat but 0 to the ∅. That is why it is
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important to consider the correlations between matches inside a substitution. A possible
method would be to find the substitutions that have the smallest diameter in the graph,
choosing the distance to be the inverse of the correlation. In our example, the top two
scoring substitutions can be extracted from the dotted (black) and non-dotted (blue) sets
shown in Fig 2. Those substitutions give us two possible translations. A fully-fledged
translation mechanism would rank substitutions based on their correlations and scores.
Additionally, it would also check the type of the resulting term.

4. Experiments

All experiments were performed on an Intel Core i5-3230M 2.60GHz laptop with 4
GB memory. The results of all experiments and the source code that produced them are
available at:

http://cl-informatik.uibk.ac.at/users/tgauthier/alignments/
We used the following versions of the provers and their libraries. For all provers

each “named” theorem was split into its conjuncts as part of the export phase. Further
statistics on the libraries are given in Table 1.

• HOL4 (Slind and Norrish, 2008) version Kananaskis 10. We considered all the
theories built as part of the standard build sequence.

• HOL Light (Harrison, 2009) SVN version 225, including the core library built with
the system, the standard library (Library directory) and the complex and multi-
variate developments (Harrison, 2013).

• Isabelle (Wenzel et al., 2008) 2016. We used the Complex_Main theory including
all the imported theories down to the object logic HOL.

• Coq (Huet and Herbelin, 2014) version 8.5. Recording of the Coq library was
performed via a plugin that allow us to extract the kernel representation of the
objects. The plugin is now released as part of the CoqHammer system Czajka and
Kaliszyk (2017).
We considered all theories in the distribution standard library.

• Matita (Asperti et al., 2014) version 0.5.3-1. We used the last released version of
Matita that was able to output XML object representation, again considering only
the standard library distributed with the system.

• Mizar (Bancerek et al., 2015) version 8.1.03 including the whole Mizar Mathemati-
cal Library 5.29.1227. We used the representation processed using the MPTP XML
export (Urban, 2006b).

4.1. Logical mappings
Even if the mathematical formulas come from provers with very different foundations,

the properties which they represent are similar from a high-level perspective. However,
the specifics of each logic make the internal representations (proof assistant kernel rep-
resentation) quite different. In order to restore the similarity, we transform the logical
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conjuncts of theorems constants types theories

Mizar 51086 6462 2710 1230
Coq 23320 3981 860 390
HOL4 16476 2188 59 126
HOL Light 16191 790 30 68
Isabelle/HOL 14814 1046 30 77
Matita 1712 339 290 101

Table 1: Number of objects in each library. A constant will be considered a type if it appears in the
right-hand side of a type judgement. The constants column does not include constants that represent
types.

constructs of each prover to a common representation. The term structure is inspired by
simply-typed lambda calculus, where terms are lambda-terms and all logical constructors
are constants. We also allow terms to appear on the level of types which enable us to
capture various extensions of the logic, including such common ones as polymorphism
(for higher-order logic) and dependent types. We perform the following logical mappings
adapted to the logic of each proof assistant.

For Coq and Matita which are based on the calculus of construction we perform the
following mappings:

• The dependent product construction where the bound variable is not actually used
in the body is replaced by an implication, and the used one is identified with
universal quantification. For instance, the typing judgment f : (∀x : int. num) can
be translated to (f : int ⇒ num) because num does not contain x.

• The type hierarchy is collapsed to a single type $t including Set.

• The type of propositions Prop is represented by $o.

• De Bruijn indexes are replaced by variable names.

• Each of the logical constructs starting with Case, Cast, Fix, Cofix and Letin are
replaced by a fixed logical constant. This makes it impossible to match them with
their counterpart in other logics. However, user named theorems do not typically
contains these constructs. Indeed, they appear in 397 theorem statements in Coq
and 28 theorem statements in Matita.

• A compatible order for the declaration of constants is re-inferred (this is necessary,
as we do not record it in the kernel based export).

In HOL4, HOL Light and Isabelle/HOL which are based on higher-order logic, minimal
structural modifications are necessary:

• Polymorphic constants are given explicit types arguments, including type variables
when they are not instantiated. For example, taking the head of a list hd l is
rewritten hd a l where a is the type of the elements of l.
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Import S Normalization time Number of properties

Mizar 15.05 1218 11.22 36.67 50.22 31692 32725 41311
Coq 4.82 414 3.77 8.85 15.30 5517 6717 8686
HOL4 8.07 427 6.45 10.63 23.59 9265 10522 14064
HOL Light 13.80 448 4.69 10.77 25.81 11450 12182 21948
Isabelle/HOL 4.38 444 2.98 5.52 10.84 10521 10953 14729
Matita 0.40 38 0.27 0.51 1.27 1092 1263 1712

Table 2: Effects of different normalization on the number of properties. The two first columns present the
import time and number of frequent subterms (S) for each prover. The following columns show the time
taken and number of properties produced by different normalization. The levels of normalizations are
in order of inclusion: CNF + AC of logical constants, additional type information, additional subterm
substitutions.

• Explicit types are given to HOL types based on their number of arguments. For
instance, the type constructor pair that constructs the cartesian product of two
types has two arguments so it is given the type $t⇒ $t⇒ $t.

• The boolean type which is also the predicate type is mapped to $o.

• The function type operator > is mapped to ⇒.

The first-order set theory of Mizar also requires structural changes

• All functions are curried to match their standard higher-order representation. For
example: f(x, y) is rewritten as (f x) y.

• A element of type true in Mizar is a set as defined by the axioms of set theory.
Therefore we map the type true to the type $t.

Remark. The logical constants that have been manually mapped are only allowed to
match themselves in the algorithm. This restriction is loosened for Mizar where the type
$t is allowed to match any type.

4.2. Most frequent properties
For most provers we normalize formulas by transforming them to CNF and rewriting

them modulo AC logical operators. Furthermore, types are included at all constant
positions. Only in the case of Mizar, variable types need to be used and more complex
types are mapped to unit types represented by a single constant.

