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Abstract. Automated proof search with connection tableaux, such as
implemented by Otten’s leanCoP prover, depends on backtracking for
completeness. Otten’s restricted backtracking strategy loses complete-
ness, yet for many problems, it significantly reduces the time required
to find a proof. Kaliszyk has implemented restricted backtracking us-
ing restricted prover states which are very efficient, but cannot perform
complete strategies. I introduce a new restricted backtracking strategy
based on the notion of exclusive cuts. This strategy is the most complete
strategy that can be realised using Kaliszyk’s restricted prover states. I
implement the strategy in a new prover called meanCoP and show that
it greatly improves upon the previous best strategy in leanCoP.

1 Introduction

Bibel’s connection method [2] is a proof search method similar to Andrews’s mat-
ings [1]. Compared to other proof search methods such as resolution, the connec-
tion method has several merits: It is goal-oriented, enabling natural conjecture-
directed proof search. It can be used with relatively little effort for non-classical
logics such as intuitionistic or modal logics [15, 17], and non-clausal search [18].
Finally, most connection calculi have only very few and simple rules, making it
easy to certify proofs in proof assistants such as HOL Light [11, 4].

One of the most influential connection provers is Otten’s leanCoP [15]. Its
outstanding ratio between code size and effectiveness has made it a frequently
used vehicle to experiment with new search strategies. leanCoP uses bounded
depth-first search together with iterative deepening to explore larger and larger
potential proofs. As the proof search is not confluent, leanCoP employs back-
tracking to preserve completeness.

This article studies backtracking that guides connection proof search. Otten
showed that by restricting backtracking, the prover becomes significantly more
effective for many problems as this reduces the search space, at the expense of
losing completeness (section 3). Kaliszyk implemented Otten’s restricted back-
tracking strategy very efficiently using a technique that I call restricted prover
states (section 4). Upon implementing a new prover based on Kaliszyk’s re-
stricted states, I unexpectedly discovered a novel incomplete strategy, which I
found to be the most complete strategy admissible by restricted prover states
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(section 5). I implemented this strategy in a new prover called meanCoP based
on Otten’s leanCoP and Kaliszyk’s restricted states (section 6). The new strategy
improves upon the former best strategy in leanCoP dramatically (section 7).

2 Preliminaries

In this article, we will use classical first-order logic without equality. However,
the techniques shown can be also applied to non-classical logics.

A term t is either a variable (denoted by x, y, z) or the application of a
constant (denoted by a, b, c) to terms. An atom A is the application of a predicate
(denoted by p, q, r) to terms. Predicates and constants have associated fixed
arities. A literal L is an atom A or its negation ¬A. The complement of a
literal is defined such that A = ¬A and ¬A = A. A term substitution σ is
a mapping from variables to terms. Applying a substitution σ to a literal L,
denoted as σL, substitutes all variables of L with their mappings. Two literals
L1, L2 can be unified under a substitution σ if σL1 = σL2.

A formula in conjunctive normal form (CNF) is a conjunction (∧) of disjunc-
tions (∨) of literals. A clause is a set of literals, and a matrix is a set of clauses.
We interpret a clause as the disjunction of its literals, and we interpret a matrix
as the conjunction of its (interpreted) clauses. It is easy to see that for each
formula in CNF, there is an equivalent matrix.

Example 1. Consider the formula

(p(x) ∨ q(x)) ∧ (¬p(y) ∨ r(y)) ∧ ¬p(z) ∧ ¬r(a) ∧ ¬r(b) ∧ ¬q(c).

Its equivalent matrix is

M =
[[

p(x)
q(x)

][
¬p(y)
r(y)

][
¬p(z)

][
¬r(a)

][
¬r(b)

][
¬q(c)

]]
,

which we will use as running example throughout this paper.

In this paper, we treat proof search using the clausal connection tableaux
calculus [13, 19].

Definition 2 (Connection Calculus). The axiom and the rules of the clausal
connection calculus are given in Figure 1. The words of the connection calculus
are tuples 〈C,M,Path〉, whereM is a matrix, and C and Path are sets of literals
or ε. C is called the subgoal clause and Path is called the active path. In the
calculus rules, σ is a global (or rigid) term substitution; that is, it is applied to
the whole derivation.

