
Learning Proof Search in
Proof Assistants

dissertation

by

Michael Färber

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of PhD

advisor: Ass.-Prof. Dr. Cezary Kaliszyk

Innsbruck, 31 July 2018

dissertation

Learning Proof Search in
Proof Assistants

Michael Färber (1119628)

31 July 2018

advisor: Ass.-Prof. Dr. Cezary Kaliszyk

mailto:

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die
vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen
Quellen entnommen wurden, sind als solche kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als
Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract
Proof assistants are programs that verify the correctness of formal proofs. They can
increase the confidence in results from domains such as mathematics, informatics, physics,
and philosophy. However, it requires extensive labour and expertise to write proofs
accepted by proof assistants. In this thesis, we improve proof automation in proof
assistants. Automated theorem provers are programs that search for proofs automatically.
Our goal is to find proofs in proof assistants using automated theorem provers. However,
this is not directly possible when the logic of an automated theorem prover and that of a
proof assistant differ. In this case, the integration of the automated theorem prover into
the proof assistant requires the translation of statements to the logic of the automated
theorem prover and the translation of proofs to the logic of the proof assistant. To restrict
the search space of the automated theorem prover, only a selection of facts relevant to
the current conjecture is translated. The success rate of the automatic proof search in
proof assistants depends on the various translations, the selection of relevant facts as well
as on the automated theorem prover itself. We improve the integration of automated
theorem provers into proof assistants. Among others, we learn from previous proofs
to select relevant facts as well as to guide automated theorem provers to make good
decisions. Furthermore, we create automated proof translations for several automated
theorem provers for which such a translation was not previously available. Our work
increases the success ratio of proof search in proof assistants.

Acknowledgments

I would like to thank all members of the Computational Logic group, in particular my
colleagues Burak Ekici, Thibault Gauthier, Sebastiaan J.C. Joosten, Alexander Maringele,
Yutaka Nagashima, Julian Parsert, Thomas Powell, Thomas Prokosch, Jonas Schöpf,
and Qingxiang (Shawn) Wang. You shared the office with me or dropped by more or less
frequently for having a chat or going to lunch. You helped me in various ways, such as
by proofreading my articles, by discussing research, or simply by creating an atmosphere
in which it was a pleasure to work in. I would like to especially thank Michael Schaper
for having been my Haskell mentor during the first year of my PhD, as well as Aart
Middeldorp and René Thiemann for proofreading my thesis and improving it by their
valuable suggestions.

Free software is crucial for my work. For the tools I use nearly every day, I would like
to thank

• Richard Stallman for initiating the GNU project and for all its tools, especially
GNU make, which was indispensable for creating reproducible experiments;

• Linus Torvalds for the Linux kernel and the version control system Git;
• John MacFarlane for the document converter Pandoc that I extensively used to

write my articles and this thesis;
• all the teams around these persons.

During my PhD, I was fortunate enough to correspond with many experts in automated
and interactive theorem proving that took their time to help me. I would like to thank

• John R. Harrison for his proof assistant HOL Light and for integrating my work
into it;

• Joe Leslie-Hurd for advice on the reconstruction of proofs in the calculus of his
theorem prover Metis;

• Jens Otten for providing platinum support for his theorem provers, for taking so
much time to explain to me the intricacies of nonclausal connection proof search,
and for creating programs that demonstrate that logic can be a piece of art;

• Chad E. Brown for his great help with his theorem prover, for challenging me with
logical problems, for the political discussions and for being a model by pursuing his
ideas with unparalleled perseverance.

I would like to thank the reviewers of CADE, CPP, FroCoS, IJCAR, and LPAR for their
valuable comments.

I would like to thank all organisations that financed my studies. This work has been
supported by the Austrian Science Fund (FWF) grant P26201 and a doctoral scholarship
of the University of Innsbruck. My research visits have been supported by the European
Research Council (ERC) grant AI4REASON and an Erasmus scholarship.
I would like to thank Josef Urban for inviting me two times to research in Prague

vii

http://people.ciirc.cvut.cz/~urbanjo3/

for a total of five months. During these visits, Josef was a very attentionate host, who
organised hikes, the Prague Inter-reasoning Workshops (PIWo), movie nights, etc. He
even lent me a bike so I could learn to appreciate the cobbled streets of Prague. We
discussed nearly every day, and he contributed several ideas that greatly influenced my
work – without him, I would not be where I am today.

I would like to thank my main supervisor Cezary Kaliszyk for having supported me
since we met at the first session of the Master Seminar of Computational Logic in 2011.
Little did I know at that time that I would be still working with the same guy seven
years later. Cezary always motivated me to be productive, which in hindsight turned
out to be very useful given my innate perfectionism. His personal mantra might well
be “Get stuff done!”, and I tried to apply it. He gave me time to explore my interests
and accepted my choices, even when he did not agree with them. (My choice of lazy
functional programming languages springs to my mind.) I consider him to be not only an
outstanding scientist, but also an amazingly capable programmer, and I learnt a lot from
him in both regards. He always had an ear for my problems, which we discussed while
walking around the campus, thus following in the footsteps of the Peripatetic school.

Finally, I would like to thank my family, my friends, and especially Mathilde for
supporting me during my studies.

I am deeply indebted to you all.

viii

http://arg.ciirc.cvut.cz/workshops.html
http://cl-informatik.uibk.ac.at/users/cek/
https://en.wikipedia.org/wiki/Peripatetic_school

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Interactive Theorem Provers . 2
1.3 Automated Theorem Provers . 4
1.4 Hammers . 7
1.5 Contributions . 8
1.6 Outline . 9

2 Premise Selection 11
2.1 Introduction . 11
2.2 k-nearest neighbours . 13
2.3 Naive Bayes . 14
2.4 Decision Trees . 16

2.4.1 Feature Selection . 17
2.4.2 Incremental Learning . 19
2.4.3 Querying . 20

2.5 Random Forests . 22
2.5.1 Sample Selection . 22
2.5.2 Incremental Learning . 22
2.5.3 Querying . 23

2.6 Evaluation . 23
2.7 Related Work . 27
2.8 Conclusion . 27

3 Connection Proof Search 29
3.1 Introduction . 29
3.2 Connection Calculi . 30
3.3 Problem Preprocessing . 33
3.4 Consistent Skolemisation . 36
3.5 Connection Search . 39
3.6 Proof Search . 40

3.6.1 Prolog . 41
3.6.2 Lazy Lists and Streams . 41
3.6.3 Continuations . 42
3.6.4 Stacks . 43

3.7 Clause Processing Order . 43
3.8 Extension Clause Anomaly . 44

ix

Contents

3.9 Evaluation . 45
3.10 Reproducible Experiments . 47
3.11 Conclusion . 49

4 Internal Guidance 51
4.1 Introduction . 51
4.2 Naive Bayes with Monoid Occurrences . 52
4.3 Features . 53
4.4 Training Data Recording . 54
4.5 Clause Processing . 54
4.6 Clause Ranking . 55
4.7 Parameter Tuning . 55

4.7.1 Offline Tuning . 55
4.7.2 Particle Swarm Optimisation . 56

4.8 Implementation . 56
4.8.1 Machine Learning . 57
4.8.2 Strategies . 57

4.9 Evaluation . 57
4.10 Related Work . 60
4.11 Conclusion . 61

5 Monte Carlo Proof Search 63
5.1 Introduction . 63
5.2 Monte Carlo Tree Search . 64
5.3 Child Selection Policy . 65
5.4 Child Probability . 66
5.5 Reward . 66
5.6 Expansion Policy . 68
5.7 Implementation . 68
5.8 Evaluation . 69
5.9 Conclusion . 70

6 Proof Reconstruction 73
6.1 Introduction . 73
6.2 Translation to First-Order Logic . 73
6.3 Metis . 75
6.4 Connection Proofs . 77

6.4.1 Connection Calculi for Proof Translation 78
6.4.2 Connection Proof Translation . 79
6.4.3 Clausal Proof Translation . 80
6.4.4 Nonclausal Proof Translation . 81

6.5 Evaluation . 84
6.6 Related Work . 84
6.7 Conclusion . 85

x

Contents

7 Conclusion 87
7.1 Future Work . 88

7.1.1 Machine Learning . 88
7.1.2 Automated Theorem Proving . 89

Bibliography 91

xi

Chapter 1

Introduction

1.1 Introduction
An interactive theorem prover (ITP), also called proof assistant, is a computer program
that allows users to unambiguously formulate statements and their proofs, verifying the
correctness of the proofs. To motivate the usage of ITPs, consider the Kepler conjecture
from 1611.

Conjecture 1.1 (Kepler Conjecture). No packing of congruent balls in three-dimensional
Euclidean space has density greater than that of the face-centered cubic packing [Kep11].

The first proof of the Kepler conjecture was published only in 2006 by Thomas C. Hales.
However, its reviewers were not able to certify its correctness with absolute confidence
[HAB+17]. This led to the creation of the Flyspeck project with the goal to mechanically
verify Hales’s proof in an ITP. The project was carried out as an international collaboration
with the participation of more than 20 people. It was finished in 2014 and certified that
Hales’s proof of the Kepler conjecture was indeed correct. The Flyspeck project shows
that ITPs can increase confidence in mathematical results. However, the Flyspeck project
also demonstrates that the effort required to create mechanically verifiable proofs can be
considerable.

A way to help ITP users is to provide them with methods that find proofs automatically.
While many conjectures in ITPs can be efficiently proven by decision procedures, there
remains a large amount of problems intractable by decision procedures. For this purpose,
automated theorem provers (ATPs) were integrated into ITPs: Where interactive theorem
provers verify the correctness of given proofs, automated theorem provers search for new
proofs. A milestone was the proof of the previously unproven Robbins conjecture, found
by William McCune in 1996 using an ATP [McC97].

Conjecture 1.2 (Robbins Conjecture). Assuming the associativity and commutativity
of addition (+), the Huntington equation n(n(x) + y) + n(n(x) + n(y)) = x is logically
equivalent to the Robbins equation n(n(x+ y) + n(x+ n(y))) = x [McC97].

Initially, to use ATPs in ITPs, ITP users had to provide ATPs with a selection of facts
thought relevant to solve their current problem. This selection was necessary because
passing all facts available in an ITP to an ATP risks exploding the search space of the
ATP, thus reducing the chance of the ATP finding a proof. However, selecting relevant
facts can be difficult for users. To relieve users, so-called hammer systems have been

1

Chapter 1 Introduction

developed. Hammer systems combine ATPs and decision procedures with techniques to
find relevant facts to search for proofs in ITPs without human guidance. With a hammer,
more than 40% of the proofs in the formalisation of the proof of Kepler’s conjecture can
be found automatically [KU14]. This suggests that such tools can significantly reduce
the work required in future formalisations.

The goal of this thesis is to create and evolve techniques and tools for using automated
approaches in interactive theorem provers in order to allow the automatic construction
of proofs that can be mechanically verified. To evaluate our progress, we use a standard
ATP metric, namely the number of (logical) problems that a method solves in a fixed
amount of time. There exist several canonical sets of test problems on which ATPs are
usually evaluated. As we wish to improve automated reasoning in ITPs, we focus on
problems stemming from ITPs.
The introduction chapter is structured as follows: In Sections 1.2, 1.3 and 1.4, we

introduce ITPs, ATPs, and their integration, respectively. In Section 1.5, we give an
overview of the contributions in this thesis and outline its structure in Section 1.6.

1.2 Interactive Theorem Provers

An interactive theorem prover (ITP) is a program that allows users to state conjectures
and their proofs, which are then mechanically checked. If a user trusts the soundness of an
ITP, the user can be certain that conjectures proven inside the ITP indeed hold. The ITP
provides the user with feedback, for example showing which parts of a conjecture are left
to prove, rejecting invalid inference steps and so on. We will now give a historical overview
of ITPs, showing some of nowadays most frequently used ITPs and their predecessors.
This overview is far from comprehensive; for example, we omit systems such as Metamath
[Meg07], Agda [BDN09], and the Boyer-Moore family of provers [BM98].
In 1968, Nicolaas Govert de Bruijn introduced Automath as a formal language to

express mathematical proofs that could be mechanically checked by a computer [Wie02].
Automath is based on the typed lambda calculus with dependent types. Dependent
types allow the encoding of mathematical propositions as types. This relationship is
known as Curry-Howard isomorphism. It was generalised to predicate logic by Per
Martin-Löf [ML84]. A proposition is proven by giving a term of the proposition’s type.
Proof checking then corresponds to verifying whether the type of a given proof term
corresponds to its stated type (the proposition). The distinction between proofs and
programs blurs. The largest project realised in Automath is the formalisation of Edmund
Landau’s “Grundlagen der Analysis” [Lan30, vBJ77].
In 1972, Robin Milner proposed the LCF system [Gor00] as a proof checker for the

“Logic for Computable Functions” by Dana Scott. The unique approach taken by the LCF
system is that proofs are written as programs in the strongly-typed meta-language (ML),
which ensures that values of type proof can only be constructed via a precisely defined set
of primitive inference rules. As long as the primitive rules are sound, ML’s type system
ensures the soundness of the whole system. Furthermore, as ML is a general-purpose
programming language, it allows more complex inference rules to be defined in terms of

2

1.2 Interactive Theorem Provers

the primitive inference rules. Tactics allow proving goals by breaking them into smaller
subgoals, which enables so-called “goal-directed proof search”.
Around 1973, Andrzej Trybulec started to work on Mizar, a formal language for

mathematics [MR05, NK09]. The language should be close to conventional mathematical
language, but with clear semantics in order to allow automatic processing, including proof
verification. Mizar proofs are written in declarative style, where intermediate statements
are explicitly written out and linked together to show the main statement. Mizar is
based on first-order logic; however, to allow e.g. for induction, free second-order variables
can be instantiated. Mizar is used to develop a large library of formalised mathematical
knowledge, namely the Mizar Mathematical Library (MML), consisting of more than
40,000 theorems. While Mizar allows in principle multiple foundations to formalise
mathematics, the predominant part of the MML is based on Tarski-Grothendieck set
theory. Despite being far away from formalising all of contemporary mathematics, it can
be seen as a step towards the goal of the QED project, namely the formalisation and
verification of all mathematical knowledge [QED94].

In 1982, Gérard Huet started the Projet Formel, having as goal the creation of a proof
system based on LCF [BC04, Ber08]. The result was a functional programming language
based on the Calculus of Constructions, which is a variant of typed lambda calculus with
dependent types and polymorphism. Similarly to Automath, a proposition is proven by
giving a term of the proposition’s type. Proofs can be written either by composition of
functions, or via a set of tactics, allowing goal-directed proof search in the LCF tradition.
Later, the calculus was extended to the Calculus of Inductive Constructions, to allow
the formalisation of algorithms operating on inductive data types. Starting from 1989,
the proof system was released as Coq. The development of the system also yielded
the language Caml in 1986, which evolved into Objective Caml (OCaml) in 1996. By
default, Coq is constructive, which allows code extraction, at the expense of not assuming
the law of excluded middle and extensionality (two functions are equal if they return
the same output for the same input). Two of the largest projects done in Coq are the
verified C compiler CompCert [Ler06] and the verification of the Feit-Thompson theorem
[GAA+13].

In the mid-1980s, Mike Gordon replaced the logic of the LCF system by higher-order
logic, resulting in the HOL system [Gor00]. The first stable version of HOL was released
around 1988 as HOL88, whose logic has remained unchanged for all subsequent versions.
Later, Konrad Slind ported HOL to Standard ML [SN08], resulting in HOL90. After
HOL98, the latest version was released as HOL4. One of the largest formalisations done
in HOL4 is CakeML, a verified implementation of ML [KMNO14].

In 1986, Larry Paulson initiated the Isabelle system, after having worked on Cambridge
LCF in the mid-1980s [Pau88]. The speciality of Isabelle is its separation in meta-
logic and object-logics: Isabelle’s meta-logic Pure is a fragment of higher-order logic
that allows the specification of syntax and inference rules of various object-logics, such
as HOL [NPW02] and ZF (Zermelo-Fraenkel set theory). Proofs can be written via
the application of tactics à la LCF or declaratively with the Isar (Intelligible semi-
automated reasoning) language inspired by Mizar [WPN08]. Proofs in the object-logics
are verified by a common logical core, following the LCF tradition. By far the most

3

Chapter 1 Introduction

frequently used Isabelle object-logic is Isabelle/HOL: One of its most powerful proof
search methods is Sledgehammer, which we introduce in Section 1.4. In addition to proof
search, Isabelle/HOL also supports counterexample search: Quickcheck instantiates the
free variables of executable formulas with random instances to find contradictions, and
Refute translates formulas to propositional logic and searches for finite countermodels
with a SAT solver. Code can be generated from constructive Isabelle/HOL functions to
functional languages, including Standard ML, OCaml, and Haskell. One of the largest
Isabelle/HOL projects is the verification of an operating system kernel [KAE+10]. The
Archive of Formal Proofs (AFP) is a collection of proof libraries that can be mechanically
verified and reused in Isabelle.

In 1995, John Harrison created HOL Light based on HOL90 in collaboration with
Konrad Slind, with the goal of having a kernel that is small and easy to adapt [Har09].
Initially being implemented in Caml, HOL Light later switched to OCaml. It was used
at Intel for verification of floating-point arithmetic, as well as for the Flyspeck project
[HAB+17].
All HOL systems mentioned here (HOL4, Isabelle/HOL, HOL Light) are based on

Church’s simple type theory with polymorphic type variables, without subtyping or
dependent types [PS07]. Yet, there are differences between the logical foundations of
the systems; for example, unlike HOL4 and HOL Light, Isabelle/HOL uses axiomatic
type classes. The HOL systems provide similar reasoning tools, such as tableaux provers
[Har96, Pau99], the resolution prover Metis [Hur03, PS07], decision procedures (e.g. for
linear arithmetic), and simplifiers for higher-order rewriting.

1.3 Automated Theorem Provers

An automated theorem prover (ATP) is a program that attempts to prove logical
conjectures automatically. ATPs exist for logics of different order, such as first-order
logic and higher-order logic, as well as for classical and non-classical logics, such as
intuitionistic and modal logic. The yearly CADE Automated Systems Competition
(CASC) evaluates the performance of ATPs on different sets of logical problems [Sut16b].
We give an overview of the ATPs that are considered in this thesis. All ATPs presented
below are performing proof by contradiction; that is, to show that a conjecture follows
from a set of axioms, the ATPs show that the negation of the conjecture and the axioms
imply ⊥.
MESON (Model Elimination Subgoal OrieNted) is a proof search method introduced

by Donald W. Loveland and Mark E. Stickel [LS73, Lov16] based on Loveland’s model
elimination calculus [Lov68]. Stickel later introduced a “Prolog Technology Theorem
Prover” (PTTP), i.e. a complete proof search method in Prolog using sound unification,
the reduction rule of the model elimination calculus, and inference-bounded iterative
deepening [Sti88]. PTTP was the basis of Harrison’s implementation of the MESON
method [Har96]. Based on the inference-bounded search strategy of Stickel, Harrison
introduced a divide-and-conquer approach that tries different orders of goals with reduced
inference bounds. Furthermore, Harrison implemented depth-bounded and best-first

4

1.3 Automated Theorem Provers

strategies. The resulting prover uses “positive refinement” [Pla90] to restrict the applica-
tion of the reduction rule. Furthermore, input clauses are reordered such that smaller
ones are tried first, and literals are reordered such that those with few free variables are
tried first. The “caching” technique [AS92] is used to cancel proof attempts when it is
clear from previous proof attempts that they will fail. Harrison integrated MESON into
HOL Light as a proof search tactic: The tactic translates the current goal to first-order
logic, where MESON attempts to find a proof that is then reconstructed in HOL. We
use Harrison’s MESON tactic to generate logical problems from HOL Light as well as to
benchmark our own proof search tactics, see Chapter 6.
leanCoP [OB03, Ott08] and nanoCoP [Ott16] are ATPs for first-order logic developed

by Jens Otten. They are based on the clausal and nonclausal connection tableaux calculus
[Ott11], respectively. These enable very compact implementations of goal-directed proof
search. We describe the calculi and the search procedure in Chapter 3, where we also
introduce several functional implementations. Furthermore, we show the expansion of
a proof search tree with Monte Carlo Tree Search in Chapter 5. Finally, we give a
translation of connection tableaux proofs to Gentzen’s sequent calculus LK [Gen35] in
Section 6.4, enabling proof certification and automatic proof search in ITPs.
Vampire [KV13] is an ATP for first-order logic with equality developed by a team around

Andrei Voronkov, Kryštof Hoder, and Laura Kovács. It is based on the superposition
calculus [BG94]. The AVATAR framework [Vor14] allows the integration of SAT (such
as MiniSat [ES03]) and SMT solvers (such as Z3 [dMB08]) to efficiently handle clauses
that can be split into subsets with disjoint variables. To show satisfiability of problems,
Vampire uses the instantiation generation method [Kor13] as well as finite model building
using SAT/SMT solvers. During preprocessing, relevance filtering can be performed
with SInE [HV11]. Superposition provers such as Vampire use saturation algorithms to
structure proof search. All saturation algorithms in Vampire belong to the family of
given-clause algorithms [McC03]. We introduce a simple given-clause algorithm: Given
an initial set of clauses to refute, the set of unprocessed clauses is the initial set of clauses,
and the set of processed clauses is the empty set. At every iteration of the algorithm, a
given clause is selected from the unprocessed clauses and moved to the processed clauses.
Clauses that can be inferred from the given clause and the processed clauses are added to
the unprocessed clauses. The algorithm terminates as soon as either the set of unprocessed
clauses is empty (the problem is satisfiable) or the empty clause was generated (the
problem is unsatisfiable). An important distinction between given-clause algorithms is
the question which clauses can contribute to simplifying inferences. In the DISCOUNT
[DKS97] loop, simplification is done only with processed clauses, whereas in the Otter
loop [McC03], simplification is done both with processed and unprocessed clauses. In
addition to the DISCOUNT and Otter loops, Vampire has a “Limited Resource Strategy”
based on the Otter loop that discards clauses that seem unlikely to be processed within
the given time limit.
E [Sch13] is an ATP for clausal first-order logic with equality developed by Stephan

Schulz. It is based on a variant of the superposition calculus [BG94] with literal selection.
Relevance filtering can be performed with SInE [HV11]. Proof search is performed with
the DISCOUNT loop; see the paragraph on Vampire. E uses shared terms, i.e. every

5

Chapter 1 Introduction

distinct term is stored exactly once in a term database. Unconditional rewriting steps
are cached, that is, rewrite steps that are performed on a term are stored in the term
database, such that equivalent terms can be rewritten in future simplification steps.
Furthermore, E uses efficient clause indexing to find inference partners. E provides a
flexible system for clause evaluation: Users can specify arbitrary priority queues and a
weighted round-robin scheme to influence which unprocessed clauses are picked. Some
evaluation functions prefer clauses that seem related to the conjecture, thus making proof
search goal-directed. Clause evaluation functions can be learned from previous proofs
[Sch00]. Strategies or strategy schedules can be automatically chosen for the current
problem by taking the strategy that performed best on similar problems.
Metis [Hur03] is an ATP with an LCF-style kernel for clausal first-order logic developed

by Joe Leslie-Hurd. The LCF principle enables the combination and cooperation of
different proof procedures, e.g. by sharing unit clauses.1 Furthermore, the LCF approach
is useful for proof recording, which simplifies the reconstruction of proofs found by
Metis in ITPs. Originally, Metis implemented three proof procedures: (i) the subgoal-
oriented variant MESON [LS73] of Loveland’s model elimination procedure [Lov68],
(ii) Robinson’s resolution procedure [Rob65] with the given-clause algorithm, using
term nets for fast unification and subsumption checking, and (iii) the Delta procedure
based on Schumann’s Delta preprocessor [Sch94]. Metis 2.0 [Sut09a] dropped the model
elimination and Delta procedures from the prover, leaving ordered resolution and ordered
paramodulation. Originally integrated into HOL4, Metis has been integrated since into
Isabelle/HOL [PS07], where it serves to automate proofs as well as reconstruct proofs
found by automated provers. As shown in [KUV15], paramodulation-based provers such
as Metis perform better than tableaux-based provers such as MESON and leanCoP on
many problems involving equality. We describe our integration of Metis into HOL Light
in Section 6.3.
Satallax [Bro12] is an ATP for simply-typed higher-order logic developed by Chad

E. Brown. It is based on a tableaux calculus with extensionality and choice [BB11].
Similarly to the given-clause algorithm, the search procedure of Satallax [Bro13] keeps
processed/unprocessed formulas and processed/unprocessed terms (for instantiation).
In every iteration of the search procedure, one of three actions is performed: (i) an
unprocessed formula is moved to the processed formulas, (ii) an unprocessed term is
moved to the processed terms, or (iii) an unprocessed term is generated. These actions
are picked from a priority queue. When an unprocessed formula/term u is moved to
the processed formulas/terms, formulas inferable from u and processed formulas/terms
are generated. These formulas are moved to the unprocessed formulas and commands
for processing them are put on the priority queue. The problem is unsatisfiable iff
at some point the set of processed formulas becomes unsatisfiable. Satallax keeps a
satisfiability-preserving translation of formulas to propositional and predicate logic, to
check for unsatisfiability with MiniSat and E, respectively [Sut16a].