The relative size of all libraries can be estimated from the the numbers of theorems
presented in Table 1, and the import time shown in Table 2, which corresponds to the
total size of the theorems. The average theorem size is small in Coq and Isabelle/HOL,
average in HOL4 and large in HOL Light. We also observe that normalization time
depends linearly on the theorem size.

The evolution of the number of properties relative to the different normalization
is shown in Table 2. The type information increases the precision of the theorems,
by splitting equivalent classes of theorems into smaller classes. Conversely, subterm
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conceptualization relaxes the matching constraints by creating at most one variant for
each theorem. Still, we observe that the number of properties grows as new theorems
are added to the library.

The most frequent properties for each prover involving one constant are presented in
Table 3. Unsurprisingly, commutativity, associativity, and transitivity are very common.
In Isabelle/HOL, the ubiquity of type classes reduces the repetition of such properties. On
the contrary, many properties are repeated in Coq, with some of them originating from
isomorphic structures. These structures are often not identical: some structures lead to
more efficient (or relevant) computations whereas others are more convenient for proving.
A simple example is the distinction between binary naturals and unary naturals. From
a mathematical perspective these two represent the same concept but their algorithmic
properties are different.

We also present the most common properties involving two constants in the libraries
in Table 4. We manually named the automatically derived properties appearing in Ta-
bles 3 and 4 from their term representation. But we could have also rely on a learning-
based automated method for naming properties developed by the second author (Aspinall
and Kaliszyk, 2016b).

4.3. Matching algorithm
In Table 5 we show the performance of the pairing mechanism and dynamical scoring

loop included in the matching algorithm. The presented approach is fast and scales across
many formal libraries, as opposed to the previously considered approaches (Gauthier and
Kaliszyk, 2014). One reason is the efficiency of the pairing step. The other is the limited
number of pairs obtained after the pairing step. The scoring loop can then only recurse
over these pairs. Assuming, that the numbers of constants inside a property and the
number pair of theorems related to a pair of constants are bounded, one iteration of the
algorithm is linear in the total number of pairs. This is confirmed by the relatively fast
scoring times. Our algorithm converges below the 0.001 threshold in about 30 steps in
each pair of provers with no observed dependence on the size of the considered libraries.

The results also give some hints about the similarities between provers. First, the
number of theorem pairs can be used as a weak indicator of the degree of similarity
between two provers. However it is largely skewed by the size of the libraries. Looking
at the number of common properties is slightly more convincing, as shown by the 1457
common properties shared by HOL Light and HOL4.

To give better estimates, we further base our analysis on the scores of the pairs of
constants. Each of the subsequent graphs reproduce the scores of the best matches, when
aligning two libraries.

4.4. Effect of normalization
According to the heuristics presented in Section 3.3, there are two main ways normal-

ization can improve the score of a match. First, by creating more theorems pairs that
induces this match. This will in practice imply that the constants involved in the match
will share more properties. Second, by decreasing the frequency of the theorem pairs as
their precision is increased. Each normalization step has a positive and a negative effect
on the score. Subterm conceptualization, CNF normalization, and AC rewriting increase
the numbers of common properties but diminish their accuracy. The reverse is true for

22



Coq HOL4 HOL Light

Property Thms Property Thms Property Thms

Commutativity 157 Injectivity Eq 72 Commutativity 34
Associativity 143 Commutativity 48 Associativity 30
Transitivity 94 Injectivity Eq TA 31 Injectivity Eq 25
Nilpotence 75 Associativity 29 Nilpotence TA 15
Injectivity 63 Transitivity 22 Transitivity 15

Isabelle/HOL Matita Mizar

Property Thms Property Thms Property Thms

Injectivity Eq 23 Inductive def 69 Truth 2A 123
Injectivity Eq 2TA 9 Truth 13 Transitivity TA 67
Injectivity Eq 3TA 6 Commutativity 9 Truth 3A 64
Equality def 6 Nilpotence 7 Injectivity 43
Identity def TA 6 Associativity 6 Associativity 41

Property Pattern

Commutativity (C0 V0) V1 = (C0 V1) V0
Associativity (C0 V2) ((C0 V1) V0) = (C0 ((C0 V2) V1)) V0
Transitivity (C0 V1) V2 ∨ ¬ ((C0 V0) V2 ∨ ¬ ((C0 V1) V0))
Nilpotence V0 = (C0 V0) V0
Injectivity Eq (V1 = V0) = (C0 V1 = C0 V0)
Injectivity ¬ (C0 V1 = C0 V0) ∨ (V1 = V0)
Inductive def (V4 V1) ∨ (∃ V1 V0, (¬ (V4 ((((C0 V3) V2) V1) V0))))

(V2 V3) ∨ (∃ V1 V0, (¬ (V2 ((C0 V1) V0))))
(V4 V5) ∨ (∃ V1 V0, (¬ (V4 ((((C0 V3) V2) V1) V0))))
(V2 V3) ∨ (∃ V1 V0, (¬ (V2 ((C0 V1) V0))))

Equality def ((C0 V2) V2) (λ V1 V0, (V1 = V0))
Identity def C0 = (λ V0, V0)
Truth C0
Truth 2A C0 V1 V0

Table 3: Most frequent properties involving one constant in number of theorems. The suffix “xA”
precises the number of arguments “x” of the constant. The suffix “xTA” precises the number of silent
arguments (often type arguments) “x” of the constant. The property “Inductive def” actually regroups
four different properties that are abstracted from inductive definitions.
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Coq HOL4 HOL Light

Property Thms Property Thms Property Thms

Left distributivity 256 Inverse F 58 Implication 2A 95
Right distributivity 169 Linearity 43 Property on 33
Left neutral 133 Different 41 Monotonicity 28

