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Abstract. Lash is a higher-order automated theorem prover created as
a fork of the theorem prover Satallax. The basic underlying calculus of
Satallax is a ground tableau calculus whose rules only use shallow infor-
mation about the terms and formulas taking part in the rule. Lash uses
new, efficient C representations of vital structures and operations. Most
importantly, Lash uses a C representation of (normal) terms with per-
fect sharing along with a C implementation of normalizing substitutions.
We describe the ways in which Lash differs from Satallax and the perfor-
mance improvement of Lash over Satallax when used with analogous flag
settings. With a 10s timeout Lash outperforms Satallax on a collection
TH0 problems from the TPTP. We conclude with ideas for continuing
the development of Lash.
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1 Introduction

Satallax [4,7] is an automated theorem prover for higher-order logic that was a
top competitor in the THF division of CASC [10] for most of the 2010s. The
basic calculus of Satallax is a complete ground tableau calculus [5,6,2]. In recent
years the top systems of the THF division of CASC are primarily based on reso-
lution and superposition [11,3,8]. At the moment it is an open question whether
there is a research and development path via which a tableau based prover could
again become competitive. As a first step towards answering this question we
have created a fork of Satallax, called Lash, focused on giving efficient C im-
plementations of data structures and operations needed for search in the basic
calculus.

Satallax was partly competitive due to (optional) additions that went beyond
the basic calculus. Three of the most successful additions were the use of higher-
order pattern clauses during search, the use of higher-order unification as a
heuristic to suggest instantiations at function types and the use of the first-
order theorem prover E as a backend to try to prove the first-order part of the
current state is already unsatisfiable. Satallax includes flags that can be used to
activate or deactivate such additions so that search only uses the basic calculus.
They are deactivated by default. Satallax has three representations of terms in
Ocaml. The basic calculus rules use the primary representation. Higher-order
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unification and pattern clauses make use of a representation that includes a
case for metavariables to be instantiated. Communication with E uses a third
representation restricted to first-order terms and formulas. When only the basic
calculus is used, only the primary representation is needed.

Assuming only the basic calculus is used only limited information about
(normal) terms is needed during the search. Typically we only need to know the
outer structure of the principal formulas of each rule, and so the full term does
not need to be traversed. In some cases Satallax either implicitly or explicitly
traverses the term. The implicit cases are when a rule needs to know if two
terms are equal. In Satallax, Ocaml’s equality is used to test for equality of
terms, implicitly relying on a recursion over the term. The explicit cases are
quantifier rules that instantiate with either a term or a fresh constant. In the
former case we may also need to normalize the result after instantiating with a
term.

In order to give an optimized implementation of the basic calculus we have
created a new theorem prover, Lash3, by forking a recent version of Satallax
(Satallax 3.4), the last version that won the THF division of CASC (in 2019).
Generally speaking, we have removed all the additional code that goes beyond
the basic calculus. In particular we do not need terms with metavariables since we
support neither pattern clauses nor higher-order unification in Lash. Likewise we
do not need a special representation for first-order terms and formulas since Lash
does not communicate with E. We have added efficient C implementations of
(normal) terms with perfect sharing. Additionally we have added new efficient C
implementations of priority queues and the association of formulas with integers
(to communicate with MiniSat). To measure the speedup given by the new parts
of the implementation we have run Satallax 3.4 using flag settings that only
use the basic calculus and Lash 1.0 using the same flag settings. We have also
compared Lash to Satallax 3.4 using Satallax’s default strategy with a timeout of
10s, and have found that Lash 1.0 outperforms Satallax with this short timeout
even when Satallax is using the optional additions (including calling E). We
describe the changes and present a number of examples for which the changes
lead to a significant speedup.

2 Preliminaries

We will presume a familiarity with simple type theory and only give a quick
description to make our use of notation clear, largely following [6]. We assume a
set of base types, one of which is the type o of propositions (also called booleans),
and the rest we refer to as sorts. We use α, β to range over sorts and σ, τ to range
over types. The only types other than base types are function types στ , which
can be thought of as the type of functions from σ to τ .

