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Abstract. Applying machine learning to mathematical terms and for-
mulas requires a suitable representation of formulas that is adequate for
AT methods. In this paper, we develop an encoding that allows for logi-
cal properties to be preserved and is additionally reversible. This means
that the tree shape of a formula including all symbols can be recon-
structed from the dense vector representation. We do that by training
two decoders: one that extracts the top symbol of the tree and one that
extracts embedding vectors of subtrees. The syntactic and semantic log-
ical properties that we aim to preserve include both structural formula
properties, applicability of natural deduction steps, and even more com-
plex operations like unifiability. We propose datasets that can be used to
train these syntactic and semantic properties. We evaluate the viability
of the developed encoding across the proposed datasets as well as for
the practical theorem proving problem of premise selection in the Mizar
corpus.

1 Introduction

The last two decades saw an emergence of computer systems applied to logic and
reasoning. Two kinds of such computer systems are interactive proof assistant
systems [HUW14] and automated theorem proving systems [RVO01]. Both have
for a long time employed human-developed heuristics and Al methods, and more
recently also machine learning components.

Proof assistants are mostly used to transform correct human proofs written
in standard mathematics to formal computer understandable proofs. This allows
for a verification of proofs with the highest level of scrutiny, as well as an auto-
matic extraction of additional information from the proofs. Interactive theorem
provers (ITPs) were initially not intended to be used in standard mathematics,
however, subsequent algorithmic developments and modern-day computers allow
for a formal approach to major mathematical proofs [Hal08]. Such developments
include the proof of Kepler’s conjecture [HAB'17] and the four colour theo-
rem [Gon08|. ITPs are also used to formally reason about computer systems, e.g.
have been used to develop a formally verified operating system kernel [KAE*10]
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and a verified C compiler [Ler09]. The use of ITPs is still more involved and
requires much more effort than what is required for traditional mathematical
proofs. Recently, it has been shown that machine learning techniques combined
with automated reasoning allow for the development of proofs in ITPs that is
more akin to what we are used to in traditional mathematics [BKPU16].

Automated reasoning has been a field of research since the sixties. Most Au-
tomated Theorem Proving systems (ATPs) work in less powerful logics than
ITPs. They are most powerful in propositional logic (SAT solvers), but also
are very strong in classical first-order logic. This is mostly due to a good un-
derstanding of the underlying calculus and its variants (e.g. the superposition
calculus for equality [BGLS92]), powerful low-level programming techniques, and
the integration of bespoke heuristics and strategies, many of which took years
of hand-crafting [SCV19,Vorl4].

In the last decade, machine learning techniques became more commonly used
in tools for specifying logical foundations and for reasoning. Today, the most
powerful proof automation in major interactive theorem proving systems filter
the available knowledge [KvLT* 12| using machine learning components (Sledge-
hammer [BGK 16|, CogHammer [CK18]). Similarly, machine-learned knowledge
selection techniques have been included in ATPs [KSUV15]. More recently, tech-
niques that actually use machine learning to guide every step of an automated
theorem prover have been considered [UVéll,LISKl?] with quite spectacular
success for some provers and domains: A leanCoP strategy found completely by
reinforcement learning is 40% more powerful than the best human developed
strategy [KUMO18], and a machine-learned E prover strategy can again prove
more than 60% more problems than the best heuristically found one [CJSU19].
All these new results rely on sophisticated characterizations and encoding of
mathematics that are also suitable for learning methods.

The way humans think and reason about mathematical formulas is very
different from the way computer programs do. Humans familiarize themselves
with the concepts being used, i.e. the context of a statement. This may include
auxiliary lemmas, alternative representations, or definitions. In some cases, ob-
servations are easier to make depending on the representation used [GAAT13].
Experienced mathematicians may have seen or proven similar theorems, which
can be described as intuition. On the other hand, computer systems derive facts
by manipulating syntax according to inference rules. Even when coupled with
machine learning that tries to predict useful statements or useful proof steps the
reasoning engine has very little understanding of a statement as characterized
by an encoding. We believe this to be one of the main reasons why humans are
capable of deriving more involved theorems than modern ATPs, with very few
exceptions [KVV13].

In this paper, we develop a computer representation of mathematical objects
(i.e. formulas, theorem statements, proof states), that aims to be more similar
to the human understanding of formulas than the existing representations. Of
course, human understanding cannot be directly measured or compared to a
computer program, so we focus on an approximation of human understanding
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as discussed in the previous paragraph. In particular, we mean that we want to
perform both symbolic operations and “intuitive steps” on the representation.
By symbolic operations, we mean basic logical inference steps, such as modus
ponens, and more complex logical operations, such as unification. When it comes
to the more intuitive steps, we would like the representation to allow direct
application of machine learning to proof guidance or even conjecturing. A number
of encodings of mathematical objects as vectors have been implicitly created
as part of deep learning approaches applied to particular problems in theorem
proving [ACE'16,WTWD17,0KU19|. However, none of them have the required
properties, in particular, the recreation of the original statement from the vector
is mostly impossible.

It may be important to already note, that it is impossible to perfectly preserve
all the properties of mathematical formulas in finite-length vectors of floating-
point values. Indeed, there are finitely many such vectors and there are infinitely
many formulas. It is nonetheless very interesting to develop encodings that will
preserve as many properties of as many formulas as possible, as this will be useful
for many practical automated reasoning and symbolic computation problems.

Contribution We propose methods for supervised and unsupervised learning of
an encoding of mathematical objects. By encoding (or embedding) we mean a
mapping of formulas to a continuous vector space. We consider two approaches:
an explicit one, where the embedding is trained to preserve a number of prop-
erties useful in theorem proving and an implicit one, where an autoencoder of
mathematical expressions is trained. For this several training datasets pertaining
to individual logical properties are proposed. We also test our embedding on a
known automated theorem proving problem, namely the problem of premise se-
lection. We do so using the Mizar40 dataset [KU15]. The detailed contributions
are as follows:

— We propose various properties that an embedding of first-order logic can
preserve: formula well-formedness, subformula property, natural deduction
inferences, alpha-equivalence, unifiability, etc. and propose datasets for train-
ing and testing these properties.