1Using a small logical kernel in the spirit of LCF to combine proof procedures has also been implemented
since e.g. in the Psyche system [Gra13].

6

1.4 Hammers

Corpus

Problem

Premise selection +

T

ATPT −1Proof

Figure 1.1: A typical hammer workflow.

1.4 Hammers
The widespread usage of ITPs in mathematics and related domains, such as software
verification, has so far been hindered by the high level of knowledge and experience
required to operate ITPs. In particular, users struggle to find facts related to their
current problems, and once they have found such facts, how to combine them to solve
their problems.
A hammer system attempts to ease reasoning with ITPs by automatically proving

conjectures, thus reducing the entry barrier for users to employ ITPs. Many frameworks
use ATPs, which in contrast to ITPs attempt to solve problems without any user
interaction, but whose logic might be different from an ITP’s logic.
The function of such a system is illustrated in Figure 1.1: The input consists of a

problem together with a corpus of axioms and theorems. First, premise selection chooses
a subset of the corpus thought to be relevant to the solution of the problem.2 Then, the
selected subset and the problem are translated with a method T to the logic of an ATP.
If the ATP finds a proof, the proof is reconstructed with a method T −1 in the ITP logic,
either by extracting a precise small set of facts present in the ATP proof, or by translating
the ATP proof to recreate a skeleton of an ITP proof. In some cases, the reconstruction of
ATP proofs fails, because the ATP does not provide sufficient information to translate a
proof. Still, it is often possible to reconstruct the ATP proof by reproving the conjecture
with a different ATP, using the facts the first ATP used in its proof.
Sledgehammer [Pau10] is a hammer system for Isabelle/HOL. It was first released

in 2007 with the vision to provide “one-click invocation”, meaning that users could
invoke it for any conjecture without providing additional information to guide the system,
such as conjecture-relevant facts. To find such facts, Sledgehammer uses a combination
of two machine learning techniques, namely the Meng-Paulson relevance filter [MP09]
and a variant of Naive Bayes [BGK+16]. An Isabelle/HOL-specific challenge is the
translation of problems to first-order logic: While Leslie-Hurd [Hur03] observed that
omitting type information in the translation to first-order logic increases the success rate,
the widespread usage of axiomatic type classes in Isabelle/HOL prevents this. Therefore,

2As we do not distinguish between axioms and lemmas in premise selection, we denote their union as
theorems. Furthermore, we denote the theorems used in a proof attempt as premises.

7

Chapter 1 Introduction

Sledgehammer translates only enough type information to allow for type-class reasoning,
omitting all other type information. Higher-order constructs are treated locally, such
that a single higher-order lemma does not necessarily change the translation of all other
lemmas. Lambda abstractions are eliminated via combinatory logic. Once the problem is
translated to first-order logic, Sledgehammer searches for proofs with untrusted tools
such as E, Vampire, and SPASS. A proof found by one of these systems can either be
reconstructed with a single call to Metis using the facts present in the proof, or translated
line-by-line to an Isar proof script. As part of proof reconstruction, proofs are minimised,
i.e. the ATP is called with subsets of the facts it used in its proof, until a minimal set of
facts necessary to prove the problem is found. An alternative to reducing problems to
first-order logic is to integrate higher-order logic ATPs, which was done with Satallax
and LEO-II [SBP13]. Furthermore, SMT solvers were integrated [BBP11].

Systems similar to Sledgehammer are HOL(y)Hammer [KU14, KU15b] for HOL4 and
HOL Light, and MizAR [KU15d] for Mizar.
In this thesis, we improve three parts of the hammer infrastructure, namely premise

selection, automated theorem provers, and proof reconstruction. Machine learning played
a crucial part in the first two parts.

1.5 Contributions

We make the following contributions in this thesis:
• We investigate online and offline random forests for premise selection: We improve

an offline random forest algorithm with incremental learning and add multi-path
querying with depth weighting to integrate secondary classifiers.

• We implement efficient proof search based on clausal and nonclausal connection
tableaux calculi in functional programming languages. Furthermore, we introduce
a consistent Skolemisation method and an alternative clause processing order for
nonclausal proof search.

• We introduce a method to guide given-clause ATPs based on positive and negative
examples. We apply our technique to an ATP operating on higher-order logic, thus
realising the first internal guidance for higher-order ATPs.

• We use Monte Carlo Tree Search to guide ATPs. To this end, we propose and
evaluate several proof state evaluation heuristics, including two that learn from
previous proofs.

• We translate problems in higher-order logic to first-order logic. We also certify
first-order logic proofs by translation to an ITP: We consider Metis as well as
clausal and nonclausal connection tableaux proofs. For connection tableaux calculi,
we give a unified formulation adapted for proof translation.

This thesis includes content from several published articles [FK15a, FK15b, FB16, FKU17]
and an article submitted to JAR [FKU18]. For each of the aforementioned articles, more
than 90% of the content was written by the author of this thesis. Furthermore, the author
of this thesis has implemented and evaluated all programs and algorithms described in
these articles.

8

1.6 Outline

This thesis improves on the articles by providing uniform notation and a structure
that groups related topics from different articles, thus reducing redundancy. To improve
the presentation of the existing content, several examples were added. Furthermore, the
thesis describes some topics not present in the articles, such as k-nearest neighbours
for premise selection (Section 2.2), an anomaly occurring in nonclausal proof search
(Section 3.8), an approach to conduct reproducible experiments (Section 3.10), and an
improved reconstruction of Metis proofs (Section 6.3).

1.6 Outline
This thesis is structured as follows:

• In Chapter 2, we explain how to select premises using the machine learning algo-
rithms k-nearest neighbours, Naive Bayes, and random forests. This chapter is
based on [FK15b] published in Frontiers of Combining Systems (FroCoS).

• In Chapter 3, we explain how to implement connection proof search in functional
programming languages to improve the speed of proof search and to integrate
machine learning. This chapter is based on unpublished work submitted to Journal
of Automated Reasoning (JAR) [FKU18].

• In Chapter 4, we explain internal guidance of given-clause provers with positive and
negative examples and apply it to higher-order proof search. This chapter is based
on [FB16] published in International Joint Conference on Automated Reasoning
(IJCAR).

• In Chapter 5, we explain how to expand proof search trees using Monte Carlo Tree
Search and present heuristics adapted to proof search. This chapter is based on
[FKU17] published in International Conference on Automated Deduction (CADE-
26).

• In Chapter 6, we explain how to translate higher-order problems to first-order
problems and to translate first-order proofs to higher-order proofs. This chapter is
based on [FK15a] published in Global Conference on Artificial Intelligence (GCAI)
and unpublished work submitted to JAR [FKU18].

9

Chapter 2

Premise Selection

2.1 Introduction
The large number of facts present in mathematical corpora can pose a challenge to
automated theorem provers. To increase the likelihood that an ATP quickly finds a proof,
it can help to supply the ATP with a smaller set of facts that seems sufficient to make
the ATP prove the conjecture. The selection of such facts is called premise selection (or
relevance filtering or fact selection).

Definition 2.1 (Premise Selection). Given a set of theorems T (i.e. a theorem corpus)
and a conjecture c, premise selection returns a set of premises P ⊆ T such that an ATP
is likely to find a proof of P ` c [AHK+14, BGK+16].

Premise selection is an important processing step before the translation of a problem
to a different logic, as the complexity of the translation often depends on the lemmas to
be translated. Therefore a good estimation of the facts that are useful for a proof can
considerably increase the chances that an ATP finds a proof within a given time limit.

To find relevant premises, one can use information from previous proofs which premises
were used to prove conjectures. We found that the following informal assumptions can be
used to build fairly accurate premise selectors, when theorems are suitably characterised
by features:

• Theorems sharing many features or rare features are similar.
• Theorems are likely to have similar theorems as premises.
• Similar theorems are likely to have similar premises.
• The fewer premises a theorem has, the more important they are.

In this chapter, we discuss machine learning methods to build premise selectors that
implement the above assumptions. For that, we give an encoding of theorem corpora as
machine learning input.

Definition 2.2 (Samples, Labels, Features). Any proven theorem l ∈ T of a given
theorem corpus T gives rise to a training sample (l, ~f) ∈ S, where l is a label and ~f is the
set of features that characterises l. For every sample s = (l, ~f), the function premises(s)
returns the samples corresponding to the premises of l. Inversely, premises−1(s) returns
all samples that have s as premise.

Example 2.3. We consider the HOL Light theorem ADD_SYM, which is defined in List-
ing 2.1 and states ` ∀mn.m+n = n+m. We can choose to characterise theorems by the

11

Chapter 2 Premise Selection

Listing 2.1: HOL Light proof of symmetry of addition.

let ADD_SYM = prove
(`!m n. m + n = n + m`,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;

constants and types present in their statements. This way, the sample s corresponding
to ADD_SYM is (ADD_SYM, ~f) with ~f = {+,=,∀, num, bool}. To record which theorems
were used in a proof, we use a modified version of HOL Light. This yields that in the
proof of ADD_SYM, INDUCT_TAC uses the premise num_INDUCTION, and ASM_REWRITE_TAC
rewrites the goal using the premises ADD_CLAUSES, REFL_CLAUSE, and FORALL_SIMP. As
ADD_CLAUSES is a conjunction of existing theorems and rewriting uses two of them,
namely ADD and ADD_SUC, those theorems are also recorded as premises. We therefore
encode the premises of s as premises(s) = {(ADD_CLAUSES, ~f1), (ADD, ~f2), (ADD_SUC, ~f3),
(REFL_CLAUSE, ~f4), (FORALL_SIMP, ~f5), (num_INDUCTION, ~f6)}, where

{
~f1, . . . , ~f6

}
are

the features corresponding to the premises.1

This encoding allows us to view premise selection as a multi-label classification problem
[TK07].

Definition 2.4 (Multi-Label Classifier). Given a set of samples S, a multi-label classifier
trained on S is a function r that takes a set of features ~f and returns a set of labels
{l1, . . . , ln}.

Using multi-label classification, we can obtain suitable premises from a set of theorems
S for a conjecture c as follows:

1. Obtain a multi-label classifier r for S.
2. Compute ~f , the features of the conjecture c.
3. Return r(~f), the set of labels predicted by the classifier.

For premise selection, we demand an order on the set of labels returned by the multi-label
classifier. We thus obtain a list of labels [l1, . . . , ln]. This additional information allows
us to communicate to ATPs which premises are considered more useful to solve the given
problem. By convention, the list of labels is sorted by decreasing estimated usefulness.
To evaluate a multi-label classification method, we proceed as follows: A dataset

consists of a sequence of samples, some of which are evaluation samples. A multi-label
classifier learns the samples of the dataset sequentially. Whenever the classifier encounters
an evaluation sample e = (l, ~f), the classifier predicts labels for ~f before learning e. The
predicted labels are evaluated e.g. by comparing them with premises(e). This procedure is
explained in more detail in Section 2.6. We use datasets derived from following interactive
theorem provers, with statistics given in Table 2.1:

• Mizar MPTP2078 [AHK+14] updated to Mizar 8.1.02 [KU15d],
• HOL Light SVN version 193 core library [KU15b], and
• Isabelle 2014 theory HOL/Probability together with its dependencies [KBKU13].

1It is possible to omit the features in premises(s), because premises(s) ⊂ S for all s ∈ S. However, we
choose this encoding of premises for simpler presentation of the machine learning algorithms.

12

2.2 k-nearest neighbours

Table 2.1: Premise selection datasets. Averages are given per sample.
Dataset Samples Eval. smpl. Features Avg. feats. Avg. premises
Mizar 3221 2050 3773 14.2 8.8
HOL Light 2548 2247 4331 13.4 2.6
Isabelle 23442 1656 31308 23.1 4.2

2.2 k-nearest neighbours
The k-nearest neighbours (k-NN) algorithm measures the distance of the learnt samples
to the current features and returns the k closest ones [CH67]. For premise selection, we
propose several adaptations, namely weighted proximity, premises, and adaptive k. We
first introduce some functions.

Definition 2.5 (Indicator Function). The indicator function or characteristic function
1A(x) returns 1 if x ∈ A and 0 otherwise.

Definition 2.6 (f -rank). The f-rank of x with respect to the set A is the
number of elements in A for which the output of f is larger than f(x), i.e.
rankf (x,A) = |{y | y ∈ A, f(x) < f(y)}|.

We now recall the classical k-NN algorithm. We assume the existence of a norm ‖ · ‖
and a subtraction operator (−) on the feature space. Given a set of features ~f , k-NN
returns those k samples Sk whose features are closest to ~f .

Definition 2.7 (Proximity). The proximity of a sample (li, ~fi) is the inverse distance of
the sample from the feature vector ~f , i.e. prox(li, ~fi) = 1/‖~f − ~fi‖.

Definition 2.8 (k-nearest Neighbours). The k-nearest neighbours are those samples
with a proximity rank smaller than k, i.e. Sk = {s ∈ S | rankprox(s, S) < k}. The labels
of Sk are the output of the classifier.

We are now going to show the adaptations for k-NN to accommodate for premise
selection.
We use inverse document frequency (IDF) to weigh the relevance of features [Jon73].

The idea is that the more features two feature sets share and the less frequent the shared
features occur among all samples, the closer we consider the two feature sets to be. To
this end, we replace the proximity in Definition 2.7 by the proximity in Definition 2.10.

Definition 2.9 (Inverse Document Frequency). The inverse document frequency of a
feature f is

idf(f) = |S|∣∣∣{(li, ~fi) ∈ S | f ∈ ~fi
}∣∣∣

Definition 2.10 (IDF-weighted Proximity). The IDF-weighted proximity of a sample
(li, ~fi) is ∑

f∈~f∩~fi idf(f).

13

Chapter 2 Premise Selection

When a sample s is a k-nearest neighbour, then we also want to propose its premises,
i.e. those samples that were used to prove s. We derive the relevance of a sample from
the relevance of the k-nearest neighbours that have the sample as a premise. For this, let
us define a new proximity function prox′(s) = prox(s)/ log(rankprox(s, S) + 1). Then the
final relevance of a sample s is

r(s) = 1Sk(s) prox′(s) + σ
∑

p∈premises−1(s)∩Sk

prox′(s)
|premises(p)|

where σ is a constant that controls the relevance of premises.
In traditional k-NN, k is fixed, and only those labels with a rank smaller than k are

predicted. For premise selection, using a bad value for k may cause the neighbours to be
very similar and to have similar premises. Therefore, we use an adaptive k: We choose k
such that the number of predicted labels (and their premises) is as small as possible, but
fulfils the requested number of premises.

Example 2.11. We want to propose at least three potential premises for a conjecture
with features ~f . Let S = {s1, s2, s3, s4} with prox(s1) > prox(s2) > prox(s3) > prox(s4)
and premises(s1) = {s3}, premises(s2) = {s1, s3}, and premises(s3) = {s4}. This is
illustrated in Figure 2.1. The 1-nearest neighbour of ~f is s1. It has a single premise,
namely s3. Therefore for k = 1, we would predict s1 and s3. However, as we want to
propose at least three premises, we consider k = 2. The 2-nearest neighbours of ~f are s1
and s2. Their premises are s2 and s3, so we end up with precisely three samples. The
order in which they will be suggested is given by their relevances:

r(s1) = prox′(s1) +σ prox′(s2)
| premises(s2)|

r(s2) = prox′(s2)

r(s3) = σ

(prox′(s1)
| premises(s1)| + prox′(s2)

|premises(s2)|

)
The proximity rank of s1 is 0, and the proximity rank of s2 is 1. Therefore prox′(s1) =
prox(s1)/ log(1) and prox′(s2) = prox(s2)/ log(2).

2.3 Naive Bayes
The Naive Bayes classifier orders labels by the probability that they are useful in the
presence of a set of features ~f . The statistical independence of features is (naively)
assumed and Bayes’ theorem is applied.

We show a formula nb to rank labels based on Naive Bayesian probability that can be
used for premise selection [KU15d] as well as for internal guidance, which we discuss in
Chapter 4. The specialities of internal guidance with respect to premise selection are that
premises of samples are not defined and labels can appear multiple times with different
features. For this, we introduce a function F (l), which returns the multiset of sets of

14

2.3 Naive Bayes

~f

s1

s2

s3

s4

Figure 2.1: Samples in the feature space. If a→ b, then b is a premise of a.

features that co-occurred with l, i.e. F (l) = {~f | (l, ~f) ∈ S}. The total number of times
that l occurred is |F (l)|.
Example 2.12. F (l1) = {{f1, f2} , {f2, f3}} means that the label l1 was used twice
previously; once in a state characterised by the features f1 and f2, and once when
features f2 and f3 were present.

Let P (li, ~f) denote the probability that a label li from a set ~l of potential labels is
useful in a state characterised by features ~f . Using Bayes’ theorem together with the
(naive) assumption that features are statistically independent, we derive

P (li | ~f) = P (li)P (~f | li)
P (~f)

= P (li)
P (~f)

∏
fj∈~f

P (fj | li)

To increase numerical stability, we calculate the logarithm of the probability

lnP (li | ~f) = lnP (li)− lnP (~f) +
∑
fj∈~f

lnP (fj | li)

In the final formula nb(li, ~f) to rank labels, we modify lnP (li | ~f) as follows:
• We add a term to disadvantage features not present in ~f that occurred in previous

situations with the label li.
• We weigh the probability of any feature f by its inverse document frequency idf(f)

to give more weight to rare features.
• We drop the term lnP (~f), as we compare only values for fixed features ~f .
• We weigh the individual parts of the sum with constants σ1, σ2 and σ3.

The resulting formula is

nb(li, ~f) = σ1 lnP (li)
+ σ2

∑
fj∈~f

idf(fj) lnP (fj | li)

+ σ3
∑

fj∈
⋃
F (li)\~f

idf(fj) ln(1− P (fj | li))

15

Chapter 2 Premise Selection

The unconditional label probability P (li) is calculated as follows:

P (li) = |F (li)|∑
lj∈~l |F (lj)|

In practice, as the denominator of the fraction is the same for all li, we drop it, similarly
to P (~f) above.
To obtain the conditional feature probability P (fj | li), we distinguish whether a

feature fj already appeared in conjunction with a label li. If so, then its probability is
the ratio of times fj appeared when li was used and all times that li was used. Otherwise,
the probability is estimated to be a minimal constant probability µ:

P (fj | li) =

∑

~f ′∈F (li) 1~f ′(fj)/ |F (li)| if ∃~f ′ ∈ F (li).fj ∈ ~f ′
µ otherwise

2.4 Decision Trees
Decision trees are used in machine learning for classification and regression. They are
also the underlying classification method for random forests, which we will discuss in
Section 2.5.

Definition 2.13 (Binary Decision Tree, Splitting Feature). A binary decision tree is
either a branch (l, P, r) with a predicate P and two subtrees l and r, or a leaf. We say
that a branch (l, P, r) has a splitting feature fi iff P (~f)↔ fi ∈ ~f .

Definition 2.14 (Samples and Features). The features of a set of samples S are ~f(S) =⋃
(li, ~fi)∈S

~fi. The samples of S that have and that do not have a certain feature f are

Sf = {s ∈ S | f ∈ ~f(s)},
S¬f = S \ Sf .

Constructing a tree from a set of samples S involves either creating a leaf containing S,
or creating a branch (l, P, r) with splitting feature f ∈ ~f(S) and trees l and r constructed
from Sf and S¬f , respectively. Querying a branch (l, P, r) with a value x involves querying
l if P (x) is fulfilled, otherwise querying r. Querying a leaf returns the leaf. We explain
building and querying of decision trees in more detail in the following sections.
A part of an example tree used for premise selection is shown in Figure 2.2. Leaf

nodes have unique identifiers t[yn]*, which encode their position in the tree. The
branch predicates verify the presence of certain symbols in a theorem, such as plus,
and the data in the leaves are theorems that are relevant if the tree path to them
corresponds to the symbols of the conjecture we seek to prove. For example, the branch
node with feature even(plus) has a positive leaf node with four theorems, namely
even_sum, odd_plus_odd (two times), and odd_plus_even – all having features plus

16

2.4 Decision Trees

plus

even(plus) ...

tnnnnynnnnyy plus(Pos)

even_sum odd_plus_odd odd_plus_odd even_plus_even plus(Neg)(Pos) plus(int)(int)

tnnnnynnnnynyy tnnnnynnnnynyn is_nat(plus) tnnnnynnnnynnn

plus_int_code_5 plus_int_code_3 tnnnnynnnnynnyy tnnnnynnnnynnyn rat_plus_code

transfer_int_nat_function_closures_1 dup_def

Figure 2.2: Excerpt from a decision tree trained on the Isabelle dataset.

and even(plus). The theorem plus_int_code_3 has features plus and plus(Pos), but
neither even(plus) nor plus(Neg)(Pos).
To deal with the specifics of premise selection, we propose a number of extensions to

decision trees, such as incremental learning, multi-path querying, depth weighting, and
integration of secondary classifiers in the tree leaves.