Isabelle/HOL Matita Mizar

Property Thms Property Thms Property Thms

Inverse F 19 Implication 18 Right neutral F 101
Implication 3A 18 Inverse F 10 Left distributivity 80
Implication 2A 11 Structure of 9 Inverse F 74

Property Pattern

Left distributivity (C0 ((C1 V2) V1)) V0 = (C1 ((C0 V2) V0)) ((C0 V1) V0)
Right distributivity (C0 V1) ((C1 V2) V0) = (C1 ((C0 V1) V2)) ((C0 V1) V0)
Left neutral V0 = (C1 V0) C0
Right neutral F C1 V0 = C1 (C0 V0)
Inverse F V0 = C1 (C0 V0)
Linearity C0 ((C1 V1) V0) = (C1 (C0 V1)) (C0 V0)
Monotonicity (C1 V1) V0 = (C1 (C0 V1)) (C0 V0)
Implication C1 ∨ ¬ C0
Implication 2A (C1 V1) V0 ∨ ¬ (C0 V1) V0
Implication 3A ((C1 V2) V1) V0 ∨ ¬ ((C0 V2) V1) V0
Different ¬ (C1 = C0)
Property on C0 (λ V3, ((C1 (V2 V3)) (V1 V3))) V0

∨ ¬ ((C0 V2) V0) ∨ ¬ ((C0 V1) V0)
Structure of C1 | ¬ (C0 V0)

Table 4: Most frequent properties involving two constants in number of theorems. The suffix “xA”
precises the number of arguments “x” of each constant. The suffix “F” precises that the property should
be understood at the function level.
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Figure 4: Effect of normalization when aligning Coq with Mizar (top figure) and HOL Light with Is-
abelle/HOL (bottom figure). “N” stands for CNF normalization + logical AC. “T” stands for default
typing formation. “S” stands for subterm conceptualization. “C” stands for the fourth level of AC
normalization which includes permutation of arguments in non-commutative constants.
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Pairing Props T pairs C pairs Scoring Loops

Coq - Mizar 1.74 833 46113 34772 13.43 38
HOL4 - Mizar 1.48 814 36918 26433 10.9 36
Coq - HOL4 0.92 500 32127 15365 7.37 33
HOL Light - Mizar 1.34 679 27395 20085 6.65 29
Coq - HOL Light 0.52 379 24600 11189 5.78 34
Isabelle/HOL - Mizar 0.92 558 20363 13838 5.99 35
Coq - Isabelle/HOL 0.38 349 19758 8273 2.35 19
HOL4 - HOL Light 0.44 1457 18296 5861 2.68 23
Coq - Matita 0.19 250 13365 5147 2.65 34
HOL4 - Isabelle/HOL 0.21 427 10074 4562 2.06 32
Matita - Mizar 0.32 221 9401 4549 1.48 21
HOL Light - Isabelle/HOL 0.20 392 7552 3208 1.41 30
HOL4 - Matita 0.10 158 3469 1434 0.70 29
HOL Light - Matita 0.14 120 2335 1043 0.50 28
Isabelle/HOL - Matita 0.08 117 1540 962 0.50 32

Table 5: Statistics for each pair of provers gathered during pairing and dynamical scoring of pairs of
constants and theorems, ordered by their number of pairs of theorems. Presented form left to right in
this table: pairing time (in seconds), number of common properties, number of theorem pairs, number
of constant pairs, scoring time (in seconds) and number of loops necessary to reach a fixpoint.

typing information. The combination of those effects is presented in Fig 4. Aligning Coq
and Mizar, the positive influence prevails in all cases. The addition of type information
contributes to the largest improvement. Aligning HOL Light and Isabelle/HOL, subterm
conceptualization is the game changer. Indeed, automatic factorization of type argu-
ments is made possible through subterm conceptualization. This is essential for aligning
other provers with Isabelle/HOL because type arguments occurs naturally during the in-
stantiation of type classes. For the two considered pairs of provers, the application of
commutativity to all operators improves the scores minimally. It is not clear whether this
minimal score gain translates into more accurate matches, therefore we will not include
this normalization by default.

4.5. Evaluation of the best scoring pairs
The matching algorithm was run on all pairs of provers and the scores of the first

thousand best matches are depicted in Fig 5. The HOL4 and HOL Light provers share
many similar concepts. The alignment of Matita is significantly better with Coq than
with any other provers. Since the library of Coq contains a lot of basic mathematical
and algebraic concepts it can be aligned well with a variety of provers.

The presented scores only give an estimate of the quality of the matches. For ef-
ficiency reasons, our algorithm only focuses on a syntactic analysis of the similarities.
Semantic measures are needed to capture the full complexity of a concept. More, rep-
etition inside one library may artificially increase the number of concepts with strong
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Figure 5: Scores of the best thousand pairs of constants with default settings.
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matches. Therefore, a manual inspection of the pairs is necessary to evaluate the final
quality of the matches.

To reduce the number of manual inspections to a reasonable level, we will focus
our human analysis on the following pairs of provers by order of subjective difficulties:
HOL Light-HOL4, HOL Light-Isabelle/HOL, HOL4-Isabelle/HOL, Coq-Matita Coq-HOL4,
Isabelle/HOL-Mizar, and Coq-Mizar. To further simplify our analysis, we make a distinc-
tion between three classes of matches. Because it is a subjective judgment, there is no
strict limit between each of the following classes.

A pair of constant will be called:

• an optimal match, if the two concepts were intended to represent the same mathe-
matical object, although their definitions may differ. A match between a polymor-
phic constant with an implicit type argument and one of its instantiations will also
be considered optimal.
Examples of such optimal matches include: reals numbers defined differently, bi-
nary and unary natural numbers, specific instance of addition and addition (+int
vs +).

• an approximate match, if its components are the carriers or the operators of a
known morphism between large mathematical structures.
Example: sets vs list of lists, reals vs integers, <real vs <int , union vs intersection.

• a singular match if it comes from a smaller morphism appearing inside a structure.
Example: division vs less than, +real vs ∗int .