An application of a proof rule is called a proof step. A derivation for
〈C,M,Path〉 with the term substitution σ, in which all leaves are axioms, is
called a connection proof for 〈C,M,Path〉. A connection proof for 〈ε,M, ε〉 is
called a connection proof for M .
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Axiom A
{},M, Path

Start C2,M, {}
S

ε,M, ε
where C2 is a copy of C1 ∈M

Reduction C,M,Path ∪ {L′}
R

C ∪ {L},M, Path ∪ {L′}
where σ(L) = σ(L′)

Extension C2 \ {L′},M, Path ∪ {L} C,M,Path
E

C ∪ {L},M, Path

where C2 is a copy of C1 ∈M and L′ ∈ C2 with σ(L) = σ(L′)

Fig. 1: Clausal connection calculus rules.

Bibel proved soundness and completeness of the calculus: for any formula F
in CNF, we have that F is unsatisfiable iff there is a connection proof for the
matrix corresponding to F [2].

Proof search proceeds by constructing derivations from bottom to top.
We can understand a derivation for 〈C,M,Path〉 as an attempt to prove
(M ∧ Path) =⇒ C, where we interpret Path as conjunction of its literals.
By interpreting ε as empty set, a derivation for 〈ε,M, ε〉 can be seen as a proof
attempt of M =⇒ ⊥.

We say that any reduction or extension step as in Figure 1 connects L to L′.
We illustrate this by drawing an arrow from L to L′ in the matrix. In this paper,
we will only use extension steps in examples.

Let us walk through a failed proof search attempt for the matrixM from Ex-
ample 1, and show its graphical representation as well as its resulting derivation
in the calculus.

[[
p(x)
q(x)

] [
¬p(y)
r(y)

] [
¬p(z)

] [
¬r(a)

] [
¬r(b)

][
¬q(c)

]]
(1)

1

2
E 3

[[
p(x)
q(x)

] [
¬p(y)
r(y)

] [
¬p(z)

][
¬r(a)

] [
¬r(b)

] [
¬q(c)

]]
(2)

1E 2

[[
p(x)
q(x)

] [
¬p(y)
r(y)

] [
¬p(z)

] [
¬r(a)

][
¬r(b)

] [
¬q(c)

]]
(3)

1

2

Fig. 2: Graphical representation of proof search.
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Example 3. Consider matrix M from Example 1. Matrix (1) of Figure 2 illus-
trates a proof search attempt throughM . We write the proof step n in matrix m
as (m.n). The proof search proceeds as follows: We first choose the first clause in
M as start clause. This obliges us to connect both p(x) and q(x). We start with
p(x), which we choose to connect in step (1.1) to ¬p(y), setting σ(x) = y. This in
turn obliges us to connect r(y), which we choose to connect in step (1.2) to ¬r(a),
setting σ(x) = σ(y) = a. We are now left with the obligation to connect q(x).
However, at this point (1.3), we cannot connect q(x) to any literal due to σ. As
we are stuck at this point, we mark this with E. Figure 3 shows a derivation for
M that corresponds to this proof search. The extension steps in the derivation
are labelled like the corresponding proof steps in matrix (1). The derivation is
not a connection proof for M , because the leaf 〈{q(x)} ,M, {}〉 is not an axiom.

A
{},M, {p(x), r(y)}

A
{},M, {p(x)}

E (1.2)
{r(y)},M, {p(x)}

E
····

{q(x)},M, {}
E (1.1)

{p(x), q(x)},M, {}
S

ε,M, ε

Fig. 3: Derivation with σ(x) = σ(y) = a.

This example illustrates that search in connection tableaux is not confluent,
i.e. we can end up with unprovable leaves in derivations for a matrixM although
the formula corresponding to M is unsatisfiable. This makes it necessary to
backtrack to previous states of derivations to obtain a complete proof search
method. We will study two backtracking strategies in the next section.

3 Backtracking

In the failed proof attempt shown in Example 3, we frequently talked about obli-
gations and choices (also called promises and alternatives). Fulfilling obligations
assures soundness, and trying choices exhaustively assures completeness.

Otten’s unrestricted backtracking strategy [15] is sound and complete. It
makes choices until an obligation cannot be fulfilled. At this point, the strat-
egy changes the most recent choice for which there is an untried alternative.
The strategy succeeds if it fulfills all obligations, and fails if it runs out of alter-
natives.

