
Loops under Strategies . . . Continued
René Thiemann (rene.thiemann@uibk.ac.at), University of Innsbruck, Austria

Jürgen Giesl∗ (giesl@informatik.rwth-aachen.de), RWTH Aachen University, Germany
Peter Schneider-Kamp (petersk@imada.sdu.dk), University of Southern Denmark, Denmark
Christian Sternagel† (christian.sternagel@uibk.ac.at), University of Innsbruck, Austria

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore, much effort has been
spent on developing and automating techniques for showing termination of TRSs. But in order to detect
bugs, it is at least as important to prove non-termination of TRSs. Note that for rewriting under strategies,
one cannot ignore the strategy, since a non-terminating TRS may still be terminating due to the strategy.
Thus, it is important to develop automated techniques to disprove termination of TRSs under strategies.

Most of the techniques for showing non-termination detect loops, i.e., derivations of the form t→+
R

C[tµ] for some context C and some substitution µ . To prove non-termination of a TRSR under a strategy
S, we may use a complete transformation TS (e.g., [2, 4, 6]) where R terminates under the strategy S
iff the TRS TS(R) terminates without considering any strategy. Then one could try to find a loop of
the transformed system TS(R). There are three main drawbacks using these transformations. The first
problem is an increased search space, as loops of R are often transformed into much longer loops in
TS(R). Second, the complete transformations in [2, 4, 6] translate a loop t→+

R C[tµ] into a non-looping
infinite derivation in TS(R) whenever C 6= 2. To solve these two problems, in [7,8], decision procedures
were presented. Given a loop, they decide whether the loop is also a loop under the respective strategy.
Here, [7] treats the innermost strategy and [8] deals with the context-sensitive [3] and the outermost
strategies. The third problem is the availability of complete transformations. As a TRS is terminating
for the leftmost-innermost, parallel-innermost, or max-parallel-innermost strategy iff it is innermost ter-
minating [5], one can use the decision procedure for innermost loops [7] to disprove termination for all
these innermost strategies. However, we are not aware of any transformations for the strategies leftmost-
outermost, parallel-outermost, and max-parallel-outermost. Therefore, in this paper we built upon the
direct methods of [7,8] and give decision procedures for all these strategies.1 Note that our decision pro-
cedures can also be extended to the context-sensitive case, e.g., to leftmost-innermost context-sensitive.

Example 1. Consider the following TRSR to compute factorial numbers which is a variant of [7, Ex. 1].

factorial(y)→ fact(0,y) (1)
fact(x,y)→ if(x == y,s(0), fact(s(x),y) · s(x)) (2)

if(true,x,y)→ x (3)
if(false,x,y)→ y (4)

0+ y→ y (5)
s(x)+ y→ s(x+ y) (6)

0 · y→ 0 (7)
s(x) · y→ y+(x · y) (8)
x == y→ eq(chk(x),chk(y)) (9)
eq(x,x)→ true (10)
chk(x)→ false (11)

eq(false,y)→ false (12)

Here, the intended strategy is leftmost-outermost: otherwise, rule (2) would directly cause non-
termination. Moreover, this strategy is needed for the equality-test encoded by rules (9)–(12) that needs
at most 3 reductions. Nevertheless, we obtain the following looping reduction:
∗This author is supported by DFG (Deutsche Forschungsgemeinschaft) project GI 274/5-2.
†This author is supported by FWF (Austrian Science Fund) project P18763.

1Note that by [5] an innermost loop implies leftmost-innermost non-termination. However, this does not imply leftmost-
innermost-loopingness: As an example, consider {a→ f(nloop,a)}∪R, where nloop is a non-terminating, but non-looping
term w.r.t. the TRSR. Therefore, in this paper we also develop decision procedures for the various innermost strategies.

1

rene.thiemann@uibk.ac.at
giesl@informatik.rwth-aachen.de
petersk@imada.sdu.dk
christian.sternagel@uibk.ac.at

Loops under Strategies . . . Continued René Thiemann et. al

t = fact(x,y)→R if(x == y,s(0), fact(s(x),y) · s(x))
→R if(eq(chk(x),chk(y)),s(0), fact(s(x),y) · s(x))
→R if(eq(false,chk(y)),s(0), fact(s(x),y) · s(x))
→R if(false,s(0), fact(s(x),y) · s(x)) →R fact(s(x),y) · s(x) = C[tµ]

where µ = {x/s(x)} and C = 2 · s(x). Applying our algorithm will show that the above loop indeed is a
leftmost-outermost loop, and hence,R does not terminate under the leftmost-outermost strategy.