All terms have a unique type and are inductively defined as (typed) variables,
(typed) constants, well-typed applications (t s) and λ-abstractions (λx.t). We
3 Lash 1.0 along with accompanying material is available at http://grid01.ciirc.
cvut.cz/~chad/ijcar2022lash/.

http://grid01.ciirc.cvut.cz/~chad/ijcar2022lash/
http://grid01.ciirc.cvut.cz/~chad/ijcar2022lash/
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also include the logical constant ⊥ as a term of type o, terms (of type o) of the
form (s ⇒ t) (implications) and (∀x.t) (universal quantifiers) where s, t have
type o and terms (of type o) of the form (s =σ t) where s, t have a common
type σ. We also include choice constants εσ of (σo)σ at each type σ. We write
¬t for t⇒ ⊥ and (s 6=σ t) for (s =σ t⇒ ⊥). We omit type parentheses and type
annotations except where they are needed for clarity. Terms of type o are also
called propositions. We also use >, ∨,∧,∃ with the understanding that these are
notations for equivalent propositions in the set of terms above.

We assume terms are equal if they are the same up to α-conversion of bound
variables (using de Bruijn indices in the implementation). We write [s] for the
βη-normal form of s.

The tableau calculi of [6] (without choice) and [2] (with choice) define when
a branch is refutable. A branch is a finite set of normal propositions. We let A
range over branches and write A, s for the branch A∪{s}. We will not give a full
calculus, but will instead discuss a few of the rules with surprising properties.
Before doing so we emphasize rules that are not in the calculus. There is no
cut rule stating that if A, s and A,¬s are refutable, then A is refutable. (During
search such a rule would require synthesizing the cut formula s.) There is also no
rule stating that if the branch A, (s = t), [ps], [pt] is refutable, then A, (s = t), [ps]
is refutable (where s, t have type σ and p is a term of type σo). That is, there is
no rule for rewriting into arbitrarily deep positions using equations.

All the tableau rules only need to examine the outer structure to test if they
apply (when searching backwards for a refutation). When applying the rule,
new formulas are constructed and added to the branch (or potentially multiple
branches, each a subgoal to be refuted). An example is the confrontation rule,
the only rule involving positive equations. The confrontation rule states that if
s =α t and u 6=α v are on a branch A (where α is a sort), then we can refute
A by refuting A, s 6= u, t 6= u and A, s 6= v, t 6= v. A similar rule is the mating
rule, which states that if ps1 . . . sn and ¬pt1 . . . tn are on a branch A (where
p is a constant of type σ1 · · ·σno), then we can refute A by refuting each of
the branches A, si 6= ti for each i ∈ {1, . . . , n}. The mating rule demonstrates
how disequations can appear on a branch even if the original branch to refute
contained no reference to equality at all. One way a branch can be closed is if
s 6= s is on the branch. In an implementation, this means an equality check is
done for s and t whenever a disequation s 6= t is added to the branch. In Satallax
this requires Ocaml to traverse the terms. In Lash this only requires comparing
the unique integer ids the implementation assigns to the terms.

The disequations generated on a branch play an important role. Terms (of
sort α) occuring on one side of a disequation on a branch are called discrimi-
nating terms. The rule for instantiating a quantified formula ∀x.t (where x has
sort α) is restricted to instantiating with discriminating terms (or a default term
if no terms of sort α are discriminating). During search in Satallax this means
there is a finite set of permitted instantiations (at sort α) and this set grows as
disequations are produced. Note that, unlike most automated theorem provers,
the instantiations do not arise from unification. In Satallax (and Lash) when
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∀x.t is being processed it is instantiated with all previously processed instanti-
ations. When a new instantiation is produced, previously processed universally
quantified propositions are instantiated with it. When ∀x.t is instantiated with
s, then [(λx.t)s] is added to the branch. Such an instantiation is the important
case where the new formula involves term traversals: both for substitution and
normalization. In Satallax the substitution and normalization require multiple
term traversals. In Lash we have used normalizing substitutions and memorized
previous computations, minimizing the number of term traversals. The need
to instantiate arises when processing either a universally quantified proposition
(giving a new quantifier to instantiate) or a disequation at a sort (giving new
discriminating terms).

