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Abstract
Unlike other methods for theorem proving modulo with constrained

clauses [12, 13], equational theorem proving modulo with constrained
clauses along with its simplification techniques has not been well stud-
ied. We introduce a basic paramodulation calculus modulo equational
theories E satisfying certain properties of E and present a new frame-
work for equational theorem proving modulo E with constrained clauses.
We propose an inference rule called Generalized E-Parallel for constrained
clauses, which makes our inference system completely basic, meaning that
we do not need to allow any paramodulation in the constraint part of a
constrained clause for refutational completeness. We present a saturation
procedure for constrained clauses based on relative reducibility and show
that our inference system including our contraction rules is refutationally
complete.

1 Introduction
Equations occur frequently in many areas of mathematics, logics, and computer
science. Equational theorem proving [6,8,18,21] is, in general, concerned with
proving mathematical or logical statements in first-order clause logic with equal-
ity. While resolution [23] has been successful for theorem proving for first-order
clause logic without equality, it has some limitations to deal with the equality
predicate. For example, when dealing with the equality predicate using reso-
lution, one must add the congruence axioms explicitly for each predicate and
function symbol in order to express the properties of equality [8, 21].

Paramodulation [22] is based on the replacement of equals by equals, in or-
der to improve the efficiency of resolution in equational theorem proving. How-
ever, paramodulation, in general, often produces a large amount of unnecessary
clauses, so the search space for a refutation expands very rapidly. Therefore,
various improvements have been developed for paramodulation. For example,
it was shown that the functional reflexivity equations used by the traditional
paramodulation rule [22] are not needed, and paramodulation into variables
does not need to be allowed (see [8]).
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Basic paramodulation [9,19] restricts paramodulation by forbidding paramod-
ulation at (sub)terms introduced by substitutions from previous inference steps,
and uses orderings on terms and literals in order to further restrict paramod-
ulation inferences. In [20, 25], basic paramodulation had been extended to
basic paramodulation modulo associativity and commutativity (AC) axioms.
(See [24] also for basic paramodulation modulo the associativity (A) axiom.)
Basic paramodulation modulo AC uses the symbolic constraints, overcoming
a drawback of traditional paramodulation modulo AC (see [7, 26]) that often
generates many slightly different permuted variants of clauses. For example,
more than a million conclusions can possibly be generated by paramodulating
the equation x+ x+ x = x into the clause P (y1 + y2 + y3 + y4) for which + is
an AC symbol, since a minimal complete set of AC-unifiers for x + x + x and
y1 +y2 +y3 +y4 contains more than a million AC-unifiers [20,25]. On the other
hand, one only needs a single conclusion P (x) ||x+x+x ≈?

AC y1 + y2 + y3 + y4
for the above inference using basic paramodulation modulo AC with an equality
constraint.

In this paper, we present a new basic paramodulation calculus modulo equa-
tional theories E (including E = AC) parameterized by a suitable E-compatible
ordering �. Our main inference rule for basic paramodulation modulo E is given
(roughly) as follows:

C ∨ s ≈ t || φ1 D ∨ L[s′] || φ2

C ∨D ∨ L[t] || s ≈?
E s′ ∧ φ1 ∧ φ2

The equality constraints are inherited and the accumulated E-unification prob-
lems are kept in the constraint part of conclusion. Instead of generating as
many conclusions as minimal and complete E-unifiers of two terms s and s′,
a single conclusion is generated with its constraint keeping the E-unification
problem of s and s′. Another key inference rule in our basic paramodulation
calculus modulo E is the Generalized E-Parallel (or E-Parallel) rule, adapted
from our recent work on basic narrowing modulo [17]. This rule allows our basic
paramodulation calculus to adapt the free case (i.e. E = ∅) to the modulo E
case (i.e. E 6= ∅).1 For example, suppose that we have three clauses 1 : a+b ≈ c,
2 : a+(b+x) ≈ c+x, and 3 : (a+a)+(b+ b) 6≈ c+ c, where + is an AC symbol
with + � a � b � c. We use the E-Parallel rule from clause 1 and 2 and obtain
the clause 4 : a+ (b+ (a+ b)) ≈ c+ c, which derives a contradiction with clause
3 because a+ (b+ (a+ b)) ≈AC (a+ a) + (b+ b) (i.e. the equality constraint is
satisfiable). The details of this inference rule are discussed in Section 4.

Throughout this paper, we assume that (i) we are given an E-compatible
reduction ordering � on terms with the subterm property that is E-total on
ground terms, (ii) E has a finitary and complete unification algorithm, and (iii)
E-congruence classes are finite. (If E satisfies condition (i), then E is neces-
sarily regular [2].) With these assumptions of E, we can deal uniformly with
different equational theories E in our framework and show that our inference

1If E = ∅, then we may disregard the Generalized E-Parallel (or E-Parallel) rule along
with the E-Completion rule and replace E-unification with syntactic unification.
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system including our contraction rules is refutationally complete.
The known practical theories satisfying the above assumptions of E are AC

and finite permutation theories [1, 16]. (For example, if one considers an ACI
symbol + using our approach, then AC should be a modulo E part and the
idempotency axiom (I :x + x ≈ x) should be a part of the input formulas.)
Although associative (A)-unification is infinitary, our approach is also applica-
ble to the case where E = A in practice, since there is a tool for A-unification
which is guaranteed to terminate with a finite and complete set of A-unifiers for
a significantly large class of A-unification problems (see [14]).

2 Preliminaries
We assume that the reader has some familiarity with rewrite systems [3] (in-
cluding the extended rewrite system for R modulo E (i.e. R,E) [11, 15]) and
unification [4]. We use the standard terminology of paramodulation [6, 9, 21].

We denote by T (F ,X ) the set of terms over a finite set of function sym-
bols F and a denumerable set of variables X . An equation is an expression
s ≈ t, where s and t are (first-order) terms built from T (F ,X ). A literal is
either an equation L (a positive literal) or a negative equation ¬L (a negative
literal). A clause is a finite multiset of literals, written as a disjunction of lit-
erals ¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn or as an implication Γ → ∆, where the
multiset Γ is called the antecedent and the multiset ∆ is called the succedent of
the clause.

An equational theory is a set of equations. (In this paper, an equational the-
ory and a set of axioms are used interchangeably.) We denote by ≈E the least
congruence on T (F ,X ) that is closed under substitutions and contains a set of
equations E. If s ≈E t for two terms s and t, then s and t are E-equivalent.

A (strict) ordering � on terms is monotonic if s � t implies u[s]p � u[t]p for
all s, t, u and positions p. An ordering � on terms is stable under substitutions
if s � t implies sσ � tσ for all s, t, and substitutions σ. An ordering � on
terms is a rewrite ordering if it is monotonic and stable under substitutions. A
well-founded rewrite ordering is a reduction ordering. An ordering � on terms
has the subterm property if t[s]p � s for all s, t, and p 6= λ. (In this paper, λ
denotes the top position.) A simplification ordering is a rewrite ordering with
the subterm property. An ordering � on terms is E-compatible if s � t, s ≈E s′,
and t ≈E t′ implies s′ � t′ for all s, s′, t and t′. An ordering � on ground terms
is E-total if s 6≈E t implies s � t or t � s for all ground terms s and t.

Given a multiset S and an E-compatible ordering � on S, we say that x is
maximal (resp. strictly maximal) in S if there is no y ∈ S (resp. y ∈ S \ {x})
with y � x (resp. y � x).

Clauses may also be considered as multisets of occurrences of equations. An
occurrence of an equation s ≈ t in the antecedent of a clause is the multiset
{{s, t}}, and in the succedent it is the multiset {{s}, {t}}. We denote ambigu-
ously all those orderings on terms, equations and clauses by �.

An equational theory is permutative if each equation in the theory contains
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the same symbols on both sides with the same number of occurrences. The
depth of a term t is defined as depth(t) = 0 if t is a variable or a constant and
depth(f(s1, . . . , sn)) = 1 + max{depth(si) | 1 ≤ i ≤ n}. We say that an equa-
tional theory has maximum depth at most k if the maximum depth of all terms
in the equations in the theory is less than or equal to k.