2 Loops under Strategies

We only regard finite signatures and TRSs and refer to [1] for the basics of rewriting. We use `, r,
s, t, u for terms, f , g for function symbols, x, y for variables, µ , σ for substitutions, i, j, k, n, m for
natural numbers, p, q for positions and C, D for contexts. Here, contexts are terms which contain exactly
one hole 2. The set of variables is denoted by V . Throughout this paper we assume a fixed TRS R
and we write t →p s if one can reduce t to s at position p with R, i.e., t = C[`σ] and s = C[rσ] for
some `→ r ∈ R, substitution σ , and context C with C|p = 2. In this case, the term `σ is called a
redex at position p. The reduction is leftmost / innermost / outermost, written t l→p / i→p / o→p s, iff p is
a leftmost / innermost / outermost position of t such that t|p is a redex. The leftmost-innermost reduction
is defined as li→p = l→p ∩ i→p. Similarly, the leftmost-outermost reduction is lo→p = l→p ∩ o→p. If the
position is irrelevant we just write→, l→, i→, o→, li→, or lo→.

We also consider parallel reductions. Here, t p→p1...pk s is a parallel reduction iff k > 0, the pi’s
are pairwise parallel positions, and t →p1 . . .→pk s. The max-parallel reduction relation is defined as
t m→p1...pk s iff t p→p1...pk s and t has no further redex at a position that is parallel to all positions p1 . . . pk.
The (max-)parallel-innermost reduction is defined as t mi→ / pi→p1...pk s iff t m→ / p→p1...pk s and all redexes
t|pi are innermost redexes. The (max-)parallel-outermost reductions mo→ and po→ are defined analogously.

To shortly illustrate the difference between the strategies, observe that 0 == 0 i→∗ / li→∗ / mi→∗ / o→∗
/ mo→∗ false whereas 0 == 0 lo→∗ false does not hold for the TRSR of Ex. 1.

A TRSR is non-terminating iff there is an infinite derivation t1→ t2→ It is leftmost-innermost
/ leftmost-outermost / parallel-innermost / parallel-outermost / max-parallel-innermost / max-parallel-
outermost non-terminating iff there is such an infinite derivation using li→ / lo→ / pi→ / po→ / mi→ / mo→
instead of→. To describe the infinite derivation that is induced by a loop, we use context-substitutions.

Definition 2 (Context-substitutions [8]). A context-substitution is a pair (C,µ) consisting of a context C
and a substitution µ . The n-fold application of (C,µ) to a term t, written t(C,µ)n is defined as follows.

t(C,µ)0 = t t(C,µ)n+1 = C[t(C,µ)n
µ]

C

C

C

t
µ

µ

µ

µ

µ

µ

Figure 1: The term t(C,µ)3

From the definition it is obvious that in t(C,µ)n, the con-
text C is added n-times above t and t is instantiated by µn.
Note that also the added contexts are instantiated by µ . For the
term t(C,µ)3 this is illustrated in Fig. 1. Context-substitutions
have similar properties to both contexts and substitutions.

Lemma 3 (Properties of context-substitutions [8]).

(i) t(C,µ)nµ = tµ(Cµ,µ)n.

(ii) t(C,µ)m(C,µ)n = t(C,µ)m+n.

(iii) Whenever t→q s and C|p =2 then t(C,µ)n→pnq s(C,µ)n.

2

Loops under Strategies . . . Continued René Thiemann et. al

Here, property (i) is similar to the fact that C[t]µ = Cµ[tµ], and (ii) shows that context-substitutions
can be combined just like substitutions where µmµn = µm+n. Finally stability and monotonicity of
rewriting are used to show in (iii) that rewriting is closed under context-substitutions. Using context-
substitutions we can now concisely present the infinite derivation of a loop t→+ C[tµ] = t(C,µ).

t(C,µ)0→+ t(C,µ)(C,µ)0 = t(C,µ)1→+ . . .→+ t(C,µ)n→+ . . .

Hence, for every n the positions of the reductions in the loop are prefixed by an additional pn where p is
the position of the hole in C, cf. Lemma 3 (iii).