Example 4 (Unrestricted Backtracking). Consider the proof search at-
tempt in Example 3. The last choice we made in that example was to connect
r(y) to ¬r(a) as part of step (1.2). We can make a different choice here, namely
connect r(y) to ¬r(b), which we perform in step (2.1). However, as it turns out,
this will not help us when we have to deal with q(x) anew in step (2.2), for now
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we have σ(x) = σ(y) = b, which still does not permit a connection from q(x). So
we backtrack again, leading to the proof search shown in matrix (3). This time,
the last choice was to connect r(y) to ¬r(b), but now, we cannot find a different
way to connect r(y). So we look at our second to last choice, namely to connect
p(x) to ¬p(y). We can make an alternative choice here as step (3.1), namely to
connect p(x) to ¬p(z). Now we are back once more to the dreaded q(x), but
finally, due to σ(x) = σ(z) not pointing to an actual term, we can connect q(x)
to ¬q(c) as step (3.2). This concludes the proof, as we have no more obligations
left at this point.

Otten’s restricted backtracking strategy [16] is sound, but incomplete. How-
ever, it is often significantly more effective than the complete strategy. To define
it, Otten introduces the property of solvedness on literals in a proof search.

Definition 5 (Principal literal, solved literal). When the reduction or ex-
tension rules are applied, the literal L (see Figure 1) is called the principal literal
of the proof step. A reduction step solves a literal L iff L is its principal literal.
An extension step S solves a literal L iff L is the principal literal of S and there
is a proof for the left premise of S, i.e. there is a derivation for the left premise
of S having only axioms as leaves.

The restricted backtracking strategy works like the unrestricted one, with one
exception: Once a literal is solved, restricted backtracking discards all choices to
solve the literal differently.

Example 6 (Restricted Backtracking). Consider matrix (1) of Figure 2.
Proof step (1.1) does not solve any literal, so at this point, proof search behaves
like in Example 4. Proof step (1.2) solves r(y), so at that point, alternative
choices to solve r(y) are discarded. At the same time, step (1.2) also solves p(x),
so alternative choices to solve p(x) are discarded as well. In proof step (1.3), we
note that q(x) cannot be connected. However, unlike in Example 4, we have no
alternative choices left to backtrack to because they were discarded as a result
of step (1.2). That means that the restricted backtracking strategy cannot find
a proof once we commit to connecting p(x) to ¬p(y) as first step.

4 Prover States

The connection prover leanCoP is compactly implemented in Prolog as a re-
cursive predicate prove that takes C and Path as parameters, using a helper
predicate lit that models M [15]. leanCoP implements restricted backtracking
using Prolog’s built-in cut operator [16].

Kaliszyk has reimplemented leanCoP using stacks for backtracking [8]. A
prover state in Kaliszyk’s implementation is as follows.

Definition 7 (Unrestricted Prover State). An unrestricted prover state is a
tuple (C,M,Path, σ, Step,Alts, Prms). Here, Path is a stack containing the ac-
tive path, σ is the substitution, Step is the last tried proof step, Alts is the stack
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of alternatives (C,Path, |σ|, Step, Prms), and Prms is the stack of promises
(C, |Path|, |Alts|). The cardinality of the domain of σ is |σ|, and the number of
elements of a stack S is |S|.

To recall, alternatives keep track of previously made choices, and promises
keep track of proof obligations, i.e. which literals have to be connected. When
the prover backtracks, it changes its state based on an alternative, and when the
prover solves a literal, then it changes its state based on a promise. We say that
we apply alternatives and promises to a state.

Definition 8 (Alternative and Promise Application). Suppose that we
are in an unrestricted prover state (C,M,Path, σ, Step,Alts, Prms). We apply
an alternative (C ′, Path′, |σ′|, Step′, P rms′) by removing the latest bindings in
σ until there are only |σ′| left, and replacing C with C ′, Path with Path′, Step
with Step′, and Prms with Prms′. We apply a promise (C ′, |Path′|, |Alts′|) by
replacing C with C ′ and popping Path and Alts until they contain |Path′| and
|Alts′| elements, respectively.

When performing restricted backtracking, Kaliszyk’s prover uses states that
store only the lengths of Path and Prms inside the alternatives. I call such
states restricted prover states.

Definition 9 (Restricted Prover State). A restricted prover state is a tuple
(C,M,Path, σ, Step,Alts, Prms). The only difference to an unrestricted prover
state is that here, Alts is the stack of alternatives (C, |Path|, |σ|, Step, |Prms|).
We apply an alternative (C ′, |Path′|, |σ′|, Step′, |Prms′|) by replacing C with
C ′ and Step with Step′, removing the latest bindings in σ until there are only
|σ′| left, and popping Path and Prms until they contain |Path′| and |Prms′|
elements, respectively.