A (Herbrand) interpretation I is a congruence on ground terms. I satisfies
(is a model of) a ground clause Γ → ∆, denoted by I |= Γ → ∆, if I 6⊇ Γ or
I ∩ ∆ 6= ∅. In this case, we say that Γ → ∆ is true in I. A ground clause
C follows from a set of ground clauses {C1, . . . , Ck} |= C if C is true in every
model of {C1, . . . , Ck}.

3 Constrained clauses
Definition 1. (Constrained clauses) [21, 25] A constrained clause is a pair
C ||φ, where C is a clause and φ is an equality constraint consisting of a con-
junction of the form s ≈?

E t for terms s and t. The set of solutions of a constraint
φ, denoted by Sol(φ), is the set of the ground substitutions defined inductively
as:

Sol(φ1 ∧ φ2) = Sol(φ1) ∩ Sol(φ2),
Sol(s ≈?

E t) = {σ | sσ and tσ are E-equivalent},

A constraint φ is satisfiable if it admits at least one solution.

A constrained clause with an unsatisfiable constraint is a tautology. If every
ground substitution with domain V ars(φ) of C ||φ is a solution of φ, then φ is
a tautological constraint. An unconstrained clause can also be considered as a
constrained clause with a tautological constraint.

The main technical difficulties in lifting a reduced ground inference to an
inference at the clause level in a basic paramodulation inference system involve
a ground clause of the form Cσ := Dσ ∨ xσ ≈ tσ with C := D ∨ x ≈ t ||φ
and σ ∈ Sol(φ), where xσ ⇒ tσ ∈ R for a given ground rewrite system R.
This motivates the following definition of irreducibility to lift a reduced ground
inference to an inference at the clause level in our inference system. (See [9]
also for order-irreducibility in the free case.)

Definition 2. (Order-irreducibility) Given a ground rewrite system R and an
equational theory E, a ground literal L[l′]p is order-reducible (at position p)
by R,E with l ⇒ r ∈ R if l′ ≈E l, l � r and L � l ≈ r. A literal L[s] is
order-irreducible in s by R,E if L[s] is not order-reducible at any position of s.

In Definition 2, the condition L � l ≈ r is always true when L is a negative
literal or else l′ does not occur at the top (i.e. p = λ) of the largest term of L.

Definition 3. (Reduced ground instances) Given a ground rewrite system R
and an equational theory E, Cσ is a ground instance of C ||φ if σ is a solution
of φ (i.e. σ ∈ Sol(φ)). It is a reduced ground instance of C ||φ w.r.t. R,E if σ
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is a solution of φ and each ground literal L[xσ] in Cσ is order-irreducible in xσ
by R,E for each variable x ∈ V ars(C). In this case, σ is a reduced solution of
C ||φ w.r.t. R,E.

Definition 4. (A model of a constrained clause) An interpretation I satisfies
(is a model of) a constrained clause C ||φ, denoted by I |= C ||φ, if it satisfies
every ground instance of C ||φ (i.e. every Cσ for which σ is a solution of φ).

Definition 5. (Reductiveness, weak reductiveness, semi-reductiveness, and
weak maximality) An equation s ≈ t is reductive (resp. weakly reductive)
for C ||φ := D ∨ s ≈ t ||φ if there exists a ground instance Cσ such that
sσ ≈ tσ is strictly maximal (resp. maximal) in Cσ with sσ � tσ. The clause
C ||φ is simply called reductive if there exists a reductive equation s ≈ t for
C ||φ. A negative equation u 6≈ v is semi-reductive (resp. weakly reductive) for
C ||φ := D ∨ u 6≈ v ||φ if there exists a ground instance Cσ such that uσ � vσ
(resp. uσ � vσ and uσ 6≈ vσ is maximal in Cσ). A literal L is weakly maximal
for C ||φ := D ∨ L ||φ if there exists a ground instance Cσ such that Lσ is
maximal in Cσ.

4 Inference rules
The inference rules in our inference system are parameterized by a selection
function S and an E-compatible reduction ordering� with the subterm property
that is E-total on ground terms, where S selects at most one (occurrence of a)
negative literal in the clause part C of each (constrained) clause C ||φ. For
technical convenience, if a literal L is selected in C, then we also say that L is
selected in C ||φ. In our inference rules, a literal in a clause C ||φ is involved in
some inference if it is selected in C (by S) or nothing is selected and it is maximal
in C (cf. [8]). The following Basic Paramodulation rule is our main inference
rule for equational theorem proving modulo E, where only the maximal sides of
literals in clauses are involved in inferences by this rule. We rename variables
in the premises in our inference rules if necessary so that no variable is shared
between premises (i.e. standardized apart).

Basic Paramodulation

C ∨ s ≈ t || φ1 D ∨ L[s′] || φ2 if
C ∨D ∨ L[t] || s ≈?

E s′ ∧ φ1 ∧ φ2

1. s′ is not a variable,
2. s ≈ t is reductive for the left premise, and C contains no selected literal,
3. either one of the following three conditions is met:

(a) L is selected in the right premise, and
L is of the form u[s′] 6≈ v and is semi-reductive for the right premise.

(b) nothing is selected in the right premise, and
L is of the form u[s′] ≈ v and is reductive for the right premise.
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(c) nothing is selected in the right premise, and
L is of the form u[s′] 6≈ v and is weakly reductive for the right premise.

Equality Resolution

C ∨ s 6≈ t ||φ
if

C || s ≈?
E t ∧ φ

s 6≈ t is selected, or else nothing is selected and s 6≈ t is weakly maximal for the
premise.

E-Factoring

C ∨ s ≈ t ∨ s′ ≈ t′ ||φ
if

C ∨ t 6≈ t′ ∨ s′ ≈ t′ || s ≈?
E s′ ∧ φ

s ≈ t is weakly reductive for the premise, and C contains no selected literal.

E-Completion

C ∨ s ≈ t || φ
if

C ∨ e1[t]p ≈ e2 || s ≈?
E s′ ∧ φ

1. e1[s′]p ≈ e2 ∈ E and p 6= λ, where s′ is not a variable,
2. s ≈ t is reductive for the premise, and C contains no selected literal.

The above E-Completion rule is an adaptation of the E-closure [26] rule
using equality constraints (cf. E-extension [5]).

E-Parallel

C ∨ s ≈ t ||φ1 D ∨ l ≈ r ||φ2 if
C ∨Dσ ∨ lσ ≈ rθ || φ1 ∧ φ2

1. s ≈ t is reductive for the left premise, and C contains no selected literal,
2. l ≈ r is reductive for the right premise, and D contains no selected literal,
3. both l and s are not variables,
4. σ= {x 7→ s} and θ= {x 7→ t} for some variable x ∈ V ars(l) ∩ V ars(r)

with x /∈ V ars(φ2),
5. there is a term u′ with u′ ≈E lσ, such that u′ is R,E-reducible with
R = {l⇒ r, s⇒ t} only at the top position (i.e. no strict subterm of u′ is
R,E-reducible).

Generalized E-Parallel

C ∨ s ≈ t ||φ1 D ∨ l ≈ r ||φ2 if
C ∨Dσ ∨ lσ ≈ rθ || φ1 ∧ φ2
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1. s ≈ t is reductive for the left premise, and C contains no selected literal,
2. l ≈ r is reductive for the right premise, and D contains no selected literal,
3. both l and s are not variables,
4. e1[u] ≈ e2 ∈ E, where u is not a variable,
5. σ = {x 7→ u[s]p} and θ = {x 7→ u[t]p} for some variable x ∈ V ars(l) ∩
V ars(r) with x /∈ V ars(φ2) and some position p,

6. there is a term u′ with u′ ≈E lσ, such that u′ is R,E-reducible with
R = {l⇒ r, s⇒ t} only at the top position.

We mark each clause produced by the Generalized E-Parallel (or E-Parallel)
rule as “protected” so that it is protected from our contraction rules discussed in
Section 5. (We simply say each marked clause is a protected clause.) Protected
clauses behave the same way as other clauses in our inference rules, but our
contraction rules are not applied to protected clauses (see Section 5 for details).