— We discuss several approaches to obtaining a continuous vector represen-
tation of logical formulas. In the first approach, representations are learned
using logical properties (explicit approach), and the second approach is based
on autoencoders (implicit approach).

— We evaluate the two approaches for the trained properties themselves and
for a practical theorem proving problem, namely premise selection on the
Mizar40 dataset.

The paper extends our work presented at GCAI 2020 [PAK20], which discussed
the explicit approach to training an embedding that preserves properties. The
new material in this version comprises an autoembedding of first-order logic (this
includes the training of properties related to decoding formulas), new neural net-
work models considered (WaveNet model and Transformer model), and a more
thorough evaluation. In particular, apart from the evaluation of the embeddings
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on our datasets, we also considered a practical theorem proving problem, namely
premise selection on a standard dataset.

Contents The rest of this paper is structured as follows. In Section 2 we introduce
the logical and machine learning preliminaries. In Section 3 we discuss related
work. In Section 4 we present two methods to develop a reversible embedding:
the explicit approach where properties are trained together with the embedding
and the implicit approach where autoencoding is used instead. In Section 5 we
develop a logical properties dataset and present the Mizar40 dataset. Section 6
contains an experimental evaluation of our approach. Finally Section 7 concludes
and gives an outlook on the future work.

2 Preliminaries

2.1 Logical Preliminaries

In this paper we will focus on first-order logic (FOL). We only give a brief
overview, for a more detailed exposition see Huth and Ryan [HRO04].

An abstract Backus-Naur Form (BNF) for FOL formulas is presented below.
The two main concepts are terms (1) and formulas (2). A formula can either
be an Atom (which has terms as arguments), two formulas connected with a
logical connective, or a quantified variable or negation with a formula. Logical
connectives are the usual connectives negation, conjunction, disjunction, impli-
cation and equivalence. In addition, formulas can be universally or existentially
quantified.

term := var | const | f(term,...,term) (1)
formula := Atom(term, ..., term) (2)
| =formula | formula A forumla
| formula V formula
| formula — formula | formula <> formula

| 3 var. formula | ¥ var. formula

For simplicity we omitted rules for bracketing. However, the “standard” brack-
eting rules apply. Hence, a formula is well-formed if it can be produced by (2)
together with the mentioned bracketing rules. The implementation is based on
the syntax of the FOL format used in the “Thousands of Problems for Theorem
Provers” (TPTP) library [Sut17]*. This library is very diverse as it contains data
from various domains including set theory, algebra, natural language processing
and biology all expressed in the same logical language. Furthermore, its prob-
lems are used for the annual CASC competition for automated theorem provers.
Our data sets are extracted from and presented in TPTP’s format for first-order
logic formulas and terms. An example for a TPTP format formula is ! [D]:

4 The full BNF is available at: http://www.tptp.org/TPTP/SyntaxBNF.html
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'[F]: (disjoint(D,F) <=> _intersect(D,F)) which corresponds to the for-
mula Vd. Vf. disjoint(d, f) <= —intersect(d, f). As part of the data extraction,
we developed a parser for TPTP formulas where we took some liberties. For ex-
ample, we allow for occurrences of free variables, something the TPTP format
would not allow.

To represent formulas we use labeled, rooted trees. So every node in our trees
has some label attached to it, and every tree has a special root node. We refer
to the label of the root as the top symbol.

2.2 Neural Networks

Neural networks are a widely used machine learning tool for approximating com-
plicated functions. In this work, we experiment with several neural architectures
for processing sequences.

Convolutional Neural Networks Convolutional neural networks (Figure 1) are
widely used in computer vision [KSH17] where they usually perform two-dimensional
convolutions. However, in our case, the input of the network are string represen-
tations of formulas, which is a one-dimensional object. Therefore, we only need
one-dimensional convolutions.

In this kind of network, convolutional layers are usually used together with
spatial pooling, which reduces the size of the object by aggregating several neigh-
bouring cells (pixels or characters) into one. This is illustrated in Figure 1.

Convolutional layer

Max pooling

Convolutional layer

]

Fig. 1. Convolutional network

Long-Short Term Memory Long-Short Term Memory networks [HS97] are recur-
rent neural networks — networks that process a sequence by updating a hidden
state with every input token. In an LSTM [HS97] network, the next hidden
state is computed using a forget gate, which in effect makes it easier for the
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network to preserve information in the hidden state. LSTMs are able to learn
order dependence, thanks to the ability to retain information long term, while
at the same time passing short-term information between cells. A bidirectional
network [SP97] processes sequences to directions and combines the final state
with the final output.

Fig. 2. Bidirectional LSTM network

WaveNet WaveNet [vdODZ116] is also a network based on convolutions. How-
ever, it uses an exponentially increasing dilation. That means that the con-
volution layer does not gather information from cells in the immediate neigh-
bourhood, but from cells increasingly further away in the sequence. Figure 3
illustrates how the dilation increases the deeper in the network we are. This
allows information to interact across large (exponentially large) distances in the
sequence (i.e. formula). This kind of network performed well in audio-processing
[vdODZ"16], but also in proof search experiments [LISK17].

Transformer Transformer networks have been successfully applied to natural
language processing [VSPT17|. These networks consist of two parts, an encoder,
and a decoder. As we are only interested in encoding we use the encoder archi-
tecture of a Transformer network [VSP*17|. This architecture uses the attention
mechanism to allow the exchange of information between every token in the se-
quence. An attention mechanism first computes attention weights for each pair
of interacting objects, then uses a weighted average of their embeddings to com-
pute the next layer. In Transformer, the weights are computed as dot-product of
“key” and “query” representations for every token. This mechanism is illustrated
in Figure 4.

Autoencoders [Kra91] are neural networks trained to express identity function on
some data. Their architecture usually contains some bottleneck, which forces the



A Study of Continuous Vector Representations for Theorem Proving 7

Fig. 3. WaveNet network

keys _l— query values

weights

Fig. 4. Transformer encoder network

network to learn patterns present in the data, to be able to reconstruct everything
from smaller bottleneck information. This also means that all information about
the input needs to be somehow represented within the bottleneck, which is the
property we use in this work.