2.4.1 Feature Selection

We determine a splitting feature for a set of samples S in two steps: First, one selects a
set of candidate splitting features ~fσ ⊆ ~f(S). Then, one evaluates each of the features in
~fσ to obtain a suitable splitting feature.
In [AGPV13], the candidate splitting features are obtained by randomly drawing with

replacement (an element is drawn a set, then placed back in the set) a set of features ~fR
from ~f(S), where nR =

∣∣∣~fR∣∣∣ is a user-defined constant. When we applied the method
in the context of premise selection, we frequently obtained trees of small height with
many labels at each leaf. This is because many features occur relatively rarely in our
datasets. For example in the Mizar dataset there are 2026 features which occur only a
single time among all samples, and only 34 that occur ten times, see Figure 2.3. Taking
larger subsets of random features alleviates this problem, but it also makes the evaluation
of the features slower. To increase performance, we determine for each feature in ~fR how

17

Chapter 2 Premise Selection

0 20 40 60 80 100
0

1,000

2,000

Occurrences

Fe
at

ur
es

Figure 2.3: Feature histogram for the Mizar MPTP2078 dataset.

evenly it divides the set of samples in two, by evaluating

σ(S, f) = ||Sf | − |S¬f |||S|

The best output of σ(S, f) for a feature is 0, which is the case when a feature splits the
sample set S in two sets of exactly the same size, and the worst output is 1, when the
feature appears either in all samples or in none. The final candidate splitting features ~fσ
then are those nσ features of ~fR that yield the best values for σ(S, f). The motivation
behind this is to preselect features which are more likely candidates to become splitting
features, thus saving time in the evaluation phase.
Now we show how to select a splitting feature from the candidate splitting features

~fσ. To obtain a tree that is not too high, it is desirable for a splitting feature to split
S evenly, such that Sf and S¬f have roughly the same number of labels. Furthermore,
the best splitting feature for a set of samples S should be a feature f which makes the
samples in Sf and S¬f more homogeneous compared to S [AGPV13]. Common measures
to determine splitting features are information gain and Gini impurity [RS04, AGPV13].
We adapt Gini impurity to premise selection: Gini impurity measures the frequency of
each premise among a set of samples, and gives premises with very high or very low
frequency a low value. That means that the more similar the samples are (meaning they
possess similar premises), the lower the Gini impurity.

Definition 2.15 (Gini Impurity). The Gini impurity g(S) of a set of samples S is

g(S) =
∑

p∈
⋃
{premises(s)|s∈S}

P (p)(1− P (p))

P (p) =
∑
s∈S

P (p|s)P (s) P (p|s) =
1premises(s)(p)
| premises(s)| P (s) = |premises(s)|∑

s′∈S |premises(s′)|

In general, we look for a function s(S, f), which determines the quality of f being a split-
ting feature for S. The best splitting feature can then be obtained by arg min

f∈~fσ s(S, f).

18

2.4 Decision Trees

We evaluate two definitions for s(S, f) in Section 2.6:

sσ(S, f) = σ(S, f)

sg(S, f) = 1
|S|(|Sf |g(Sf) + |S¬f |g(S¬f))

While sσ optimally divides S into two evenly sized sets Sf and S¬f , it does not take into
account their homogeneity, unlike sg, which considers their Gini impurity and their size.

2.4.2 Incremental Learning
Whenever a user proves a conjecture in an interactive theorem prover, premise selection
methods should learn about the conjecture in order to be able to propose it in future
proof attempts. Updating classifiers with new knowledge is called online or incremental
learning, in contrast to offline learning, where all knowledge is learnt in one pass. We
show three methods to learn decision trees. The first two are existing online and offline
methods. We explain why they are not suitable for premise selection. Then, we present
a third method, which is our incremental version of the second method.
Saffari et al. [SLS+09] present an online algorithm to learn decision trees. In this

algorithm, all trees are initially leafs. Adding a sample to a leaf consists of adding the
sample to the samples in the leaf. As soon as the number of samples in a leaf exceeds
a certain threshold or a sufficiently good splitting feature for the sample set is found,
the leaf splits into a branch with two leafs. When adding a sample to a branch, the
sample gets added to the left or to the right child of the branch, according to whether
or not the sample has the splitting feature of the branch. The method of Saffari et al.
introduces a bias such that features which appear in early learned samples will be at the
tree roots. Saffari et al. solve this problem by removing trees with a high prediction error
(OOBE, out-of-bag error). However, this introduces a bias towards the latest learned
samples, which is useful for computer graphics applications such as object tracking, but
undesirable for premise selection, as the advice asked from a predictor will frequently not
correspond to the last learned theorems.
Agrawal et al. [AGPV13] show an offline algorithm to learn decision trees. To learn

a decision tree for a set of samples S, the algorithm first determines a splitting feature
(explained in Subsection 2.4.1) for S. If |Sf | < µ or |S¬f | < µ, where µ is the minimal
number of samples which a leaf has to contain, the algorithm returns a leaf node containing
S, otherwise the algorithm recursively calculates trees for Sf and S¬f and combines
them into a branch node with the splitting feature f . The approach of Agrawal et al.
has several disadvantages when used for premise selection: While we need to learn data
quickly and query only a few times after each learning phase, the algorithm of [AGPV13]
is optimised to answer queries in logarithmic time, whereas its learning phase is relatively
slow. Furthermore, because the algorithm is an offline algorithm, it rebuilds all trees to
learn new samples.

We show an improved version of the offline algorithm given in [AGPV13] which updates
decision trees with new samples. Given a tree t and a set of new samples S to learn, the
algorithm calculates S′, which is the union of S with all the samples in the leaf nodes of

19

Chapter 2 Premise Selection

t, and a splitting feature f for S′. If t is a branch (l, P, r) with f as a splitting feature,
we recursively update l with Sf and r with S¬f . Otherwise, we construct a new tree for
S′: If |S′f | < µ or |S′¬f | < µ, we return a leaf node with S′, otherwise we construct trees
l′ for S′f and r′ for S′¬f , returning a branch node (l′, P ′, r′) with f as splitting feature.
This algorithm returns the same trees as the original algorithm, but can be significantly
faster in case of updates. For example, predicting advice for the whole Mizar dataset
takes 1287s with this optimisation and 3442s without.
We evaluated three functions to calculate µ, which depend on the samples of the

whole tree, namely µlog(S) = log |S|, µsqrt(S) =
√
|S|, and µconst(S) = 1. Agrawal et al.

[AGPV13] use only µlog. We show the results for each of these functions in Section 2.6.

2.4.3 Querying

To query a decision tree with features ~f , a common approach is to recursively go to
the left tree l of a branch node (l, P, r) if P (~f) and to the right tree r if not, until
encountering a leaf with samples S, upon which S is returned. This approach frequently
misses samples with interesting features when these do not completely correspond to
the query features. This is why we consider a different kind of tree query, which we call
multi-path querying (MPQ). In contrast to single-path querying (SPQ), MPQ considers
not only the path with 100% matching features, but also all other paths in the tree. At
each branch node where the taken path differs from the path foreseen by the splitting
feature of the node, we store the depth d of the node.

Example 2.16. In Figure 2.4, we show an excerpt of a decision tree generated from the
Isabelle/HOL Probability dataset. We assume that the query features (marked in green)
are {tSet.set, Set.member}. The numbers next to the branches indicate the depth of
wrongly taken decisions. These decisions are accumulated and shown below the samples
at the bottom.

The output of a multi-path query for a tree t and features ~f is mq(t, 0, ∅), where

mq(t, d, E) =

{(S, d,E)} if t is leaf with samples S
mq(l, d+ 1, E) ∪mq(r, d+ 1, E ∪ {d}) if t is branch (l, P, r) and P (~f)
mq(r, d+ 1, E) ∪mq(l, d+ 1, E ∪ {d}) if t is branch (l, P, r) and ¬P (~f)

The output of mq(t, 0, ∅) is a set of triples (S, d,E), where S is a set of samples in some
leaf node n of t, d is the depth of n in t, and E are the depths of the nodes on the path
to n where the query features ~f do not correspond to the path.
We want to assign to each tree leaf a weight, which indicates how well the features ~f

correspond to the features along the path from the root of the tree to the leaf. To do
this, we consider the depths of the branch nodes where we took a different path than
foreseen by ~f , and calculate for each of the depths a weight, which we later combine to
form a branch or sample weight.
For each e ∈ E, where (S, d,E) ∈ mq(t, 0, ∅), we calculate a depth weight. We tried

20

2.4 Decision Trees

tSet.set

tNat.nat

sGroups.plus

. . .

{0}
S3

{0, 2}

2
Groups.zero_class.zero

. . .

{0, 1}
. . .

{0, 1, 2}

2

1
Set.member

S2

{1}

S1

{}

1

0

Figure 2.4: Multi-path query example.

different depth weight functions, where the constant µ represents the minimal weight:

eascending(d, e) = µ+ (1− µ)
(
e

d

)
edescending(d, e) = 1− (1− µ)

(
e

d

)
einverse(d, e) = 1− 1− µ

e+ 1
econst(d, e) = µ

Let us fix the used depth weight function to be ei. Using the depth weights, we calculate
a weight for each sample:

wt(s) =
∑

(S,d,E)∈mq(t,0,∅)
s∈S

∏
e∈E

ei(d, e)

Regular decision trees with single-path querying return all the labels of the chosen
branch. To order the results from multiple branches in a tree, which is necessary with
multi-path querying, we run a secondary classifier on all the leaf samples of the tree. The
secondary classifier is modified to take into account the weight of each branch. In our
experiments, the secondary classifier is a k-NN algorithm adapted for premise selection
(see Section 2.2), which we modified to accept sample weights: k-NN will give premises
that appear in samples with higher weights precedence over those from samples with
lower weights. In default k-NN, all samples would have weight 1, while in our secondary
classifier, the weight of a sample s is given by wt(s), which stems from the path to s in
the decision tree.

21

Chapter 2 Premise Selection

2.5 Random Forests

Random forests [Bre01] are a family of bagging algorithms [Bre96], meaning that they
choose random subsets of data to build independent classifiers and combine their pre-
dictions to form a final prediction. In the case of random forests, the independent
classifiers are decision trees. Random forests are known for high speed and quality in
many domains [CN06]. Many different versions of random forests have been proposed
[AGPV13, Bre96, LRT14, SLS+09]. Random forests are used in applications where large
amounts of data needs to be classified in a short time, such as automated proposal of
advertisement keywords for web pages [AGPV13] or prediction of object positions in
real-time computer graphics [SLS+09].
To deal with the specifics of premise selection, we propose a number of extensions to

random forests, such as different sample selection heuristics and incremental learning.
Combining these extensions with the decision trees shown in Section 2.4, we improve
upon the k-nearest neighbour algorithm both in terms of prediction quality and ATP
performance. We will show this in Section 2.6.

2.5.1 Sample Selection

When learning new samples S, random forests determine which trees learn which samples.
In [AGPV13], each tree in a forest randomly draws n samples from S. This approach
may introduce a bias, namely that some samples are drawn more often than others, while
some samples might not be drawn (and learned) at all. Therefore, instead of each tree
drawing a fixed number of samples to learn, in our approach, each sample draws a fixed
number of trees by which it will be learned. We call this fixed number sample frequency
and denote it by fs. This approach has the advantage that by definition, every sample is
guaranteed to be learned as often as all other samples.

2.5.2 Incremental Learning

The method of Saffari et al. [SLS+09] incrementally updates random forests: When
learning a new sample, it is added to all trees with a probability determined by a Poisson
distribution with λ = 1 [OR01]. We adopt this use of probability distributions to create
incrementally learning versions of offline bagging algorithms as follows.
Given a bagging algorithm (such as random forests) whose individual predictors (in

our scenario the decision trees of the forest) learn a random subset of samples offline, we
show a method to decrease the runtime of incrementally learning new data. The method
is based on the following observation: When learning only a small number of new samples
(compared to the number of samples already learned), most predictors will not include
any of those new samples, thus they do not need to be updated. To model this, let r be
a binomially distributed random variable r ∼ B(s, P), where s is the number of samples
in each predictor and P = nnew

nnew+nold
is the probability of drawing a new sample from the

common pool of new and old samples. The number of new samples drawn by a predictor
is then modelled by r. Each predictor evaluates the random variable r, and if its value

22

2.6 Evaluation

e1 e2 . . .

1. learn

2. predict premises(e1)
for features of e1

3. learn

4. predict premises(e2)
for features of e2

. . .

Figure 2.5: In an evaluation, a set of samples is learned until an evaluation sample ei is
encountered, for which premises(ei) are predicted.

rp is 0, the predictor remains unchanged. Only if rp is greater than 0, the predictor is
retrained with rp samples from the set of new samples and s− rp samples from the set
of old samples. This method gives a performance increase over always rebuilding all
predictors.

2.5.3 Querying

We query a forest with a set of features ~f by querying each tree in the forest with ~f ,
combining the prediction sequences L of all trees. For each label l, we calculate its rank
in a prediction sequence ~l = [l1, . . . , ln] as:

%(l,~l) =
{
i if l = li and li ∈ ~l
m otherwise

Here, m is a maximal rank attributed to labels that do not appear in a prediction
sequence. Then, for each label, we calculate its ranks R(l) =]~l∈L%(l,~l) for all prediction
sequences. We sort the labels by the arithmetic, quadratic, geometric, or the harmonic
mean of R(l) in descending order to obtain the final prediction sequence.

2.6 Evaluation

We explain how to evaluate predictor performance on a sequence of samples. For this,
we define a subset of the samples as evaluation samples, for which the classifier will
predict premises by iterating over all samples in order and predicting premises for each
evaluation sample e before learning e, as illustrated in Figure 2.5. We can evaluate the
quality of the predictions in two ways: First, the predictions can be translated to an
ATP problem and given to an automated theorem prover. Second, they can be compared
to the actual labels of the evaluation samples. For the second method, we will show two
quality measures, namely n-Precision and AUC [ZZ14]. We first introduce some notation:
Given a sequence of distinct elements ~x = [x1, . . . , xn], we denote ~xei = [xi, xi+1, . . . , xe].
Furthermore, when it is clear from the context, we treat sequences as sets, where the set
elements are the elements of the sequence.

23

Chapter 2 Premise Selection

The first measure, n-Precision, is similar to Precision: Precision computes the percent-
age of premises from the training sample appearing among the predicted premises. The
n-Precision considers only the first n predictions, which corresponds to our passing only a
fixed maximal number of premises to ATPs. If not stated otherwise, we use 100-Precision
in our evaluations.

Definition 2.17 (n-Precision). The n-Precision for a sequence of predicted premises ~p
and a set of real premises ~r is

Precn(~p, ~r) = |~p
n
1 ∩ ~r|
|~r|

The second measure, AUC, models the probability that for a randomly drawn real
premise ri ∈ ~r and a randomly drawn non-real predicted premise pj ∈ ~p \ ~r, ri appears in
the predictions before pj .

Definition 2.18 (AUC). The AUC for a sequence of predicted premises ~p and a set of
real premises ~r is

AUC(~p, ~r) =

∑|~p|
n=1 |~pn1 ∩ ~r|
|~r| × |~p \ ~r| if |~r| × |~p \ ~r| > 0

1 if |~r| × |~p \ ~r| = 0

We implemented the presented premise selection methods in Haskell.2 Our initial
implementation of random forests following [AGPV13] was several magnitudes slower
than k-NN even for small datasets, rendering it impracticable for incremental learning.
Furthermore, the prediction quality was lower than expected: For the first 200 evaluation
samples of the Mizar dataset, a random forest with 4 trees and 16 random features
evaluated at every tree branch achieved an AUC of 82.96% in 82s, whereas k-nearest
neighbours achieved an AUC of 95.84% in 0.36s.

Our default random forest configuration (RF) uses 4 trees with a sample frequency of
16, the sample selection method “samples draw trees”, the minimal sample function µlog,
no Gini impurity, the depth weight function eInverse with µ = 0.8. The final prediction
is obtained by running k-NN with IDF over the weighted leaf samples of each tree,
combining results with the harmonic mean.

The experimental results of our improved random forests for premise selection are given
in Table 2.2: Random forests achieve the best results when combined with multi-path
querying and path-weighted k-NN+IDF classifier in the leaves. Both considering Gini
impurity and taking random subsets of features decreases the prediction quality and has a
very negative impact on runtime. Different sample selection methods (samples draw trees
vs. trees draw samples) have a large impact when using small sample frequencies, but
when using higher sample frequencies, the difference is negligible. In this evaluation, we
simulated single-path querying (SPQ) by a constant depth weight with µ = 0 (meaning
that all non-perfect tree branches receive the minimal score 0). Running this method

2The source code can be obtained at http://cl-informatik.uibk.ac.at/users/mfaerber/predict.html.

24

http://cl-informatik.uibk.ac.at/users/mfaerber/predict.html

2.6 Evaluation

Table 2.2: Results for Mizar dataset. ∑ t is the prediction time for the whole dataset,
and t̄ is the average prediction time per evaluation sample.

Configuration 100-Prec [%] AUC [%] ∑
t [min] t̄ [s]

k-NN + IDF 87.5 95.39 0.5 0.02
RF (IDF) 88.0 95.68 32 0.93
RF (no IDF) 77.8 91.40 25 0.75
RF (single-path query) 53.7 60.86 37 1.07
RF (fs = 2, trees draw s.) 65.6 72.76 2 0.05
RF (fs = 2, samples draw t.) 88.0 95.59 4 0.10
RF (random features nR = 32) 88.0 95.65 151 4.41
RF (Gini impurity, nσ = 2) 88.0 95.65 97 2.84
RF (Gini impurity, nσ = 16) 88.0 95.62 220 6.44
RF (eascending) 88.0 95.72 36 1.07
RF (edescending) 88.1 95.66 39 1.15
RF (einverse) 88.0 95.68 38 1.12
RF (econst) 88.1 95.81 37 1.08
RF (arithmetic mean) 87.5 95.49 33 0.98
RF (geometric mean) 88.0 95.67 35 1.01
RF (quadratic mean) 87.4 95.34 33 0.97
RF (100 trees, fs = 50) 88.5 95.85 137 4.01
RF (24 trees, fs = 12) 88.5 95.83 31 0.90
RF (24 trees, fs = 12, econst) 88.6 95.91 22 0.66

takes longer than real SPQ, but gives a good upper bound on SPQ’s prediction quality.
Random forests have a longer runtime than k-NN, but still, the average prediction time
for our test set is below one second, which is sufficient for premise selection in interactive
theorem provers. We are going to show that despite the seemingly small improvement in
100-Prec and AUC, using random forests instead of k-NN can considerably decrease the
overall time needed to solve the same number of problems.

To produce the number of proven theorems in Table 2.3, we predict premises (at most
128 for Mizar and 1024 for HOL Light) for each conjecture, translate the chosen facts
together with the conjecture to TPTP first-order formulas [Sut09b] and run E 1.8 [Sch13]
with automatic strategy scheduling and 30s timeout.

Alama et al. [AHK+14] have reported 548 proven theorems with Vampire (10s timeout)
without external premise selection, which their best premise selection method (MOR-
40/100) increases to 824 theorems (+50.4%). On our data, E (10s timeout) without
premise selection proves only 414 theorems, increasing with 30s timeout to 653 theorems
(+57.7%) and with 10s timeout and RF premise selection to 962 (+132.3%).

In Table 2.4, we compare ATP runtime required to prove the same number of theorems
using k-NN and RF predictions. While RF classification requires more runtime than
k-NN, the ATP timeout can be decreased by more than 25%, resulting in overall runtime

25

Chapter 2 Premise Selection

Table 2.3: Results of k-NN and random forest predictions on two datasets. For random
forests, we used the best configuration from Table 2.2, i.e. 24 trees, sample
frequency 12, and constant depth weight.

Data / Predictor 100-Prec [%] AUC [%] Proved
Mizar / k-NN 87.5 95.39 931
Mizar / RF 88.6 95.91 959 (+3.0%)
HOL Light / k-NN 91.9 95.65 789
HOL Light / RF 92.9 96.29 823 (+4.3%)

Table 2.4: Comparison of runtime necessary to achieve the same number of proven
theorems (969) for the Mizar dataset.

Classifier Classifier runtime E timeout E runtime Total runtime
k-NN 0.5min 15s 341min 341min
RF 22min 10s 252min 272min

reduction of about 20%.

In Figure 2.6, we show how the prediction quality develops for the Mizar dataset as
more data is learned: For this purpose, we calculated statistics for the predictions of just
our first evaluation sample, then for the first two, etc. When comparing the output of
our random forest predictor (24 trees, sample frequency 12, constant depth weight) with
k-NN, we see that it consistently performs better.

200 400 600 800 1,000

0.9

0.95

1

Evaluation samples

Pr
ec

isi
on

RF
k-NN

Figure 2.6: Comparison of k-NN with random forests by number of evaluation samples
on Mizar dataset.

26

2.7 Related Work

2.7 Related Work

The Meng-Paulson relevance filter (MePo) integrated into Isabelle/HOL as part of
Sledgehammer was one of the first premise selectors for ITPs [MP09]. It is an iterative
algorithm which counts function symbols in clauses and compares them to the function
symbols in the conjecture to prove. In contrast to many other premise selectors, MePo
does not consider the premises used to prove similar theorems.

Later approaches applied established machine learning methods for multi-label classifi-
cation [ZZ05] to premise selection, such as kernel methods [AHK+14], PageRank [KU15c],
k-nearest neighbours, and Naive Bayes [BGK+16].

Naive Bayes was the first machine learning algorithm used in an automated reasoning
loop, and thanks to premises, the prediction quality improved upon syntactic tools
[Urb04]. Simple perceptron networks have also been evaluated for HOL(y)Hammer
predictions [KU14], and while their results are weak, they are complementary to other
methods.

Machine learning algorithms such as k-nearest neighbours [ZZ05] and Naive Bayes were
integrated into Sledgehammer as part of MaSh (Machine learning for Sledgehammer)
[BGK+16], significantly improving ATP performance on the translated problems. The
single most powerful method used for premise selection in HOL(y)Hammer, MizAR,
and Sledgehammer/MaSh is a customized implementation of k-NN [KU14]. Stronger
machine-learning methods that use kernel-based multi-output ranking (MOR [AHK+14]
and MOR-CG [Kü14]) or deep neural networks [ISA+16, WTWD17] were found to
perform better, at the cost of longer training or prediction times.

Premise selection is also used in ATPs to reduce original problems before the actual proof
search. For example, SInE (Sumo Inference Engine) [HV11] improves the performance
of the Vampire theorem prover [KV13] when working with large theories. SInE has
also been implemented as a part of E [Sch13]. Premise selection has become especially
important in the “large theory bench” division added to CASC in 2008 [Sut09a], with
systems such as MaLARea [USPV08] and E.T. [KSUV15] achieving notable results.

2.8 Conclusion

Premise selection benefits from the usage of machine learning. We showed versions of
k-nearest neighbours and Naive Bayes adapted to premise selection. Furthermore, we
investigated random forests as premise selection method, in particular versions of it that
are able to deal with the large amounts of learning data present in mathematical corpora.
We evaluated several random forest approaches for ATP premise selection: Without
modifications, the algorithms return worse predictions than the current state-of-the-art
premise selectors included in HOL(y)Hammer, MizAR, and Sledgehammer/MaSh, and
the time needed to select facts from a larger database is significant. We then proposed
a number of extensions to the random forest algorithms designed for premise selection,
such as incremental learning, multi-path querying, and various heuristics for the choice
of samples, features and size of the trees. We combined random forests with a k-NN

27

Chapter 2 Premise Selection

predictor at the tree leaves of the forest, which increases the number of theorems from
the HOL Light dataset that E can successfully reprove over the previous state-of-art
classifier k-NN by 4.3%. We showed that to attain the same increase with k-NN, it is
necessary to run E for 50% longer.
In scenarios where the number of queries is large in comparison with the number of

learning phases, the random forest approach is an effective way of improving prediction
quality while keeping runtime acceptable. This is the case for usage in systems such as
HOL(y)Hammer and MizAR, but not for Sledgehammer, where data is relearned more
frequently. The performance of random forests could still be improved by recalculating
the best splitting feature only after having seen a certain minimal number of new samples
since the last calculation of the best feature. This would improve learning speed while not
greatly altering prediction results, because it is relatively unlikely that adding few samples
to a big tree changes the tree’s best splitting feature. Further runtime improvements
could be made by parallelising random forests.