We may also use predicate terms [6] P (t1, . . . , tn) in our inference system,
where a predicate term cannot be a proper subterm of any term. Note that
a predicate term P (t1, . . . , tn) can be expressed as an equation P (t1, . . . , tn) ≈
>, where > is a special constant symbol minimal in the ordering � and P is
considered as a function symbol. (In this sense, ¬P (t1, . . . , tn) can be expressed
as P (t1, . . . , tn) 6≈ >.) In the remainder of this paper, by BP we denote the
inference system consisting of the Basic Paramodulation, Equality Resolution,
E-Factoring, E-Completion, and the Generalized E-Parallel rule. If E is a
permutative theory with maximum depth at most 2 (e.g. E = A,C, or AC),
then we use the simpler E-Parallel rule instead of the Generalized E-Parallel
rule in BP (see Lemma 6).

Example 1. Let + be an AC symbol (in infix notation) with + � a � b � 0
and consider the following inconsistent set of clauses 1: x+ 0 ≈ x, 2: a+ a ≈ 0,
3: b+ b ≈ 0, and 4: (a+ b) + (a+ b) 6≈ 0. Now we show how the empty clause
(with a satisfiable constraint) is derived:
5: (x + y) + z ≈ x + 0 || y + z ≈?

AC a + a (E-Completion with 2 using the
associativity axiom x+ (y + z) ≈ (x+ y) + z.)
6: ((b + b) + y) + z ≈ 0 + 0 || y + z ≈?

AC a + a (E-Parallel with 3 into 5. In
condition 5 of the E-Parallel rule, term u′ corresponds to (b+y) + (b+ z) here.)
7: 0 + 0 6≈ 0 || ((b+ b) + y) + z ≈?

AC (a+ b) + (a+ b) ∧ y + z ≈?
AC a+ a (Basic

Paramodulation with 6 into 4)
8: x 6≈ 0 ||x+0 ≈?

AC 0+0 ∧ ((b+b)+y)+z ≈?
AC (a+b)+(a+b) ∧ y+z ≈?

AC a+a
(Basic Paramodulation with 1 into 7)
9: � ||x ≈?

AC 0∧ x+0 ≈?
AC 0+0∧ ((b+b)+y)+z ≈?

AC (a+b)+(a+b)∧y+z ≈?
AC

a+ a (Equality Resolution on 8)
In contrast, the existing approaches for basic paramodulation modulo

AC [20, 25] use clauses 2 and 4, for example, and produce clause 5′: 0 + x 6≈
0 ||x ≈?

AC b + b and then clause 6′: 0 + y 6≈ 0 ||x ≈?
AC b+b ∧ y ≈?

AC 0 by
their inference rules. Then 6′ is used to derive a contradiction with 1. It can
be viewed that 6′ is obtained from 5′ by an indirect paramodulation with 3
in the constraint part. In our approach, we simply block clauses like 5′ from
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further inferences (see Definition 12), and no direct or indirect paramodulation
is allowed in the constraint part of any clause.

Example 2. Consider S = {f(g(x)) ≈ x, a ≈ b, c 6≈ g(b)} and E =
{f(g(g(a))) ≈ c} with f � g � a � b, where E is a regular theory with
maximum depth 3. The Generalized E-Parallel rule with premises f(g(x)) ≈ x
and a ≈ b produces the conclusion f(g(g(a))) ≈ g(b). (Choose l as f(g(x)), s as
a, and u as g(a) in the Generalized E-Parallel rule.) Then it is used to derive
a contradiction with clause c 6≈ g(b) since f(g(g(a))) ≈E c.

In the above example, a suitable E-compatible reduction ordering � on
ground terms is obtained in such a way that given two ground terms, we rewrite
each occurrence of c in each ground term into f(g(g(a))) at the same position
with (the occurrence of) c and then use the standard lexicographic path order-
ing [3,21] for comparing (rewritten) ground terms without any occurrence of c.
Then we may compare terms with variables by considering ground substitutions
and using this ordering on ground terms.

In what follows, by the Parallel rule we mean the E-Parallel or the Gener-
alized E-Parallel rule. First, observe that we cannot derive a contradiction in
both Examples 1 and 2 using inference rules in BP without the Parallel rule.
The intuition behind the Parallel rule is that above all, a reductive ground
clause corresponds to a reductive ground conditional rewrite rule [18] with pos-
itive and negative conditions. Therefore, roughly speaking, the premises of the
Parallel rule are reductive conditional rewrite rules with positive and negative
conditions. (The Parallel rule applies to only reductive clauses.) Now the con-
clusion of the Parallel rule combines two steps: (i) instantiating a “problematic”
variable in a special and restricted way, and (ii) selectively rewriting an instan-
tiated term if conditions are met. (Therefore, conditions C is included in the
conclusion.) A problematic variable is often determined by a built-in equational
theory E. It is mostly a variable produced by an E-Completion inference (see
Example 1) for AC cases, which is the counterpart of an extension variable for
AC-extension [7, 26].

Observe that the Generalized E-Parallel rule is more general than the E-
Parallel rule. If p is always the top position for the Generalized E-Parallel
rule, then they are equivalent. This is the case for permutative theories with
maximum depth at most 2 (e.g. E = A,C, or AC).

Lemma 6. If E is a permutative theory with maximum depth at most 2, then
the E-Parallel rule and the Generalized E-Parallel rule are equivalent, i.e., they
generate the same conclusion for the same input premises.

Proof. First of all, if p is the top position in the Generalized E-Parallel rule, then
we are done, since a term u in the condition e1[u] ≈ e2 ∈ E in the Generalized
E-Parallel rule is immaterial for the conclusion, meaning that the Generalized
E-Parallel rule and the E-Parallel rule coincide. We show that if p is not the
top position and E is a permutative theory with maximum depth at most 2,
then the Generalized E-Parallel rule does not generate any conclusion due to
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condition 6 in the Generalized E-Parallel rule.
Suppose that p is not the top position. Then it suffices to consider the case

l{x 7→ u[s]p} = e′1τ for some e′1 ≈ e′2 ∈ E with a substitution τ , where l, s,
and u are not variables (see conditions 3 and 4 in the Generalized E-Parallel
rule). Since E is a permutative theory with maximum depth at most 2 and p
is not the top position, term s in l{x 7→ u[s]p} occurs in e′1τ also at a constant
position or in the substitution part of e′1.

Suppose that term s in l{x 7→ u[s]p} occurs in e′1τ at a constant position
of e′1. Since E is permutative, we may infer that any term E-equivalent to
l{x 7→ u[s]p} w.r.t. e′1 ≈ e′2 ∈ E is R,E-reducible with R = {l ⇒ r, s ⇒ t}
below the top position due to s. Thus, the conclusion is not generated due to
condition 6 in the Generalized E-Parallel rule.

Now suppose that term s in l{x 7→ u[s]p} occurs in e′1τ in the substitution
part of e′1. Since E is regular (because of our assumption of �), we may also
infer that any E-equivalent term of l{x 7→ u[s]p} w.r.t. e′1 ≈ e′2 ∈ E is R,E-
reducible with R = {l ⇒ r, s ⇒ t} below the top position due to s. Thus, the
conclusion is not generated due to condition 6 in the Generalized E-Parallel
rule.

The following example is a simple variant of the reachability problem [15]
modulo a permutation theory [1,16], where ¬P (f(c, b, b, d, e)) is the query from
the initial configuration P (f(a, b, c, d, e)). We may view E in the following ex-
ample as all permutations of variables x1, x2, x3, x4, and x5, since the symmetric
group S5 is generated by two cycles (1 2) and (1 2 3 4 5).

Note that the E-Completion and the Parallel rule are not always needed
for every built-in equational theory E. In particular, the E-Completion and
the E-Parallel rule are not needed for any permutation theory E. We see that
for the E-Completion rule, condition 1 cannot be satisfied, i.e., s′ is always a
variable because p is not the top position. For the E-Parallel rule, condition 5
is not satisfied, which can be shown similarly to the proof of Lemma 6.