We discuss a small example both Satallax and Lash can easily prove. We
briefly describe what both do in order to give the flavor of the procedure and
(hopefully) prevent readers from assuming the provers behave too similarly from
readers based on other calculi (e.g., resolution).

Example SEV241^5 from TPTP v7.5.0 [9] (X5201A from Tps [1]) contains a
minor amount of features going beyond first-order logic. The statement to prove
is

∀x.U x ∧W x⇒ ∀S.(S = U ∨ S =W )⇒ Sx.

Here U and W are constants of type αo, x is a variable of type α and S is a
variable of type αo. The higher-order aspects of this problem are the quantifier
for S (though this could be circumvented by making S a constant like U andW )
and the equations between predicates (though these could be circumvented by
replacing S = U by ∀y.Sy ⇔ Uy and replacing S = W similarly). The tableau
rules effectively do both during search.

Satallax never clausifies. The formula above is negated and assumed. We will
informally describe tableau rules as splitting the problem into subgoals, though
this is technically mediated through MiniSat (where the set of MiniSat clauses
is unsatisfiable when all branches are closed). Tableau rules are applied until
the problem involves a constant c (for x), a constant S′ for S and assumptions
U c, W c, S′ = U ∨ S′ = W and ¬S′c on the branch. The disjunction is
internally S′ 6= U ⇒ S′ = W and the implication rule splits the problem into
two branches, one with S′ = U and one with S′ =W . Both branches are solved
in analogous ways and we only describe the S′ = U branch. Since S′ = U is an
equation at function type, the relevant rule adds ∀y.S′y = Uy to the branch.
Since there are no disequations on the branch, there is no instantiation available
for ∀y.S′y = Uy. In such a case, a default instantiation is created and used. That
is, a default constant d (of sort α) is generated and we instantiate with this d,
giving S′d =o Ud. The rule for equations at type o splits into two subgoals: one
branch with S′d and Ud and another with ¬S′d and ¬Ud. On the first branch
we mate S′d with ¬S′c adding the disequation d 6= c to the branch. This makes c
available as an instantiation for ∀y.S′y = Uy. After instantiating with c the rest
of the subcase is straightforward. In the other subgoal we mate U c with ¬Ud
giving the disequation c 6= d. Again, c becomes available as an instantiation and
the rest of the subcase is straightforward.
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3 Terms with Perfect Sharing

Lash represents normal terms as C structures, with a unique integer id assigned
to each term. The structure contains a tag indicating which kind of term is
represented, a number that is used to either indicate the de Bruijn index (for
a variable), the name (for a constant), or the type (for a λ-abstraction, a uni-
versal quantifier, a choice operator, or an equation). Two pointers (optionally)
point to relevant subterms in each case. In addition the structure maintains
the information of which de Bruijn indices are free in the term (with de Bruijn
indices limited to a maximum of 255). Knowing the free de Bruijn indices of
terms makes recognizing potential η-redexes possible without traversing the λ-
abstraction. Likewise it is possible to determine when shifting and substitution
of de Bruijn indices would not affect a term, avoiding the need to traverse the
term.

In Ocaml only the unique integer id is directly revealed and this is sufficient
to test for equality of terms. Hash tables are used to uniquely assign types
to integers and strings (for names) to integers and these integers are used to
interface with the C code. Various functions are used in the Ocaml-C interface to
request the construction of (normal) terms. For example, given the two Ocaml
integer ids i and j corresponding to terms s and t, the function mk_norm_ap
given i and j will return an integer k corresponding to the normal term [s t].
The C implementation recognizes if s is a λ-abstraction and performs all βη-
reductions to obtain a normal term. Additionally, the C implementation treats
terms as graphs with perfect sharing, and additionally caches previous operations
(including substitutions and de Bruijn shifting) to prevent recomputation.