Depending on the application, the range of interesting matches may differ. For a
translation between libraries recognition of optimal matches is necessary, whereas to
take inspiration from proofs in other domains approximate and singular matches are also
of high value (Gauthier and Kaliszyk, 2015). The addition of high-scoring singular and
approximate pairs will be useful to learn patterns in the use of these concepts and in
their relation to proving.

Overall, our matching algorithm tries to evaluate the quality of the mapping in the
context of the two whole libraries. Therefore optimal matches are expected to have higher
scores, followed by approximates ones and finally singular ones. The degree to which our
algorithm is capable of ordering the matches correctly is presented in Table 4.5.

Among the provers of the HOL family the first non-optimal match occurs quite early
but is always preceded by a conflicting optimal match. As there are six different defi-
nitions of natural numbers in Coq, our algorithm has to find that these six competing
versions match the HOL Light natural numbers. Moreover the relation between algebraic
structures is lost. Indeed, the reals from Coq are constructed from only one specific
version of the numerals.

Similar issues occur when aligning Mizar with any of the other provers. The issues are
further amplified by the fact that many constants in Mizar are implicitly polymorphic.
Combining the two effects, + in Mizar matches to the different version of + for integers
in Coq but also + for integers, complex numbers and reals. Since most of the the first
hundred matches are of this kind, we have to look further for matches about more involved
concepts, such as lists and trigonometry. This means that many approximate matches
and a few singular matches are mixed with the optimal ones. We will therefore define
additional methods to separate them in Section 5.
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Prover 1 Prover 2 Constant 1 Constant 2 rank score

HOL4 HOL Light num real 25 0.96
num num 2 0.99
real real 1 0.99

HOL4 Isabelle/HOL real nat 4 0.89
real real 2 0.95
num nat 1 0.97

HOL Light Isabelle/HOL real int 10 0.88
real real 1 0.97
int int 24 0.81

Coq Matita Z nat 1 0.97
Z Z 12 0.87

nat nat 2 0.97
Coq HOL4 Z real 2 0.97

Z num 3 0.97
R real 10 0.94

Isabelle/HOL Mizar dvd nat ≤ 6 0.82
dvd nat divides 35 0.58

less_eq nat ≤ 9 0.78
Coq Mizar Z real 2 0.94

Z integer 17 0.87
R real 8 0.91

Table 6: First non-optimal match in each studied pair of provers (in bold), followed by the first optimal
matches for each constant

4.6. Transitive matches
When experimenting with more than two libraries, it is possible to consider one li-

brary as a translation step between two others. Indeed, concepts can be mapped from
the initial library to the intermediate library and then to the targeted library. We will
give a transitive score transitive_score to such matches defined as the product of the
intermediate scores on the path linking the two constants. In the following experiment
we will look at the transitive matches produced when our initial and final libraries are
Isabelle/HOL and Mizar (the order is irrelevant) and the other libraries are used as inter-
mediates. We only map concepts through one intermediate library at a time in order to
measure their performance. This approach can easily be generalized so that the mapping
travels through multiple translators.

In Fig 6, the two best intermediates seem to be Coq and HOL Light followed by HOL4.
However, because of the multiplication of similar structures in Coq, most interesting
matches will be found in HOL Light. Compared to direct scores, transitive matches may
have an unfair advantage as they can generate a large number of one-to-many mappings.

In order to evaluate the gain obtained with the help of transitive matches, we compare
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the transitive scores to the scores (direct_score) that were attributed during a direct
match. We additionally define two other measures to evaluate the novelty of our matches:

dif = transitive_score − direct_score
w_dif = direct_score ∗ (transitive_score − direct_score)

1 100 2000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Coq

HOL Light
HOL4
Matita
Direct

Figure 6: Best transitive matches between Isabelle/HOL and Mizar.

Comparing all intermediate libraries, we discover that Coq is actually giving optimal
matches of lower quality. In Table 7, the third top scoring match is singular and already
the first one uses an approximate intermediate. The matches with best transitive scores
through HOL4 and HOL Light are more accurate. To measure the novelty of those
matches, we will rely on the other two scores to order them. In Table 9 transitive
matches between Isabelle/HOL and Mizar are discovered through HOL Light and ordered
by their difference scores dif . We first observe that all of the considered matches were
not discovered by the direct approach and that the first three are optimal. It means that
they were concepts that did not share any property directly but had both properties in
common with HOL Light. Using HOL4 (see Table 8), new optimal matches were a bit
less frequent. In order to achieve a compromise between novelty and quality we use the
scoring function w_dif .

Overall, this experiment demonstrates that the use of a transitive method can discover
new matches and reinforce the confidence on existing matches. To maximize optimal
matches in future applications, a combined score given by the sum of the transitive and
direct scores may be considered.

Remark. The transitive type matches were excluded from the tables because the Mizar
type system makes the distinction between approximate and optimal type matches fuzzy.
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Isabelle/HOL Mizar through Coq Direct Transitive

zero int 0 BinNums_N_0 0.83 0.82
zero int 0 BinNums_Z_0 0.50 0.78
dvd nat ≤ le 0.81 0.77

less_eq nat ≤ le 0.78 0.77

Table 7: First four transitive matches through Coq (excluding types) with best transitive scores.

Isabelle/HOL Mizar through HOL4 Direct Transitive w_dif

(less_eq real) ≤ 0 real_lte 0.40 0.64 0.10
(zero real) (real_of_num 0)

cos real cos cos 0.45 0.58 0.06
sin real sin sin 0.45 0.57 0.05

real real real 0.75 0.81 0.04

Table 8: First four transitive matches through HOL4 (excluding types) with best w_dif scores.