Example 3. Let E = {f(x1, x2, x3, x4, x5) ≈ f(x2, x1, x3, x4, x5), f(x1, x2, x3, x4,
x5) ≈ f(x2, x3, x4, x5, x1)} with P � f � a � b � c � d � e and con-
sider the following set of clauses 1: ¬P (f(c, b, b, d, e)), 2: P (f(a, b, c, d, e)),
and 3: f(a, b, x, y, z) ≈ f(b, b, x, y, z). Basic Paramodulation with 3 into 2
yields clause 4: P (f(b, b, x, y, z)) || f(a, b, x, y, z) ≈?

E f(a, b, c, d, e). By ap-
plying Basic Paramodulation with 1 and 4 (using P (f(c, b, b, d, e)) 6≈ > and
P (f(b, b, x, y, z)) ≈ > || f(a, b, x, y, z) ≈?

E f(a, b, c, d, e)) and then applying
Equality Resolution, we have clause 5: � || f(b, b, x, y, z) ≈?

E f(c, b, b, d, e) ∧
f(a, b, x, y, z) ≈?

E f(a, b, c, d, e). The equality constraint in 5 is satisfiable and
we have a contradiction. Note that clause 4 schematizes the set of ground clauses
{P (f(b, b, c, d, e)), P (f(b, b, c, e, d)), P (f(b, b, d, c, e)), P (f(b, b, d, e, c)), P (f(b, b, e,
c, d)), P (f(b, b, e, d, c))}.
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5 Redundancy criteria and contraction tech-
niques

Definition 7. (Relative reducibility) Given an equational theory E, a ground
instance Cσ1 of C ||φ1 is reduced relative to a ground instance Dσ2 of D ||φ2 if
for any rewrite system R, Cσ1 is a reduced ground instance of C ||φ1 w.r.t. R,E
whenever Dσ2 is a reduced ground instance of D ||φ2 w.r.t. R,E.

In what follows, the relation E on terms represents the subterm relation, i.e.,
s E t if s is a subterm of t. The relation v on sets of terms is defined as follows:
{s1, . . . , sm} v {t1, . . . , tn} if for all 1 ≤ i ≤ m, there is some 1 ≤ j ≤ n such
that si E tj , and ∅ v X for any set of terms X. Given a clause C ||φ, we denote
by Ran(σ|V ars(C)) for some σ ∈ Sol(φ) the range of the restriction of σ to the set
of variables V ars(C) if V ars(C) 6= ∅. If C is a ground clause with a tautological
constraint (e.g. the empty constraint), then we set Ran(σ|V ars(C)) = ∅. (Note
that any ground substitution is a solution of a tautological constraint.)

We say that a clause C ||φ is a clause with a succedent top variable [20]
w.r.t. σ ∈ Sol(φ) if there is a variable x ∈ V ars(C) ∩ V ars(φ) only appearing
in equations x ≈ t of the succedent of C with xσ � tσ for some t. The
following lemma, which directly follows from Definition 7, is a sufficient syntactic
condition for Cσ1 being reduced relative to Dσ2 in Definition 7 if D ||φ2 is not
a clause with a succedent top variable w.r.t. σ2. If D ||φ2 is a clause with
a succedent top variable x w.r.t. some σ2 ∈ Sol(φ2), then one may (partially)
instantiate x inD with σ2 if possible, so that one may use the syntactic condition
for checking whether Cσ1 is reduced relative to Dσ2 as in the following lemma.

Lemma 8. Given an equational theory E, a ground instance Cσ1 of C ||φ1
is reduced relative to a ground instance Dσ2 of D ||φ2 if Ran(σ1|V ars(C)) v
Ran(σ2|V ars(D)) and D ||φ2 is not a clause with a succedent top variable
w.r.t. σ2.

In what follows, we denote by E≺C (resp. R≺C) the set of ground instances
of equations in E (resp. the set of ground rewrite rules in R) smaller than the
ground clause C (w.r.t. �), and by S modulo E a set of clauses S with a built-in
equational theory E.

Definition 9. (Redundancy) A clause C ||φ is redundant in S modulo E
(w.r.t. relative reducibility) if for every ground instance Cσ, there exist ground
instances C1σ1, . . . , Ckσk of clauses C1 ||φ1, . . . , Ck ||φk in S reduced relative to
Cσ, such that Cσ � Ciσi, 1 ≤ i ≤ k, and {C1σ1, . . . , Ckσk} ∪R≺Cσ ∪E≺Cσ |=
Cσ for any ground rewite system R contained in �. (In this case, we also say
that each Cσ is redundant in S modulo E (w.r.t. relative reducibility).)

Definition 10. (Basic E-simplification) An equation l ≈ r simplifies a clause
C ∨ L[l′]p ||φ into C ∨ L[rρ]p ||φ if the following conditions are met:
(i) p is a non-variable position;
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(ii) there is a substitution ρ such that lρ ≈E l′, L[l′] � lρ ≈ rρ, V ars(lρ) ⊇
V ars(rρ), lρ � rρ, and C∨L[l′]p ||φ is neither protected nor a clause with
a succedent top variable w.r.t. any σ ∈ Sol(φ).

Lemma 11. If an equation l ≈ r simplifies a clause C ∨ L[l′]p ||φ into C ∨
L[rρ]p ||φ as in Definition 10, then C ∨ L[l′]p ||φ is redundant in S modulo E,
where S = {l ≈ r, C ∨ L[rρ]p ||φ}.

Proof. Suppose that l ≈ r simplifies C ∨ L[l′]p ||φ into C ∨ L[rρ]p ||φ as in
Definition 10. Then lρ ≈E l′, L[l′] � lρ ≈ rρ, lρ � rρ, V ars(lρ) ⊇ V ars(rρ),
and C ∨L[l′]p ||φ is neither protected nor a clause with a succedent top variable
w.r.t. any σ ∈ Sol(φ). It follows that for all σ ∈ Sol(φ), we have lρσ ≈E l′σ,
and Lσ[l′σ] � lρσ ≈ rρσ. Let ρ′R be a substitution such that xρ′R = xρ↓R for
each x ∈ V ars(l ≈ r). Now we may infer that {lρ′Rσ ≈ rρ′Rσ,Cσ∨Lσ[rρ′Rσ]}∪
R≺Dσ ∪ E≺Dσ |= Dσ for all ground instances Dσ of D := C ∨ L[l′]p ||φ and
any ground rewrite system R contained in �. Furthermore, since V ars(lρ) ⊇
V ars(rρ), we see that for all σ ∈ Sol(φ), lρ′Rσ ≈ rρ′Rσ and Cσ ∨ Lσ[rρ′Rσ] are
reduced relative to Dσ by Lemma 8, and hence the conclusion follows.

The following definition extends the blocking rule in the free case (see [9])
to the modulo case, where a blocked clause does not contribute to finding a
refutation during a theorem proving derivation w.r.t. BP (see Definition 16)
starting with an initial set of unconstrained clauses.

Definition 12. (Basic E-blocking) A clause C ||φ is blocked in S modulo E if
the following conditions are met:
(i) C ||φ is not a clause with a succedent top variable w.r.t. any τ ∈ Sol(φ);
(ii) there is a variable x ∈ V ars(C)∩V ars(φ) such that for every σ ∈ Sol(φ),

there exist ground instances C1σ1, . . . , Ckσk of clauses C1 ||φ1, . . . , Ck ||φk
in S reduced relative to Cσ, such that Cσ � Ciσi, 1 ≤ i ≤ k, and
{C1σ1, . . . , Ckσk} ∪E≺Cσ |= xσ ≈ s with xσ � s for some ground term s.

Definition 13. (Basic E-instance) A clause C ||φ is a basic E-instance in S
modulo E if the following conditions are met:
(i) C ||φ is protected;
(ii) there is a protected clause D ||ψ ∈ S such that for every ground in-

stance Cσ (resp. Dτ) of C ||φ (resp. D ||ψ), there is a ground instance
Dτ (resp. Cσ) of D ||ψ (resp. C ||φ) such that they are reduced relative
to each other with Cσ = Dτ .

Observe that protected clauses are produced in a restricted way (e.g. see
condition 5 in the E-Parallel rule) and if two protected clauses are the same up
to variable renaming, then they are basic E-instances of each other and they do
not need to be distinguished.