Definition 4 (S-loop, [8]). Let S be a strategy. A loop t1 →q1 t2 →q2 . . . tn →qn tn+1 = t1(C,µ) with
C|p = 2 is an S-loop iff the reduction ti(C,µ)m→pmqi ti+1(C,µ)m respects the strategy S for all i and m.

As a direct consequence of Def. 4, one can conclude that every S-loop of a rewrite systemR proves
non-termination ofR under strategy S.

3 Leftmost-Innermost and Leftmost-Outermost Loops

Recall the definition of li→ and lo→. A leftmost-innermost / -outermost reduction of all terms t(C,µ)n

at positions pnq requires that for no n there is a redex at a position left or below / above of pnq. This
is illustrated in the figure below: The reduction of the subterm at the black position pnq respects the
leftmost-innermost strategy iff pnq is leftmost and innermost. This is the case whenever there are no
redexes at positions� and⊗. We obtain a leftmost-outermost reduction iff pnq is leftmost and outermost.
This is the case whenever there are no redexes at positions � and ⊕.

leftmost-innermost leftmost-outermost

In [7] a decision procedure for the existence of redexes at positions ⊗ was given, and [8] contains
a decision procedure for the existence of redexes at positions ⊕. Hence, it remains to give a decision
procedure for the existence of redexes at positions �, i.e., we have to be able to decide whether all pnq
point to leftmost redexes.

In total, there are four possibilities why pnq might not point to a leftmost redex in the term t(C,µ)n:

(i) There might be a redex within tµn at position q′ ∈ Pos(t) which is left of q. Hence, we have to
consider all finitely many subterms u = t|q′ where q′ is left of q and guarantee that uµn is no redex.

(ii) There might be a redex within tµn at position q′ ∈ Pos(tµn) \Pos(t) which is left of q. Hence,
this redex is of the form vµk for some k ≤ n and some subterm v � xµ where x is a variable that

3

Loops under Strategies . . . Continued René Thiemann et. al

occurs within some of u, uµ , uµ2, . . . for some subterm u of t that is listed in (i). Note that there
are only finitely many such variables x and hence, again we obtain a finite set of terms where for
each of these terms v and each n we have to guarantee that vµn is not a redex.

(iii) There might be a redex where the root is within C and left of the path p. Here, we have to consider
all finitely many subterms u = C|p′ where p′ is left of q and guarantee that uµn is not a redex.

(iv) In analogy to (ii) we also have to consider redexes within µ where now the variables x are taken
from the subterms u that are listed in (iii).

To summarize, we generate a finite set U of terms u such that (a) and (b) are equivalent:

(a) For every n, the reduction t(C,µ)n→pnq t ′(C,µ)n is leftmost.

(b) There is no u ∈U and no number n such that uµn is a redex.

Note that the question whether uµn is a redex for some n is essentially a question of matching: does
there exist a number n, a left-hand side `, and a substitution σ such that uµn = `σ? This question gives
rise to the following definition of matching problems.

Definition 5 (Matching problems [7]). A matching problem is a pair (u m `,µ). It is solvable iff there
are n and σ such that uµn = `σ .

Following the possibilities (i) - (iv) above, now we can formally define a set of matching problems
to analyze leftmost reductions.

Definition 6 (Leftmost matching problems). The set of leftmost matching problems for a reduction
t→q t ′ and a context-substitution (C,µ) with C|p = 2 is defined as the set consisting of:

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is left of q, and u = t|q′

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is left of q, x ∈
⋃
i∈N
V(t|q′µ i), and u� xµ

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is left of p, and u = C|p′

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is left of p, x ∈
⋃
i∈N
V(C|p′µ i), and u� xµ

Note that the sets of variables in the second and fourth case are finite and can easily be computed.

Theorem 7 (Soundness of leftmost matching problems). Let t →q t ′ and (C,µ) such that C|p = 2. All
reductions t(C,µ)n→pnq t ′(C,µ)n are leftmost iff none of the leftmost matching problems is solvable.

As solvability of matching problems is decidable [7], one can combine Thm. 7 with the decision
procedures for innermost or outermost loops of [7,8] to construct a decision procedure which determines
whether a given loop is a leftmost-innermost loop or a leftmost-outermost loop: for each loop construct
the leftmost matching problems, ensure that all these matching problems are not satisfiable (then leftmost
reductions are guaranteed), and moreover use the decision procedures of [7, 8] to further ensure that the
loop is an innermost or outermost loop.