5. Strategies

In order to further distinguish optimal matches from non-optimal ones, we provide a
number of matching strategies. These iterative procedures divide matches into a positive
and a negative set. The strategies aim to maximize the number of optimal matches and
minimizing the number of singular or approximate matches in the positive set. These
two sets are build incrementally. When a pair is chosen to be a member of the positive
(respectively negative) category, it receives a positive (respectively negative) reinforce-
ment. The purpose of these reinforcements is to increase or decrease the strength of the
influence of all pairs beyond the scores that were attributed in the scoring loop. We first
define the terminology used to describe the strategies.

Definition 14 (Positive, negative and undecided matches). A positive match is an
element of the positive set. A negative match is an element of the negative set. An
undecided match is neither an element of the positive set nor an element of the negative
set. It will become positive or negative as the two sets grow.

Definition 15 (Positive reinforcement). A positive reinforcement is a modification ap-
plied to the score of a positive match and amounts to:

• Fixing its score to 3.

This number has been experimentally determined and roughly says that we are more than
3 times more confident that a selected match is optimal than for an undecided match.

Definition 16 (Negative reinforcement). From a negative match N , a negative rein-
forcement performs two modifications:

• Fixing the score of N to 0.
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Isabelle/HOL Mizar through HOL Light Direct Transitive dif

(less real) < 0 real_le(real_of_num 0 0.50 0.50
(zero real) (NUMERAL 0))

power real |ˆ real_pow 0 0.44 0.44
times complex ∗ complex_mul 0 0.40 0.40

pred carrier cart real 0 0.40 0.40

Table 9: First four transitive matches through HOL Light (excluding types) with best dif scores.

• Fixing the score of each pair of theorems that induces N to 0.

The second modification is justified in Section 5.1 by the constant coherence constraint.
This modification would be implicit if we had used a product instead of a sum in the
scoring function for pair of theorems. Scores based on products are however not consistent
with other constraints as shown in Section 3.3.

All presented strategies first run the dynamical scoring algorithm. Next, a pair (or
a set of pairs) of constants is chosen based on their scores and additional heuristics to
decide if it (they) should be classified as a positive or as a negative match. A positive
(respectively negative) reinforcement is applied to each element of the positive (respec-
tively negative) set. Dynamical scoring is then rerun to account for the newly updated
scores. A new selection is performed, and the whole process is repeated as long as there
exist undecided pairs. Pairs with zero scores are always put in the negative set. If not
stated otherwise by a strategy, the pair with the highest score will be assigned to the
positive set.

Remark. Convergence is guaranteed by the fact that the dynamical scoring algorithm is
restarted from fixed initial values greater or equal to 1 after each decision. Reinforcement
scores are fixed and non-negative and thus can be treated as coefficients. Reinforcement
scores should not be modified by dynamical scoring. Otherwise, the algorithm would
always converge to the fixpoint found with no reinforcement by uniqueness of the limit.

Beside a strengthening of the influence of the top matches, another advantage of the
two level approach is that we separate algorithms for scoring the degree of isomorphism
of matches from the ones deciding which matches are indeed optimal. Therefore, it is
possible to use different scoring techniques for each of them, which will be exploited by
the disambiguation in Section 5.3. Furthermore, some of the following techniques work
globally on optimal matches (and are not helpful for searching for more approximate and
singular matches, like it is the case for conjecturing (Gauthier et al., 2016)).

We present three options which can be combined to form a strategy. First, we propose
natural coherence constraints on the two set of matches. Second, we consider greedy
matching. Third, we discuss disambiguation, which aims at resolving conflicts created
by a multiple counterpart mappings. These three options can be used independently or
combined and even used together with some human advice. The strongest combinations
of the three automatic options is evaluated through the quality of the positive matches
they produce.
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5.1. Coherence constraints
After correctly identifying a match, simple coherence constraints based on the logical

relation between the different objects (types, constants and theorems) can be applied:
type coherence and constant coherence.

Definition 17 (Type coherence). A set of constant matches is type coherent if for every
constant pair c of a set s, the type matches induced by c are also in the set s.

A weak form of type coherence was already induced by the correlations: Higher
scoring constants cause higher scores in the types. However, this influence may not
raise the scores of the types enough for it to become a positive match. In some cases
other factors of the algorithm might give such types negative advice. To enforce type
coherence on the positive set, as soon as we add a match to the positive set, we also add
their induced type matches to the positive set.

Remark. Type coherence is recursive, since types have themselves types.

Although we classify constants rather than theorems (this distinction is less pro-
nounced in intuitionistic type theory (Czajka and Kaliszyk, 2016)), we assume in the
following definition that the theorems are also assigned to a positive and negative set
of theorems. After the strategy terminates, a theorem will be said to be in the positive
set if it has a score greater than 0 and in the negative set if its score is 0. We can then
state a similar constraint relation between theorems and constants that we call constant
coherence.

Definition 18 (Constant coherence). For every theorem pair t of the positive set of
theorems, the constant matches induced by t are also in the positive set of constants.

Constant coherence is enforced by zeroing the scores of theorems that contain nega-
tive pairs. This constraint also implies that if a type match is in the negative set then
the constant pairs that induce it will in the next iteration be in the negative set. In-
deed, theorem pairs that include a constant pair will also include its induced type pairs.
Therefore if one of its type pairs is given a score of 0, all of the theorem pairs than induce
the constant pair are given a score of 0. Hence the total score of the constant will be
0. This consequence can be seen as the contrapositive of type coherence satisfied by the
negative set.

5.2. Greedy method
In our dynamical scoring experiments we observe that a match with the highest score

involving one constant is most often an optimal one, and the subsequent ones involving
the same constant are approximate ones. For example, a match of integers with integers
may be followed by a match of integers with reals. In order to remove those undesirable
competing matches, as soon as a pair p is categorized as positive, the greedy strategy puts
all pairs that have a common constant with p in the negative set. The first advantage of
the strategy is a drastic reduction of the number approximate matches. Also, if applied
with type coherence and without subterm conceptualization, there will be at most one
possible translation of a formula which will type-check by construction. In this particular
case, the selection of coherent substitution is not needed (see Section 3.5).
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There are however two downsides. First, it makes the algorithm more brittle. The
presence of an approximate match early in the procedure leads to a series of approximate
matches derived from the first one. For instance, matching integers with naturals leads
to all operations about integers being matched to operation about naturals. Second,
the algorithm does not allow for one-to-many mappings in the positive set. If there
are multiple structures defining the same objects, as it is often the case for example for
computational reasons, the greedy algorithm will only map one.