Definition 14. (Redundancy of an inference) An inference π with conclusion
D ||φ is redundant in S modulo E (w.r.t. relative reducibility) if D ||φ is blocked
or a basic E-instance in S modulo E, or for every ground instance πσ with max-
imal premise C and conclusion Dσ, there exist ground instances C1σ1, . . . , Ckσk
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of clauses C1 ||φ1, . . . , Ck ||φk in S reduced relative to Dσ, such that C � Ciσi,
1 ≤ i ≤ k, and {C1σ1, . . . , Ckσk} ∪ R≺C ∪ E≺C |= Dσ for any ground rewrite
system R contained in �.

The following lemma immediately follows from Definition 9 and the observa-
tion that if {C1σ1, . . . , Ckσk} ∪ E≺Cσ |= Cσ, then {C1σ1, . . . , Ckσk} ∪R≺Cσ ∪
E≺Cσ |= Cσ for any ground rewite system R contained in �, which serves as a
sufficient condition for redundancy of clauses. Also, if an (unconstrained) clause
C properly subsumes an (unconstrained) clause C ′ ∨ D in the classical sense,
where C and C ′ are the same up to variable renaming, then it is easy to see
that C ′ ∨D is redundant in {C} modulo E.

Lemma 15. A clause C ||φ is redundant in S modulo E if for every ground
instance Cσ, there exist ground instances C1σ1, . . . , Ckσk of clauses C1 ||φ1, . . . ,
Ck ||φk in S reduced relative to Cσ, such that Cσ � Ciσi, 1 ≤ i ≤ k, and
{C1σ1, . . . , Ckσk} ∪ E≺Cσ |= Cσ.

Definition 16. (Theorem proving derivation) A theorem proving derivation is
a sequence of sets of clauses S0 = S, S1, . . . such that:
(i) Deduction: Si = Si−1 ∪ {C ||φ} for some C ||φ if it can be deduced from
premises in Si−1 by applying an inference rule in BP or basic E-simplification.
(ii) Deletion: Si = Si−1 \ {D ||ψ} for some D ||ψ if it is not protected, and is
redundant or blocked in Si−1 modulo E.

The set S∞ of persistent clauses is defined as
⋃
i(

⋂
j≥i Sj), which is called

the limit of the derivation. A theorem proving derivation S0, S1, S2, . . . is fair [6]
w.r.t. the inference system BP if every inference π by BP with premises in S∞
is redundant in

⋃
j Sj modulo E.

Definition 17. (Saturation w.r.t. relative reducibility) Given an equational
theory E, we say that S modulo E is saturated under BP w.r.t. relative re-
ducibility if every inference by BP with premises in S is redundant in S modulo
E.

In what follows, we say that a clause C ||φ is non-protected redundant (resp.
non-protected blocked) in S modulo E if it is not protected and is redundant
(resp. blocked) in S modulo E. (If C ||φ is non-protected redundant in S
modulo E, then we also say that each ground instance Cσ of C ||φ is non-
protected redundant in S modulo E.)

Lemma 18. (i) If S ⊆ S′, then any clause which is non-protected redundant
or non-protected blocked in S modulo E is also non-protected redundant or non-
protected blocked in S′ modulo E.
(ii) Let S ⊆ S′ such that all clauses in S′\S are non-protected redundant or non-
protected blocked in S′ modulo E. Then (ii.1) any clause which is non-protected
redundant or non-protected blocked in S′ modulo E is also non-protected redun-
dant or non-protected blocked in S modulo E, and (ii.2) any inference which is
redundant in S′ modulo E is also redundant in S modulo E.
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Proof. The proof of part (i) is immediate, so we only prove part (ii).
Suppose that a clause C ||φ is non-protected redundant or non-protected

blocked in S′ modulo E, and let Cσ be a ground instance of C ||φ. Then
there exist ground instances C1σ1, . . . , Ckσk of clauses C1 ||φ1, . . . , Ck ||φk
in S′ reduced relative to Cσ, such that Cσ � Ciσi, 1 ≤ i ≤ k, and
{C1σ1, . . . , Ckσk} ∪R≺Cσ ∪E≺Cσ |= Cσ for any ground rewrite system R con-
tained in �, or {C1σ1, . . . , Ckσk}∪E≺Cσ |= xσ ≈ s with x ∈ V ars(C)∩V ars(φ)
and xσ � s for some term s. (If C ||φ is both non-protected redundant
and non-protected blocked in S′ modulo E, then we use the latter case in
the above.) We will choose the minimal such set {C1σ1, . . . , Ckσk} w.r.t. �.
Now we claim that all Ciσi are neither non-protected redundant nor ground
instances of non-protected blocked clauses in S′ modulo E, which shows
that C ||φ is non-protected redundant or non-protected blocked in S modulo
E. Suppose first, to the contrary, that some Cjσj is non-protected redun-
dant in S′ modulo E w.r.t. the ground instances D1τ1, . . . , Dnτn of clauses
D1 ||ψ1, . . . , Dn ||ψn in S′ reduced relative to Cjσj with Cjσj � Diτi, 1 ≤ i ≤ n.
Let U := {C1σ1, . . . , Cj−1σj−1, D1τ1, . . . , Dnτn, Cj+1σj+1, . . . , Ckσk}. Then we
have U∪R≺Cσ∪E≺Cσ |= Cσ for any ground rewrite system R contained in �, or
U∪E≺Cσ |= xσ ≈ s, which contradicts our minimal choice of {C1σ1, . . . , Ckσk}.
Similarly, if some Cjσj is a ground instance of a non-protected blocked clause
in S′ modulo E, then a contradiction can be derived with our minimal choice
of {C1σ1, . . . , Ckσk}.

Next, suppose an inference π with conclusion D ||ψ is redundant in S′ mod-
ulo E. The proof is immediate when D ||ψ is a basic E-instance in S′ modulo
E, so we assume that D ||ψ is not a basic E-instance in S′ modulo E. Let
πσ be a ground instance of π such that C is the maximal premise and Dσ
is the conclusion of πσ. Then there exist ground instances D1σ1, . . . , Dkσk of
clauses D1 ||ψ1, . . . , Dk ||ψk in S′ reduced relative to Dσ, such that C � Diσi,
1 ≤ i ≤ k, and {D1σ1, . . . , Dkσk} ∪ R≺C ∪ E≺C |= Dσ for any ground
rewrite system R contained in �, or {D1σ1, . . . , Dkσk} ∪ E≺Dσ |= xσ ≈ s
with x ∈ V ars(D) ∩ V ars(ψ) and xσ � s for some term s. We will choose the
minimal such set {D1σ1, . . . , Dkσk} w.r.t. �. As above, we may infer that all
Diσi are neither non-protected redundant nor ground instances of non-protected
blocked clauses in S′ modulo E, and hence πσ is redundant in S modulo E.

Lemma 19. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. BP such
that S0 is a set of unconstrained clauses. Then S∞ modulo E is saturated under
BP w.r.t. relative reducibility.

Proof. If S∞ contains the empty clause, then it is immediate that S∞ modulo E
is saturated under BP w.r.t. relative reducibility, so we assume that the empty
clause is not in S∞.

If a clause C ||φ is deleted in a theorem proving derivation, then we see that
it is non-protected redundant or non-protected blocked in some Sj modulo E. It
is also non-protected redundant or non-protected blocked in

⋃
j Sj modulo E by

Lemma 18(i). Similarly, every clause in
⋃
j Sj \ S∞ is non-protected redundant
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or non-protected blocked in
⋃
j Sj modulo E.

Now by fairness of the derivation, every inference π by BP with premises in
S∞ is redundant in

⋃
j Sj modulo E. Then by Lemma 18(ii.2) and the above,

π is also redundant in S∞ modulo E. Thus, S∞ modulo E is saturated under
BP w.r.t. relative reducibility.

6 Refutational completeness
The soundness of BP (w.r.t. a fair theorem proving derivation) is straightfor-
ward, i.e., Si ∪ E |= Si+1 ∪ E for all i ≥ 0. If the empty clause is in some Sj ,
then S0 ∪ E is unsatisfiable by the soundness of BP. The following theorem
states that BP with our contraction rules (i.e. basic E-simplification and basic
E-blocking) is refutationally complete. In order to prove the following theorem,
we adapt a variant of model construction techniques [7–9,20,26]. In this section,
we assume that the equality is the only predicate by expressing other predicates
(i.e. predicate terms) as (predicate) equations as discussed in Section 4.