3 Related work

The earliest application of machine learning to theorem provers started in the
late eighties. Here we discuss only the deep-learning-based approaches that ap-
peared in recent years. As neural networks started being used for symbolic rea-
soning, specific embeddings have been created for particular tasks. Alemi et
al. [ACE"16] have first shown that a neural embedding combined with CNNs
and LSTMs can perform better than manually defined features for premise se-
lection. In a setup that also included the WaveNet model, it was shown that
formulas that arise in the automated theorem prover E as part of its given
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clause algorithm can be classified effectively, leading to proofs found more effi-
ciently [LISK17].

Today, most neural networks used for mathematical formulas are variants
of Graph Neural Network [HYL17] — a kind of neural network that repeatedly
passes messages between neighbouring nodes of a graph. This kind of network
is applied to the problem of premise selection by Wang et al. [WTWD17|. Later
work of Paliwal et al. [PLR*20| experimented with several ways of representing
a formula as a graph and also consider higher-order properties.

A most extreme approach to graph neural networks for formulas was consid-
ered in [OKU19|, where a single hypergraph is constructed of the entire dataset
containing all theorems and premises. In this approach, the symbol names are
forgotten, instead, all references to symbols are connected within the graph.
This allows constructing the graph and formulate message passing in a way that
makes the output of network invariant under reordering and renaming, as well
as symmetric under negation. A different improvement was recently proposed by
Rawson and Reger [RR19]|, where the order of function and predicate arguments
is uniquely determined by asymmetric links in the graph embedding.

The work of [CAC™19] also uses graph neural networks with message passing,
but after applying this kind of operation they aggregate all information using a
Tree LSTM network [TSM15]. This allows for representing variables in formulae
with single nodes connected to all their occurrences, while also utilizing the tree
structure of a formula. A direct comparison with works of this kind is not pos-
sible, since in our approach we explicitly require the possibility of decoding the
vector back into formulas, and the other approaches do not have this capability.

Early approaches trying to apply machine learning to mathematical formu-
las have focused on manually defining feature spaces. In certain domains man-
ually designed feature spaces prevail until today. Recently Nagashima [Nagl9]
proposed a domain-specific language for defining features of proof goals (higher-
order formulas) in the interactive theorem prover Isabelle/HOL and defined more
than 60 computationally heavy but useful features manually. The ML4PG frame-
work [KHG12| defines dozens of easy to extract features for the interactive theo-
rem prover Coq. A comparison of the different approaches to manually defining
features in first-order logic together with features that rely on important logi-
cal properties (such as anti-unification) was done by the last author [KUV15].
Continuous representations have also been proposed for simpler domains, e.g.
for propositional logic and for polynomials by Allamanis et al. [ACKS17].

We are not aware of any work attempting to auto-encode logical formulas.
Some efforts were however done to reconstruct a formula tree. Gauthier [Gau20)|
trained a tree network to construct a new tree, by choosing one symbol at a time,
in a manner similar to sequence-to-sequence models. Here, the network was given
the input tree, and the partially constructed output tree and tasked with pre-
dicting the next output symbol in a way similar to Tree2Tree models [CAR1S].
Neural networks have also been used for translation from informal to formal
mathematics, where the output of the neural network is a logical formula. Su-
pervised and unsupervised translation with Seq2Seq models and transformer
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models was considered by Wang et al. [WBKU20,WKU18]|, however there the
language considered as input was natural language. As such it cannot be directly
compared to our current work that autoencodes formulas. Autoencoder-based
approaches have also been considered for programming language code, in partic-
ular, the closest to the current work was proposed by Dumandi¢ et al. [DGMB19]
where Prolog code is autoencoded and operations on the resulting embedding
are compared to other constraint solving approaches.

In natural language processing, pre-training on unsupervised data has achieved
great results in many tasks [MSC'13,DCLT19|. Multiple groups are working on
transferring this general idea to informal mathematical texts, mostly by extend-
ing it to mathematical formulas in the ArXiv [YM18]. This is, however, done
by treating the mathematical formulas as plain text and without taking into
account any specificity of logic.

4 Approach

As previously mentioned, our main objective is an encoding of logical formulas.
In particular, we are interested in networks that take the string representation of
a formula as an input and return a continuous vector representation thereof. This
representation should preserve properties and information that is important for
problems in theorem proving. We considered two approaches, an implicit and an
explicit approach. In the explicit approach, we defined a set number of logical
properties (c.f. Section 6.2) and related classification problems and trained an
encoding network with the loss of these classifiers. The implicit approach is
based on autoencoders where we train a network that given a formula encodes
it and then decodes it back to the same formula. In theory, this means that the
encoding (i.e. continuous vector representation) preserves enough information to
reconstruct the original formula. In particular, this means that the tree structure
of a formula is learned from its string representation. We will now explain the
two approaches in detail starting with the explicit one.

4.1 Explicit Approach

The general setup for this approach is depicted in Figure 5. The green box in
Figure 5 represents an encoding network for which we consider different models
which we discuss later in this section. This network produces an encoding enc(¢)
of a formula ¢. This continuous vector representation is then fed into classifiers
that recognise logical properties (c.f. Section 5.1). The total loss £ is calculated
by taking the sum of the losses Lp of each classifier of the properties p € P
discussed before. £ is then propagated back into the classifiers and the encoding
network. This setup is end-to-end trainable and ensures, that the resulting em-
bedding preserves the properties discussed in Section 5.1. We train the network
on this setup and evaluate the whole training setup (encoding network and clas-
sifiers) on unseen data in Section 6. However, it is important to note that we
are only interested in the encoding network. Hence, we can extract the encoding
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Input formula ¢

l

Encoding Network

Well-formedness Modus Ponens

Fig. 5. The property training framework. The bottom area contains the classifiers that
get one or more continuous representations of formulas enc(¢) as input. If the classifier
takes two formulas as input (i.e. alpha-equivalence), we gather enc(¢1) and enc(¢2) sep-
arately and forward the pair (enc(¢1), enc(¢p2)) to the classifier. The encoding networks
are described subsequently (cf. Figure 6).

network (c.f. Figure 5) and discard the classifiers after training and evaluation.
A drawback of this explicit method is that we are working under the assumption
that the logical properties that we select are sufficient for the tasks that the
encodings are intended for in the end. That is, the encodings may only preserve
properties that are helpful in classifying the trained properties but not further
properties that the network is not trained with. Hence, if the encodings are used
for tasks that are not related to the logical properties that the classifiers are
trained with, the encodings may be of no use.