5.3. Disambiguation
Often an approximate match and an optimal match about the same constant are in

the wrong order, the scores differing only by a small margin. The greedy method fails to
recognize the ambiguity and assumes that the first match is correct.

To solve this problem, we propose a method that delay the selection of a positive
match by measuring its ambiguity. To this end, we will penalize a pair if its constants
have multiple possible counterparts in the other library. The hope is that the selection
of less ambiguous matches will help the classification process.

Technically, we define the ambiguity score of a match c = {d1, d2} by first defining
its ambiguity sets, which are consists of the matches that shares a constant with c.

E1 = {c′ = {d, e} | d = d1 ∨ e = d1}

E2 = {c′ = {d, e} | d = d2 ∨ e = d2}

And then its ambiguity scores.

ambiguity1(c) =
∑
c′∈E1

score(c′)

ambiguity2(c) =
∑
c′∈E2

score(c′)

ambiguity(c) = ln(10 + (1 + ambiguity1(c)) ∗ (1 + ambiguity2(c)))

ambiguity_score(c) = 1
ambiguity(c) × score(c)

Remark. Different ambiguity scores were also tried. Most of them improved the results
in a similar manner. Therefore, the quality of matches is not very sensitive to small
changes in the scoring functions, and the application of disambiguation is more important
than its particular implementation.

It is easy to note that for pairs with similar scores the higher an ambiguity score
is the less ambiguous it is. We will then use these ambiguity scores instead for the
selection of our positive matches. These new scores will affect our algorithm only by
changing the order of the selected positive matches. They will not replace the reinforced
scores or the scores of the undecided matches. Thus they do not change the correlation
between matches. From our experiments, preventing the ambiguity of one pair from
being transmitted to other pairs seems necessary to preserve the stability of dynamical
scoring.
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5.4. Human advice
Automated techniques may not be sufficiently precise or the user may desire to have

more control over the alignment of the two libraries. That is why we also provide ways
to combine those techniques with additional human advice.

In this setting, the user is shown the 40 (modifiable) undecided best matches. She
can select a few of them and decide which sets they belong to. After the negative and
positive reinforcements are applied and scores updated accordingly, the user can repeat
the selection on the new 40 undecided best matches. To facilitate the procedure, com-
mands are available to the user that allow him to undo a decision, show the positive and
negative sets, display the undecided matches according to different orders and stop the
iteration. By default, the order used is defined by the scores. But we also propose to
regroup undecided matches by the constants they share (to perform manual disambigua-
tion) or by similarity of the names of their constants. As a compromise, human advice
can also be restricted to type matches. In this case, constant pairs (that are not a type
pairs) with a score greater than the best undecided type pair are classified automatically.

Those human advice scenarios were not fully evaluated as it was more efficient for us to
improve the automation than having us manually compensate for the algorithm’s failures.
Moreover, since we do not have expert knowledge in all the libraries our decisions were
also error-prone. Therefore, these combined methods were mainly useful as debugging
tools.

5.5. Results
Experiments are performed on the studied pair of provers. We run two different

strategies. Both have type coherence and disambiguation enabled, but one of them
applies the greedy restriction where the other one does not. We will refer to them as the
greedy and non-greedy strategy.

5.5.1. Non-optimal matches
We measure the effectiveness of the classification made by the greedy strategy by

finding the first non-optimal matches in the positive set. Table 10 shows their rank. It
also presents the size of the section which is the total number of matches in the positive
set. The small size of each section compared to the total number of matches shows that
the strategy is quite effective at eliminating non-optimal matches.

A manual inspection of the definitions in Table 12 reveals that the constants Rev and
rev_append are actually the same. Table 11 also shows how this pair of constants was
discovered from their similar properties. It would have been harder to recognize from
their definitions. Indeed the first one is constructed by a match statement and the second
one by a conjunction. After checking more definitions, we realized that the component
of the pairs (measure, gtof ), (ALL, pred_list) and (EVERY , pred_list) also represent the
exact same concepts even if their names indicate otherwise. Those misjudged matches
could be used to create more consistent naming schemes across formalizations.

The similarity between HOL Light and HOL4 is striking. There exist 790 constants
in HOL Light and a little less than 300 of them can be map to a constant in HOL4
that have exactly the same meaning. More, this number does not include the one-to-
many mappings discovered by the non-greedy version. Aligning HOL Light and HOL4 to
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Prover 1 Prover 2 Sect Constant 1 Constant 2 rank

HOL4 HOL Light 303 extreal complex 227
extreal_pow complex_pow 228
extreal_mul complex_mul 229

HOL4 Isabelle/HOL 159 modu real_norm complex 39
prod complex 40

EVERY pred_list 90
nub remdups 106

SNOC insert 107
HOL Light Isabelle/HOL 123 FCONS case_nat 78

ALL pred_list 79
DIV binomial 92

rational positive 108
Coq Matita 84 N Z 13

= 0N Zle 34
N_mul Ztimes 46

transitive symmetric 48
Coq HOL4 188 rev_append REV 7

BinNums_N ext_real 45
0_BinNums_N extreal_of_num 0 46

bool rat 49
constr_bool_2 rat_1(rat_of_num( 61

NUMERAL(BIT1 ZERO))
measure gtof 71

Isabelle/HOL Mizar 137 list(X) Element 2
(QC-WFF(X))

sup \/ 3
sqrt _2 24

Coq Mizar 168 RIneq_Rsqr min 9
sqrt _2 10

Table 10: First suspected non-optimal matches in the positive set. The column Sect shows the total
number of elements in the positive set.