Theorem 20. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. BP
such that S0 is a set of unconstrained clauses. Then S0 ∪ E is unsatisfiable if
and only if the empty clause is in some Sj.

Definition 21. (Model construction) Let S be a set of (constrained) clauses.
We use induction on � to define the sets RulesC , RC , EC , and IC , for all ground
instances C of clauses in S. Let C be such a ground instance of a clause in S and
suppose that RulesC′ has been defined for all ground instances C ′ of clauses in
S for which C � C ′. Then we define by RC =

⋃
C�C′ RulesC′ and by EC the

set of ground instances e1 ≈ e2 of equations in E, such that C � e1 ≈ e2, and
e1 and e2 are both irreducible by RC . We also define by IC the interpretation
(RC ∪ EC)∗ (i.e. the least congruence containing RC ∪ EC).

Now let C := D ∨ s ≈ t be a reduced ground instance of a clause in S
w.r.t. RC such that C is not an instance of a clause with a selected literal.
Then C produces the set of ground rewrite rules RulesC = {u ⇒ t |u ≈E s
and u is irreducible by RC} if the following conditions are met: (1) IC 6|= C
(resp. IC 6|= D) if C is an instance of a non-protected clause (resp. protected
clause), (2) IC 6|= t ≈ t′ for every s′ ≈ t′ in D with s′ ≈E s, (3) s ≈ t is
reductive for C, and (4) there exists u with u ≈E s for which u is irreducible
by RC . We say that C is productive and produces RulesC if it satisfies all of
the above conditions. Otherwise, RulesC = ∅. Finally, we define RS =

⋃
C RC ,

ES =
⋃
C EC , and IS = (RS ∪ ES)∗.

We may include the special non-productive ground clause tt ≈ tt in S for
the above (inductive) definition, where tt ≈ tt is assumed to be greater than all
ground instances of clauses in S∪E w.r.t. � other than tt ≈ tt itself (see [20,26]).
(If C is the strictly maximal ground instance among ground instances of clauses
in S and is productive, then RS may not include RulesC by the above inductive
definition of RC without tt ≈ tt.) In what follows, we say that a ground instance
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πσ of an inference π with premises in S is reduced if each premise and conclusion
of πσ is a reduced ground instance of a clause in S ∪ E w.r.t. RS , ES .

Definition 22. (Redundancy w.r.t. RS , ES) A clause C ||φ is redundant in S
modulo E w.r.t. RS , ES if for every reduced ground instance Cσ w.r.t. RS , ES ,
there exist reduced ground instances C1σ1, . . . , Ckσk of clauses C1 ||φ1 . . . Ck ||φk
in S w.r.t. RS , ES , such that Cσ � Ciσi, 1 ≤ i ≤ k, and {C1σ1, . . . , Ckσk} ∪
R≺CσS ∪E≺Cσ |= Cσ. (In this case, we also say that each Cσ is redundant in S
modulo E w.r.t. RS , ES .)

An inference π with conclusionD ||φ is redundant in S modulo E w.r.t. RS , ES
if D ||φ is blocked or a basic E-instance in S modulo E, or for every reduced
ground instance πσ with maximal premise C and conclusion Dσ, there exist
reduced ground instances C1σ1, . . . , Ckσk of clauses C1 ||φ1, . . . , Ck ||φk in S
w.r.t. RS , ES , such that C � Ciσi, 1 ≤ i ≤ k, and {C1σ1, . . . , Ckσk} ∪ R≺CS ∪
E≺C |= Dσ.

Definition 23. (Saturation w.r.t. RS , ES) Given an equational theory E, we
say that S modulo E is saturated under BP w.r.t. RS , ES if every inference by
BP with premises in S is redundant in S modulo E w.r.t. RS , ES .

Lemma 24. (i) There are no overlaps among the left-hand sides of rules in
RS.
(ii) A term t is reducible by RS if and only if it is reducible by RS , ES at the
same position.
(iii) For every l⇒ r, s⇒ t ∈ RS, if l ≈E s, then r and t are the same term.
(iv) RS/ES is terminating.
(v) For ground terms u and v, if IS |= u ≈ v, then u ↓RS ,ES

v.
(vi) If a ground instance Cθ := Dθ ∨ lθ ≈ rθ of a clause C ||φ := D ∨ l ≈ r ||φ
is productive, then it is a reduced ground instance of C ||φ w.r.t. RS , ES.

The proofs of (i), (ii), and (iii) in Lemma 24 follow from the construction of
RS in Definition 21. For (iv), since RS is contained in an E-compatible reduction
ordering � on terms that is E-total on ground terms, RS/ES is terminating.
Meanwhile, Lemma 24(v) describes the ground Church-Rosser property [18] of
RS , ES . Since RS/ES is terminating by (iv), this shows that RS , ES is ground
convergent modulo ES . In the following, we assume that any saturated clause
set under BP is obtained from an initial set of clauses without constraints.

Lemma 25. Let S modulo E be saturated under BP w.r.t. RS , ES not contain-
ing the empty clause and let C be a reduced ground instance of a clause in S
w.r.t. RS , ES or a ground instance of an equation in E. Then C is true in IS.
More specifically,
(i) C is not an instance of a blocked clause in S modulo E.
(ii) If C is redundant in S modulo E w.r.t. RS , ES, then it is true in IS.
(iii) If C is an instance of a clause with a selected literal, then it is true in IS.
(iv) If C contains a maximal negative literal (w.r.t. �) and is not an instance
of a clause with a selected literal, then it is true in IS.
(v) If C is an instance of an equation in E, then it is true in IS.
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(vi) If C is an instance of a protected clause or a basic E-instance of it, then it
is true in IS.
(vii) If C is non-productive, then it is true in IS.
(viii) If C := C ′∨s ≈ t is productive and produces RulesC with s⇒ t ∈ RulesC ,
then C ′ is false and C is true in IS.

Proof. We use induction on � and assume that the properties (i)–(viii) hold for
every D with C � D, where D is a reduced ground instance of a clause in S
w.r.t. RS , ES or a ground instance of an equation in E.

(i) Suppose to the contrary that C := C ′σ′ is a reduced ground instance
of some blocked clause C ′ ||φ′ in S modulo E w.r.t. RS , ES . (Note that C
cannot be an instance of an equation in E because each equation in E is uncon-
strained.) Then there exist reduced ground instances C1σ1, . . . , Ckσk of clauses
C1 ||φ1, . . . , Ck ||φk in S w.r.t. RS , ES , such that C � Ciσi, 1 ≤ i ≤ k, and
{C1σ1, . . . , Ckσk} ∪ E≺C |= xσ′ ≈ s with some x ∈ V ars(C ′) ∩ V ars(φ′) and
xσ′ � s for some term s by Definitions 7 and 12. By the induction hypothesis,
we know that {C1σ1, . . . , Ckσk} ∪E≺C is true in IS . Now we may infer that C
is a reducible ground instance of C ′ ||φ′ w.r.t. RS , ES by Lemma 24(v), which
is a contradiction. (Note also that if an inference π by BP generates a blocked
clause in S modulo E, then the inference π does not have a reduced ground
instance πσ of π w.r.t. RS , ES .)

(ii) Suppose that a reduced ground instance C := C ′σ′ of C ′ ||φ′ is re-
dundant in S modulo E w.r.t. RS , ES . Then there exist reduced ground in-
stances C1σ1, . . . , Ckσk of clauses C1 ||φ1, . . . , Ck ||φk in S w.r.t. RS , ES , such
that C � Ciσi, 1 ≤ i ≤ k, and {C1σ1, . . . , Ckσk} ∪ R≺CS ∪ E≺C |= C. By
the induction hypothesis, we know that {C1σ1, . . . , Ckσk} ∪ E≺C is true in IS .
Thus, C is true in IS .

In the remainder of the proof this lemma, we may assume that C is neither
redundant nor is it a ground instance of some blocked clause in S modulo E.