Restricted states are considerably more efficient than unrestricted states.
To show this, I evaluated unrestricted states where I implemented Path and
Prms as stacks or singly linked lists. Both using stacks and lists, unrestricted
states were significantly slower than restricted states; for example, the list version
increased runtime for some problems by more than 30%.

However, restricted prover states are admissible only for strategies where
applying an alternative never requires any stack in the state, such as Path, to
grow. We can thus use restricted prover states for restricted backtracking, but
not for unrestricted backtracking, where the lengths of Path and Prms may
need to increase by backtracking, i.e. by applying an alternative.

Example 10. Consider the proof search using unrestricted backtracking in Ex-
ample 4. There, we backtracked after step (1.3), where the path is {} and the
promises are {q(x)}, to the outcome of step (1.1), where the path is {p(x)} and
the promises are {q(x), r(y)}. The length of both path and promises increases
by backtracking.
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There are more complete strategies than Otten’s restricted backtracking
strategy that can be performed using restricted prover states. In the next sec-
tion, I will show a new strategy that is the most complete strategy that can be
performed with restricted prover states.

5 Less Restricted Backtracking

Restricted backtracking can be decomposed into two cuts: cuts on reduction and
cuts on extension steps. Kaliszyk already implemented these two cuts separately,
but did not describe it, as they are usually most useful in conjunction. In our case,
the distinction will be more useful, as it allows us to more succinctly describe
our new backtracking strategy.

I will now distinguish inclusive and exclusive cuts. An inclusive cut discards
all alternatives to solve a literal, whereas an exclusive cut discards all alterna-
tives to solve a literal, except for derivations starting with a different proof step.
Otten’s restricted backtracking strategy shown in section 3 uses inclusive cuts
on both reduction and extension steps. To the best of my knowledge, exclusive
cuts have not been researched before.

Example 11 (Exclusive Cut). We will, for the last time, revisit the proof
search in Figure 2. After proof step (1.2), exclusive cut discards alternative ways
to solve p(x), except for derivations starting with different extension steps. As
a result, after being stuck at step (1.3) with q(x), we can backtrack unlike in
Example 6, namely to the proof search in matrix (3), because it solves p(x) in step
(3.1) starting with a different extension step. From there, proof search behaves
again like in Example 4, solving the problem in step (3.2) after connecting q(x).

To sum up the outcomes of different strategies on the proof search in Figure 2:
The complete strategy (Example 4) solves the problem, going through all stages
from (1) to (3). The exclusive cut (Example 11) also solves the problem, but takes
one stage less, going through only (1) and (3). The inclusive cut (Example 6) fails
after (1). For this example, exclusive cut therefore is the most efficient strategy.

For reduction steps, an exclusive cut is equivalent to no cut, so I distinguish
between inclusive and exclusive cut only for extension steps. I abbreviate (inclu-
sive) cut on reduction steps as R and inclusive and exclusive cut on extension
steps as EI and EX, respectively. Otten’s restricted backtracking strategy can
be described as a combination of R and EI, written as REI.

Figure 4 visualises the alternatives that are cut once a literal is solved. In
each of the trees, the left child of the root is a proof step S that solves a literal,
the children of the left child are alternatives to proof steps that are descendants
of S, and the right child is the alternative to S. Reduction and extension steps
are marked as R and E, respectively, and alternatives are marked as “?”. Both
the R and EI cut are inclusive cuts because the right child is cut, and the EX
cut is exclusive because the right child is preserved. Both cuts on extension steps
eliminate all alternatives below the proof step.
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?R

S

(a) Reduction (R).

?E

??

S

. . .
S

(b) Extension, inclusive (EI).

?E

?? . . .
S

(c) Extension, exclusive (EX).

Fig. 4: Effect of different cuts on the tree of alternatives.

a1

...

an

...

(a) No cut.

a1

...

an

(b) Exclusive.

a1

...

(c) Inclusive.

Fig. 5: Effect of different cuts on the stack of alternatives.