Classifiers The classifiers’ purpose is to train the encoding network. This is
implemented by jointly training the encoding networks and classifiers. There
are two philosophies that can go into designing these classifiers. The first is to
make the classifiers as simple as possible, i.e. a single fully connected layer. This
means that in reality, the classifier can merely select a subspace of the encoding.
This forces the encoding networks to encode properties in a “high-level” fashion.
This is advantageous if one wants to train simpler machine learning models with
the encodings. On the other hand, when using multiple layers in the classifiers
more complex relationships can be recognised by the classifiers and the encoding
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networks can encode more complex features without having to keep them “high-
level”. In this scenario, however, if the problems for the classifiers are too easy
it could happen that only the classifier layers are trained and the encoding
network layers remain “untouched” i.e. do not change the char-level encoding
significantly. We chose a middle ground by using two fully connected layers,
although we believe that o e could investigate further solutions to this problem
(e.g. adding weights to loss).

Encoding Models We considered 20 different encoding models. However, they
can be grouped into ten CNN based models and ten LSTM based models. We
varied different settings of the models such as embedding dimension, output
dimensions as well as adding an additional fully connected layer. The layouts of
the two model types are roughly depicted in Figure 6. The exact dimensions and
sizes of the models are discussed in Section 6.

CNN based models The models based on CNNs are depicted on the left in Fig-
ure 6. The first layer is a variable size embedding layer, the size of which can
be changed. Once the formulas have been embedded, we pass them through a
set of convolution and (max) pooling layers. In our current model, we have 9
convolution and pooling layers with increasing filter sizes and ReLUs as activa-
tion functions. The output of the final pooling layer comprises the encoding of
the input formula. In the second model, we append an additional set of fully
connected layers after the convolution and pooling layers. However, these do not
reduce the dimensionality of the vector representation. For that, we introduce a
third type of models, which we call embedding models. In embedding models,
the last layer is a projection layer which we tested with output dimensions 32
and 64. Note that between the last pooling layer and the projection layer one
can optionally add fully connected layers like in the previous model. In Section 6
we evaluate these models.

LSTM based models The LSTM based models are depicted on the right side in
Figure 6. Much like in previous models, the first layer is an embedding layer. The
output of which gets fed into bidirectional LSTM layers. The output of these
layers serves as the encoding of our input formulas. As with the CNN based
models, we also considered models where an additional set of fully connected or
projection layers is added.

4.2 Implicit Approach

As previously mentioned the implicit approach does not work with specific logical
properties. We use autoencoders to encode formulas and subsequently retrieve
the original formula from the encoding. As such the encoding has to contain
enough information about the original formula to reconstruct it from the en-
coding. Therefore, this method eliminates one of the major drawbacks of the
previous approach where the encodings are dependent on the selected logical
properties. Figure 7 depicts a high-level overview of this setup.
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Fig. 6. The encoding models we considered with the layers that the input passes
through. The left diagram depicts CNN-based models, while the right one depicts
LSTM-based models. The dashed boxes describe layers that are optional for these
model types.

We want to train the encoder to generate such continuous vector encodings
that can be decoded. For this, we want the possibility to extract top symbol of
a formula, as well as the encodings of all its subformulas. These two qualities
would indeed enforce the encoding having the complete information about the
entire tree-structure of a formula.

To achieve that, we train a top symbol classifier and subtree extractors to-
gether with the encoder. The top symbol classifier is a single layer network that
given the encoding of a tree classifies it by its top symbol. The subtree ex-
tractors are single linear transformations that output an encoding of the i-th
subtree. Both encoders and decoders are trained together end-to-end using un-
labelled data. As with the explicit approach, we are not interested in decoder
networks, and only use them to force the encoder to extract all information from
the input. The data (formulas) is provided in a string form but we require the
ability to parse this data into trees.

Difference training Our first approach is to train the top symbol classifier
using cross-entropy loss and subtree extractor on mean square error loss using a
dataset of all input trees and all their subtrees (Figure 8).

The first loss is forcing the embedding to contain information about the top
symbol, and the second is about the subtrees. In the second loss, we force the
result of extracting a subtree to be equal to the embedding of a subtree itself.
Because of this, we need an encoding of the subtree by itself, and for this, we
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encoder

enc(d)
’ top symbol classifier ‘ ’ 1st subtree extractor ‘ ------- ’ i-th subtree extractor ‘ decoder
classification enc(g,) enc(g,)

Fig. 7. Tree autoencoder mechanism

need the input string of a subtree. In formulae datasets, this is generally easy to
achieve.

This method of training can be viewed as training on two datasets simulta-
neously. One dataset consists of formulas with their top symbol, and the other
consists of formulas with their i-th subformula and the index i. The first dataset
makes sure that the embedding of a formula contains information about its top
symbol, and the second one makes sure that the embedding contains information
about the embedding of all its subformulas. Together, those requirements force
the embedding to contain information about the entire formula, in a form that
is easily extracted with linear transformations.

Theoretically minimizing this loss enforces the ability to reconstruct the tree,
however, given a practical limit on the size of the encoding, reconstruction fails
above a certain tree depth. We do need to restrict the size of the encoding to one
that will be useful for practical theorem proving tasks, like premise selection, etc.
With such reasonable limits, we will later in the paper see that we can recover
formulas of depth up to about 5, which is a very significant part of practical
proof libraries.

Recursive training In this method we only use the cross-entropy loss on top
symbol classification. We compute encodings of subtree recursively (using sub-
tree extractor transformations) and classify their top symbols as well (and so on
recursively). All classification losses from a batch are summed together into one
total loss that is used for back-propagation.

This is similar to tree recursive neural networks [GK96|, like Tree LSTM
[TSM15] except pushing information in the other direction (from root to leaves)
— we reconstruct the tree from embedding and get a loss in every node.
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encoder

encoder encoder

[

enc(¢) enc(g) enc(g,)
‘ top symbol classifier ‘ ‘ i-th sub-tree extractor ‘
cross entropy loss + mean squared error loss

Fig. 8. Difference training mechanism

In this approach, gradient descent can learn to recognize top symbols of
subtrees even deep down the input tree. It is however much harder to properly
parallelize this computation, making it much less efficient.