28

Chapter 3

Connection Proof Search

3.1 Introduction

The connection calculus [Bib91] was introduced as a variant of tableaux [LS01]. Con-
nection calculi enable goal-directed proof search in a variety of logics. Connections were
considered among others for classical first-order logic [LSBB92], for higher-order logic
[And89] and for linear logic [Gal00].

An important family of connection provers for first-order logic is derived from leanCoP
[OB03, Ott08]. leanCoP was inspired by leanTAP [BP95], which is a prover based on
free-variable semantic tableaux. leanTAP popularised lean theorem proving, which uses
Prolog to maximise efficiency while minimising code. The compact Prolog implementation
of lean theorem provers made them attractive for experiments both with the calculus
and with the implementation. For example, leanCoP has been adapted for intuitionistic
(ileanCoP [Ott05]), modal (MleanCoP [Ott14]), and nonclausal first-order logic (nanoCoP
[Ott16]). The intuitionistic version of leanCoP [Ott05] became the state-of-art prover
for first-order problems in intuitionistic logic [ROK07]. A variant of leanCoP with
interpreted linear arithmetic (leanCoP-Ω) won the TFA division of CASC-J5 [Sut11].
Various implementation modifications can be performed very elegantly, such as search
strategies, scheduling, restricted backtracing [Ott10], randomization of the order of proof
search steps [RO08], and internal guidance [UVv11, KU15a].

We have used connection provers from the leanCoP family as a basis for experiments
with machine learning (see Chapter 5) and proof certification (see Section 6.4). For
these applications, we implemented connection provers in functional instead of logic
programming languages. There are several reasons: First, a large number of interactive
theorem provers (ITPs), such as HOL Light, HOL4, Isabelle, Coq, and Agda are written
in functional programming languages, lending themselves well to integration of functional
proof search tactics. Second, several machine learning algorithms have been recently
implemented efficiently for these ITPs in functional languages. Third, we achieve better
performance with functional-style implementations, which is important to compensate
for the performance penalty incurred by machine learning.

We first describe connection tableaux calculi in Section 3.2. We then discuss different
aspects of implementing automated theorem provers for the given calculi, namely problem
preprocessing in Section 3.3, consistent Skolemisation in Section 3.4, connection search
in Section 3.5 and functional-style proof search in Section 3.6. We describe our findings
related to nonclausal proof search in Section 3.7 and Section 3.8. Finally, we evaluate

29

Chapter 3 Connection Proof Search

our implementations in Section 3.9 and introduce our approach to create reproducible
experiments in Section 3.10.

3.2 Connection Calculi
Connection calculi provide a goal-oriented way to search for proofs in classical and
nonclassical logics [Ott08]. Common to these calculi is the concept of connections
{P,¬P} between literals P and ¬P , which correspond to closing a branch in the tableaux
calculus [Häh01].

Connection tableaux calculi, such as [Bib83], are members of the family of connection
calculi. As the calculi considered in this thesis have a very small set of rules, they lend
themselves very well to proof translation and machine learning.
In this section, we introduce the clausal and the nonclausal connection calculus that

we will use throughout this thesis.
The connection calculi in this thesis operate on matrices, where a matrix is a set of

clauses. In the nonclausal calculus, clauses do not only contain literals, but also matrices,
giving rise to a nested structure. We use the symbols M for a matrix, C for a clause,
L for a literal, x for a variable, and ~x for a sequence of variables, as in ∀~x.P (~x). A
substitution σ is a mapping from variables to terms. The complement L is A if L has the
shape ¬A, otherwise L is ¬A. A σ-complementary connection {L,L′} exists if σL = σL′.
Given a relation R, its transitive closure is denoted by R+ and its transitive reflexive
closure by R∗.
We will focus on two variants of the calculus: clausal and nonclausal. As the two

alternatives will differ only in the clauses and rules, we first give a definition of the
common parts of the clausal and nonclausal connection calculi, omitting the calculus
rules.

Definition 3.1 (Connection Calculus, Connection Proof). The words of a connection
calculus are tuples 〈C,M,Path〉, where C is a clause, M is a matrix, and Path is a set
of literals called the active path. C and Path can also be empty, denoted ε. In the
calculus rules, σ is a term substitution and {L,L′} is a σ-complementary connection. The
substitution σ is global (or rigid), i.e. it is applied to the whole derivation. A connection
proof for 〈C,M,Path〉 is a derivation in a connection calculus for 〈C,M,Path〉 in which
all leaves are axioms. A connection proof for M is a connection proof for 〈ε,M, ε〉.

To complete the definitions of the variants of the connection calculus, we need to
specify the types of clauses and the rules. In the clausal connection calculus, a clause is
a set of literals. The calculus rules are presented in Figure 3.1.
In the nonclausal connection calculus, a clause is a set of literals and matrices. The

following definitions of the concepts used in the extension rule follow Otten [Ott11, Ott16].

Definition 3.2 (Clause Predicates). A clause C contains L iff L ∈+ C. A clause
C ∈+ M is α-related to a literal L iff there is some M ′ ∈∗ M with {CL, CC} ⊆M ′ such
that CL 6= CC , L ∈+ CL, and C ∈∗ CC . A clause C ′ is a parent clause of C iff M ′ ∈ C ′
and C ∈M ′ for some matrix M ′.

30

3.2 Connection Calculi

Axiom A{},M, Path

Start C2,M, {}
S

ε,M, ε
where C2 is copy of C1 ∈M

Reduction
C,M,Path ∪ {L′}

R
C ∪ {L},M, Path ∪ {L′} where σ(L) = σ(L′)

Extension C2 \ {L′},M, Path ∪ {L} C,M,Path
E

C ∪ {L},M, Path
where C2 is copy of C1 ∈M and L′ ∈ C2 with σ(L) = σ(L′)

Figure 3.1: Clausal connection calculus rules.

Definition 3.3 (Clause Functions). A copy of the clause C in the matrix M is created
by replacing all free variables in C with fresh variables. M [C1\C2] denotes the matrix
M in which the clause C1 is replaced by the clause C2.

Definition 3.4 (Extension Clause, β-clause). C is an extension clause (e-clause) of the
matrix M with respect to a set of literals Path iff either (a) C contains a literal of Path,
or (b) C is α-related to all literals of Path occurring in M and if C has a parent clause,
that parent clause contains a literal of Path. The β-clause of C2 with respect to L2 is
C2 with L2 and all clauses that are α-related to L2 removed.

The rules of the nonclausal calculus are shown in Figure 3.2. The difference in the
calculus rules to the clausal variant is the addition of a decomposition rule, and the
adaptation of the extension rule to the nonclausal setting.
Given an order <, we can write sets as ordered sequences [X1, . . . , Xn], where for all

i < n, Xi < Xi+1. Clauses and matrices can thus be shown as horizontal and vertical
sequences, respectively.

Example 3.5. Consider the following formula F and its prenex conjunctive normal form
F ′. We will show that they imply ⊥:

F = Q ∧ P (a) ∧ ∀x.(¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)))
F ′ = ∀x.(Q ∧ P (a) ∧ (¬P (x) ∨ ¬P (s2x)) ∧ (¬P (x) ∨ P (sx) ∨ ¬Q))

For brevity, we write sx for s(x) and s2x for s(s(x)). The nonclausal matrixM corresponds
to F and the clausal matrix M ′ to F ′:

M =

[Q][P (a)]

 ¬P (x)[
[¬P (s2x)]

[
P (sx)
¬Q

]]

M ′ =

[Q][P (a)]
[
¬P (x)
¬P (s2x)

]¬P (x)
P (sx)
¬Q

31

Chapter 3 Connection Proof Search

Axiom A{},M, Path

Start C2,M, {}
S

ε,M, ε
where C2 is copy of C1 ∈M

Reduction
C,M,Path ∪ {L′}

R
C ∪ {L},M, Path ∪ {L′} where σ(L) = σ(L′)

Extension C3,M [C1\C2], Path ∪ {L} C,M,Path
E

C ∪ {L},M, Path

where C3 is the β-clause of C2 with respect to L′, C2 is copy of
C1, C1 is e-clause of M with respect to Path ∪ {L}, C2 contains
L′ with σ(L) = σ(L′)

Decomposition
C ∪ C ′,M, Path

D
C ∪ {M ′},M, Path

where C ′ ∈M ′

Figure 3.2: Nonclausal connection calculus rules.[Q][P (a)]

 ¬P (x′)[
[¬P (s2x′)]

[
P (sx′)
¬Q

]]
 ¬P (x̂)[

[¬P (s2x̂)]
[
P (sx̂)
¬Q

]]

Figure 3.3: Nonclausal graphical connection proof.

Nonclausal and clausal graphical proofs for the problem are given in Figures 3.3 and 3.4:
There, lines represent connections, and the substitution used is σ = {x′ 7→ a, x̂ 7→ sx′, x̄ 7→
x′}. A formal proof for M ′ in the clausal connection calculus is given in Figure 3.5. A
shorter proof for M ′ as well as a formal proof for M will be given using slightly modified
versions of the calculi in Subsection 6.4.1.

Soundness and completeness have been proved both for the clausal [LS01] and for the
nonclausal calculus [Ott11].
In the next sections, we develop an efficient implementation of a connection prover

for classical first-order logic in a functional programming language. The resulting
implementation will be the basis for all experiments with connection provers in the

[Q]

¬P (x′)
P (sx′)
¬Q

 [P (a)]

¬P (x̂)
P (sx̂)
¬Q

[¬P (x̄)
¬P (s2x̄)

]
Figure 3.4: Clausal graphical connection proof.

32

3.3 Problem Preprocessing

A
{},M, {Q,¬P (x′)}

A{},M, . . .
A{},M, . . .

E
{¬P (x̄)},M, {Q,P (sx′), P (sx̂)}}

A
{},M, {Q,P (sx′)}

R
{¬Q},M, {Q,P (sx′)}

E
{P (sx̂),¬Q},M, {Q,P (sx′)} A{},M, {Q}

E
{P (sx′)},M, {Q}

E
{¬P (x′), P (sx′)},M, {Q} A{},M, {}

E{Q},M, {}
S

ε,M, ε

Figure 3.5: Clausal connection proof.

remainder of this thesis. The connection prover performs the following tasks. Given a
classical first-order logic problem, it creates a matrix for the problem, see Section 3.3. The
matrix is then used to build an index which provides an efficient way to find connections
during proof search, see Section 3.5. Finally, proof search with iterative deepening is
performed, see Section 3.6.

3.3 Problem Preprocessing
In this section, we show how the prover transforms problems to formulas and processes
them to yield a matrix. We focus on first-order logic problems represented as a set of
axioms {A1, . . . , An} together with a conjecture C, where all axioms and the conjecture
are closed formulas. The goal is to show that the axioms imply the conjecture. For
convenience, in the actual implementation we use the TPTP format [Sut09b] as input.
Each parsed input problem is transformed according to the following procedure. Only the
steps 2 and 6 differ in comparison with the original Prolog implementations of leanCoP
and nanoCoP [Ott08, Ott16].

1. The conjecture C is combined with the axioms {A1, . . . , An} to form the new
problem (A1 ∧ · · · ∧An)→ C (just C if no axioms are present).

2. Constants and variables are mapped to integers, to enable more efficient lookup
and comparison during the proof search, as needed e.g. for fast unification.

3. As the connection tableaux calculi considered in this thesis do not have special
rules for equality, equality axioms are added to the problem if equality appears in
the original problem. The axioms are symmetry, reflexivity, and transitivity

∀x.x = x (symm=)
∀xy.x = y → y = x (comm=)

∀xyz.x = y ∧ y = z → x = z (trans=)

as well as congruence:
• For every n-ary function f , the formula x1 = y1 → . . . → xn = yn →
f(x1, . . . , xn) = f(y1, . . . , yn) is introduced.

33

Chapter 3 Connection Proof Search

• For every n-ary predicate P , the formula x1 = y1 → . . . → xn = yn →
P (x1, . . . , xn)→ P (y1, . . . , yn) is introduced.

4. If the formula has the shape P → C, then it is transformed to the equivalent
(P ∧#)→ (C ∧#). # is a marker that can be understood to be equivalent to >.
It allows proof search to recognise clauses stemming from the conjecture [Ott08,
section 2.1].

5. Implications and equivalences are expanded, e.g. A→ B becomes ¬A ∨B.
6. Quantifiers are pushed inside such that their scope becomes minimal.
7. The formula is negated (to perform a proof by refutation) and converted to negation

normal form.
8. The formula is reordered such that smaller clauses are processed earlier. In nanoCoP,

the size of a formula is

paths(t) =

paths(t1)× paths(t2) if t = t1 ∧ t2
paths(t1) + paths(t2) if t = t1 ∨ t2
paths(t1) if t = ∀x.t1 or t = ∃x.t1
1 if t is a literal

and for any subformula t1 ∧ t2 or t1 ∨ t2, if paths(t1) > paths(t2), then t1 and t2
are exchanged.

9. The formula is Skolemised. For machine learning, we use consistent Skolemisation
as discussed in Section 3.4 instead of outer Skolemisation as performed in the
original Prolog version.

Example 3.6. Consider the axioms

∀xAB.x ∈ A ∪B ↔ (x ∈ A ∨ x ∈ B) (def∪)

∀AB.(∀x.x ∈ A↔ x ∈ B)→ A = B (def=)
that we want to use to prove

∀ABC.A ∪ (B ∪ C) = (A ∪B) ∪ C (C)

The problem is preprocessed as follows:
1. The axioms A ≡ def∪ ∧ def= and the conjecture are combined, resulting in A→ C.
2. Constants and variables are mapped to integers, e.g. {”∈” 7→ 0, ”∪” 7→ 1, ”=” 7→ 2}

and {”x” 7→ 0, ”A” 7→ 1, ”B” 7→ 2}. We will continue the presentation of this
example with the original representation.

3. Congruence axioms are generated for all constants, i.e. “∈” and “∪”:
∀x1y1x2y2.(x1 = x2 ∧ y1 = y2) ∧ x1 ∈ y1 → x2 ∈ y2 (cong∈)

∀x1y1x2y2.(x1 = x2 ∧ y1 = y2)→ x1 ∪ y1 = x2 ∪ y2 (cong∪)
The combination of all equality axioms is

((sym= ∧ (comm= ∧ trans=)) ∧ cong∈) ∧ cong∪ (E)

and the resulting formula is E ∧A→ C.

34

3.3 Problem Preprocessing

4. The conjecture is marked, resulting in ((E ∧A) ∧#)→ (# ∧ C).
5. Implications and equivalences are unfolded. Among others, this transforms

∀xAB.(x /∈ A ∪B ∨ (x ∈ A ∨ x ∈ B)) ∧ (¬(x ∈ A ∨ x ∈ B) ∨ x ∈ A ∪B) (def∪)

∀AB.((¬∀x.((x /∈ A ∨ x ∈ B) ∧ (x /∈ B ∨ x ∈ A))) ∨A = B) (def=)

The resulting formula is ¬((E ∧A) ∧#) ∨ (# ∧ C).
6. Pushing quantifiers inside transforms for example

(∀xAB.(x /∈ A ∪B ∨ (x ∈ A ∨ x ∈ B)))∧
(∀xAB.(¬(x ∈ A ∨ x ∈ B) ∨ x ∈ A ∪B))

(def∪)

7. The whole formula is negated and converted to negation normal form. In particular,
the negation of the conjecture is

∃ABC.A ∪ (B ∪ C) 6= (A ∪B) ∪ C (C¬)

and the resulting formula is ((E ∧A) ∧#) ∧ (¬# ∨ C¬).
8. Reordering of the formula yields among others

cong∪ ∧ (cong∈ ∧ (sym= ∧ (comm= ∧ trans=))) (E)

(∀xAB.((x /∈ A ∧ x /∈ B) ∨ x ∈ A ∪B))∧
(∀xAB.(x /∈ A ∪B ∨ (x ∈ A ∨ x ∈ B)))

(def∪)

and the resulting formula is (¬# ∨ C¬) ∧ (# ∧ ((def= ∧ def∪) ∧ E)). Note that the
equality axioms move to the end of the formula, so they are being processed last.

9. Skolemisation replaces existentially quantified variables by Skolem terms and
removes existential quantifiers. For example, the Skolemised negated conjecture is

sA ∪ (sB ∪ sC) 6= (sA ∪ sB) ∪ sC (C¬)

where sA, sB, and sC are nullary Skolem functions. We explain Skolemisation in
more detail in Section 3.4.

The matrix is built from the resulting formula. For the clausal connection prover,
this involves a transformation of the formula into clausal normal form. The standard
transformation applies distributivity rules of the shape A∧ (B∨C) ≡ (A∨B)∧ (A∨C) to
the formula until it is in conjunctive normal form. In the worst case, this transformation
makes the formula grow exponentially. To avoid this, the definitional transformation
introduces new symbols [Tse83, PG86, Ott10]. Similarly to Skolemisation, the introduced
symbols should be consistent across different problems, which is achieved by using a
normalised string representation of the clause literals as new symbol names. For the
nonclausal connection prover, no clausification is required, as the formula can be directly
transformed into the nonclausal matrix. For both clausal and nonclausal matrices, the
polarity of literals is encoded by the sign of the integer representing the predicate symbol.

35

Chapter 3 Connection Proof Search

3.4 Consistent Skolemisation

First-order Skolemisation introduces new function symbols. For machine learning algo-
rithms, it is beneficial to introduce names consistently across problems, meaning that
Skolem terms originating from the same axiom in two different problems should be syntac-
tically equivalent. Consistent Skolemisation methods have been studied in the context of
the δ-rule in tableaux methods, e.g. [BHS93]. [GA99] pointed out that the Skolem terms
introduced may lead to rather large formulae, which can be solved by structure sharing.
However, in our setting, structure sharing across different problems is not possible, which
makes it necessary to find different approaches. In previous work [KU15a], consistent
Skolemisation was part of the clausification procedure. The implementation of nonclausal
proof search motivated a more general consistent Skolemisation method. To recognise
the same Skolem term across different problems, it is necessary to capture by the Skolem
term only the part of the formula that defines the existential variable. For this, we
propose a consistent Skolemisation method based on ε-terms.

Let us first introduce the setting for this section: Let ∆ be a formula in negation normal
form that is to be Skolemised. Without loss of generality, we assume ∆ to be rectified,
i.e. any two distinct quantifiers in ∆ bind variables with different names. Furthermore,
let the size of a formula F be the length of the string representation of F , and denote it
by |F |.

Definition 3.7 (Skolemisation). The Skolemisation of a formula ∆ yields a formula
equisatisfiable to ∆, not containing any existential quantifiers. To this end, Skolemisation
replaces any subterm in ∆ of the shape ∃x.F by F [t/x], where t is called the Skolem
term for x.

There exist different methods to construct valid Skolem terms. We show such a method.

Example 3.8 (Inner Skolemisation). Inner Skolemisation replaces any subterm in ∆
of the shape ∃x.F by F [t/x], where the Skolem term t is f(x1, . . . , xn) such that f is a
fresh function symbol and x1, . . . , xn are the universally bound variables free in F .

Inner Skolemisation as defined above is not a consistent Skolemisation method, as
the freshness condition imposes all existentially quantified variables to be replaced by
Skolem terms with different function symbols. We are now going to discuss consistent
Skolemisation methods.

Replacing existentially quantified variables with ε-terms using the defining property of
ε-terms

∃x.P (x)↔ P (εx.P (x))

we obtain a formula equivalent to the original one [HB39]. However, recursively replacing
existential quantifiers by ε-terms can lead to an exponential size of the Skolemised formula.
To show this, we are going to define two kinds of ε-Skolemisation and show that they
both produce exponentially large output. In particular, the blowup is caused by the
introduction of new Skolem names that contain other Skolem names.

36

3.4 Consistent Skolemisation

Definition 3.9. Let F a subformula of ∆ such that F is of the shape ∃x.G. A naive
ε-Skolemisation step replaces F in ∆ by G[(εx.G)/x].

Naive ε-Skolemisation (NεS) of a formula ∆ repeatedly applies naive ε-Skolemisation
steps until the formula does not contain any more existential quantifiers. To fix the
order of Skolemisation steps, let outside-in NεS replace subformulas only if they are
not subformulas of an existential quantification, and inside-out NεS replace subformulas
only if they do not have subformulas containing existential quantifiers. We now give
an example for which both outside-in and inside-out NεS produce exponentially large
Skolemised formulas.1

Example 3.10. Let φn be a formula recursively defined by φ0 = P (x0, x0) and φn+1 =
∃xn.(P (xn+1, xn+1)→ φn).

Lemma 3.11. Inside-out NεS of φn produces a formula exponential in n.

Proof. Denote the inside-out NεS of φn as sk(φn). Then sk(φ0) = P (x0, x0) and
sk(φn+1) = P (xn+1, xn+1) → sk(φn)[tn/xn], where tn = εxn.(P (xn+1, xn+1) → sk(φn))
is the Skolem term corresponding to xn. For every n, sk(φn) contains at least two
occurrences of xn, and the Skolem term tn corresponding to xn is larger than |sk(φn)|.
Therefore, for every n, |sk(φn+1)| > 2|sk(φn)|.

Lemma 3.12. Outside-in NεS of φn produces a formula exponential in n.

Proof. Let ∆ = ∀xm.φm be the formula to be Skolemised. Then the Skolem terms
corresponding to xn can be given by

sn =
{
xm if n = m

εxn.P (sn+1, sn+1)→ φn otherwise

For any n < m, because every Skolem term sn contains two occurrences of sn+1, we
have that |sn| > 2|sn+1|. As the base case sm is greater than zero, we have that |s0| is
exponential in m.
The example above motivates a new consistent Skolemisation method that produces

quadratic output and is also applicable to nonclausal search. For this, let us define some
notation first: FVar(F) denotes the free variables of F , and FVar∀(F) and FVar∃(F)
denote the free variables in a subformula F of ∆ that are universally and existentially
bound in ∆, respectively. ∆x is the subformula of ∆ that binds the variable x, i.e. if
∆ has a subformula ∃x.F , then ∆x is ∃x.F . Furthermore, the transitive universal and
existential free variables of F are denoted by

FVar∗Q(F) = FVarQ(F) ∪
⋃

x∈FVar∃(F)
FVar∗Q(∆x)

where Q ∈ {∀,∃}.
1Structure sharing would avoid the exponential blowup.

37

Chapter 3 Connection Proof Search

Definition 3.13 (Consistent ε-Skolemisation). Let x be an existentially quantified
variable in ∆. The ε-defining formula of ∆x is max{∆y | y ∈ FVar∗∃(∆x)}. The
maximum is computed with respect to the size of the formula, that is, it returns the
largest formula in the set. The consistent ε-Skolem term for x is εx.F , where F is the
ε-defining formula of ∆x with all quantifiers for FVar∗∀(∆x) and x removed. Consistent
ε-Skolemisation of a formula ∆ replaces any subformula of ∆ of the shape ∃x.F by F [t/x],
where t is the consistent ε-Skolem term for x.