(iii) If C is an instance of a clause with a selected literal, then C is a reduced
ground instance of a clause of the form C ′ ∨ s 6≈ t ||φ ∈ S w.r.t. RS , ES such
that s 6≈ t is selected2 in C ′ ∨ s 6≈ t ||φ ∈ S. Let C := C ′σ ∨ sσ 6≈ tσ with some
σ ∈ Sol(φ).

(iii.1) If sσ ≈ES
tσ, then C ′σ is an equality resolvent of C and the equality

resolution inferences can be lifted. By saturation of S modulo E under BP
w.r.t. RS , ES and the induction hypothesis, C ′σ is true in IS . Thus, C is true
in IS .

(iii.2) If sσ 6≈ES
tσ, then suppose to the contrary that C is false in IS . Then

we have IS |= sσ ≈ tσ, which implies that sσ or tσ is reducible by RS , ES by
Lemma 24(v). We assume that, without loss of generality, sσ is reducible by
RS , ES with some rule lθ ⇒ rθ ∈ RS produced by a reduced productive ground
instance Dθ ∨ lθ ≈ rθ of a clause D ∨ l ≈ r ||ψ ∈ S w.r.t. RS , ES for which D
contains no selected literal (see Definition 21 and Lemma 24(vi)). Then sσ is
of the form sσ[s′σ] with s′σ ≈ES

lθ. Now consider the following inference by
2We assume that if u 6≈ v is selected in D ||ψ, then uσ 6≈ vσ is also selected in Dσ for each

σ ∈ Sol(ψ).
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Basic Paramodulation:

D ∨ l ≈ r || ψ C ′ ∨ L[s′] || φ
D ∨ C ′ ∨ L[r] || l ≈?

E s′ ∧ ψ ∧ φ

where L is s[s′] 6≈ t and selected in the right premise. Since σ is reduced
w.r.t. RS , ES , s′ is not a variable. As all the conditions for the above inference
hold, the conclusion has a ground instance C ′′ := Dµ ∨ C ′µ ∨ sµ[rµ] 6≈ tµ
with µ = σ ∪ θ.3 (We assume that each clause is standardized apart and
leave it to the reader to verify that C ′′ is a reduced ground instance of the
conclusion w.r.t. RS , ES .) By saturation of S modulo E under BP and the
induction hypothesis, C ′′ is true in IS and Dµ is false in IS . We also know that
sµ[rµ] 6≈ tµ is false in IS by Lemma 24(v). This implies that C ′µ is true in IS ,
and hence C is true in IS . (Observe that C := C ′σ ∨ sσ 6≈ tσ and if C ′µ is true
in IS , then C ′σ is also true in IS .) Thus, we have the required contradiction.

(iv) We omit the proof of this case because it is similar to that of case (iii).
(v) First, let C be a reduced ground instance of an equation e1 ≈ e2 ∈ E

w.r.t. RS , ES with the form C = e1σ ≈ e2σ. If both e1σ and e2σ are irreducible
by RS , ES , then we are done. If one of e1σ and e2σ is reducible by RS , ES
at the top position, then they are both reducible by RS at the top position
by Lemma 24(ii), and hence C is true in IS by Lemma 24(iii). Otherwise, we
assume that, without loss of generality, e1σ is reducible by RS , ES below the
top position with some rule lθ ⇒ rθ ∈ RS produced by a reduced productive
ground instance Dθ∨ lθ ≈ rθ of a clause D∨ l ≈ r ||ψ ∈ S w.r.t. RS , ES , where
D contains no selected literal. Then e1σ is of the form e1σ[s′σ] with s′σ ≈ES

lθ.
Now consider the following inference by E-Completion:

D ∨ l ≈ r || ψ
D ∨ e1[r]p ≈ e2 || l ≈?

E s′ ∧ ψ

where e1[s′]p ≈ e2 ∈ E with p 6= λ. Since σ is reduced w.r.t. RS , ES , s′ is not
a variable. As all the conditions for the above inference hold, the conclusion
has a reduced ground instance C ′′ := Dµ ∨ e1µ[rµ]p ≈ e2µ with µ = σ ∪ θ. By
saturation of S modulo E under BP w.r.t. RS , ES and the induction hypothesis,
C ′′ is true in IS and Dµ is false in IS from which it follows that e1µ[rµ]p ≈ e2µ
is true in IS . This implies that e1µ[s′µ]p ≈ e2µ is true in IS , and hence C is
true in IS .

Now if C is a reducible ground instance of an equation e := e1 ≈ e2 ∈ E
w.r.t. RS , ES with the form C := e1σ ≈ e2σ, then let σ′ be a ground substitution
such that xσ′ = xσ↓RS ,ES

for each x ∈ V ars(e). Then eσ′ is a reduced ground
instance of an equation in E with C � eσ′, and hence C is also true in IS by
the induction hypothesis.

(vi) If C is a reduced ground instance of a protected clause w.r.t. RS , ES ,
then it is of the form C := C ′τ ∨ D′στ ∨ lστ ≈ rθτ produced by an inference
by Generalized E-Parallel:

3All inferences by BP are monotone [8] at the ground level, in the sense that conclusion is
always smaller than the main premise (w.r.t. �).
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C ′ ∨ s ≈ t ||φ1 D′ ∨ l ≈ r ||φ2

C ′ ∨D′σ ∨ lσ ≈ rθ || φ1 ∧ φ2

where σ = {x 7→ u[s]p} and θ = {x 7→ u[t]p} for some variable x ∈ V ars(l) ∩
V ars(r) with x /∈ V ars(φ2), e1[u] ≈ e2 ∈ E, and some position p. (Note that
p is simply the top position for the E-Parallel rule.) Let θ′ be a substitution
such that xθ′ = xθ↓RS ,ES

. Then we have {C ′τ ∨ sτ ≈ tτ,D′θ′τ ∨ lθ′τ ≈
rθ′τ} ∪ R≺CS ∪ E≺C |= C, where C ′τ ∨ sτ ≈ tτ and D′θ′τ ∨ lθ′τ ≈ rθ′τ are
smaller than C (w.r.t. �), and are reduced ground instances of C ′ ∨ s ≈ t ||φ1
and D′ ∨ l ≈ r ||φ2, respectively, w.r.t. RS , ES . By the induction hypothesis,
we may infer that C is redundant in S modulo E w.r.t. RS , ES , and hence is
true in IS by case (ii). If C is a reduced ground instance of a basic E-instance
in S modulo E w.r.t. RS , ES , then the proof is almost analogous to the above
and is omitted. (Note that protected clauses in S modulo E are redundant in
S modulo E w.r.t. RS , ES , but inference with them are not. For comparison,
the interested reader may refer to [7], where extended clauses are redundant in
S modulo AC, but inferences with them are not.)

(vii) If C is non-productive, then we assume that C is neither an instance
of a clause with a selected literal nor an instance of an equation in E nor an
instance of a protected clause (or its basic E-instance) nor does it contain a
maximal negative literal. Otherwise, we are done by (iii), (iv), (v), or (vi).
Then C is a reduced ground instance of a clause of the form C ′ ∨ s ≈ t ||φ ∈ S
w.r.t. RS , ES with C := C ′σ ∨ sσ ≈ tσ, such that sσ ≈ tσ is maximal in C for
some σ ∈ Sol(φ). If sσ ≈ES

tσ, then we are done because IS |= C. Therefore, we
assume that, without loss of generality, sσ � tσ. Since C is non-productive, this
must be because (at least) one of the conditions in Definition 21 does not hold.
If condition (1) does not hold, then IC |= C and we have IS |= C by construction
of IS . Therefore, we assume that condition (1) holds. If condition (1) holds but
condition (2) does not hold, then C ′σ is of the form C ′σ := D′σ ∨ s′σ ≈ t′σ
with sσ ≈ES

s′σ and IC |= tσ ≈ t′σ. It follows that we also have IS |= tσ ≈ t′σ
by construction of IS in Definition 21. Now consider the following inference by
E-Factoring:

D′ ∨ s ≈ t ∨ s′ ≈ t′ ||φ
D′ ∨ t 6≈ t′ ∨ s′ ≈ t′ || s ≈?