Encoders As described above the encoding network is independent of the train-
ing setup. That is for both, difference and recursive training different encoding
models can be used. This is similar to the explicit approach where we also con-
sider different encoding networks. Here, in addition to the already considered
CNNs and LSTMs, we will also consider WaveNet and Transformer models
(introduced in Section 2).

All these models receive as input a text string representation of a formula (a
character level learned embedding). As output, they all provide a high-dimensional
vector representation of a formula.

5 Datasets

We will consider two datasets for our training and for the experiments. The
first one is a dataset used to train logical properties, that we believe a formula
embeddings should preserve. The dataset is extracted from TPTP. TPTP is a
database of problems stated in first-order logic. It contains first-order problems
from graph theory, category theory, and set theory among other fields. These
datasets differ in the problems themselves as well as vocabulary that is used
to state said problems. For instance, in the set theory problem set one would
find predicates such as member, subset, and singleton whereas in the category
theory dataset has predicates such as vi_funct_2, and k12_nattra_1. The sec-
ond dataset is the Mizar40 dataset [KU15|, a known premise selection dataset.
The neural network training part of the dataset consists of pairs of theorems
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enc(¢)

1st sub-tree extractor |  ~TTTTTTTTTmmmmmeeeeeees ith sub-tree extractor

top symbol classifier

| top symbol classifier | | 1st sub-tree extractor | —————— | top symbol classifier | ------

T~

top symbol classifier | ------

cross entropy loss + cross entropy loss  +  cross entropy loss + cross entropy loss

Fig. 9. Recursive training mechanism

and premises together with their statements, as well as the information if the
premise was useful in the proof or not. Half are positive examples and half are
negatives.

5.1 Logical properties dataset

We introduce some properties of formulas that we will consider in subsequent
sections and describe how the data was extracted.

Well-formedness: As mentioned above it is important that the encoding net-
works preserve the information of a formula being well-formed. The data set
was created by taking TPTP formulas as positive examples and permutations
of the formulas as negative examples. We generate permutations by randomly
iteratively swapping two characters and checking if the formula is well-formed,
if it is not, we use it as a negative example. This ensures that the difference
between well-formed formulas and non well-formed formulas is not too big.

subformula: Intuitively, the subformula relation maps formulas to a set of for-
mulas that comprise the original formula. Formally, the subformula relation is
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defined as follows:

{o} if ¢ is Atom
sub(y) U {¢} if ¢ is —p
sub(¥1) Usub(¢2) U{¢} if ¢ is ¢1 Ao
sub(¢) — sub(y1) Usub(¢2) U{¢} if ¢ is ¢1 V ¢y
sub(t1) Usub(¢2) U{d} if ¢ is ¢h1 — 12
sub(i1) Usub(¢2) U{d} if ¢ is ¢1 <> 1o
sub(y) U{o} if ¢ is V. ¢
sub(¢) U{o} if ¢ is Jz. Y

Notice, how we never recursively step into the terms. As the name suggests we
only recurse over the logical connectives and quantifiers. Hence, g(z) is not a
subformula of —f(g(x),c) whereas f(g(x),c) is (since “—" is a logical connective
of formulas). Importantly, the subformula property preserves the tree structure
of a formula. Hence, formulas with similar sets of subformulas are related by
this property. Therefore, we believe that recognising this property is important
for obtaining a proper embedding of formulas. In the presented dataset the
original formulas ¢ are taken from the TPTP dataset. Unfortunately, finding
negative examples is not as straightforward, since each formula has infinitely
many formulas that are not subformulas. In our dataset, we only provide the
files as described above (positive examples). To create negative examples during
training, we randomly search for formulas that are not a subformula. Since we
want to have balanced training data we search for as many negative examples
as positive ones.

Modus Ponens: One of the most natural logical inference rules is called modus
ponens. The modus ponens (MP) allows the discharging of implications as shown
in the inference rule (3). In other words, the consequent (right-hand side of impli-
cation) can be proven to be true if the antecedent (left-hand side of implication)
can be proven.

P P-Q 3)
Q

Using this basic inference rule we associate two formulas ¢ and ¥ with each other
if ¢ can be derived from % in few inference steps with modus ponens and conjunc-
tion elimination without unification and matching. It turns out that despite its
simplicity, modus ponens makes for a sound and complete proof calculus for the
(undecidable) fragment of first-order logic known as Horn Formulas [BGG97].

Ezample 1. We can associate the two formulas ¢ := V. ((P(z) — Q(z)) A P(x))
and ¢ := Vz. Q(x) with each other, since ¢ can be proven from ¢ using the modus
ponens inference rule (and some others).

Providing data for this property required more creativity. We had two ap-
proaches: Option one involves generating data directly from the TPTP dataset,
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while the other option comprised synthesising data ourselves with random strings.
In the data set, we provide both alternatives are used. First, we search for all for-
mulas in the TPTP set that contained an implication and added the antecedent
using a conjunction. We paired this formula with the formula containing only the
consequent. We tried to introduce heterogeneity to this data by swapping around
conjuncts and even adding other conjuncts in-between. Secondly, we synthesise
data using randomly generated predicate symbols.

Alpha-Equivalence: Two formulas or terms are alpha equivalent if they are equal
modulo variable renaming. For example, the formulas Vz y. P(z) A Q(z,y) and
Vz y. P(z) A Q(z,y) are alpha equivalent. Alpha equivalence is an important
property for two reasons. First, it implicitly conveys the notion of variables and
their binding. Second, one often works on alpha equivalence classes of formulas,
and hence, alpha equivalent formulas need to be associated with each other.

Term vs Formula: We generally want to be able to distinguish between formulas
and terms. This is a fairly simple property, especially since it can essentially be
read off the BNFs 1 and 2. However, it is still important to distinguish these two
concepts, and a practical embedding should be able to do so.

Unifiability: Unifiability plays an important role in many areas of automated
reasoning such as resolution or narrowing [BN98|. Unifiability is a property that
only concerns terms. Formally, two terms are unifiable if there exists a substi-
tution ¢ such that s-o =~ t- 0. Informally, a substitution is a mapping from
variables to terms and the application of a substitution is simply the replacing
of variables by the corresponding terms. Formally one needs to be careful that
other variables do not become bound by substitutions. Example 2 showcases
these concepts in more detail.