Example 3.14. Let

∆ = ∀x1∃y1.(P (x1, y1)→ (∀x2∃y2.P (x2, y2)) ∧ (∀x3∃y3.Q(x3, y3, y1)))

The ε-defining formula of ∆y1 and ∆y3 is ∆y1 , and of ∆y2 , it is ∆y2 . The consistent
ε-Skolem term for yn is sn, where

s1 = εy1.P (x1, y1)→ (∀x2∃y2.P (x2, y2)) ∧ (∀x3∃y3.Q(x3, y3, y1)) FVar(s1) = {x1}
s2 = εy2.P (x2, y2) FVar(s2) = {x2}
s3 = εy3.∃y1.P (x1, y1)→ (∀x2∃y2.P (x2, y2)) ∧Q(x3, y3, y1) FVar(s3) = {x1, x3}

Theorem 3.15. Consistent ε-Skolemisation of a formula ∆ yields a formula equivalent
to ∆.

Proof. Let us consider an arbitrary existentially quantified variable x in ∆. Let D be
the ε-defining formula of ∆x. We can move all universal quantifiers corresponding to
FVar∗∀(∆x) in front of D, yielding ∀~y1.D1. Note that FVar(D1) = FVar∗∀(∆x) and
~y1 = FVar∗∀(∆x) \ FVar∀(D). Furthermore, we can move the existential quantifier for x
in front of D1, resulting in ∀~y1∃x.D2. Now, we can use the defining property of ε-terms
to obtain ∀~y1.D2[t/x], where t = εx.D2. Finally, we can move back the quantifiers from
~y1 to their original places to yield D3. (D3 could have been equally obtained by removing
the quantifier ∃x from D and replacing x by εx.D2.) As all free variables of every such
ε-term t are universally quantified, we can execute the operations above to replace in
arbitrary order every existentially quantified variable with its corresponding ε-term. As
all the operations preserve equivalence of the formula, this yields a formula equivalent to
∆, and we can see that it is exactly the outcome of consistent ε-Skolemisation.

Lemma 3.16. Consistent ε-Skolemisation of ∆ yields a formula of size smaller than
|∆|2.
Proof. The maximal size of a consistent ε-Skolem term is |∆|, and as there are less than
|∆| occurrences of existentially quantified variables in ∆, replacing them yields a formula
of size smaller than |∆|2.
To obtain a first-order formula from consistent ε-Skolemisation, we replace every

consistent ε-Skolem term of the shape εx.F with f[εx.F](~y), where ~y is FVar(εx.F) (and
thus also FVar∗∀(∆x)). Here, [t] denotes a normalisation of t such that for any t1 and
t2, if t1 is α-equivalent to t2, then [t1] = [t2]. We use this normalisation to recognise
equivalent Skolem terms even if their variables are differently named. This yields a
formula equisatisfiable to ∆.

38

3.5 Connection Search

The following corollary states under which conditions variables that are existential
bound at different locations will be consistently Skolemised to the same function symbol.
Note that this result holds across different formulas and problems.

Corollary 3.17 (Consistency). Two existential variables are mapped to the same first-
order function symbol iff their corresponding ε-Skolem terms are α-equivalent.

Proof. Follows from Definition 3.13.

3.5 Connection Search
We explain how the prover efficiently searches for connections that correspond to extension
steps. For this, let us introduce the concept of a contrapositive. We will first formulate
its general nonclausal definition, then show the specific case for clausal matrices.

Definition 3.18 (Contrapositive). Given a matrix M with C ∈ M and L ∈+ C, the
formula L→ Cβ is a contrapositive of M , where Cβ is the β-clause of C with respect to
L.

Definition 3.19 (Clausal Contrapositive). Given a clausal matrix M with C ∈M and
L ∈ C, the formula L→ C \ {L} is a contrapositive of M .

To find a connection with a literal L, it suffices to find a contrapositive of M with an
antecedent L′ such that L and L′ can be unified. The consequent of the contrapositive
can then be used to generate extension clauses.

Example 3.20. Consider the matrix M ′ from Example 3.5 on page 31. A contra-
positive of M ′ is Q → (¬P (x) ∨ P (sx)). This contrapositive was used to find the
connection {Q,¬Q} in Figure 3.4 and to generate the corresponding extension clause
{¬P (x′), P (sx′)} in Figure 3.5.

The original versions of leanCoP and nanoCoP rely on Prolog’s internal literal indexing
to keep a contrapositive database. We considered storing contrapositives in first-order
term indexing structures [RSV01]. However, the overall effect on performance of storing
contrapositives in a discrimination tree [Gre86] on the considered datasets is minor, as
unification with array substitutions (see below) is relatively fast. In our implementations,
we store all contrapositives in a hash table indexed by the polarity and the predicate
symbol of the antecedents. To find connections with a literal L, we perform two steps:
First, we retrieve from the hash table all contrapositives whose antecedents have the same
polarity and predicate symbol as L. Second, we return those contrapositives obtained in
the first step whose antecedents can be unified with L.
Unification is one of the most time consuming parts of proof search. Therefore it is

crucial to represent data, including substitutions, in a way that allows efficient unification.
The simplest approach to represent substitutions is to use association lists from variables
to terms. This is done e.g. in the HOL Light implementation of MESON. However, as
variable lookup is linear in the number of bound variables, this approach does not scale

39

Chapter 3 Connection Proof Search

well. An improvement over this is to use tree-based maps, used for example by Metis.
Both solutions however incur a significant overhead in tableaux proof search, where a
single large substitution is needed. In functional languages with efficient support for
arrays (e.g. the ML language family, used in many proof systems), it is more efficient to
store the substitution in a single global mutable array. As variables can be represented
by positive integers, the nth array element contains the term bound to the variable n.
By keeping a stack of variables bound in each prover state, it is also possible to backtrack
efficiently: variables removed from the top of the stack are removed from the global array.
This way, backtracking can be done as if the substitution was contained in a purely
functional data structure, however allowing for more efficient unification.

3.6 Proof Search

Proof search in connection tableaux calculi is analytic, i.e. the proof tree is constructed
bottom-up. As the proof search is not confluent, i.e. making a wrong choice can lead to
a dead end, backtracking is necessary for completeness. The proof tree is constructed
with a depth-first strategy, which results in an incomplete proof search. To remedy this,
iterative deepening is used, where the maximal path length is increased in every iteration.

The principal implementations of connection tableaux calculi, leanCoP and nanoCoP,
use a number of optimisation techniques, such as regularity, lemmas, and restricted
backtracking [Ott10]. When backtracking is restricted, as soon as the proof search finds
some proof tree to close a branch, no other potential proof trees for that branch are
considered any more. While restricted backtracking loses completeness, it significantly
increases the number of problems solved for various first-order problem classes.
Prolog allows for a very elegant and succinct implementation of proof search. First

attempts to directly integrate machine learning into Prolog leanCoP have suffered from
slow speed [UVv11]. Later, [KU15a, KUV15] showed that implementations of leanCoP in
a functional programming language allow for fast machine learning as well as for efficient
proof reconstruction in interactive theorem provers. However, implementing proof search
with restricted backtracking in a functional language is not straightforward.

In this section, we discuss several implementations of a clausal prover loop that permits
restricted backtracking: The simplified version of leanCoP shown in Subsection 3.6.1
is the smallest, but also the slowest implementation. Care is taken that all subsequent
implementations perform the proof search in precisely the same order as the original
Prolog implementation. We then introduce a purely functional implementation in
Subsection 3.6.2 using lazy lists or streams. This version slightly increases code size
compared to the Prolog version, but greatly improves performance, as shown in the
evaluation in Section 3.9. We also discuss an approach based on continuations, still purely
functional, but more complicated than the stream version. In exchange, this version has
slightly better performance than the stream one, likely due to not having to allocate
memory for (stream) constructors. The fastest, but also most complicated implementation
considered in this thesis uses an explicit stack and exceptions for backtracking. However,
as it proves just as many problems as the continuation-based version, we will only briefly

40

3.6 Proof Search

Listing 3.1: Clausal proof search in Prolog.

1 prove([],_,_).
2 prove([Lit|Cla],Path,PathLim) :-
3 (-NegLit=Lit;-Lit=NegLit) ->
4 (member(NegL,Path), unify_with_occurs_check(NegL,NegLit)
5 ;
6 lit(NegLit,Cla1),
7 (length(Path,K), K<PathLim -> true ; fail),
8 prove(Cla1,[Lit|Path],PathLim)
9),

10 prove(Cla,Path,PathLim).

discuss it.

3.6.1 Prolog

A simplified version of the original leanCoP in Prolog is given in Listing 3.1. We explain
and relate it to the clausal connection calculus introduced in Section 3.2.

The main predicate prove(C, Path, PathLim) succeeds iff there exists a closed proof
tree for 〈C,M,Path〉 with a maximal path length of PathLim. For this, prove attempts
to close the proof tree for the first literal Lit of C in lines 4–9, and if successful, it
continues with the remaining clause Cla of C in line 10.
Let us detail the proof search for the current literal Lit: Line 4 corresponds to the

reduction rule: The branch is closed if the negation of Lit can be unified with a literal
on the Path. Lines 6–8 correspond to the extension rule: The contrapositive database as
explained in Section 3.5 is implemented by the predicate lit(L, C), which succeeds iff
the matrix contains some clause that can be unified with {L} ∪C. This is used to obtain
some contrapositive Cla1 for the negation of Lit. If the path does not exceed the length
limit (line 7), new branches are opened for Cla1 in line 8.
Backtracking is handled by the Prolog semantics: For example, if choosing the first

matching contrapositive for Lit leads to the proof search getting stuck, the next contra-
positive will be tried by Prolog.

3.6.2 Lazy Lists and Streams

Proof search in a functional language can be elegantly implemented as a function from a
branch to a lazy list of proofs, where a lazy list is an arbitrarily long list built on demand.
However, as the proof search considers every list element at most once, the memoization
done for lazy lists creates an unnecessary overhead. For that reason, streams can be
used instead of lazy lists, where a stream is a special case of a lazy list that restricts list
elements to be traversed at most once. As our application uses a common interface for
lazy lists and streams, we solely present the lazy list version here.

41

Chapter 3 Connection Proof Search

Listing 3.2: Lazy list implementation of clausal proof search.

1 prove [] path lim sub = [sub]
2 prove (lit : cla) path lim sub =
3 let
4 reductions = mapMaybe (unify sub (negate lit)) path
5 extensions = unifyDB sub lit & concatMap
6 (\ (sub1, cla1) ->
7 if lim <= 0 then []
8 else prove cla1 (lit : path) (lim - 1) sub1)
9 in concatMap (prove cla path lim) (reductions ++ extensions)

Listing 3.2 shows a functional leanCoP implementation using lazy lists. Let us first
introduce the semantics of the used constructs:

• x & f denotes f x.
• \ x -> y stands for a lambda term λx.y.
• unify sub lit1 lit2 unifies two literals lit1 and lit2 under a substitution sub,

returning a new substitution if successful.
• unifyDB sub lit finds all contrapositives in the database which could match the

literal lit under the substitution sub. It returns a list of substitution-contrapositive
pairs. It corresponds to the lit predicate in the Prolog version.

• mapMaybe f l returns the results of f for the elements of l on which f succeeded.
• concatMap f l maps f over all elements of l and concatenates the resulting list

of lists to form a flat list.
• x ++ y is the concatenation of two lists x and y.

The main function prove C Path lim σ returns a list of substitutions [σ1, . . . , σn], where
every substitution σi corresponds to a closed proof tree for 〈C,M,Path〉 with a maximal
path length smaller than lim, where the global initial substitution is σ and the final
substitution is σi.2 Similarly to the Prolog version, prove attempts to close the proof
tree for the first literal lit of C in lines 4–8, and the resulting substitutions are used to
close the proof trees for the remaining clause cla of C in line 9. Line 4 corresponds to
the reduction rule, and lines 5–8 correspond to the extension rule. As we use lazy lists /
streams, a substitution σi is only calculated if proof search failed for all σj with j < i.

3.6.3 Continuations
Continuation passing style (CPS) allows the implementation of algorithms with com-
plicated control flow in functional languages [Plo75]. Listing 3.3 shows a leanCoP
implementation using CPS. The main function prove C Path lim σ alt rem searches
for a closed proof tree for 〈C,M,Path〉 with a maximal path length smaller than lim
under the substitution σ. If prove finds such a proof tree, it calls the rem continuation
to treat remaining proof obligations (line 1). Otherwise, prove calls the alt continuation

2In this simplified implementation, the actual proof tree is not recorded, in contrast to our actual
implementation. The same holds for the Prolog version.

42

3.7 Clause Processing Order

Listing 3.3: CPS implementation of clausal proof search.

1 prove [] path lim sub alt rem = rem sub alt
2 prove (lit : cla) path lim sub alt rem = reduce path where
3 reduce (plit : path) =
4 let alt1 () = reduce path
5 in case unify sub (negate lit) plit of
6 Nothing -> alt1 ()
7 Just sub1 -> prove cla path lim sub1 alt1 rem
8 reduce [] = extend (unifyDB sub (negate lit))
9

10 extend ((sub1, cla1) : contras) =
11 let alt1 () = extend contras
12 in if lim <= 0 then alt1 ()
13 else
14 let rem1 sub alt = prove cla path lim sub alt rem
15 in prove cla1 (lit : path) (lim - 1) sub1 alt1 rem1
16 extend [] = alt ()

to backtrack to an alternative (line 16). The reduce function in lines 3–7 corresponds to
the reduction rule, and the extend function in lines 10–15 corresponds to the extension
rule. If no more reductions can be performed, extensions are tried (line 8), and if no
more extensions can be performed, we backtrack (line 16). Both reduce and extend
define a continuation alt1 (line 4 and 11) to provide a way to backtrack to the current
state, and pass it to prove (line 7 and 15). extend additionally defines a continuation
rem1 (line 14), which serves to continue proof search for the clause cla once a proof for
the contrapositive clause cla1 was found (line 15).

3.6.4 Stacks

We considered an implementation based on stacks. There, the main prove function has
the same arguments as the prove function of the stream-based implementation, plus a
stack. This stack contains tuples with information about clauses that still have to be
processed, together with the depth at which the clauses have been put onto the stack.
Once the current clause has been completely refuted, the next tuple is popped from the
stack and the clause in the tuple is processed.

3.7 Clause Processing Order
Proof search processes clauses and matrices in a certain order <, such that for any
elements a, b of the same clause or matrix, a is processed before b iff a < b. The order < is
usually derived from the structure of the formula obtained in Section 3.3. For nonclausal
proof search, we have evaluated different ways to order β-clauses: The original nanoCoP
processes the β-clause of a clause C with respect to a literal L (see Definition 3.4) using

43

Chapter 3 Connection Proof Search

the order <L, where a <L b iff a contains L or a < b. The reconstruction of proofs
created in this order requires some postprocessing; this motivated our usage of the regular
< for β-clauses.

Example 3.21. Let M contain a clause

C =

M1 C1

 L
M2
M3

Then the β-clauses of C with respect to L ordered by < and <L are β< and β<L :

β< =

 M1[
C1

[
M2
M3

]] β<L =

[[

M2
M3

]
C1

]
M1

One can see that when using β<L , the neighbours M2 and M3 of L are processed first,
unlike when using β<.

3.8 Extension Clause Anomaly
The implementation of nonclausal proof search in functional style exposed in the original
Prolog implementation an anomaly related to extension clauses. We are going to describe
this anomaly, how we found it, and how we avoided it using principles found in functional
programming.

Example 3.22 (Extension Clause Anomaly). Consider the extension rule shown in
Figure 3.2. Let

M =

 L′

[Cc]
Mb

 Cb

Ma

 Ca

Assume thatMb contains more than one clause. Furthermore, let C and Path be arbitrary.
Then the set of possible values for C3 in the extension rule are copies of

[
[Cc]
Mb

]
,

[[

[Cc]
Mb

]
Cb

]
Ma

However, the Prolog implementation admits yet another value for C3, namely a copy of
Cc.

We found that behaviour as in Example 3.22 occurs under the following circumstances:
A clause CL′ with L′ ∈ CL′ (in Example 3.22, CL′ = {L′, {Cc} ,Mb}) contains a matrix

44

3.9 Evaluation

M ′ consisting of a single clause (in Example 3.22, M ′ = {Cc}), and M ′ is the smallest
clause in CL′ \{L′} with respect to the clause processing order (introduced in Section 3.7).
This behaviour is due to the way in which contrapositives are stored and extension

clauses are generated in the Prolog implementation. While we originally implemented
extension clause generation like in the original Prolog implementation (thus inheriting the
anomaly), we later used algebraic data types to enforce stronger constraints. As a side
effect, we avoided the anomaly described above, which we discovered by comparing proof
search traces between the two implementations. Consequently, we fixed the anomaly in
the Prolog implementation.

While we did not encounter an example showing that the original version of nanoCoP
is unsound, the usage of functional programming principles was helpful in discovering an
anomaly that might otherwise have remained undiscovered.

3.9 Evaluation

We evaluate our work on several first-order problem datasets, with statistics given in
Table 3.1:

• TPTP [Sut09b] is a large benchmark for automated theorem provers. It is used in
CASC [Sut16b]. The contained problems are based on different logics and come
from various domains. In our evaluation we use the nonclausal first-order problems
of TPTP 6.3.0.

• MPTP2078 [AHK+14] contains 2078 problems exported from the Mizar Mathemat-
ical Library. This dataset is particularly suited for symbolic machine learning since
symbols are shared between problems. It comes in the two flavours “bushy” and
“chainy”: In the “chainy” dataset, every problem contains all facts stated before the
problem, whereas in the “bushy” dataset, every problem contains only the Mizar
premises required to prove the problem.

• Miz40 contains the problems from the Mizar library for which at least one ATP
proof has been found using one of the 14 combinations of provers and premise
selection methods considered in [KU15d]. The problems are translated to untyped
first-order logic using the MPTP infrastructure [Urb04]. Symbol names are also
used consistently in this dataset, and the problems are minimised using ATP-based
pseudo-minimisation, i.e., re-running the ATP only with the set of proof-needed
axioms until this set no longer becomes smaller. This typically leads to even better
axiom pruning and ATP-easier problems than in the Mizar-based pruning used for
the “bushy” version above.

• HOL Light: We translate theorems proven in HOL Light to first-order logic,
following a similar procedure as [KU14]. We export top-level theorems (“top”) as
well as theorems proven by the MESON tactic (“msn”).3 We consider the theorems
proven in the core of HOL Light (“HL”) as well as those proven by the Flyspeck

3As part of exporting theorems solved by MESON, we perform some of the original MESON preprocessing,
such as propositional simplification, Skolemisation, and currying, see Section 6.2. This preprocessing
may solve the problem, in which case we do not export the problem at hand.

45

Chapter 3 Connection Proof Search

Table 3.1: Evaluation datasets and number of contained first-order problems.
Dataset TPTP MPTP Miz40 HL-top HL-msn FS-top FS-msn
Problems 7492 2078 32524 2498 1108 27111 39979

project (“FS”), which finished in 2014 a formal proof of the Kepler conjecture
[HAB+17].

We use a 48-core server with AMD Opteron 6174 2.2GHz CPUs, 320 GB RAM, and 0.5
MB L2 cache per CPU. Each problem is always assigned one CPU. We run all provers
with a timeout of 10 seconds per problem.

We evaluate several prover configurations in Table 3.2. As state of the art, we
use the ATPs Vampire 4.0 [KV13] and E 2.0 [Sch13], which performed best in the
first-order category of CASC-J8 [Sut16a]. Vampire and E are written in C++ and C,
respectively, implement the superposition calculus, and perform premise selection with
SInE [HV11]. Furthermore, Vampire integrates several SAT solvers [BDKV14], and E
automatically determines proof search settings for a given problem. We ran E with
--auto --auto-schedule and Vampire with --mode casc. In addition, we evaluated
the ATP Metis [Hur03]: It implements the ordered paramodulation calculus (having
inference rules for equality just like the superposition calculus), but is considerably
smaller than Vampire and E and is implemented in a functional language, making it
more comparable to our work.
We implemented functional-style versions of leanCoP 2.1 and nanoCoP 1.0 in the

functional programming language OCaml.4 Our implementations use the techniques
introduced such as hash-based indexing and array-based substitutions (Section 3.5),
efficient control flow (Section 3.6), alternative clause processing orders (Section 3.7),
and consistent Skolemisation (Section 3.4). Our functional OCaml implementations
are fleanCoP and fnanoCoP, whereas the original Prolog versions are pleanCoP and
pnanoCoP. The Prolog versions were run with ECLiPSe 5.10. A prover configuration
containing “+x” or “−x” means that feature x was enabled or disabled, respectively.
“cut” denotes restricted backtracking, “conj” stands for conjecture-directed search, and
β<L refers to the default β-clause ordering shown in Section 3.7. leanCoP was evaluated
without definitional clausification, see Section 3.3. The OCaml implementations use
streams to control backtracking (see Subsection 3.6.2) and arrays as substitutions. As
strategy scheduling is not a focus of this work, we evaluate our provers with disabled
strategy scheduling.

The results are shown in Table 3.2: The OCaml versions outperform the Prolog versions
in almost all cases. The most impressive result is achieved by fleanCoP+cut+conj on
the chainy dataset: The OCaml version proves 58.8% more problems than its Prolog
counterpart, thus even passing E. Furthermore, on four out of six datasets, our strongest
configuration proves more problems than Metis. β<L seems to have an effect mostly
when cut is enabled. However, the result depends greatly on the dataset: On the chainy

4The source code is available at http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html.

46

http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html

3.10 Reproducible Experiments

Table 3.2: Comparison of provers without machine learning.
Prover TPTP Bushy Chainy Miz40 FS-top FS-msn
Vampire 4404 1253 656 30341 6358 39760
E 3664 1167 287 26003 7382 39740
Metis 1376 500 75 18519 3537 38625
fleanCoP+cut+conj 1859 670 289 12204 3980 35738
fleanCoP+cut−conj 1782 598 244 11796 3520 30668
fleanCoP−cut+conj 1617 499 192 7826 3849 35204
fleanCoP−cut−conj 1534 514 164 11115 3492 36334
pleanCoP+cut+conj 1673 606 182 11243 3664 35234
pleanCoP+cut−conj 1621 548 153 11227 3305 30416
pleanCoP−cut+conj 1428 453 143 7287 3671 34437
pleanCoP−cut−conj 1374 460 123 10442 3415 35499
fnanoCoP+cut 1724 511 192 12332 3178 30327
fnanoCoP+cut−β<L 1776 547 233 11197 3182 30216
fnanoCoP−cut 1567 542 151 13316 1993 37938
fnanoCoP−cut−β<L 1559 541 152 13173 1991 37923
pnanoCoP+cut 1585 480 112 11921 2970 30272
pnanoCoP−cut 1485 510 126 12943 1986 38015

dataset, disabling β<L solves 21.3% more problems, but on the Miz40 dataset, it solves
8.8% less.
We evaluate different proof search implementation styles in Tables 3.3 and 3.4. Here,

inferences denote the number of successful unifications performed by some prover on all
problems within 10 seconds timeout. This metric is not available for the Prolog versions,
as these do not print the number of inferences performed when prematurely terminated.

To measure the impact of the substitution structure, we evaluated the best-performing
implementation, i.e. the stack-based one, using a list-based substitution instead of an
array-based substitution, see Table 3.3. This decreased the number of inferences by 50%,
showing that the performance of the substitution structure is crucial for fast proof search.

Unless noted otherwise, we will use the stream-based implementation with array-based
substitution in the remainder of this thesis.

3.10 Reproducible Experiments
We have taken special care to design experiments to be reproducible. We are going to
show how we use GNU make [SMS16] to define experiments.5

Example 3.23. To create Table 3.2, we have created Makefiles that perform the
following tasks:

5The source code is available at http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html.