In addition to the low-level C term reimplementation, we have also provided a
number of other low-level functionalities replacing the slower parts of the Ocaml
code. This includes low-level priority queues, as well as C code used to associate
the integers representing normal propositions with integers that are used to
communicate with MiniSat. The MiniSat integers are nonzero and satisfy the
property that minus on integers corresponds to negation of propositions.

4 Results and Examples

The first mode in the default schedule for Satallax 3.1 is mode213. This mode
activates one feature that goes beyond the basic calculus: pattern clauses. Ad-
ditionally the mode sets a flag that tries to split the initial goal into several
independent subgoals before beginning the search proper. Through experimen-
tation we have found that setting a flag (common to both Satallax and Lash) to
essentially prevent MiniSat from searching (i.e., only using MiniSat to recognize
contradictions that are evident without search) often improves the performance.
We have created a modified mode mode213d that deactivates these additions
(and delays the use of MiniSat) so that Satallax and Lash will have a similar
(and often the same) search space. (Sometimes the search spaces differ due to
differences in the way Satallax and Lash enumerate instantiations for function
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Table 1. Lash vs. Satallax on 2053 TH0 Problems.

Prover Problems Solved

Lash 1501 (73%)
Satallax (with E) 1487 (72%)
Satallax (without E) 1445 (70%)
Satallax (Lash Schedule) 1412 (69%)

types, an issue we will not focus on here.) We have also run Lash with many
variants of Satallax modes with similar modifications. From such test runs we
have created a 10 second schedule consisting of 5 modes.

To give a general comparison of Satallax and Lash we have run both on 2053
TH0 problems from a recent release of the TPTP [9] (7.5.0). We initially selected
all problems with TPTP status of Theorem or Unsatisfiable (so they should be
provable in principle) without polymorphism (or similar extensions of TH0). We
additionally removed a few problems that could not be parsed by Satallax 3.4
and removed a few hundred problems big enough to activate SINE in Satallax
3.4.

We ran Lash for 10 seconds with its default schedule over this problem set.
For comparison, we have run Satallax 3.4 for 10s in three different ways: using
the Lash schedule (since the flag settings make sense for both systems) and
using Satallax 3.4’s default schedule both with and without access to E [12].
The results are reported in Table 1. It is already promising that Lash has the
ability to slightly outperform Satallax even when Satallax is allowed to call E.

To get a clearer view of the improvement we discuss a few specific examples.
TPTP problem NUM638^1 (part of Theorem 3 from the Automath formal-

ization of Landau’s book) is about the natural numbers (starting from 1). The
problem assumes a successor function s is injective and that every number other
than 1 has a predecessor. An abstract notion of existence is used by having
a constant some of type (ιo)o about which no extra assumptions are made,
so the assumption is formally ∀x.x 6= 1 ⇒ some(λu.x = su). For a fixed n,
n 6= 1 is assumed and the conjecture to prove is the negation of the implication
(∀xy.n = sx ⇒ n = sy ⇒ x = y) ⇒ ¬(some(λu.n = su)). The implication is
assumed and the search must rule out the negation of the antecedent (i.e., that
n has two predecessors) and the succedent (that n has no predecessor). Satallax
and Lash both take 3911 steps to prove this example. With mode213d, Lash
completes the search in 0.4s while Satallax requires almost 29s.