Ezample 2. Substitution and Unifiability: The terms ¢t = f(g(z),y)) and s =
f(z,h(0)) are unifiable, since we can apply the substitution: {z — g¢(z), y —
h(0)} such that t - o = f(g(z), h(0)) = f(g(x), h(0)) = s - 0.

Syntactic unification, which is the type of unification described above is quite
simple and can be realised with a small set of inference rules. Note that we
only consider the relatively simple syntactic unification problem. Interestingly,
adding additional information such as associativity or commutativity can make
unification an extremely complex problem [BN98|. Putting unification into a
higher-order setting makes it even undecidable [Hue02]. Both of these problems
could be considered in future work.

5.2 Mizar40 dataset

Mizar40 dataset [KU15] is extracted from the mathematical library of the Mizar
proof system [BBGT18|. The library covers all major domains of mathematics
and includes a number of proofs from theorem proving. As such, we believe that
it is representative of the capability of the developed encodings to generalize
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to theorem proving. The dataset is structured as follows. Each theorem (goal)
is linked to two sets of theorems. One set, the positive examples, are theorems
useful in proving the original theorem, and one set, the negative examples, is a set
of theorems that were not used in proving the goal. Note that for each theorem
its positive and negative example set are the same size. The negative examples
are selected by a nearest neighbor heuristic®. Using this data we generate pairs
(consisting of a theorem and a premise) and assign them a class based on whether
the premise was useful in proving the theorem.

6 Experiments

Since the explicit approach does not allow for decoding formulas, we separately
evaluate the two approaches. We first discuss the evaluation of the explicit ap-
proach. We first discuss the performance of the different encoding models with
respect to the properties they were trained with as well as separate evaluation,
where we train a simple model with the resulting encodings. Then in Section 6.2
we discuss the evaluation of the implicit approach based on autoencoders. We
discuss the decoding accuracy, performance on logical properties discussed pre-
viously, and the theorem proving task of premise selection.

6.1 Experiments and Evaluation of Explicit Approach

We will present an evaluation of the explicit encoding models. First, we consider
the properties the models have been trained with (cf. Section 2). Here, we have
two different ways of obtaining evaluation and test data. We also want the encod-
ing networks to generalise to, and preserve properties that it has not specifically
been trained on. Therefore, we encode a set of formulas and expressions and
train an SVM (without kernel modifications) with different properties on them.

For the first and more straightforward evaluation, we use the data extracted
dataset from the Graph Theory and Set Theory library described in Section 5.1
as training data. One could split this data before training into a training set and
evaluation set so that the network is evaluated on unseen data. In this approach,
however, constants, formulas, etc. occurring in the evaluation data may have
been seen before in different contexts. For example, considering the Set Theory
library, terms and formulas containing union(X,Y), intersection(X,Y), etc.
will occur in training data and evaluation data. Indeed, in applications such as
premise selection, such similarities and connections are actually desired, which is
one of the reasons we use character level encodings. Nevertheless, we will focus on
more difficult evaluation/test data. We will use data extracted from the Category
Theory library as evaluation data and the Set/Graph Theory data for training.
Hence, training and evaluation sets are significantly different and share almost no
terms, constants, formulas, etc. We train the models on embedding dimensions

5 A more detailed description of the dataset can be found here: https://github. com/
JUrban/deepmath
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32, 64, and 128 (we only consider 64 for projective models). The input length, i.e.
the length of the formulas was fixed to 256, since this includes almost all training
examples. The CNN models had 8 convolution/pooling layer pairs of increasing
filter sizes (1 to 128), while the LSTM models consisted of 3 bidirectional LSTM
layers each of dimension 256. In the “Fully Connected”™models we append two
additional dense layers. Similarly, for the projective models, we append a dense
layer with a lower output dimension.

The evaluation results of the models are shown in Table 1. The multi-label

. |subformula |binary

embedding . modus term vs formula| .. .. |well- alpha
Network . . °|multi-label |subformula . . unifiability .

dimension e . .. . |ponens|classification formedness |equivalence

classification |classification

CNN 32 0.999 0.625 0.495 10.837 0.858 0.528 0.498
CNN 64 0.999 0.635 0.585 |0.87 0.73 0.502 0.55
CNN 128 0.999 0.59 0.488 10.913 0.815 0.465 0.587
CNN with Projection to 32 64 1.0 0.662 0.992 ]0.948 0.81 0.748 0.515
CNN with Projection to 64 64 1.0 0.653 0.985 0.942 0.718 0.85 0.503
CNN with Fully Connected layer 32 0.999 0.64 0.977 10.968 0.78 0.762 0.5
CNN with Fully Connected layer 64 0.999 0.668 0.975 0.973 0.79 0.77 0.548
CNN with Fully Connected layer 128 0.999 0.635 0.923 10.972 0.828 0.803 0.472
CNN with Fully Connected layer Pr to 32 |64 1.0 0.648 0.973 0.922 0.865 0.69 0.487
CNN with Fully Connected layer Pr to 64 |64 1.0 0.662 0.968 10.967 0.898 0.762 0.497
LSTM 32 1.0 0.652 0.488 0.975 0.883 0.538 0.508
LSTM 64 0.999 0.652 049 0.942 086 049 0575
LSTM 128 1.0 0.643 0.473 |0.96 0.885 0.51 0.467
'LSTM Pr to 32 64 1.0 0.69 0.537 |0.863 0.87 0513 0.62
LSTM Pr to 64 64 1.0 0.598 0.535 |0.845 0.902 0.515 0.575
LSTM with Fully Connected layer 32 0.999 0.638 0.485 |0.855 0.902 0.532 0.692
LSTM with Fully Connected layer 64 1.0 0.63 0.491 ]0.882 0.848 0.52 0.833
LSTM with Fully Connected layer 128 1.0 0.635 0.473 0.968 0.887 0.51 0.715
LSTM with Fully Connected layer Pr to 32 64 1.0 0.657 0.495 10.96 0.883 0.505 0.672
LSTM with Fully Connected layer Pr to 64 64 1.0 0.62 0.503 |0.712 0.898 0.492 0.662