47

http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html

Chapter 3 Connection Proof Search

Table 3.3: Impact of implementation on efficiency of clausal proof search on the bushy
MPTP2078 dataset with 10s timeout, restricted backtracking (+cut), no
definitional CNF, and conjecture-directed search (+conj).

Implementation Solved Inferences
Prolog 606 -
Lazy list 639 878199349
Stack (list substitution) 648 1253862954
Stream 670 1702827032
Continuation 681 2200272406
Stack 681 2490100879

Table 3.4: Impact of implementation on efficiency of nonclausal proof search on the bushy
MPTP2078 dataset with 10s timeout and restricted backtracking (+cut).

Implementation Solved Inferences
Prolog 480 -
Lazy list 504 374849495
Streams 511 495368962

• Download6 ATPs and build them.
• Download problem sets.
• Run ATPs on all problems for every problem set, in parallel.
• Accumulate results and generate a table.

For our own ATPs, we use the version control system Git [CS14]. This allows us
to refer to particular development versions of our ATPs when defining experiments in
Makefiles. When running an experiment, make automatically builds the right ATP
version and executes it with the specified parameters.

Example 3.24. Let us assume we made some changes in our implementation of the
prover nanoCoP and we want to evaluate its performance on a set of problems in the
bushy directory. For this, we first tag our development version of nanoCoP with a unique
identifier, say git tag cop-170829. We then proceed to define a new experiment as in
Listing 3.4:

• Line 1 collects the problems in the bushy directory.
• Lines 3 and 4 reduce the whole set of problems to its individual problems.
• Line 5 specifies the dependency of the experiment on the prover version.
• Lines 6 and 7 define how any single problem should be evaluated.

Note that this depends on previously defined rules given in Listing 3.5 that tell make how
to obtain (lines 1 and 2) and build (lines 4 and 5) any version of nanoCoP. To perform

6The Makefiles contain instructions to verify the checksum of downloaded files, aborting the build in
case of mismatch.

48

3.11 Conclusion

Listing 3.4: Experiment rules.

1 BUSHY = $(shell find bushy/ -type f | sort -R)
2

3 o/bushy/10s/nanocop-170829: $(BUSHY:bushy/%=\
4 o/bushy/10s/nanocop-170829/%)
5 o/bushy/10s/nanocop-170829/%: cop-170829/nanocop.native bushy/%
6 @mkdir -p `dirname $@`
7 -timeout 10 $^ > $@

Listing 3.5: Rules to obtain a prover version and to build it.

1 cop-%: ../.git/refs/tags/cop-%
2 git clone .. $@ && cd $@ && git checkout $@
3

4 %/nanocop.native: %
5 make -C $< nanocop.native

the experiment, we run make o/bushy/10s/nanocop-170829 -j$(CORES).

Using Makefiles to encode experiments has the following merits:
• The Makefiles serve as natural experiment logs, documenting all experiments

performed.
• It ensures the exact reproducibility of experiments performed during the develop-

ment of an ATP.
• It depends only on established tools such as GNU make and git.
• It trivially allows parallelisation and resumption of experiments.

While it took some time to develop this system, our reproducible experiment style has
been very useful throughout our research.

3.11 Conclusion
We translated connection provers to functional programming languages, exploring possi-
bilities to increase the speed of proof search while keeping the implementation as simple
as possible. It turned out that unification and control flow can be efficiently implemented
such that the prover performance increases, while the main proof loop remains small
and easy to modify. We showed that the number of solved problems can be increased by
up to 58.8%, on one dataset beating even E in automatic mode. However, we showed
that on most datasets, current implementations of nonclausal proof search prove fewer
problems than their clausal counterparts, despite having very favourable theoretical
properties. It appears that this is due to the lower number of inferences, as can be seen
in Tables 3.3 and 3.4. Thus it remains as future work to improve the performance of
nonclausal implementations.

49

Chapter 4

Internal Guidance

4.1 Introduction

Internal guidance methods learn making decisions arising during proof search. Such
methods do not influence decisions before proof search, such as which preprocessing
options or which global strategies are used. The guided decisions have a large impact
on the time required to find proofs, and in case of incomplete search strategies they
determine whether a proof will be found at all. An example of internal guidance are
ranking heuristics that learn from previous proofs.
Internal guidance methods aim to estimate the utility of actions according to the

system’s knowledge of the world and previous experiences. An experience can be
characterised by a prover state ~f and an action l that was performed in that state,
together with the information whether the action l was useful. Similarly to premise
selection (see Chapter 2), this makes it possible to treat the choice of actions as a
classification problem.

Example 4.1. Assume that the state of the theorem prover is modelled by the set of
constants appearing in the previously processed propositions or in the conjecture. Let
our conjecture be ∀xy.x+ y = y + x and let our premises include

∀P. [P (0)→ (∀x.P (x)→ P (s(x)))→ ∀x.P (x)] (num_INDUCTION)
∀x.x+ 0 = x (ADD_0)

Assume that we first process num_INDUCTION. The resulting prover state is then
characterised by ~f = {+, s, 0}. Furthermore, assume that we then process ADD_0 and
continue proof search. If we eventually find a proof, we analyse for every action taken
whether it contributed to the final proof. For example, if processing ADD_0 in the state
characterised by ~f contributed to the proof, we register ADD_0 with ~f as a positive
example, otherwise as a negative example.

Intuitively, it seems desirable to perform an action in situations similar to those where
the action was useful, and avoid performing an action in situations similar to those where
the action was useless.
We propose a new internal guidance method for automated theorem provers using

51

Chapter 4 Internal Guidance

(variations of) the given-clause algorithm, such as Vampire or E.1 Our method influences
the choice of given clauses, using positive and negative examples from previous proofs.
To this end, we present an efficient scheme for Naive Bayes classification by generalising
label occurrences to types with monoid structure, see Section 4.2. This makes it possible
to extend existing fast classifiers, which consider only positive examples, with negative
ones.
The integration of our internal guidance method into an ATP using the given-clause

algorithm involves two tasks: The recording of training data (Section 4.4), and the
ranking of unprocessed clauses (Section 4.6), which influences the choice of the given
clause. To reduce the amount of data an ATP has to load for internal guidance, we
process training data (Section 4.5) and transform it into classification data outside of
the ATP. Furthermore, we show two methods to find good parameters for our method in
Section 4.7. In Section 4.8, we show how to implement the method in the higher-order
logic prover Satallax, where we modify the delay with which propositions are processed.
In Section 4.9, we evaluate the performance of our method.

4.2 Naive Bayes with Monoid Occurrences
We found the combination of positive and negative training examples to be crucial for
internal guidance. However, the classification methods presented in Chapter 2 only
consider positive examples. For this reason, we generalise samples, i.e. the input of
classifiers, to contain explicit information about their occurrence: Let us recall that the
samples in Chapter 2 were label-feature pairs (l, ~f). We now generalise samples to be
triples (l, ~f , o) ∈ S, where o encodes how often the combination of l and ~f occurred
positively and negatively.
It is possible to extend the type of occurrences to not only encode the number of

positive and negative occurrences, but also neutral ones etc. This leads us to the following
question: Which properties should types of occurrences in general abide by? Let us
consider some requirements for types of occurrences:

1. When we learn about the same label-feature pair with different occurrences o1 and
o2, we want to be able to combine their occurrences, say o1 + o2.

2. It should not play a role in which order we learn about a label-feature pair. That
is, o1 + o2 should be the same as o2 + o1.

3. There should be a neutral occurrence 0 that we can assume all label-feature pairs
not yet encountered to have.

It turns out that these requirements for types of occurrences are well met by commutative
monoids.

Definition 4.2 (Monoid). A pair (M,+) is a monoid if there exists a neutral element
0 ∈M such that for all x, y, z ∈M , (x+ y) + z = x+ (y + z) and x+ 0 = 0 + x = x. If

1Technically, our reference prover Satallax does not implement a given-clause algorithm, as Satallax
treats terms instead of clauses, and it interleaves the choice of unprocessed terms with other commands.
However, for the sake of internal guidance, we can consider Satallax to implement a variant of the
given-clause algorithm. We describe the differences in more detail in Section 4.8.

52

4.3 Features

furthermore x+ y = y + x, then the monoid is commutative.

Example 4.3. Let us consider a classifier for positive and negative examples. For this,
we can use the monoid (N × N,+2), where the first and second elements of the pair
represent the number of positive and negative occurrences, respectively. The +2 operation
is pairwise addition, and the neutral element is 02 = (0, 0). A triple learnt by this classifier
could be (l, ~f , (1, 2)), meaning that l occurs with ~f once positively and twice negatively.

We generalised the Naive Bayes classifier introduced in Section 2.3 to use the monoid
given in Example 4.3 for occurrences. To this end, we show an adaption of the classifier’s
underlying probabilities P (li) and P (fj | li) to positive and negative examples.
We first introduce some preliminaries. To obtain values between 0 and 1, we use the

standard logistic sigmoid function

σ(x) = 1
1 + e−x

The positive and negative occurrences are2

(pi, ni) =
∑{

o | (li, ~f , o) ∈ S
}

(pi,j , ni,j) =
∑{

o | (li, ~f , o) ∈ S, fj ∈ ~f
}

Finally, the probabilities adapted to positive and negative examples are:

P (li) = σ

(
pi − ni
pi + ni

)
P (fj | li) = σ

(
pi,j − ni,j
pi + ni

)

4.3 Features
To characterise the prover state, we tried different kinds of features:

• Symbols of processed clauses: We collect the symbols of all processed clauses at
the time a clause is inserted into the unprocessed clauses and call these symbols
the features of the clause. However, this experimentally turned out to be a bad
choice, because the set of features for each clause grows rapidly.

• Axioms of the problem: We associate every clause processed in a proof search with
all the axioms of the problem. In contrast to the method above, this associates the
same features to all propositions processed during the proof search for a problem,
and is thus more a characterisation of the problem (similar to TPTP characteristics
[SB10]) than of the prover state.

Calculating the influence of these features without them actually influencing the ranking
makes Satallax prove fewer problems within a fixed timeout, due to the additional
calculation time. Furthermore, the positive impact of the features on the proof search

2The occurrence o is a pair. Therefore, the sum Σ over occurrences uses +2 and also returns a pair.

53

Chapter 4 Internal Guidance

does not compensate for the slower performance. Therefore, we currently do not use
features at all and associate the empty set of features with all labels, i.e. F(c) = ∅.
However, it turns out that even without features, learning from previous proofs can be
quite effective, as shown in Section 4.9.

4.4 Training Data Recording

Recording training data can be done in different fashions:
• In situ: Information about clause usage is recorded every time an unprocessed

clause gets processed. This method allows for more expressive prover state charac-
terisation. On the other hand we found it to decrease the proof success rate, as the
recording of proof data slows down proof search.

• Post mortem: Only when a proof was found, information about clause usage is
reconstructed. As this method does not place any overhead on the proof search,
we resorted to post-mortem recording, which is still sufficiently expressive for our
purposes.

For every proof we consider the clauses processed during proof search: A processed clause
l occurring in a state characterised by ~f yields a sample (l, ~f , o), where o = (1, 0) if l
contributed to the final proof and o = (0, 1) if not. We use the monoid (N × N,+2)
with the neutral element (0, 0) introduced in Section 4.2 to store positive and negative
examples. We call the set of samples for a single proof a training datum. We ignore
unprocessed clauses, as we cannot easily estimate whether they might have contributed
to a proof. The samples of all training data are the (multiset) union of the samples of
the individual training data.

4.5 Clause Processing

In our experiments, we frequently encounter clauses that differ only by Skolem constants.
To this end, we process the set of processed clauses before creating samples from it.
We tried different techniques to handle Skolem constants, as well as other processing
methods:

• Skolem filtering: We discard clauses containing any Skolem constants.
• Inference filtering: We discard all clauses generated during proof search that

are not part of the initial clauses.
• Consistent Skolemisation: We normalise Skolem constants inside all clauses,

similarly to [UVv11]. That is, a clause P (x, y, x), where x and y are Skolem
constants, becomes P (c1, c2, c1).

• Consistent normalisation: Similarly to consistent Skolemisation, we normalise
all symbols of a clause. That is, P (x, y, x) as above becomes c1(c2, c3, c2). This
allows the ATP to discover similar groups of clauses, for example a+ b = b+ a and
a× b = b× a both map to c1(c2, c3) = c1(c3, c2), but on the other hand, this also
maps different clauses such as P (x) and Q(z) to the same clause. Still, this method

54

4.6 Clause Ranking

is suitable in problem collections which do not share a common set of function
constants, such as TPTP.

We denote the consistent Skolemisation/normalisation of a clause c described above as
N (c).

4.6 Clause Ranking

This section describes how our internal guidance method influences the choice of unpro-
cessed clauses using a previously constructed classifier.
At the beginning of proof search, the ATP loads the classifier. Some learning ATPs,

such as E/TSM [Sch00], select and prepare knowledge relevant to the current problem
before the proof search. However, as we store classifier data in a hash table, filtering
irrelevant knowledge to the problem at hand would require a relatively slow traversal
of the whole table, whereas lookup of knowledge is fast even in the presence of a large
number of irrelevant facts. For this reason we do not filter the classification data per
problem.

Every time the ATP chooses a clause from the unprocessed clauses C, it picks a clause
c ∈ C that maximises the relevance

R(c, ~f) = rATP(c) + nb(N (c), ~f)

where:
• rATP(c) is an ATP function that calculates the relevance of a clause with traditional

means (such as weight, age, . . .),
• nb(l, ~f) is the Naive Bayesian relevance function from Section 2.3 adapted to

negative examples in Section 4.2,
• ~f is the current prover state as shown in Section 4.3, and
• N (c) is the normalisation function as introduced in Section 4.5.

4.7 Parameter Tuning

To automatically find good parameters for proof search, we employ offline tuning and
Particle Swarm Optimisation. Offline tuning is fast, but it only estimates proof search
performance and tunes only guidance-related parameters, such as σ1, σ2, and µ from
Section 2.3. Particle Swarm Optimisation is slower, but precisely measures proof search
performance and can be used to optimise any continuous-valued parameter.

4.7.1 Offline Tuning

Offline tuning analyses existing training data and attempts to find parameters that give
proof-relevant clauses from the training data a high rank, while giving proof-irrelevant
clauses a low rank. We calculate a score for every training datum S with the following
formula, which adds for every proof-relevant clause the number of proof-irrelevant clauses

55

Chapter 4 Internal Guidance

that were ranked higher: ∑
s∈S+

rankR(s, S−)

where
• S+ = {(l, ~f) | (l, ~f , o) ∈ S, o = (1, 0)} is the set of positive examples in S,
• S− = S \ S+ is the set of negative examples in S,
• rank is defined in Definition 2.6, and
• R is the relevance formula from Section 4.6.

We sum up the results of the formula above for all training data and take the guidance
parameters which minimise the value of the sum.

4.7.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a standard optimisation algorithm that can be
applied to minimise the output of a function f(~x), where ~x is a vector of continuous values
[PKB07]. A particle is defined by a location ~x (a candidate solution for the optimisation
problem) and a velocity ~v. Initially, p particles are created with random locations and
velocities. Then, at every iteration of the algorithm, a new velocity is calculated for every
particle and the particle is moved by that amount. The new velocity of a particle is:

~v(t+ 1) = ω × ~v(t) + φp × ~rp × (~bp(t)− ~x(t)) + φg × ~rg × (~bg(t)− ~x(t))

where:
• ~v(t) is the old velocity of the particle,
• ~bp(t) is the location of the best previously found solution among all particles,
• ~bg(t) is the location of the best previously found solution of the particle,
• ~rp and ~rg are vectors of random numbers uniformly distributed in [0, 1] that are

randomly generated at each evaluation of the formula, and
• ω = 0.4, φp = 0.4, and φg = 3.6 are constants.

We apply PSO to optimise the performance of an ATP on a problem set S. For this, we
define f(~x) to be the number of problems in S the ATP can solve with a set of parameters
being set to ~x and with timeout t. We then run PSO and take the best global solution
obtained after n iterations. We fixed t = 1s, p = 300, and |S| = 1000. The algorithm has
worst-case execution time t× p× n× |S|.

4.8 Implementation

We implemented our internal guidance in Satallax version 2.8.3 Satallax places several
kinds of proof search commands on a priority queue: Among the 11 different commands
in Satallax 2.8 are proposition processing, mating, and confrontation. Proof search
processes the commands on the priority queue by descending priority, until a proof is
found or a timeout is reached.

3The source code can be obtained at http://cl-informatik.uibk.ac.at/users/mfaerber/satallax.html.

56

http://cl-informatik.uibk.ac.at/users/mfaerber/satallax.html

4.9 Evaluation

4.8.1 Machine Learning

An analysis of several proof searches yielded that on average, more than 90% of commands
put onto the priority queue of Satallax are proposition processing commands, which
correspond to processing a clause from the set of unprocessed clauses in given-clause
provers. For that reason, we decided to influence the priority of proposition processing
commands, giving those propositions likely to be useful a higher priority. The procedure
follows the one described in Section 4.6, but the ranking of a proposition is performed
when the proposition processing command is put onto the priority queue. The Naive
Bayes rank is added to the priority that Satallax without internal guidance would have
assigned to the command. We pay attention to influence the priority of term processing
commands only in moderation (by choosing appropriately small guidance parameters),
to avoid discrimination of other types of commands in the priority queue.

To record training data, we use the terms from the proof search that contributed to the
final proof. For this, Satallax uses picomus [Bie08] to construct a minimal unsatisfiable
core.

4.8.2 Strategies

The priorities assigned to proof search commands are determined by flags, which are
the settings Satallax uses for proof search. A set of flag settings is called a mode (in
other ATPs frequently called strategies) and can be chosen by the user upon the start of
Satallax.
Similar to other modern ATPs such as Vampire or E, Satallax supports timeslicing

via strategies (in other ATPs frequently called schedules), which define a set of modes
together with time amounts Satallax calls each mode with. Formally, a strategy is a
sequence [(m1, t1), . . . , (mn, tn)], where mi is a mode and ti the time to run the mode
with. The total time of the strategy is the sum of times, i.e. tΣ(S) = ∑

(m,t)∈S t. When
running Satallax with a strategy S and a timeout tmax, then all the times of the strategy
are multiplied by tmax

tΣ(S) if tmax > tΣ(S), to divide the time between modes appropriately
when running Satallax for longer than what the strategy S specifies. Then, every mode
mi in the strategy is run sequentially for time ti until a proof is found or the timeout
tmax is exceeded.
We extended Satallax to allow loading user-defined strategies, which was previously

not possible as strategies were hard-coded. Furthermore, we implemented modifying flags
via the command line, which is useful e.g. to change a flag among all modes of a strategy.
We used this extensively in the automatic evaluation of flag settings via PSO, as shown
in Subsection 4.7.2.

4.9 Evaluation

To evaluate the performance of our internal guidance method in Satallax, we use a THF0
[SB10] version (simply-typed higher-order logic) of the top-level theorems of the Flyspeck
project, as generated by Kaliszyk and Urban [KU14]. The test set consists of 14185

57

Chapter 4 Internal Guidance

Table 4.1: Overview of internal guidance results.
Type Timeout Unguided Guided Loss Gain Gain%

Online 1s × 1 2717 3374 59 716 +26%
Offline 1s × 2 2717 3428 75 786 +29%
Offline 30s × 2 3097 4028 106 1037 +33%

problems from topology, geometry, integration, and other fields. The premises of each
problem are the actual premises that were used in the Flyspeck proofs, amounting to an
average of 84.3 premises per problem.
For experiments with timeouts of 1s and 2s, we use an Intel Core i3-5010U CPU (2.1

GHz Dual Core, 3 MB Cache) and run at most one instance of Satallax at a time. For
experiments with 30s timeout, we use an 48-core server with 2.2GHz AMD Opteron
CPUs and 320GB RAM, running 10 instances of Satallax in parallel.

We use the Satallax 2.5 strategy (abbreviated as “S2.5”), because the newest strategy
in Satallax 2.8 cannot always retrieve the terms that were used in the final proof, which
is important to obtain training data. The “S2.5” strategy solves 2717 problems with
a timeout of 1s. Doubling the timeout to 2s increases the number of solved problems
to 3394. This increase is mostly due to the fact that Satallax tries up to 11 modes
in 2s compared to only up to 7 modes in 1s. To measure the gain in solved problems
more fairly, we create a strategy “S2.5_1s” which contains only those 7 modes that were
already used during the 1s run. This strategy proves 2845 problems given a timeout of
2s. We use the “S2.5_1s” strategy throughout the remaining evaluation.

We propose two different scenarios to generate training data and to use it in subsequent
proof searches, see Figure 4.1:

• Online learning: We run the ATP on every problem with internal guidance. For
every problem the ATP solves, we update the classifier with the training data from
the ATP proof.

• Offline learning: We first run the ATP on all problems without internal guidance,
saving training data for every problem solved. We then create classification data
from the training data and rerun the ATP with internal guidance on all problems.

We summarise our internal guidance results in Table 4.1 and explain them in more detail
in the following paragraphs. We call a problem “lost” if Satallax with guidance can not
solve it and Satallax without guidance can. Vice versa for “gained”.
To evaluate online learning, we run Satallax on all Flyspeck problems by ascending

order, accumulating training data and using it for all subsequent proof searches. We
filter away terms in the training data that contain Skolem variables. As result, Satallax
with online learning and a timeout of 1s solves 3374 problems (59 lost, 716 gained).

To evaluate offline learning, we first run Satallax without internal guidance on all
problems, generating training data whenever Satallax finds a proof. Next, we create a

58

4.9 Evaluation

(a) Online learning.

(b) Offline learning.

Figure 4.1: Comparison of online and offline learning. The large boxes symbolise an ATP
proof search, which takes classifier data and returns training data (empty if
no proof found). The small “+” boxes combine classifiers and training data,
returning new classifier data.

classifier from the training data.4 Finally, we run Satallax with internal guidance on all
problems, using the same timeout as in the first run. We evaluated offline learning with
timeouts of 1s and 30s. In the 1s case, unguided Satallax solves 2717 problems, whereas
guided Satallax using inference filtering solves 3428 problems (75 lost, 786 gained). In the
30s case, unguided Satallax solves 3097 problems, whereas guided Satallax using Skolem
filtering solves 4028 problems (106 lost, 1037 gained). The evolution of the number of
solved problems is shown in Figure 4.2. The “jumps” in the data stem from changes of
modes.

Offline learning can be parallelised, which makes it take less wall-clock time than online
learning. However, offline learning evaluates every problem twice, taking potentially more
CPU time. To know whether the increased effort pays off, we compare the performance
of offline learning to running the ATP with doubled timeout. Offline learning with a
timeout of 1s for both guided and unguided Satallax solves a total of 3503 problems.
This means that offline learning solves 23.1% more problems than the unguided “S2.5_1s”
strategy (using the same modes) and 3.2% more problems than the unguided “S2.5”
strategy (using more modes), both running with a timeout of 2s. We conclude that using
offline learning can be more effective than running the prover with a longer timeout and
more modes.

We now compare the different clause processing options introduced in Section 4.5. For
this, we create a classifier from the training data gathered during the 1s run. We then run
Satallax with internal guidance in offline learning mode with 1s timeout. We perform this

4The effort required to create the classifier is insignificant. Creating a classifier with Skolem filtering
from 3097 proofs takes 3s and results in a 1.8MB file.