E s′ ∧ φ
Since all the conditions for the above inference hold, the conclusion has a reduced
ground instance C ′′ := D′σ ∨ tσ 6≈ t′σ ∨ s′σ ≈ t′σ w.r.t. RS , ES . (We leave it
to the reader to verify that C ′′ is a reduced ground instance of the conclusion
w.r.t. RS , ES .) By saturation of S modulo E under BP w.r.t. RS , ES and the
induction hypthesis, C ′′ is true in IS . Since tσ 6≈ t′σ is false in IS , we may infer
that C is true in IS . Suppose that conditions (1) and (2) hold but condition
(3) does not hold. Then sσ ≈ tσ is only maximal in C, so we are in the
previous case. (Either condition (1) does not hold (and condition (2) does not
hold, either) or condition (1) holds but condition(2) does not hold.) Now we
assume that conditions (1)–(3) hold but condition (4) does not hold. Then sσ is
reducible by some rule lθ ⇒ rθ ∈ RC produced by a reduced productive ground
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instance Dθ ∨ lθ ≈ rθ of a clause D ∨ l ≈ r ||ψ ∈ S w.r.t. RS , ES for which D
contains no selected literal. By construction of RS , we also have lθ ⇒ rθ ∈ RS .
Then sσ is of the form sσ[s′σ] with s′σ ≈ES

lθ. Since σ is reduced w.r.t. RS , ES ,
s′ cannot be a variable. Similarly to (iii.2), we consider the inference by Basic
Paramodulation with premises D∨l ≈ r ||ψ and C ′∨s[s′] ≈ t ||φ and conclusion
D ∨ C ′ ∨ s[r] ≈ t || l ≈?

E s′ ∧ ψ ∧ φ. The conclusion has a ground instance
C ′′ := Dµ ∨ C ′µ ∨ sµ[rµ] ≈ tµ with µ = σ ∪ θ. (We leave it to the reader to
verify that C ′′ is a reduced ground instance of the conclusion w.r.t. RS , ES .) By
saturation of S modulo E under BP w.r.t. RS , ES and the induction hypothesis,
C ′′ is true in IS and Dµ is false in IS , so we may infer that C is true in IS .

(viii) Suppose that C := C ′ ∨ s ≈ t is productive and produces RulesC with
s ⇒ t ∈ RulesC . Then C is not an instance of a clause with a selected literal
and is true in IS by construction of IS . We show that C ′ is false in IS . Let
C ′ := Γ→ ∆. We have IC 6|= C ′ by Definition 21, which means that IC∩∆ = ∅,
IC ⊇ Γ, and hence IS ⊇ Γ. It remains to show that IS ∩∆ = ∅. For each rule
l′ ⇒ r′ ∈ RS \ RC , it is not possible to order-reduce any term occurring in ∆
with the rule since l′ � s and s is maximal in C. The only remaining possibility
of IS ∩ ∆ 6= ∅ is that there is some equation s′ ≈ t′ in ∆ with s ≈ES

s′ and
IC |= t ≈ t′, which is not the case by condition (2) in Definition 21.

We leave it to the reader to verify the following lemma using the definitions
of redundancy of an inference w.r.t. relative reducibility and w.r.t. RS , ES , along
with Lemma 19.

Lemma 26. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. BP such
that S0 is a set of unconstrained clauses. Then S∞ modulo E is saturated under
BP w.r.t. RS∞ , ES∞ .

Theorem 27. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. BP
such that S0 is a set of unconstrained clauses. If S∞ does not contain the empty
clause, then IS∞ |= S0 ∪ E (i.e., S0 ∪ E is satisfiable).

Proof. By Lemma 26, we know that S∞ modulo E is saturated under BP
w.r.t. RS∞ , ES∞ . Let C be a ground instance of an equation in E or a ground
instance of a clause C ′ in S0. By Lemma 25(v), if C is a ground instance
of an equation in E, then it is true in IS∞ . Therefore, we assume that C is
not a ground instance of an equation in E. Suppose first that C := C ′σ′ is
a reduced ground instance of C ′ ∈ S0 w.r.t. RS∞ , ES∞ . Then there are two
cases to consider. If C ′ ∈ S∞, then C is true in IS∞ by Lemma 25. Other-
wise, if C ′ 6∈ S∞, then C ′ is (non-protected) redundant in some Sj modulo E
w.r.t. relative reducibility because C ′ ∈ S0 (with the empty constraint) is neither
protected nor can it be a blocked clause in some Sj modulo E. Thus, C ′ is (non-
protected) redundant in

⋃
j Sj modulo E w.r.t. relative reducibility, and hence

is (non-protected) redundant in S∞ modulo E w.r.t. relative reducibility by
Lemma 18. It follows that there exist ground instances C1σ1, . . . , Ckσk of clauses
C1 ||φ1, . . . , Ck ||φk in S∞ reduced relative to C, such that C � Ciσi, 1 ≤ i ≤ k,
and {C1σ1, . . . , Ckσk}∪R≺C ∪E≺C |= C for any ground rewrite system R con-
tained in �. Since C is a reduced ground instance of C ′ w.r.t. RS∞ , ES∞ , we
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see that Ciσi, 1 ≤ i ≤ k, are also reduced ground instances w.r.t. RS∞ , ES∞ by
Definition 7 and are true in IS∞ by Lemma 25. Similarly, R≺CS∞

and E≺C are
true in IS∞ by Lemma 25, and hence we may infer that C is also true in IS∞ .

Now suppose that C := C ′σ′ is a reducible ground instance of C ′ ∈
S0 w.r.t. RS∞ , ES∞ . Let σ′′ be a ground substitution such that xσ′′ =
xσ′↓RS∞ ,ES∞

for each x ∈ V ars(C ′). Since C ′σ′′ is a reduced ground instance
of C ′ ∈ S0 w.r.t. RS∞ , ES∞ , C ′σ′′ is true in IS∞ by the previous paragraph, and
hence C is also true in IS∞ .

We may now present the proof that BP with our contraction rules is refu-
tationally complete.

Proof of Theorem 20 Let S0, S1, . . . be a fair theorem proving derivation
w.r.t. BP such that S0 is a set of unconstrained clauses. If the empty clause is
in some Sj , then S0 ∪ E is unsatisfiable by the soundness of BP. Otherwise, if
the empty clause is not in Sk for all k, then by the soundness of BP, S∞ does
not contain the empty clause, and hence S0 ∪ E is satisfiable by Theorem 27.

7 Conclusion
We have presented a basic paramodulation calculus modulo and provided a
framework for equational theorem proving modulo equational theories E sat-
isfying some properties of E using constrained clauses, where a constrained
clause may schematize a set of unconstrained clauses by keeping E-unification
problems in its constraint part. Our results imply that we can deal uniformly
with different equational theories E in our equational theorem proving modulo
framework. We only need a single refutational completeness proof for our basic
paramodulation calculus modulo E for different equational theories E.

Our contraction techniques (i.e. basic E-simplification and basic E-blocking)
for constrained clauses can also be applied uniformly for different equational
theories E satisfying some properties of E in our equational theorem proving
modulo framework. Since a constrained clause may schematize a set of un-
constrained clauses, the simplification or deletion of a constrained clause may
correspond to the simplification or deletion of a set of unconstrained clauses. We
have proposed a saturation procedure for constrained clauses based on relative
reducibility and showed the refutational completeness of our inference system
using a saturated clause set (w.r.t. �).

Some possible improvements remain to be done. One of the main issues is
the broadening the scope of our equational theorem proving modulo E to more
equational theories E. This can be achieved by dropping or weakening some
ordering requirements of � (e.g. monotonicity of �) for a basic paramodula-
tion calculus modulo E, while maintaining the refutational completeness of the
calculus (cf. [10]). This can also be achieved by finding suitable E-compatible
orderings for more equational theories E. In fact, we provided an E-compatible
simplification ordering � on terms that is E-total on ground terms for finite per-
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mutation theories E in [16], which allows us to provide a refutationally complete
equational theorem proving with built-in permutation theories using the results
of this paper. Since permutations play an important role in mathematics and
many fields of science including computer science, we believe that developing
applications for equational theorem proving with built-in permutation theories
is another promising future research direction.
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