Figure 5 shows the effect of inclusive and exclusive cut on the stack of al-
ternatives (section 4). Figure 5a shows the initial situation of the stack after a
literal was solved with a proof step whose alternative is an. Above an are al-
ternatives to proof steps added after an, and below an are alternatives to proof
steps added before an. Using no cut does not change the stack at this point.
Both exclusive and inclusive cut eliminate all alternatives added after an, but
the exclusive cut (Figure 5b) keeps one alternative more than the inclusive cut
(Figure 5c), namely an.

Like inclusive cut, exclusive cut can be implemented with restricted prover
states (section 4); changing an implementation to use inclusive instead of exclu-
sive cut amounts to truncating the stack of alternatives to length n instead of
length n− 1 once a literal was solved. Moreover, exclusive cut is the most com-
plete strategy that can be performed with restricted states, because it discards
precisely those alternatives that cannot be backtracked to without potentially
making the path and the promises larger.

The seemingly small difference between inclusive and exclusive cut has a
large impact on the effectiveness of the prover. We will see this in the evaluation
(section 7).
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6 Implementation

I implemented a connection prover called meanCoP based on leanCoP in Rust.1
Like C++, Rust favours zero-overhead abstractions [22], making it a suitable
candidate for the development of high-performance automated theorem provers.
I use functional programming for preprocessing and imperative programming
for the prover loop. I follow Kaliszyk’s implementation for the prover loop [8],
but diverge from it by using loops in place of tail recursive functions (as tail
call optimisation is not guaranteed in Rust) and using dynamic instead of static
arrays in order to allow for arbitrarily sized stacks, terms, etc. The prover loop
does not use Rust’s standard library and can be therefore compiled to targets
such as WASM, which can be used to create websites with an embedded prover
that is run locally in the browser. Furthermore, meanCoP contains a tiny proof
checker that is run before outputting a proof. This has been very valuable to
assure that exclusive cut is sound.

meanCoP supports most major features of leanCoP, such as conjecture-
directed search, regularity, and lemmas [15]. Furthermore, meanCoP supports
the R, EI, and EX cuts (section 5). By default, meanCoP uses (inclusive) cut
on lemma steps, which does not hamper completeness, as lemma steps do not
impact the substitution. meanCoP uses restricted prover states when either EI
or EX is used, and (slower) unrestricted prover states otherwise (section 4).

7 Evaluation

I evaluate the performance of meanCoP (section 6) and other provers on several
first-order problem datasets.2 For every dataset and prover, I measure the num-
ber of problems solved by the prover in a given time. All evaluated connection
prover strategies use conjecture-directed search and non-definitional CNF. I use
the same hardware, the same timeout, and the same datasets as in my previous
evaluation of connection provers together with Kaliszyk and Urban [5]. I will
compare the results in this paper with those of the previous evaluation.

I use a 48-core server with AMD Opteron 6174 2.2GHz CPUs, 320 GB RAM,
and 0.5 MB L2 cache per CPU. Each problem is always assigned one CPU. I
run every prover with a timeout of 10 seconds per problem.

The first-order logic datasets used for evaluation are the non-clausal first-
order problems in TPTP 6.3.0 (files matching *+?.p), the bushy and chainy
datasets from MPTP2078 and the Miz40 dataset (all derived from Mizar), as
well as the FS-top dataset (derived from the HOL Light part of Flyspeck).
Table 1 gives the number of problems contained in each dataset.
1 The name meanCoP abbreviates “more efficient, albeit non-lean connection prover”.
The source code of meanCoP is available at https://github.com/01mf02/cop-rs.
I evaluated revision 699191d compiled with Rust 1.49.

2 The evaluation results are available in more detail at http://cl-informatik.uibk.
ac.at/~mfaerber/cade-28.html.

https://github.com/01mf02/cop-rs
http://cl-informatik.uibk.ac.at/~mfaerber/cade-28.html
http://cl-informatik.uibk.ac.at/~mfaerber/cade-28.html
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Table 1: Evaluation datasets and the number of contained first-order problems.

Dataset TPTP bushy chainy Miz40 FS-top

Problems 7492 2078 2078 32524 27111

7.1 Comparison of meanCoP strategies

The first part of the evaluation studies the impact of different combinations of
cuts on the number of problems solved by meanCoP.

Table 2: Number of solved problems.