Table 1. Accuracies of classifiers working on different encoding/embedding models.
The models were trained on the Graph/Set theory data set and the evaluation was
done on the unseen Category Theory data set. The LSTM based models are in grey.
(Pr = Projection)

subformula classification is not relevant for this evaluation since training and
testing data are significantly different. However, the binary subformula classi-
fication is useful and proves to be a difficult property to learn®. Surprisingly,
adding further fully connected layers seems to have no major effect for this
property regardless of the underlying model. In contrast, the additional dense
layers vastly improve the accuracy of the modus ponens classifier (from 49% to
97% for the simple CNN based model with embedding dimension 32). It does not
make a difference whether these dense layers are projective or not. Interestingly,
every LSTM model even the ones with dense layers fail when classifying this
property. Similar observations although with a smaller difference can be made
with the term-formula distinction. Classifying whether two terms are unifiable
or not seems to be a task where LSTMs perform better. Generally, the results
for unifiability are similarly good across models. When determining whether a
formula is well-formed, CNN based models again outperform LSTMs by a long

5 The binary subformula classification describes the following problem: Given two
formulas, decide if one is a subformula of the other.



20 Purgat, Parsert, Kaliszyk

shot. In addition, a big difference in performance can be seen between CNN
models with additional layers (projective or not) appended. Unsurprisingly al-
pha equivalence is a difficult property to learn especially for CNNs. This is the
only property where LSTMs clearly outperform the CNN models. Thus com-
bining LSTM and CNN layers into a hybrid model might prove beneficial in
future works. In addition, having fully connected layers appears to be necessary
in order to achieve accuracies significantly above 50%.

Generally, varying embedding dimensions does not seem to have a great im-
pact on the performance of a model, regardless of the considered property. As
expected, adding additional fully connected layers has no negative effect. This
leads us to distinguish two types of the properties: Properties where additional
dense layers have a big impact on the results (modus-ponens, well-formedness,
alpha-equivalence), and those where the effect of additional layers is not signif-
icant (unifiability, term-formula, bin. subformula). It does not seem to make a
big difference whether the appended dense layers are projective or not. Even the
embedding models that embed the formulas to an 8™ of the input dimension
perform very well. Another way of classifying the properties is to group proper-
ties where CNNs perform significantly better (modus-ponens, well-formedness),
and conversely where LSTMs are preferable (alpha equivalence).

Alternative Problems and Properties We also want the encodings of formulas to
retain information about the original formulas and properties that the networks
have not specifically been trained on. We want the networks to learn and preserve
unseen structures and relations. We conduct two lightweight tests for this. First,
we train simple models such as SVMs to recognise certain structural properties
such as the existence of certain quantifiers, connectives, etc. (that we did not
specifically train for) in the encodings of formulas. To this end, we train SVMs
to detected logical connectives such as conjunction, disjunction, implication, etc.
These classifications are important since logical connectives were not specifically
used to train the encoding networks but are important nevertheless. Here, the
SVMs correctly predict the presence of conjunctions, etc. with an accuracy of
85%. We also train an ordinary linear regression model to predict the number
of occurring universal and existential quantifiers in the formulas. This regres-
sion correctly predicts the number of quantifiers with an accuracy of 94% (after
rounding to the closest integer). These results were achieved by using the CNN
based model with fully connected layers. We also evaluated the projective mod-
els with this method. We achieved 70% and 84% for classification and regression
respectively using the CNN model with a fully connected and a projection layer.
When using models that were trained using single layer classifiers as discussed
in Section 4.1 we get better results for simple properties such as the presence of
a conjunction.

6.2 Experiments and Evaluation of Implicit Approach

We also evaluate the encoding models based on the autoencoder setup. In our ex-
periments, we first learn from unlabelled data. Hence, we take the entire dataset
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and discard all labels and simply treat them as formulas. Using this dataset we
train encoders and decoders in 100k optimization steps. First we evaluate how
a simple feed-forward network performs when tasked with classifying formulas
based on their embeddings. To this end, we train a feed-forward network to clas-
sify input vectors according to properties given in the dataset (logical properties
or whether the premise is useful in proving the conjecture). Those input vectors
are given by an encoder network whose weights are frozen during this training.
The classifier networks have 6 layers each with size 128 and nonlinear ReLU ac-
tivation functions. Since the classification tasks for some properties require two
formulas, the input of those classifiers is the concatenated encoding of the input
formulas. We split the classification datasets into training, validation and test
sets randomly, in proportions 8-1-1. Every thousand optimization steps we eval-
uate the validation loss (the loss on the validation set) and report test accuracy
from the lowest validation loss point during training.

Hyperparameters All autoencoding models were trained for 100k steps, using
the Adam optimizer [KB14] with learning rate le — 4, 8 = 0.9, 35 = 0.999,¢ =
le — 8. All models work with 128 dimensional sequence token embeddings, and
the dimensionality of the final formula encoding was also 128. All models (except
for LSTM) are comprised of 6 layers. In the convolutional network after every
convolutional layer, we apply maximum pooling of 2 neighbouring cells. In the
Transformer encoder we use 8 attention heads. The autoencoders were trained
for 100k optimization steps and the classifiers for 30k steps. The batch size was
32 for difference training, 16 for recursive training, and 32 for classifier networks.

Difference tr. Recursive tr.

Formula|Symbol|Formula|Symbol
Convolutional| 0.000 | 0.226 | 0.005 | 0.658
WaveNet 0.000 | 0.197 | 0.006 | 0.657
LSTM 0.000 | 0.267 | 0.063 | 0.738
Transformer | 0.000 | 0.290 | 0.006 | 0.691
Convolutional| 0.440 | 0.750 | 0.886 | 0.984
WaveNet 0.420 | 0.729 | 0.865 | 0.981
LSTM 0.451 | 0.759 | 0.875 | 0.979
Transformer | 0.474 | 0.781 | 0.916 | 0.990
Table 2. Decoding accuracy of tested encoders. “Formula” indicates the share of
formulas successfully decoded. “Symbol” is the average amount of correctly decoded
symbols in a formula.