59

Chapter 4 Internal Guidance

0 5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

Time [s]

Pr
ob

le
m
s
so
lv
ed

Offline
Training

Figure 4.2: Problems solved in a certain time.

Table 4.2: Comparison of clause processing options.
Clause processing Solved Loss Gain
Consistent normalisation 1911 920 114
Consistent Skolemisation 1939 885 107
None 2166 688 137
Skolem filtering 3395 98 776
Inference filtering 3428 75 786

procedure for each clause processing option. The results are given in Table 4.2. Internal
guidance performs best when influencing only the priority of axioms (inference filtering),
solving 786 problems that could not be solved by Satallax in 1s without internal guidance.

4.10 Related Work

A number of early learning and data based approaches to guide automated theorem
provers has been surveyed in [DFGS99]. The Prover9 hints method [Ver96] was among
the earliest attempts to directly influence proof search by learning from previous proofs.
Hints allow the user to specify a set of clauses to treat in a special way. A similarly
working watch list has been later integrated into E, along with other learning mechanisms
[Sch01]. Further methods for guiding the actual proof search of ATPs using machine
learning have been considered in the integration of Naive Bayes classifiers to select next
proof actions in Enigma [JU17], where the clause selection in E uses a tree-based n-gram
approach to approximate similarity to the learned proofs using a support vector machine
classifier. Holophrasm [Wha16] introduces a theorem prover architecture using GRU

60

4.11 Conclusion

neural networks to guide the proof search of a tableaux style proof process of Metamath.
TensorFlow neural network guidance was integrated into E [LISK17], showing that with
batching and hybrid heuristics, it can solve a number of problems other strategies cannot
solve. Finally, various reasons as to why the connection calculus is well suited for machine
learning techniques, especially deep learning, are considered by Bibel [Bib17].
The Machine Learning Connection Prover (MaLeCoP) was the first leanCoP-based

system to explore the feasibility of machine-learnt internal guidance [UVv11]. MaLeCoP
relies on an external machine learning framework (using by default the SNoW system
[CCRR99]), providing machine learning algorithms such as Naive Bayes and shallow neural
networks based on perceptrons or winnow cells. During proof search, MaLeCoP sends
features of its current branch to the framework, which orders the proof steps applicable
in the current branch by their expected utility. The usage of a general framework eases
experiments with different methods, but the prediction speed of MaLeCoP’s underlying
advisor system together with the communication overhead is several orders of magnitude
lower than the raw inference speed of leanCoP. This was to some extent countered by
fast query caching mechanisms and a number of strategies trading the machine-learnt
advice for raw speed, yet the real-time performance of the system remains relatively low.
This motivated the creation of the Fairly Efficient Machine Learning Connection

Prover (FEMaLeCoP), which improved speed by integrating a fast and optimised Naive
Bayes classifier as shown in Section 2.3 into the prover [KU15a]. Naive Bayes was
chosen because learning data can be easily filtered for the current problem, making the
calculation of Naive Bayesian probabilities for a given branch efficient for each applicable
contrapositive. FEMaLeCoP efficiently calculates the Bayesian probabilities of a given
set of contrapositives by saving statistics directly in the contrapositive database, see
Section 3.5. Performance is further improved by updating branch features from the
previous branch, instead of fully recalculating them in every new branch.
Machine learning can also be applied to create strategies and strategy schedules for

ATPs. Creating strategies (i.e. sets of parameters) for ATPs automatically has been
researched in the Blind Strategymaker (BliStr) project [Urb15]. Given a set of ATP
strategies that are known to perform well on different problem sets, new problems can
benefit from custom strategy schedules that determine which strategies to apply for which
time. The creation of such schedules was treated by Machine Learning of Strategies
(MaLeS) [Kü14].

4.11 Conclusion

We have shown how to integrate internal guidance into ATPs based on the given-clause
algorithm, using positive as well as negative examples. We have demonstrated the
usefulness of this method experimentally, showing that on a simply-typed higher-order
logic version of the Flyspeck problems, Satallax with internal guidance solves 23% more
problems than Satallax without it.

ATPs with internal guidance could be integrated into hammer systems such as Sledge-
hammer (which can reconstruct Satallax proofs [SBP13]) or HOL(y)Hammer [KU15b],

61

Chapter 4 Internal Guidance

continually improving their success rate with minimal overhead. It could also be interest-
ing to learn internal guidance for ATPs from subgoals given by the user in previous proofs.
Currently, we only learn from problems we could find a proof for, but in the future we
could benefit from also considering proof searches that did not yield proofs. Furthermore,
it would be interesting to see the effect of negative examples on existing ATPs with
internal guidance, such as FEMaLeCoP [JU17]. Finding better characterisations of prover
states is important to further improve the learning results.

62

Chapter 5

Monte Carlo Proof Search

5.1 Introduction

Current automated theorem provers are still weak at finding more complicated proofs,
especially over large formal developments [UHV10]. The search typically blows up
after several seconds, making the chance of finding proofs in longer times exponentially
decreasing [AKU12]. This behaviour is reminiscent of poorly guided search in games
such as chess and Go. The number of all possible variants there typically also grows
exponentially, and intelligent guiding methods are needed to focus on exploring the most
promising moves and positions.

The guiding method that has recently very significantly improved automatic game play
is Monte Carlo Tree Search (MCTS), i.e. expanding the search tree based on its (variously
guided) random sampling [BPW+12]. MCTS has been found to produce state-of-the-art
players for several games, most notably for the two-player game Go [SHM+16], but also
for single-player games such as SameGame [SWTU12] and the NP-hard Morpion Solitaire
[Ros11].

Theorem proving can be seen as a game. For instance, it has been modelled as a two-
player game in the framework of game-theoretical semantics [Hin82], but it can also be
seen as a combinatorial single-player game. As shown for example in the AlphaGo system
[SHM+16], machine learning can be used to train good position evaluation heuristics
even in very complicated domains that were previously thought to be solely in the realm
of “human intuition”. While “finishing the randomly sampled game” – as used in the
most straightforward MCTS for games – is not always possible in ATP (it would mean
finishing the proof), there is a chance of learning good proof state evaluation heuristics
that will guide MCTS for ATPs in a similar way as e.g. in AlphaGo. One-step lookahead
can help Vampire proof search [HRSV16], suggesting that MCTS, whose simulation phase
can be seen as multi-step lookahead, can effectively guide proof search. It therefore seems
reasonable to apply MCTS to the game of theorem proving.
In this chapter, we study MCTS methods that can guide the search in automated

theorem provers. We focus on connection tableaux calculi and the leanCoP prover as
introduced in Section 3.5, building on previous machine learning extensions of leanCoP
[UVv11, KU15a]. For an intuition of the relationship between different proof search
strategies, see Figure 5.1: Iterative deepening considers all potential proof trees of a
certain depth before considering trees of higher depth. Restricted backtracking uniformly
discards a set of potential proof trees. MCTS allows for a more fine-grained proof search,

63

Chapter 5 Monte Carlo Proof Search

(a) Iterative deepening without
restricted backtracking.

(b) Iterative deepening with re-
stricted backtracking.

(c) Monte Carlo.

Figure 5.1: The two main leanCoP strategies compared with Monte Carlo proof search.

searching different regions of the search space more profoundly than others, based on
heuristics. To our knowledge, our approach is the first to apply MCTS to theorem
proving.
We introduce MCTS in Section 5.2 and then propose a set of heuristics adapted to

proof search to expand of a proof search tree using MCTS. We show an implementation
in Section 5.7 and evaluate it in Section 5.8.

5.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a method to search potentially infinite trees by
sampling random tree paths (called simulations) [BPW+12]. The outcome of simulations
is used to estimate the quality of tree nodes, and MCTS steers search towards nodes
with higher quality estimates.

Definition 5.1 (Tree). A tree is a tuple (N,n0,→), where N is a set of tree nodes,
n0 ∈ N is the root node, and → ∈ N ×N is a cycle-free relation, i.e. there is no n ∈ N
such that n→+ n. We write that n′ is a child of n iff n→ n′ and n′ is a descendant of n
iff n→+ n′. Every n ∈ N is the child of at most one node in N .

We consider proof search as traversal of a (usually infinite) tree (N,n0,→), such that
N is the set of derivations (tableaux), n0 is a derivation that consists of some word
〈C,M,Path〉 corresponding to the matrix M of a given problem, and n→ n′ iff n′ can
be obtained from n by a single application of a calculus rule. If n→ n′ by an application
of the extension rule using the contrapositive c, then we write n ext(c)−−−→ n′. Proof search
succeeds when we find a leaf node of N that is a proof.
Let ρ ∈ N → R be a reward function that estimates the distance of an unclosed

derivation in the proof search tree from a closed derivation. Then we can use Monte
Carlo Tree Search to traverse the proof search tree, giving preference to regions that
yield higher rewards. For this, we first define Monte Carlo trees:

64

5.3 Child Selection Policy

Definition 5.2 (Monte Carlo Tree). A Monte Carlo tree T for a tree (N,n0,→) is a
tuple (NT ,→T , ρT), where →T ⊆→+ and ρT ∈ N → R is a mapping. We write that n′
is a T -child of n iff n →T n′. The initial Monte Carlo tree T0 is (NT0 ,→T0 , ρT0) with
NT0 = {n0}, →T0= ∅ and ρT0(n) = 0 for all n.

A single iteration of Monte Carlo Tree Search takes a Monte Carlo tree T and returns
a new tree T ′ as follows:1

1. Selection: A node n ∈ NT with n0 →∗T n is chosen with a child selection policy,
see Section 5.3.

2. Simulation: A child n1 of n is randomly chosen with child probability P (n1 | n)
to be the simulation root, see Section 5.4. Every tree node is chosen at most once to
be a simulation root, to guarantee the exploration of the tree. From n1, a sequence
of random transitions n1 → · · · → ns is performed, where for every i < s, ni+1 is
randomly selected with child probability P (ni+1 | ni).

3. Expansion: A node ne from n1 → · · · → ns is selected with the expansion policy,
see Section 5.6. The node ne is added as a child to n with reward ρ(ns) (see
Section 5.5) to yield the new tree T ′:

NT ′ = NT ∪ {ne} →T ′ =→T ∪ {(n, ne)} ρT ′ = ρT {ne 7→ ρ(ns)}

In the next sections, we show heuristics for the child selection policy, child probability,
reward, and expansion policy.

5.3 Child Selection Policy
UCT (Upper Confidence Bounds for Trees) is a frequently used child selection policy for
Monte Carlo Tree Search [KS06]. It uses visitsT (n), which is the number of T -descendants
of n, and ρT (n), which is the average T -descendant reward of n.

visitsT (n) = |{n′ | n→+
T n
′}| ρT (n) =

∑{ρT (n′) | n→∗T n′}
visitsT (n)

Given a node n, UCT ranks every T -child n′ of n with

uct(n, n′) = ρT (n′) + Cp

√
ln visitsT (n)
visitsT (n′)

Here, Cp is called the exploration constant, where small values of Cp prefer nodes with
higher average descendant reward and large values of Cp prefer nodes with fewer visits.
In the UCT formula, division by zero is expected to yield ∞, so if a node n has unvisited
children, one of them will be selected by UCT.
The UCT child selection policy csT (n) recursively traverses the Monte Carlo tree T

starting from the root n0. csT (n) chooses the T -child of n with maximal UCT value and
recurses, unless n has no T -child, in which case n is returned:

1Frequently, MCTS is described to have a backpropagation step that adds rewards to the ancestors of
the newly added nodes. We omit this step, adapting the child selection policy instead.

65

Chapter 5 Monte Carlo Proof Search

csT (n) =

csT

(
arg max

n′∈{n′|n→Tn′}
uct(n, n′)

)
if ∃n′. n→T n

′

n otherwise

5.4 Child Probability
The child probability P (n′ | n) determines the likelihood of choosing a child node n′ of n
in a simulation. We show three different methods to calculate the child probability.

• The baseline probability assigns equal probability to all children, i.e. P (n′ | n) ∝ 1.
• The open branches probability steers proof search towards derivations with fewer

open branches, by assigning to n′ a probability inversely proportional to the number
of open branches in n′. Therefore, P (n′ | n) ∝ 1/ (1 + |bo(n′)|), where bo(n) returns
the open branches in n.

• The Naive Bayes probability attributes to n′ a probability depending on the calculus
rule applied to obtain n′ from n: In case the extension rule was not used, the node
obtains a constant probability. If the extension rule was used, the formula nb intro-
duced in Section 2.3 is used, requiring contrapositive statistics from previous proofs.
However, as nb does not return probabilities, we use it to rank contrapositives by
the number of contrapositives with larger values of nb:

Rnb(n, c) = ranknb

(
(c, ~f(n)),

{
(c′, ~f(n)) | n ext(c′)−−−−→ n′

})
where ~f(n) denotes the features of the derivation n. Then, we assign to nodes as
probability the inverse of the Naive Bayes rank:

P (n′ | n) ∝
1/Rnb(n, c) if n ext(c)−−−→ n′

1 otherwise

5.5 Reward
The reward heuristic estimates the likelihood of a given derivation to be closable. In
contrast, most prover heuristics (such as child probability) only compare the quality of
children of the same node. We use our reward heuristics to evaluate the last node n of a
simulation.
Several heuristics in this section require a normalisation function, for which we use a

strictly increasing function norm ∈ [0,∞)→ [0, 1) that fulfils limx→∞ norm(x) = 1 and
norm(0) = 0. For example, norm(x) = 1− (x+ 1)−1.

• The branch ratio reward determines the reward to be the ratio of the number of
closed branches and the total number of branches, i.e. ρ(n) = |bc(n)|/|b(n)|.

• The branch weight reward is based on the idea that many open branches with
large literals are indicators of a bad proof attempt. Here, the size |l| of a literal is
measured by the number of symbol occurrences in l. Furthermore, the closer to

66

5.5 Reward

the derivation root a literal appears, the more characteristic we consider it to be
for the derivation. Therefore, the reward is the average of the inverse size of the
branch leafs, where every leaf is weighted with the normalised depth of its branch.

ρ(n) = 1
|bo(n)|

∑
b∈bo(n)

norm(depth(b))
| leaf(b)|

• The machine-learnt closability reward assumes that the success ratio of closing a
branch in previous derivations can be used to estimate the probability that a branch
can be closed in the current derivation. This needs the information about attempted
branches in previous derivations, and which of these attempts were successful. We
say that a literal l stemming from a clause c is attempted to be closed during
proof search when l lies on some branch. The attempt is successful iff proof search
manages to close all branches going through l. Given such data from previous
proof searches, let p(l) and n(l) denote the number of attempts to close l that were
successful and unsuccessful, respectively. We define the unclosability of a literal
l as n(l)

p(l)+n(l) . However, the less data we have about a literal, the less meaningful
our statistics will be. To account for this, we introduce weighted unclosability: We
assume that a literal that never appeared in previous proof searches is most likely
closable, i.e. its weighted unclosability is 0. The more often a literal was attempted
to be closed, the more its weighted unclosability should converge towards its (basic)
unclosability. Therefore, we model the probability of l to be closable as

P (l closable) = 1− norm(p(l) + n(l)) n(l)
p(l) + n(l)

Finally, the closability of a derivation is the mean closability of all leafs of open
branches of the derivation, i.e. the final reward formula is

ρ(n) =
∑

b∈bo(n)

P (leaf(b) closable)
|bo(n)|

To measure the efficiency of a reward heuristic, we introduce discrimination: Assume
that an MCTS iteration of the Monte Carlo tree T starts a simulation from the node np
and finds a proof. Then the discrimination of T is the ratio of the average reward on
the Monte Carlo tree branch from the root node n0 to np and the average reward of all
Monte Carlo tree nodes. Formally, let the average reward of a set of nodes N be

ρT (N) =
∑ {ρT (n) | n ∈ N}

|N |

Then the discrimination of T is

ρT ({n | n0 →∗T n, n→∗T np})
ρT ({n | n0 →∗T n})

67

Chapter 5 Monte Carlo Proof Search

5.6 Expansion Policy

The expansion policy determines which node ne of a simulation n1 → · · · → ns is added
to the Monte Carlo tree. We implement two different expansion policies:

• The default expansion policy adds n1, i.e. the simulation root, to the MC tree.
• The minimal expansion policy picks ne to be the smallest of the simulation nodes

with respect to a given norm | · |, such that for all i, |ne| ≤ |ni|. If multiple ne are
admissible, the one with the smallest index e is picked. We consider two norms on
nodes:
1. The first norm measures the number of open branches.
2. The second norm measures the sum of depths of open branches.

The minimal expansion policy is similar to restricted backtracking in the sense that
it restricts proof search to be resumed only from certain states, thus resulting in an
incomplete search.

5.7 Implementation

We implemented Monte Carlo proof search (MCPS) based on leanCoP.2 In our imple-
mentation, leanCoP provides the search tree and MCTS chooses which regions of the
tree to search. Unlike for the traditional leanCoP, the depth of the search tree is not
limited. To guarantee nonetheless that simulations terminate, simulations are stopped
after a fixed number of simulation steps smax.

While it is possible to run MCPS from the root node until a proof is found, we found
it to perform better when it serves as advisor for leanCoP. We show this in Listing 5.1,
assuming for a simpler presentation that the default expansion policy from Section 5.6 is
used: MCPS as performed by mcps L Path σ attempts to find a connection proof for
〈{L},M, Path〉. The result is a lazy list of Monte Carlo iterations, where an iteration
consists of a Monte Carlo tree and possibly a proof discovered during the simulation
performed in the iteration. The first maxIterations are considered in line 4: When
maxIterations is set to 0, proof search behaves like leanCoP, and in case it is set to ∞,
the whole proof search is performed in the MCPS part. As MCPS is performed lazily,
MCPS is performed for less than maxIterations iterations when it discovers some proof
contributing to the final closed derivation. Here, the lazy list characterisation introduced
in Subsection 3.6.2 turns out to be permit a very concise implementation as well as an
easy integration of techniques such as restricted backtracking. As soon as all proofs
discovered during MCPS were considered (line 5), the tree T of the final Monte Carlo
iteration last mc is obtained and the children of the root of T are sorted by decreasing
average T -descendant reward ρT (line 6). Finally, the last applied proof step of each
child is processed like in the lazy list implementation (lines 7–11).
The array substitution technique from Section 3.5 requires that the proof search

backtracks only to states whose substitution is a subset of the current state’s substitution.

2The source code is available at http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html.

68

http://cl-informatik.uibk.ac.at/users/mfaerber/cop.html

5.8 Evaluation

Listing 5.1: Monte Carlo Proof Search as advisor.

1 prove [] path lim sub = [sub]
2 prove (lit : cla) path lim sub =
3 let
4 mc = take maxIterations (mcps lit path sub)
5 proofs1 = mapMaybe getProof mc
6 proofs2 = last mc & root & children & sortOn avgReward & concatMap
7 (\ child -> case lastStep child of
8 Reduction sub1 -> [sub1]
9 Extension (sub1, cla1) ->

10 if lim <= 0 then []
11 else prove cla1 (lit : path) (lim - 1) sub1)
12 in concatMap (prove cla path lim) (proofs1 ++ proofs2)

However, because this requirement is not fulfilled for MCPS, we use association lists for
substitutions.

5.8 Evaluation

We evaluate the presented heuristics on the bushy MPTP2078 problems, with definitional
clausification and a timeout of 10s for each problem. Before evaluation, we collect training
data for the machine learning heuristics by running leanCoP on all bushy problems with
a timeout of 60s.
The base configuration of monteCoP uses the open branches probability (see Sec-

tion 5.4), the branch ratio reward (see Section 5.5), and the minimal expansion policy
1 (see Section 5.6), where the maximal simulation depth smax = 50, the exploration
constant Cp = 1, and the maximal number of MCTS iterations maxIterations = ∞.
For any heuristic h not used in the base configuration, we replace the default heuristic
with h and evaluate the resulting configuration. The results are shown in Table 5.1: The
heuristics that most improve the base configuration are the machine-learnt closability
reward and the minimal expansion policy 2.

We explore a range of values for several numeric parameters, for which we show results
in Figure 5.2: The maximal number of MCTS iterations maxIterations performs best
between 20 and 40, see Figure 5.2a: Below 20, MCTS cannot provide any meaningful
quality estimates, and above 40, the quality estimates do not significantly improve any
more, while costing computational resources. The exploration constant Cp ≈ 0.75 gives
best results, where the machine-learnt closability reward achieves a local optimum, see
Figure 5.2b: At such an optimum, exploration and exploitation combine each other
best, therefore the existence of such an optimum is a sanity check for reward heuristics
(which the branch ratio reward does not pass). The maximal simulation depth smax ≈ 20
seems to perform best, see Figure 5.2c. Above this value, the number of solved problems
decreases, since the number of actually performed simulation steps decreases, as shown

69

Chapter 5 Monte Carlo Proof Search

Table 5.1: Comparison of Monte Carlo heuristics. Iterations, simulation steps and dis-
crimination ratio are averages on the 196 problems solved by all configurations.

Configuration Iterations Sim. steps Discr. Solved
Base 116.46 1389.82 1.37 332
Uniform probability 949.62 17539.59 1.31 237
NB probability 528.39 8014.03 1.35 248
Random reward 104.88 1167.98 1.19 364
Branch weight reward 108.13 1268.88 1.12 334
ML closability reward 108.52 1151.61 2.30 367
Default exp. pol. 371.81 4793.58 1.38 328
Minimal exp. pol. 2 224.72 2769.12 1.40 348

in Figure 5.2d. This might be explained by the fact that at higher simulation depths, the
computational effort to calculate the set of possible steps increases, for example because
the substitution contains more and larger elements.
We adapt the base configuration to use the best heuristics from Table 5.1 and the

best values for parameters discussed in Figure 5.2, yielding smax = 20, Cp = 0.75, and
maxIterations = 27. This improved configuration solves 538 problems, compared to
509 solved by the best single leanCoP strategy.

5.9 Conclusion

We have proposed a combination of Monte Carlo Tree Search and automated theorem
proving, including a number of proof-state evaluation heuristics, some of which are learnt
from previous proofs. This is the first time Monte Carlo Tree Search has been used to
guide an automated theorem prover.

MCTS provides a theoretically founded fine-grained mechanism to control the search
space of tableaux-based theorem provers based on random sampling and state evaluation
heuristics, which might eventually even replace iterative deepening. We have shown
that a fast rollout policy combined with a machine-learnt state evaluation heuristic
and a custom expansion policy produces the best results. The strength of the current
system has turned out to be its function as advisor for existing provers, demonstrated
by our integration into leanCoP. This opens a wide space of future work, profiting
from the ongoing research in MCTS; examples include self-updating reward heuristics,
adaptive tuning of rollout policies during search [Ros11], combination of online and
offline knowledge with the All-Moves-As-First (AMAF) heuristic [GS07], and different
characterisations of tableaux search. Furthermore, identifying controversial choices in
the base prover would allow using the Monte Carlo prover as advisor more efficiently.
To increase efficiency, arrays should be used instead of association lists as substitution
data structure, requiring precautions when changing states. The performed machine

70

5.9 Conclusion

0 20 40 60 80 100 120 140
450

460

470

480

490

500

maxIterations

Pr
ob

le
m

s
so

lv
ed

(a) Maximal number of MCTS iterations.

0 1 2 3 4 5

200

300

400

Cp

Pr
ob

le
m

s
so

lv
ed

Machine-learnt closability reward
Branch ratio reward

(b) Exploration.