Cut TPTP bushy chainy Miz40 FS-top

None 1711 546 208 9236 4038
R 1835 641 250 12961 4446
EI 1972 724 322 13850 4248
EX 2028 814 264 15499 4758
REI 1982 730 335 13560 4267
REX 2102 850 294 16134 4994

Table 2 shows the number of problems solved by strategy. For all datasets,
the complete strategy without any cut solves the least problems. Among the
previously implemented cuts, namely R, EI, and REI, REI solves the most prob-
lems, except on the dataset FS-top, where R prevails. Adding cut on reduction
(R) to any strategy increases the number of solved problems, except for the
Miz40 dataset. The strategies with exclusive cut on extension steps (EX, REX)
outperform those with inclusive cut (EI, REI) on all datasets except for the
chainy one. Perhaps this is because the chainy dataset contains many problems
with unusually many axioms, implying a larger explosion of the search space on
which a more aggressive cut could be beneficial.

On most datasets, the strategies using exclusive cut bring an impressive im-
provement of the prover power. The REX strategy increases the number of solved
problems compared to the REI strategy by 16.4% for bushy, 17.0% for FS-top
(12.3% if we compare with the R cut), and 19.0% for Miz40. Remarkably, on
TPTP, the improvement turns out much smaller with only 6.1%.

Table 3 shows the union of problems solved by a portfolio of strategies.
The first line shows the problems solved by any of the four previously used
cut strategies, including the unrestricted backtracking strategy without cut, but
also combinations of cut on reduction and inclusive cut on extension, while
excluding our new exclusive cut. Comparing the first line with the REX results
from Table 2, we see that the new REX strategy solves single-handedly more
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Table 3: Union of solved problems.

Cut TPTP bushy chainy Miz40 FS-top

Any but (R)EX 2255 833 384 15880 5185
REX and REI 2274 907 383 16801 5191
Any 2363 927 396 17434 5560

problems than a union of four strategies on the bushy and FS-top datasets, which
is quite noteworthy. The second line shows the problems solved by any of the
two most powerful strategies, including the REX strategy that uses exclusive cut.
This combination is better than the combination of all previous cut strategies
in the first line on all datasets except for chainy, where it is only one problem
behind. Combining all strategies (line 3) clearly boosts the number of solved
problems compared to the previously available strategies (line 1), namely 11.3%
for bushy, 4.8% for TPTP, 9.8% for Miz40, and 7.2% for FS-top.

In conclusion, the new strategies do not only prove more problems, but the
problems they solve are also sufficiently complementary from the problems solved
by previously available strategies. This makes the new strategies attractive in
portfolio modes.

7.2 Comparison with other provers

I compare meanCoP with several other provers that I previously evaluated in
joint work with Kaliszyk and Urban [5, table 2].

Among the non-connection provers, I evaluate Vampire 4.0 [12] and E 2.0
[21], which performed best in the first-order category of CASC-J8 [23]. Vampire
and E are written in C++ and C, respectively, implement the superposition
calculus, and perform premise selection with SInE [6]. Furthermore, Vampire
integrates several SAT solvers [3], and E automatically determines proof search
settings for a given problem. I run E with --auto-schedule and Vampire with
--mode casc. In addition, I evaluate the ATP Metis [7]: It implements the or-
dered paramodulation calculus (having inference rules for equality just like the
superposition calculus), but is considerably smaller than Vampire and E and is
implemented in Standard ML.

Furthermore, I evaluate two other connection provers apart from meanCoP,
namely leanCoP 2.1 using the Prolog compiler ECLiPSe 5.10, and fleanCoP,
which is a reimplementation of leanCoP in OCaml using streams. I evaluate
both provers using restricted backtracking, i.e. the REI cut. Care is taken that
leanCoP-REI, fleanCoP-REI, and meanCoP-REI perform the same inferences.

Table 4 shows the results of the comparison. The meanCoP prover is much
faster (in terms of inferences per time) than both the original leanCoP as well
as its OCaml reimplementation using streams, even if they perform the same
inferences. The largest improvement can be seen on the chainy dataset, where
leanCoP, fleanCoP and meanCoP (all using the REI strategy) prove 182, 289
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Table 4: Number of solved problems by different provers.

Prover TPTP bushy chainy Miz40 FS-top

Vampire 4404 1253 656 30341 6358
E 3664 1167 287 26003 7382
Metis 1376 500 75 18519 3537

leanCoP-REI 1673 606 182 11243 3664
fleanCoP-REI 1859 670 289 12204 3980
meanCoP-REI 1982 730 335 13560 4267
meanCoP-REX 2102 850 294 16134 4994

(+58.8%), and 335 (+84.1% compared to leanCoP and +16.0% compared to
fleanCoP) problems, respectively.