TPTP problem SEV108^5 (SIX_THEOREM from Tps [1]) corresponds to prov-
ing the Ramsey number R(3,3) is at most 6. The problem assumes there is a
symmetric binary relation R (the edge relation of a graph with the sort as ver-
tices) and there are (at least) 6 distinct elements. The conclusion is that there
are either 3 distinct elements all of which are R-related or 3 distinct elements
none of which are R-related. Satallax and Lash can solve the problem in 14129
steps with mode mode213d. Satallax proves the theorem in 0.153 seconds while
Lash proves the theorem in the same number of steps but in 0.046 seconds.
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The difference is more impressive if we consider the modified problem of
proving R(3,4) is at most 9. That is, we assume there are (at least) 9 distinct
elements and modify the second disjunct of the conclusion to be that there are
4 distinct elements none of which are R-related. Satallax and Lash both use
186127 steps to find the proof. For Satallax this takes 44s while for Lash this
takes 5.5s.

The TPTP problem SYO506^1 is about an if-then-else operator. The problem
has a constant c of type oιιι. Instead of giving axioms indicating c behaves as
an if-then-else operator, the conjecture is given as a disjunction:

(∀xy.c (x = y) x y = y) ∨ ¬(∀xy.c > x y = x) ∨ ¬(∀xy.c ⊥ x y = y).

After negating the conjecture and applying the first few tableau rules the branch
will contain the propositions ∀xy.c > x y = x, ∀xy.c ⊥ x y = y and the
disequation c (d = e) d e 6= e for fresh d and e of type ι. In principle the rules
for if-then-else given in [2] could be used to solve the problem without using
the universally quantified formulas (other than to justify that c is an if-then-
else operator). However, these are not implemented in Satallax or Lash. Instead
search proceeds as usual via the basic underlying procedure. Both Satallax and
Lash can prove the example using modes mode0c1 in 32704 steps. Satallax
performs the search in 9.8 seconds while Lash completes the search in 0.2 seconds.

In addition to the examples considered above, we have constructed a family of
examples intended to demonstrate the power of the shared term representation
and caching of operations. Let cons have type ιιι and nil have type ι. For each
natural number n, consider the proposition Cn given by

n (λx.cons x x) (cons nil nil) = cons (n (λx.cons x x) nil) (n (λx.cons x x) nil)

where n is the appropriately typed Church numeral. Proving the proposition
Cn does not require any search and merely requires the prover to normalize
the conjecture and note the two sides have the same normal form. However,
this normal form on both sides will be a complete binary tree of depth n + 1.
We have run Lash and Satallax on Cn with n ∈ {20, 21, 22, 23, 24} using mode
mode213d. Lash solves all five problems in the same amount of time, less than
0.02 seconds for each. Satallax takes 4 seconds, 8 seconds, 16 seconds, 32 seconds
and 64 seconds. As expected, since Satallax is not using a shared representation,
the computation time exponentially increases with respect to n.

5 Conclusion and Future Work

We have used Lash as a vehicle to demonstrate that giving a more efficient imple-
mentation of the underlying tableau calculus of Satallax can lead to significant
performance improvements. An obvious possible extension of Lash would be to
implement pattern clauses, higher-order unification and the ability to call E.
While we may do this, our current plans are to focus on directions that further
diverge from the development path followed by Satallax.
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Interesting theoretical work would be to modify the underlying calculus
(while maintaining completeness). For example the rules of the calculus might
be able to be further restricted based on orderings of ground terms. On the other
hand, new rules might be added to support a variety of constants with special
properties. This was already done for constants that satisfy axioms indicating
the constant is a choice, description or if-then-else operator [2]. Suppose a con-
stant r of type ιιo is known to be reflexive due to a formula ∀x.r x x being
on the branch. One could avoid ever instantiating this universally quantified
formula by simply including a tableau rule that extends a branch with s 6= t
whenever ¬r s t is on the branch. Similar rules could operationalize other spe-
cial cases of universally quantified formulas, e.g., formulas giving symmetry or
transitivity of a relation. A modification of the usual completeness proof would
be required to prove completeness of the calculus with these additional rules
(and with the restriction disallowing instantiating the corresponding universally
quantified formulas).

Finally the C representation of terms could be extended to include precom-
puted special features. Just as the current implementation knows which de Brui-
jns are free in the term (without traversing the term), a future implementation
could know other features of the term without requiring traversal. Such features
could be used to guide the search.
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