Isabelle/HOL is a bit more challenging. But the algorithm is still effective and the greedy
strategy discovered more than 100 optimal matches in each case.

Disambiguation was an essential component for aligning correctly Coq with HOL4.
We find that 188 concepts have a counterpart in the other library. These include only
a few non-optimal matches, less than 10 in the first hundred matches. Even some of
those non-optimal mappings can be interesting. At rank 98 (not shown in the table),
the Coq constant Ensemble(set in French) is matched with the HOL4 constant l list(lazy
lists). This match may even appear to be better than an optimal one involving the HOL4
constant set, after studying their usage in both provers. In this alignment, the booleans
of Coq could not match the related boolean type in HOL4, since it is the same as the
reserved type $o which is restricted to match only to itself. This issue could be solved
easily by mapping the boolean type of Coq to $o during the application of the logical
mappings.

The results are more modest for alignments with Mizar, although the size of the
positive set is comparable. The percentage of optimal matches decrease rapidly and
there are almost no optimal matches after the 50th. This is mainly due to the wrong
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rev_append REV

∀ l, rev l = rev_append l []. ∀ L. REVERSE L = REV L []
∀ l l’, rev_append l l’ = rev l ++ l’. ∀ L1 L2. REV L1 L2 = REVERSE L1 ++ L2

Table 11: Properties shared by the Coq constant rev_append and the HOL4 constant REV.

rev_append REV

Fixpoint rev_append (l l’: list A) : list A := (∀ acc. REV [] acc = acc) ∧
match l with ∀ h t acc. REV (h::t) acc =
| [] => l’ REV t (h::acc)
| a::l => rev_append l (a::l’)
end.

Table 12: Defintions of the Coq constant rev_append and the HOL4 constant REV.

choices made early on. Therefore, to align a prover with Mizar, it is better to run the
non-greedy strategy. Another option, before better logical mappings, normalization or
strategies are implemented for Mizar, would be to run the matching algorithm with some
human advice. But with a low frequency of correct matches, it would be a tedious manual
work and may defeat the purpose of our project.

5.5.2. Optimal matches
We inspect the optimal matches found by the greedy strategy to judge their value.

We also compare it to the non-greedy strategy to find which optimal matches the greedy
strategy missed. Table 13 presents interesting optimal matches found by the greedy
and non-greedy strategies. The selected optimal matches in this table illustrate different
achievements of our approach.

Subterm conceptualization renders possible to match pair of reals with complex num-
bers, and they are indeed used in that way in HOL4. The greedy startegy may however
not recognize this similarity. Indeed, the concept of a pair of reals may exist in both
prover, yielding the match of the two isomorphic concepts. Therefore it would prevent
any further matches involving those concepts. Another effect of conceptualization is
the automatic factorization of type arguments. Thus, the subterm power real can be
identified with the constant real_pow. The advantage of regrouping constants using
their reflexive transitive closure modulo equality appears when the two constants PI
and ALT_PI automatically match the same counterpart P_t. The concepts relation,
decidable, transitive shared by Matita and Coq show the different degree of abstractions
of each library. We can also illustrate the effectiveness of type coherence when aligning
Coq and HOL4. A match between the constants length and LENGTH (representing the
length of a list) directly implies a match between the types nat and num (representing
natural numbers).

All in all, the matching algorithm works across a variety of different theories (list,
complex, probability, . . . ). This approach performs well on any kind of theories as long as
developers of formal libraries state properties of the mathematical objects in a relatively
similar manner. Still, distinguishing between an isomorphic construction and a structure
sharing similar properties remains a challenge. We observe that running the algorithm in
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Prover 1 Prover 2 Mode Constant 1 Constant 2 rank

HOL4 HOL Light G prod prod 1
sum psum 3
RTC RTC 269

NG (prod real) real complex 251
HOL4 Isabelle/HOL G

π

2
π

2
7

NG (prod real) real complex 36
HOL Light Isabelle/HOL G real_pow power real 1

ITLIST foldr 95
Coq Matita G relation relation 1

decidable decidable 3
NG Transitive N transitive nat 53

Coq HOL4 G length LENGTH 3
nat num 4
0Z int_0(int_of_num 0) 30
Z int 31

NG BinNums_positive num 21
BinNums_N num 47

BigN num 48
Isabelle/HOL Mizar G pi P_t 7

arccos arcos 35
NG (fold nat) nat** −→** 21

member nat in 3
Coq Mizar G PI P_t 90

ALT_PI
Rlist FinSequence REAL 106

Table 13: Interesting optimal matches found by running a strategy with disambiguation and type coher-
ence in greedy mode (G) and non-greedy mode (NG). The presented non-greedy matches are not found
by the greedy algorithm. The match (**) may not be an optimal one.

non-greedy mode enable us to obtain one-to-many mappings but those may also contain
some non-optimal matches too. As an intermediate between the greedy method and the
non-greedy strategy, a dynamic evaluation of the level of greediness (number of allowed
counterparts of a constant) deepening the ideas used to implement the disambiguation
option could be implemented.

5.5.3. Complexity and convergence
Applying a strategy does not come for free. The repetitive application of dynamical

scoring is the most costly operation. To our advantage, the scoring updates takes less
and less time to converge after each iteration. Indeed, the number of undecided matches
diminishes. And the number of loops needed to reach a fixpoint is minimized since we
restart the algorithm from the previous fixpoint. Let us take for example the process
of aligning Coq and HOL4. The first scoring loop takes 7.37 seconds. But the greedy
method with type coherence and disambiguation gives a total of 188 positive matches in
154 seconds.

This method of restarting from the previous fixpoint has experimentally always ter-
minated. However, to guarantee convergence we would have to reset the scores after each
update or only allow updates that do not mix positive and negative reinforcements. By
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construction, a positive (or negative) reinforcement will increase (respectively decrease)
the current scores of all pairs. Therefore, updating scores after positive and negative rein-
forcement separately is enough to make the first step of the dynamical scoring monotonic.
And this condition implies convergence as proved in Section 3.6.