Vampire proves most problems on all datasets except for FS-top, where E
prevails. On the chainy dataset, fleanCoP and meanCoP prove more problems
than E, which is likely due to the conjecture-directed search. Metis proves the
fewest problems, except on the Miz40 dataset, where it proves more problems
than any connection prover, but less than Vampire and E.

0 2 4 6 8 10
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1,000

Time [s]

P
ro
bl
em

s
so
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ed

Vampire
meanCoP-REX
meanCoP-REI
leanCoP-REI

Fig. 6: Evolution of number of solved bushy problems over time.

Figure 6 shows for several provers the number of problems on the bushy
dataset proved up to a certain time. meanCoP-REX proves considerably more
problems than Vampire in the first 10 milliseconds, namely 432 versus a single
one. However, Vampire catches up after about 50 milliseconds, leaving all other
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provers behind. leanCoP solves its first problem about 50 milliseconds after any
other prover, which is due to the relatively high start-up time caused by the
compilation of the prover at each run. After 50 milliseconds, the order between
the provers remains stable. The curves for the connection provers flatten with
time, whereas the curve for Vampire shows several “bumps”, which are most
likely due to strategy scheduling. The average time used to solve a problem is
0.45 seconds for meanCoP-REI, 0.56 seconds for meanCoP-REX, 0.76 seconds
for leanCoP-REI, and 0.99 seconds for Vampire.

8 Related Work

The MaLeCoP prover by Urban et al. [25] and the FEMaLeCoP prover by
Kaliszyk and Urban [9] were among the first to use machine learning to guide
connection proof search. These provers order the applicable extension steps in
prover states by Naive Bayesian probabilities that are inferred from previous
proofs. Like leanCoP, they use depth-first search, iterative deepening, and back-
tracking, which makes such provers likely to benefit from advances in backtrack-
ing strategies as presented in this work.

Other connection provers have moved away more from leanCoP’s traditional
backtracking-based search. I developed monteCoP in joint work with Kaliszyk
and Urban [5], Kaliszyk et al. developed rlCoP [10], and Olšák et al. developed
follow-up work to rlCoP [14]. All these provers use machine-learnt policies to
explore the search space, with Monte Carlo Tree Search taking the role that
backtracking plays in leanCoP. For that reason, such provers can probably not
directly profit from this work.

We evaluate FEMaLeCoP and monteCoP on the bushy dataset, using 60
seconds timeout, definitional clausification and the REI strategy. Comparing the
non-learning with the learning versions of the provers, the increase in number
of solved problems is from 563 to 601 for monteCoP (+6.7%) and from 577 to
592 for FEMaLeCoP (+2.6%) [5, table 8], thus far below the increase of 16.4%
gained in the current work.

Kaliszyk et al. evaluate rlCoP on the Miz40 dataset, where it proves 16108
problems after 10 iterations of training. Although I evaluate meanCoP on the
same dataset, where meanCoP proves 16134 problems, it is unfortunately diffi-
cult to compare the results for two reasons: First, Kaliszyk et al. limit the number
of inferences instead of the time allotted to the prover. Second, most inferences
performed by rlCoP end up in prover states that are not actually explored, due
to not being chosen by Monte Carlo Tree Search.

Another line of work extends connection provers with native support for
equality. Rawson’s lazyCoP is a connection prover based on Paskevich’s connec-
tion tableaux calculus with lazy paramodulation [24, 20]. It supports first-order
logic with equality. Given that lazyCoP does not use backtracking to control the
search, it seems unlikely that exclusive cut could be integrated in this system.
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Otten’s ileanCoP for intuitionistic logic [15] and MleanCoP for modal logic
[17], as well as nanoCoP for nonclausal proof search [18], could all integrate
exclusive cut seamlessly.

9 Conclusion

I introduced a new kind of cut on extension steps called exclusive cut, which
discards all alternatives to solve a literal, except for derivations starting with a
different extension step. Exclusive cut can be implemented with the same fast re-
stricted prover states as the previously used inclusive cut; furthermore, exclusive
cut is the most complete strategy that can be performed using restricted prover
states. I implemented the described techniques in a new prover called meanCoP
based on restricted prover states. Evaluating meanCoP on several first-order
problem datasets yielded that a combination of cut on reduction steps and ex-
clusive cut on extension steps (REX) improves the number of solved problems
compared to the previous best strategy by up to 19%.
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