Mizar40 dataset

Logical properties dataset

Decoding accuracy After training the autoencoders (Figure 11) using the
unlabelled datasets we test their accuracy. That is, we determine how well the
decoder can retrieve the original formulas. This is done recursively. First, the for-
mula is encoded, then its top symbol is determined by the top symbol classifier
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Fig. 10. Decoding accuracy of formulas over formula depth in the logical properties
dataset.

and encodings of its subformulae are determined using subtree extractors. Then
top symbols of those subformulae are found and so on. The results are presented
in Table 2. From the table, it is clear that the recursive training outperforms the
difference training regardless of the encoding model or dataset. This result is not
unexpected as the design of the recursive training is more considerate of the sub-
formulas (i.e. subtrees). Hence, a wrong subtree prediction has a larger impact in
the loss of the recursive training than in the difference training. Figure 10 shows
a plot of the decoding accuracy as the depth of the formula increases. Unsur-
prisingly, for very shallow formulas both types of networks perform comparably,
with the difference training accuracy dropping to almost zero as the formulas
reach depths 5. On the other hand, the recursive models can almost perfectly
recover formulas up to depth 5, which was our goal.

Logical properties We also test if the encodings preserve logical properties
presented in Section 5.1. In theory, this information still has to be present in
some shape or form, but we want to test whether a commonly used feed-forward
network can learn to extract them.

The results are shown in Table 3. Comparing the models we notice a surpris-
ing result. Indeed, for some properties, the difference training performs on-par
or even better than recursive training. This stands in contrast to the decoding
accuracy presented previously where the recursive training outperforms the dif-
ference training across the board. This is likely due to the fact that some of the
properties can be decided based only on the small top part of the tree, which
the difference training does learn successfully (see Figure 10).
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Fig. 11. Loss during training. The top two graphs present loss during difference train-
ing, and the bottom two graphs during recursive training. Note a different vertical
scale for the four graphs, this is because the losses for the different training modes and
datasets are hard to compare, however all four converge well.

Premise selection As described before premise selection is an important task
in interactive and automated theorem proving. We test the performance of our
encodings for the task of premise selection on the Mizar40 dataset (described in
Section 5.2). The experiment (as described in Section 6.2) involves first training
the encoder layer to create formula embeddings, then training a feed-forward
network to classify formulas by their usefulness in constructing a proof. The
results are shown in Table 4. Our general decodable embeddings are better than
the non-neural machine learning models, albeit perform slightly worse than the
best classifiers currently in literature (81%) [CAC™ 19| (Which are non-decodable
and single-purpose).

7 Conclusion

We have developed and compared logical formula encodings (embedding) in-
spired by the way human mathematicians work. The formulas are represented
in an approximate way, namely as dense continuous vectors. The representa-
tions additionally allow for the application of reasoning steps as well as the
reconstruction of the original symbolic expression (i.e. formula) that the vector
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Difference tr.|Recursive tr.
Convolutional 0.736 0.870
Subformula WaveNet 0.787 0.877
LSTM 0.755 0.891
Transformer 0.711 0.923
Convolutional 0.920 0.893
WaveNet 0.903 0.866
Modus Ponens LSTM 0.941 0.916
Transformer 0.498 0.946
Convolutional 1.000 0.979
Term vs Formula WaveNet 1.000 0.990
LSTM 1.000 0.995
Transformer 1.000 1.000
Convolutional 0.988 0.975
. . WaveNet 0.991 0.991
Unifiability LSTM 0.990 0.990
Transformer 0.989 0.990
Convolutional 0.969 0.988
WaveNet 1.000 0.992
Well-formedness LSTM 1.000 1.000
Transformer 0.996 0.996
Convolutional 0.998 0.998
Alpha equivalence WaveNet 0.998 1.000
LSTM 0.483 1.000
Transformer 0.990 1.000

Table 3. Logical property classification accuracy on test set.

is supposed to represent. The explicit approach enforces a number of properties
that we would like the embedding to preserve. For example, basic structural prop-
erties (subformula property, etc) can be recovered, natural deduction reasoning
steps can be recognised, or even unifiability between formulas can be checked
(although with less precision) in the embedding. In the second approach, we pro-
pose to autoencode logical formulas. Here, we want the encoding of formulas to
preserve enough information so that the encoded symbolic expression (formula)
can be recovered from the embedding alone. As such sufficient information for
the same logical and structural operations must be present. In addition, this
also allows the actual computation of results of the inference steps or unifiers.
We considered two different training setups for the autoencoders. One is called

‘ Difference tr. ‘ Recursive tr.

Convolutional 0.681 0.696
‘WaveNet 0.676 0.696
LSTM 0.665 0.703
Transformer 0.670 0.704

Table 4. Premise selection accuracy on test set.
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difference training and the other recursive training. In order to train and to eval-
uate the approaches, we developed several logical property datasets transformed
from subsets of the TPTP problem set.

Apart from an evaluation on the TPTP dataset, we also evaluated the ap-
proaches on premise selection problems originating from the whole Mizar Math-
ematical Library. As expected, both difference and recursive training are less
performant on the Mizar 40 dataset than on the logical properties dataset. We
know of two reasons for this. First, the Mizar dataset is much bigger, both when
it comes to the number of constants, types, but also the number of formulas and
their average sizes. As such, fitting all the formulas in vectors of the same size is
going to be less precise. Second, the formulas in the Mizar dataset are more uni-
formly distributed. As we use models with the same numbers and sizes of layers,
memorizing parts of the Mizar dataset is clearly a more complex task. Despite
these problems, the results are promising for both the formula reconstruction
task and the original theorem proving tasks like premise selection.

The code of our embedding, the dataset, and the experiments are available
at:

http://cl-informatik.uibk.ac.at/users/cek/logcom2020/

Future work could include considering further logical models and their vari-
ants. We have so far focused on first-order logic, however it is possible to do the
same for simple type theory or even more complex variants of type theory. This
would allow us to do the premise selection analysis presented in this work for
the libraries of more proof assistants. Finally, the newly developed capability to
decode an embedding of a first-order formula could also be a useful technique to
consider for conjecturing [GKU16] or proof theory exploration [CJRS13]. Finally,
we imagine that then a reversible encoding of logical formulas could improve the
proof guidance of first-order logic theorem provers.
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