6. Related Work

Our approach is in certain ways similar to latent semantic analysis (Landauer et al.,
1998) used to find synonyms in multiple documents or text fragments. The relation is
even more obvious if we consider our properties to be documents and concepts to be
words. Similar pieces of text should contain words similar in meaning in the same way
that similar properties contains similar concepts. However, our approach is able to use
the structure of the properties, which cannot be done for informal documents.

A number of translations between formal mathematical libraries are able to use
given matched concept. For this, usually matching concepts have been found manu-
ally. The first translation that introduced maps between concepts was the one of Obua
and Skalberg (2006). There, two commands for mapping constructs were introduced:
type-maps and const-maps which allow a user to map HOL Light and HOL4 concepts
to corresponding ones in Isabelle/HOL. Given a type (or constant) in the maps, during
the import of a theorem all occurrences of this type in the source system are replaced
by the given type of the target system. In order for this construction to work, the basic
properties of the concepts must already exist in the target system, and their translation
must be avoided. Due to the complexity of finding such existing concepts and specifying
the theorems which do not need to be translated, Obua and Skalberg were able to map
only small number of concepts like booleans and natural numbers, leaving integers or
real numbers as future work.

The translation of Keller and Werner (2010) was the first one, which was able to map
concepts between systems based on different foundations. The translation from HOL
Light to Coq proceeds in two phases. First, the HOL proofs are imported as a defined
structure. Second, using the reflection mechanism, native Coq properties are built. It
is the second phase that allows mapping the HOL concepts like natural numbers to the
Coq standard library type N.

The translation that maps so far the biggest number of concepts has been done by
the second author (Kaliszyk and Krauss, 2013). The translation process consists of
three phases, an exporting phase, offline processing and an import phase. The offline
processing provides a verification of the (manually defined) set of maps and checks that
all the needed theorems will be either skipped or mapped. This allows to quickly add
mappings without the expensive step of performing the actual proof translation, and
in turn allows for mapping 70 HOL Light concepts to their corresponding Isabelle/HOL
counterparts. All these concept maps have been found and provided manually.

Bortin et al. (2006) implemented the AWE framework which allows the reuse of
Isabelle/HOL formalization recorded as a proof trace multiple times for different concepts.
Theory morphisms and parametrization are added to a theorem prover creating objects
with similar properties. The use of theory morphisms together with concept mappings is
one of the basic features of the MMT framework (Rabe, 2013). This allows for mapping
concepts and theorems between theories also in different logics. So far all the mappings
have been done completely manually.
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Hurd’s OpenTheory (Hurd, 2011) aims to share specifications and proofs between
different HOL systems by defining small theory packages. In order to write and read
such theory packages by theorem prover implementations a fixed set of concepts is de-
fined that each prover can map to. This provides highest quality standard among the
HOL systems, however since the procedure requires manual modifications to the sources
and inspection of the libraries in order to find the mappings, so far only a small number
of constants and types could be mapped. Similar aims are shared by semi-formal stan-
dardizations of mathematics, for example in the OpenMath content dictionaries. For
a translation between semi-formal mathematical representation again concept lookup
tables are constructed manually (So and Watt, 2006; Carlisle et al., 2001).

The Dedukti proof checker (Dowek et al., 2003), based on the λΠ-modulo calculus,
can import and verify developments from Coq and HOL systems. An example Coq proof
has been shown to be translatable to Dedukti and to instantiated with HOL natural
numbers (Assaf and Cauderlier, 2015). One of the main challenges was to match the
different typing levels of Coq and HOL into a common structure in the logic of Dedukti.

The proof advice systems for interactive theorem proving have studied similar con-
cepts using various similarity measures. The methods have so far been mostly restricted
to similarity of theorems and definitions. They have also been limited to single prover
libraries. Heras and Komendantskaya in the proof pattern work Heras and Komen-
dantskaya (2014) try to find similar Coq definitions using machine learning. Hashing of
definitions in order to discover constants with same definitions in Flyspeck has been done
in (Kaliszyk and Urban, 2015a). Searching for similar lemmas in order to find interesting
properties has been tried for Mizar using the MoMM system (Urban, 2006a) as well as
for HOL Light intermediate lemmas (Kaliszyk and Urban, 2015b).

7. Conclusion

We have developed a methodology for matching concepts across formal mathemati-
cal libraries. Our approach relies on measuring the similarity of the properties of those
concepts complemented by a dynamical process that iterates through their structural in-
terrelation. Additional techniques such as subterm conceptualization and disambiguation
appear to be highly beneficial to the quality of the matches and in some cases essential
to the matching process.

Our experiments on multiple proof assistant libraries lead to the discovery of thou-
sands of similar concept pairs. The full method performs particularly well between
provers based on higher-order logic and variants of type theory. Aligning set-theoretical
and type-theoretical provers automatically gives a smaller number of perfect matches.

8. Future works

We have focused on heuristic ways to match concepts avoiding the use of metadata,
such as the names of the theories, theorems, and constants. Such metadata, as well as
scoring heuristics refined by an unsupervised machine learning process could be used in
practical applications of matches.

Furthermore, it would be interesting to test the quality of the found matches in the
various applications. Sharing proof knowledge (Gauthier and Kaliszyk, 2015) could be
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performed across the studied proof assistants that have learning-assisted reasoning sup-
port, as well as across libraries (Blanchette et al., 2016). More approaches (Kaliszyk
et al., 2014) to transfer and create properties using knowledge from different mathemat-
ical domains could be tried. The found matches could complement other formal proof
metrics (Aspinall and Kaliszyk, 2016a) for proof engineering Klein (2014), as well as be
an important component of a Wiki for multiple proof assistants (Corbineau and Kaliszyk,
2007). We would also like to provide a database of concept matches (Müller et al., 2017)
to create the possibility for external users to exploit the data for their own applications.
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