Corollary 8 (Leftmost-innermost and leftmost-outermost loops are decidable). Let there be a loop t1→q1

t2→q2 . . . tn→qn tn+1 = t1(C,µ) with C|p = 2. Then the following two questions are decidable.

• Is the loop a leftmost-innermost loop?

• Is the loop a leftmost-outermost loop?

Using Cor. 8 we can decide that the loop given in Ex. 1 is a leftmost-outermost loop, but not a
leftmost-innermost loop. Nevertheless, there is also a reduction fact(x,y) li→+ if(false,s(0), fact(s(x),y) ·
s(x)) which is a leftmost-innermost loop.

4

Loops under Strategies . . . Continued René Thiemann et. al

4 (Max-)Parallel-Innermost and (Max-)Parallel-Outermost Loops

For the parallel innermost / outermost strategies it suffices to use the decision procedures for innermost-
and outermost loops. The reason is that t(C,µ)n p→pnq1...pnqk t ′(C,µ)n is a pi→ / po→-reduction iff for every
1≤ i≤ k there is some si such that t(C,µ)n→pnqi si is an innermost / outermost reduction.

Hence, for the rest of the paper we consider the max-parallel strategies mi→ and mo→ . Again, the
innermost or outermost aspect can be decided using the respective decision procedures. It remains to
consider the max-parallel aspect, i.e., we have to decide whether t(C,µ)n m→pnq1...pnqk t ′(C,µ)n for all n.

Here, we essentially proceed as in the leftmost case, where we replace the condition that some posi-
tion is left of p or q by the condition that it is parallel to p or to each qi.

Definition 9 (Max-parallel matching problems). The set of max-parallel matching problems for a reduc-
tion t p→q1...qk t ′ and a context-substitution (C,µ) with C|p = 2 is defined as the set consisting of:

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ ‖ qi for all i, and u = t|q′

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ ‖ qi for all i, x ∈
⋃
i∈N
V(t|q′µ i), and u� xµ

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ ‖ p, and u = C|p′

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ ‖ p, x ∈
⋃
i∈N
V(C|p′µ i), and u� xµ

Using this finite set of matching problems we again obtain a decision procedure.

Theorem 10 (Soundness of max-parallel matching problems). Let t p→q1...qk t ′ and (C,µ) be given such
that C|p = 2. All reductions t(C,µ)n p→pnq1...pnqk t ′(C,µ)n are max-parallel iff none of the max-parallel
matching problems is solvable.

Corollary 11 ((Max-)parallel-innermost and (max-)parallel-outermost loops are decidable). Let there be
a loop t1 p→q1

1...q
1
k1

t2 p→q2
1...q

2
k2

. . . tn p→qn
1...q

n
kn

tn+1 = t1(C,µ) with C|p = 2. Then the following questions
are decidable.

• Is the loop a parallel-innermost loop? Is it a max-parallel-innermost loop?

• Is the loop a parallel-outermost loop? Is it a max-parallel-outermost loop?

Acknowledgement. We thank the referees for many helpful suggestions.

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[2] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite systems. Journal of

Functional Programming, 14(4):379–427, 2004.
[3] S. Lucas. Context-sensitive computations in functional and functional logic programs. Journal of Functional

and Logic Programming, 1:1–61, 1998.
[4] M. Raffelsieper and H. Zantema. A transformational approach to prove outermost termination automatically.

In Proc. WRS ’08, ENTCS 237, pages 3–21, 2009.
[5] M. R. K. Krishna Rao. Some characteristics of strong innermost normalization. Theoretical Computer Science,

239:141–164, 2000.
[6] R. Thiemann. From outermost termination to innermost termination. In Proc. SOFSEM ’09, LNCS 5404,

pages 533–545, 2009.
[7] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Deciding innermost loops. In Proc. RTA ’08, LNCS 5117,

pages 366–380, 2008.
[8] R. Thiemann and C. Sternagel. Loops under strategies. In Proc. RTA ’09, LNCS 5595, pages 17–31, 2009.

5

	Introduction
	Loops under Strategies
	Leftmost-Innermost and Leftmost-Outermost Loops
	(Max-)Parallel-Innermost and (Max-)Parallel-Outermost Loops