0 20 40 60 80 100 120 140
100

150

200

250

300

350

smax

Pr
ob

le
m

s
so

lv
ed

(c) Maximal simulation depth.

0 20 40 60 80 100 120 140

0.6

0.8

1

1.2

1.4

·105

smax

Si
m

ul
at

io
n

st
ep

s

(d) Simulation steps / Maximal simulation
depth.

Figure 5.2: Parameter influence.

71

Chapter 5 Monte Carlo Proof Search

learning experiments are promising enough to justify the enhancement of Monte Carlo
Proof Search with stronger heuristics, such as neural networks. While we applied Monte
Carlo Tree Search to theorem proving as a single-player game, it could also be used to
treat theorem proving as two-player game.

72

Chapter 6

Proof Reconstruction

6.1 Introduction

The output of automated theorem provers is usually not trusted, as for performance
reasons, few ATPs implement small, trusted kernels à la LCF. One way to certify
the correctness of ATP proofs is to translate them to interactive theorem provers.
Certification of ATP proofs is also important for the integration of ATPs into ITPs,
providing automation in the form of proof tactics or automated justification for smaller
steps. However, the proofs returned by powerful ATPs such as E and Vampire can
be difficult to verify and reconstruct in ITPs. This is due to the ATP’s amount and
complexity of inference rules. One solution to this problem is to extract only the used
premises from the ATP proofs and use a simpler ATP to find a new proof that is easier
to reconstruct.

Most ATPs convert their input problems to clausal normal form as preprocessing step.
To reconstruct the resulting clausal proofs in an ITP, it is necessary to verify in the ITP
the conversion to clausal normal form. The ATP nanoCoP has demonstrated that a
prover not requiring clausification can be effectively implemented. The reconstruction of
nonclausal proofs eliminates the necessity of proving the correctness of the clausification,
but on the other hand, translating the proofs is more involved.

In this chapter, we describe the reconstruction of proofs in HOL Light: After reducing
problems to first-order logic in Section 6.2, we translate clausal proofs from Metis
(Section 6.3) and leanCoP (Subsection 6.4.3) as well as nonclausal proofs from nanoCoP
(Subsection 6.4.4). To this end, we propose variants of the connection calculi adapted
for proof reconstruction in Subsection 6.4.1. The resulting proof search methods can be
used for example as part of a hammer system such as HOL(y)Hammer. We evaluate the
performance of our implementations on HOL Light problem sets in Section 6.5.

6.2 Translation to First-Order Logic

Many ATPs treat problems in first-order logic. To convert a HOL problem to a first-order
problem, there exists a multitude of translation methods [Har96, Hur03, MP08, Bla12],
differing in their treatment of types, lambda terms, Hilbert’s ε operator and many more
aspects. HOL Light includes a translation method to first-order logic as part of its
integrated model elimination prover MESON. To translate HOL goals to first-order logic,

73

Chapter 6 Proof Reconstruction

we reuse large parts of the MESON infrastructure in HOL Light. We now explain the
details of this translation.
The translation is realised as a tactic that transforms a goal C together with some

premises {P1, . . . , Pn} to a format that can be passed to a first-order ATP. The translation
tactic proceeds as follows: First, the tactic refutes the goal, yielding the goal ¬C → ⊥.
Next, the tactic adds the premises to the goal via POLY_ASSUME_TAC, which instantiates
premises containing polymorphic constants with the types of the objects they are used
with. This yields a goal of the shape P1 → . . . → Pn → ¬C → ⊥. Furthermore, the
translation tactic performs the following steps:

• Elimination of Hilbert’s ε operator: εx.Px denotes an object x for which Px holds.
HOL Light’s SELECT_ELIM_TAC replaces occurrences of the form εx.Px by a fresh
variable v, adding the assumption ∀x.Px → Pv. As this step does not preserve
logical equivalence, it can make a provable goal unprovable.

• Fixing of function arities via currying: If the same function symbol appears multiple
times in the goal with a different number of arguments, e.g. fx and fxy, it cannot
be directly translated to a first-order function, as first-order functions have a
fixed arity. The translation thus replaces applications of such functions with an
application operator I, turning fx into I(f, x) and fxy into I(I(f, x), y).

• Elimination of lambda abstractions (via lambda lifting), β-conversion
• Conversion to negation normal form
• Instantiation of universally quantified variables with fresh variables
• Skolemisation

For clausal ATPs, the tactic additionally performs the following steps:
• Conversion to conjunctive normal form (CNF)
• Splitting: Performs case distinction for disjunctions, producing new subgoals. For

example, this might break the goal a ∨ b ∨ c→ g into subgoals a→ g, b→ g, and
c→ g. The splitting limit specifies the maximum number of times case distinction
is performed on a single disjunction.

For ATPs that do not support equality in their calculi (such as MESON), the tactic adds
equality axioms to the goal. The antecedents {C1, . . . , Cn} of the final goal C1 → . . .→
Cn → ⊥ are the clauses that are passed to the ATP.

Example 6.1. Consider the Flyspeck lemma length_eq_imp_length_tl_eq as an ex-
ample of a HOL goal to translate:

|s1| = |s2| → | tl s1| = | tl s2|

Here, |x| stands for the length of a list x and tl x denotes the tail of a list x. We wish to
prove the goal using the following HOL Light theorems:

∀l.l 6= []→ | tl l| = |l| − 1 (LENGTH_TL)

∀l.|l| = 0↔ l = [] (LENGTH_EQ_NIL)
We first refute the goal, yielding:

¬(|s1| = |s2| → | tl s1| = | tl s2|)→ ⊥

74

6.3 Metis

Then, we add the premises with POLY_ASSUME_TAC, yielding:

LENGTH_TL→ LENGTH_EQ_NIL→ ¬(|s1| = |s2| → | tl s1| = | tl s2|)→ ⊥

Here, POLY_ASSUME_TAC instantiates the polymorphic constant tl to match the types
present in the conjecture. The translation produces the following (untyped) first-order
problem, where v1 and v2 are the only variables:

v1 = [] ∨ | tl v1| = |v1| − 1 (LENGTH_TL′)
→|v2| 6= 0 ∨ v2 = [] (LENGTH_EQ_NIL→)
→|v2| = 0 ∨ v2 6= [] (LENGTH_EQ_NIL⇐=)
→|s1| = |s2| → | tl s1| 6= | tl s2| (negated conjecture)
→⊥

This procedure produces untyped HOL problems, corresponding to Leslie-Hurd’s uHOL
problem set [Hur03]. As Blanchette showed in his PhD thesis [Bla12], encoding types as
in Isabelle’s Sledgehammer [MP08] can increase the number of reconstructible problems.
We expect similar gains for HOL Light when using different translations. Due to the
similarity of translations to first-order logic in MESON, leanCoP, nanoCoP, and Metis,
we believe that all these methods could profit from such an improvement with relatively
little adaptation.

6.3 Metis

The paramodulation-based prover Metis was designed with a small certified proof core to
simplify its integration with interactive theorem provers, such as HOL4 and Isabelle/HOL
[MP08]. To translate a proof found by Metis to HOL Light, we translate all Metis
inferences to equivalent HOL Light inferences. As Metis proofs are untyped, this involves
the reconstruction of the types of the variables used in the proof.

The calculus used in Metis as well as the HOL Light translation of each calculus rule
is shown in Figure 6.1. We use the symbols C and D for clauses, L for a literal, t for
a term, and p for a path (denoting the position of a subterm). The complement L is
defined as in Section 3.2. The term of a literal L at position p is denoted by L[p], and
the replacement of a subterm of L at position p by a term t is denoted by L[p 7→ t].

In our previous work on reconstructing Metis proofs [FK15a], the reconstruction of a
proof yielded a most specific HOL theorem: For example, when translating the reflexivity
rule for a variable x, the most specific HOL translation attempted to infer the type
of x by inspecting instances of the substitution rule: When a substitution σ maps the
variable x to a constant c, one can infer that x will have the type of c. This can be seen
in Figure 6.2: When reconstructing the HOL proof of g(y) = f(x), the reconstruction
can infer the types of the variables y and x because the substitution rule was used in a
lower part of the proof, instantiating y with a and x with b.

75

Chapter 6 Proof Reconstruction

Metis HOL Light

axiom C
C

Γ ` C
INST

Γ ` σtmC

assume L{L,¬L}

EXCLUDED_MIDDLE` ∀t.t ∨ ¬t
SPEC L` L ∨ ¬L

refl t{t = t} REFL` t = t

C
subst σ

σC

Γ ` C
INSTANTIATE

Γ ` σtyσtmC

eq L p t
{L,L[p] 6= t, L[p 7→ t]}

ASSUME
L ` L ASSUME

L[p] = t ` L[p] = t
CONV_RULE

L,L[p] = t ` L[p 7→ t]
DISCH_DISJ

L ` L[p] 6= t ∨ L[p 7→ t]
DISCH_DISJ

` L ∨ L[p] 6= t ∨ L[p 7→ t]

{L} ∪ C {¬L} ∪D
resolve L

C ∪D

Γ ` C ′
FRONT

Γ ` L ∨ C
ITY

Γ ` σty(L ∨ C)

∆ ` D′
FRONT

∆ ` ¬L′ ∨D
ITY

∆ ` σty(¬L′ ∨D)
RESOLVE

Γ ∪∆ ` σty(C ∨D)

Figure 6.1: Reconstruction of the Metis proof rules in HOL Light.

axiom
g(a) 6= f(b)

axiom
f(x) = g(y)

refl
x0 = x0

eq
x0 6= x0 ∨ x0 6= y0 ∨ y0 = x0 resolve

x0 6= y0 ∨ y0 = x0 subst
f(x) 6= g(y) ∨ g(y) = f(x)

resolve
g(y) = f(x)

subst
g(a) = f(b)

resolve
�

Figure 6.2: Metis proof of f(x) = g(y)→ g(a) 6= f(b)→ ⊥.

76

6.4 Connection Proofs

The most specific translation fails to reconstruct some proofs because not all variables
in a proof are necessarily substituted. For that reason, we implemented a reconstruction
that translates Metis proofs to the most general HOL theorem. In this translation, we do
not need to keep a map from variables to types, as a variable will always have the most
general type. When the variable is used in an application, its type is refined via type
checking. For this, we convert HOL terms to HOL preterms, for which type checking is
implemented in HOL Light.

The reconstruction of a Metis proof is done recursively top-down, starting at the proof
of the empty clause (�). We take care not to instantiate variables appearing in the
context Γ, as this would change the conjecture we are about to prove. We now detail the
reconstruction of inferences shown in Figure 6.1.

• Axiom C: We match the first-order clause C with all available higher-order dis-
junctions, to obtain a term substitution σtm and a higher-order theorem Γ ` C.
We instantiate C with σtm.

• Assume L and Reflexivity t: The translation of both rules is trivial, by translating
L and t to their most general HOL counterparts.

• Substitution σ: As the substitution σ can lead to the specialisation of the types of
variables in C, we have to do type checking. For this, we create (untyped) HOL
preterms of the shape s = t for every element s 7→ t in σ. We then create the
conjunction of these preterms and typecheck it, yielding a HOL term substitution
σtm. As the types in σtm may contain fresh variables, we unify the types of
the variables in C with the types of the variables in σtm, yielding a HOL type
substitution σty. Finally, we instantiate C with σty and σtm.

• Equality L p t: We translate L, p, and t to HOL, unifying the types of L[p] and t.
We then rewrite the term L[p] to t with CONV_RULE and PATH_CONV p, and move
the assumptions from the context with DISCH_DISJ to create a disjunction. Here,
DISCH_DISJ is similar to the DISCH rule, but creates a disjunction instead of an
implication: It takes a theorem Γ ` C and a literal L, creating Γ \ {L} ` L ∨ C.

• Resolve L: The literals L and ¬L are not necessarily the first disjuncts of the given
HOL conclusions C ′ and D′. Therefore we have to identify L and ¬L′ in C ′ and D′
such that L and L′ correspond to the first-order L and the types of L and L′ can be
unified. This yields a type substitution σty, which we orient to ensure that no type
variable appearing in Γ is substituted. We then move L and ¬L′ to the FRONT of
the disjunctions, instantiate the disjunctions with σty (ITY stands for INST_TYPE),
and resolve them.

6.4 Connection Proofs

In this section, we show how to certify connection tableaux proofs by reconstructing
them in HOL Light. To abstract from the technical details, we give translations for both
clausal and nonclausal versions of connection proofs to Gentzen’s sequent calculus LK
[Gen35].

77

Chapter 6 Proof Reconstruction

Start
∧
i
〈Xi,M, {}〉

S
ε,M, ε

where {X1, . . . , Xn} is copy of C ∈M

Reduction R
L,M,Path ∪ {L′} where σ(L) = σ(L′)

Extension
∧
i
〈Li,M, Path ∪ {L}〉

E
L,M,Path

where {L1, . . . , Ln} ∪ {L′} is copy of C ∈M and σ(L) = σ(L′)

Figure 6.3: Clausal connection calculus for translation.

Start
∧
i
〈Xi,M, {}〉

S
ε,M, ε

where {X1, . . . , Xn} is copy of C ∈M

Reduction R
L,M,Path ∪ {L′} where σ(L) = σ(L′)

Extension
∧
i
〈Xi,M [C1\C2], Path ∪ {L}〉

E
L,M,Path

where {X1, . . . , Xn} is the β-clause of C2 with respect to L′, C2
is copy of C1, C1 is e-clause of M with respect to Path ∪ {L}, C2
contains L′ with σ(L) = σ(L′)

Decomposition
∧
i
〈Xi,M, Path〉

D
M ′,M, Path

where {X1, . . . , Xn} ∈M ′

Figure 6.4: Nonclausal connection calculus for translation.

6.4.1 Connection Calculi for Proof Translation

In the presentation of the connection calculi in [Ott11], all proof rules have a fixed number
of premises. To ease the translation of proofs, we present slightly reformulated versions
of the calculi. We introduce the following notation for rules with an arbitrary number of
premises: ∧

i
Pi

C
≡ P1 . . . Pn

C

The reformulated calculi for translation are shown in Figures 6.3 and 6.4. The words
of the original calculi were 〈C,M,Path〉. In the reformulated calculi, the words are
〈X,M,Path〉, where X denotes an arbitrary clause element, i.e. a matrix or a literal.
In the new calculi, the axiom rule becomes obsolete. Proofs can be trivially translated
between the connection calculi in this chapter and those shown in Section 3.2.

78

6.4 Connection Proofs

E
¬P (x′),M ′, {Q}

E
P (sx̂), M̂ , {Q,P (sx′)}

R
¬Q, M̂, {Q,P (sx′)}

D[
[¬P (s2x̂)]

[
P (sx̂)
¬Q

]]
, M̂ , {Q,P (sx′)}

E
P (sx′),M ′, {Q}

E
Q,M, {}

S
ε,M, ε

Figure 6.5: Proof in the nonclausal connection calculus for translation.

E
¬P (x′),M, {Q}

E
¬P (x̄),M, {Q,P (sx′), P (sx̂)}

E
P (sx̂),M, {Q,P (sx′)}

R
¬Q,M, {Q,P (sx′)}

E
P (sx′),M, {Q}

E
Q,M, {}

S
ε,M, ε

Figure 6.6: Proof in the clausal connection calculus for translation.

Example 6.2. Consider Example 3.5 on page 31. For the matrices M and M ′, proofs
in the connection calculi for translation are given in Figures 6.5 and 6.6.

6.4.2 Connection Proof Translation

A connection proof for a first-order formula M consists of a connection proof tree and a
global substitution σ. Given this information, we want to construct a proof of M ` ⊥,
which is written in LK as M `. We now show such a translation both from clausal and
nonclausal proofs to LK.

We translate connection proof trees recursively by distinguishing the different rules of
the calculus. We denote by [Γ `] the LK translation of the connection proof for Γ. In the
LK translation, matrices and clauses represent formulas, where a matrix is a conjunction
of clauses and a clause is a (potentially universally quantified) disjunction. We write that
C is in M iff M = C1 ∧ · · · ∧ Cn with C = Ci for some i with 1 ≤ i ≤ n.

We use an LK rule ∧L which extracts a conjunct from a conjunction, however keeping
the conjunction in the context:

Γ, Ci, C1 ∧ · · · ∧ Cn ` ∆ ∧L
Γ, C1 ∧ · · · ∧ Cn ` ∆

Furthermore, we use an LK rule ⊥L which derives ⊥ from two complementary literals in
the context:

⊥L
Γ, A,A `

79

Chapter 6 Proof Reconstruction

Connection Calculus LK

∧
i
〈Xi,M, {}〉

S
ε,M, ε

where {X1, . . . , Xn} is copy of C ∈M

[X1,M, {} `] . . . [Xn,M, {} `] ∨L
X1 ∨ · · · ∨Xn,M ` ∀L∀~x.(X1 ∨ · · · ∨Xn),M ` ∧L

M `
where ∀~x.(X1 ∨ · · · ∨Xn) in M

R
L,M,Path ∪ {L′}
where σ(L) = σ(L′)

⊥L
L,M,Path ∪ {L′} `

where L = L′

Figure 6.7: LK translation of common connection calculus rules.

[L1,M, P `] . . .
⊥L

L,M,P ` . . . [Ln,M, P `] ∨L
L1 ∨ · · · ∨ L ∨ · · · ∨ Ln,M, P ` ∀L∀~x.(L1 ∨ · · · ∨ Ln),M, P ` ∧L

M,P `
L,M,Path `

where ∀~x.(L1 ∨ · · · ∨ Ln) in M and P = Path ∪ {L}

Figure 6.8: LK translation of the clausal extension rule.

Let us start with the two rules that are translated the same way for clausal and
nonclausal proofs, namely the start and the reduction rule. The translation of these rules
is shown in Figure 6.7.
For the start rule, the translation obtains the formula corresponding to the clause C

with the ∧L rule, and instantiates it with the ∀L rule. The substitution σ is used to
determine the instantiations, where fresh names are invented when a variable is unbound
in the substitution. Then, the sequent is split into several subsequents [Xi,M, {} `],
which represent the translations of the connection proofs for 〈Xi,M, {}〉.1

6.4.3 Clausal Proof Translation

The translation of the clausal extension rule (shown in Figure 6.3) is given in Figure 6.8.
First, L,M,Path ` is transformed to the equivalent M,P `, where P = Path ∪ {L}.
Structurally, the remaining translation resembles that of the start rule, with the exception
that it additionally closes a proof branch containing the negated literal L.

1In the clausal setting, Xi could be written as Li, but as the same rule is used in the nonclausal setting,
where Xi can represent either a literal or a matrix, we write Xi for the common rules.

80

6.4 Connection Proofs

Connection Calculus LK

∧
i
〈Xi,M, Path〉

D
M ′,M, Path

where {X1, . . . , Xn} ∈M ′

[
X1, ~M

′, Path `
]

. . .
[
Xn, ~M

′, Path `
]
∨L

X1 ∨ · · · ∨Xn, ~M
′, Path ` ∀L

∀~x.(X1 ∨ · · · ∨Xn), ~M ′, Path ` ∧L
M ′, ~M,Path `

where ∀~x.(X1 ∨ · · · ∨Xn) in M ′
and ~M ′ = {M ′} ∪ ~M

Figure 6.9: LK translation of the decomposition rule.

6.4.4 Nonclausal Proof Translation

We now proceed with the translation of nonclausal connection proofs, using the calculus
introduced in Figure 6.4. The LK context in the translation of nonclausal proofs now has
the shape X, ~M,Path, where ~M is a set of matrices instead of a single matrixM as in the
clausal case. During translation, ~M is extended such that for each word 〈L,M,Path〉 in
the connection calculus and its corresponding sequent L, ~M,Path ` in LK, the e-clauses
of M with respect to Path ∪ {L} are the clauses C for which C in M ′ and M ′ ∈ ~M . We
will see this in detail in the explanation for the extension rule.

The LK translation of nonclausal proofs reuses the translations of the start and the
reduction rules given in Figure 6.7. However, occurrences of M in the LK translation are
replaced by ~M . The start rule uses ~M = {M}, i.e. ~M contains only the initial problem
matrix M .
The decomposition rule of the nonclausal calculus can be seen as a generalisation of

the start rule. We give its translation to LK in Figure 6.9.
Let us now consider a nonclausal extension step applied to 〈L,M,Path〉. Let C1 denote

the e-clause of M with respect to Path ∪ {L} that was used for the extension step. By
construction of ~M mentioned above, C1 is some clause in M1 ∈ ~M . Furthermore, let β1
be the β-clause of C1 with respect to L. Then we can find some m such that M1, C1
and β1 can be written as in Figure 6.10.
The translation of the nonclausal extension rule is shown in Figure 6.11. We first

transform L, ~M,Path ` to ~M0, P ` which is equivalent due to ~M0 = ~M and P =
Path ∪ {L}. We then determine M1 ∈ ~M and put it into the context by contraction
(CL).

Now we recursively prove the sequent Mi, ~M
i−1, P ` as follows: If Mi is the literal

L, we prove the sequent L, ~Mm, P ` with the ⊥L rule. Otherwise, we proceed in the
following way: First, we put the appropriate clause Ci of Mi that corresponds to βi into
the context with the ∧L rule. In the same step, we merge Mi with ~M i−1, yielding ~M i.
After the instantiation of Ci with the ∀L rule, the clause elements Xi,1 to Xi,ni give
rise to several proof branches where all but one are closed by translation of the proof
branches of the connection proof. The one remaining clause element Mi+1 gives rise to a

81

Chapter 6 Proof Reconstruction

Mi =

· · ·

Ci︷ ︸︸ ︷

Xi,1
...

Mi+1
...

Xi,ni

· · ·

if i ≤ m

L otherwise

βi =

Xi,1
...

[βi+1]
...

Xi,ni

if i ≤ m

[] otherwise

Figure 6.10: Definition of matrix Mi, clause Ci, and β-clause βi.

[
X1,1, ~M

1, P `
]
· · ·

[
Xm,1, ~M

m, P `
]
· · ·

⊥L
L, ~Mm, P ` · · ·

[
Xm,nm , ~M

m, P `
]
∨L... ∧L

M2, ~M
1, P ` · · ·

[
X1,n1 ,

~M1, P `
]
∨L

X1,1 ∨ · · · ∨X1,n1 ,
~M1, P `

∀L
∀~x.(X1,1 ∨ · · · ∨X1,n1), ~M1, P `

∧L
M1, ~M

0, P `
CL

~M0, P `
L, ~M,Path `

Figure 6.11: LK translation of the nonclausal extension rule, where ~M j = ~M ∪
{Mi | 1 ≤ i ≤ j} and P = Path ∪ {L}.

82

6.4 Connection Proofs

⊥L
P (a), ~M0, {Q,¬P (a)} ` ∧L
M, ~M0, {Q,¬P (a)} `

CL
~M0, {Q,¬P (a)} `

¬P (a), ~M0, {Q} `

⊥L
¬P (sa), ~M1, {Q,P (sa)} `

⊥L
¬P (s2a), ~M2, {Q,P (sa), P (s2a)} ` ∧L

¬P (s2a) ∧ (P (sa) ∨ ¬Q), ~M2, {Q,P (sa), P (s2a)} `
CL

~M2, {Q,P (sa), P (s2a)} `

P (s2a), ~M2, {Q,P (sa)} `
⊥L

¬Q, ~M2, {Q,P (sa)} `
∨L

P (s2a) ∨ ¬Q, ~M2, {Q,P (sa)} ` ∧L
¬P (s3a) ∧ (P (s2a) ∨ ¬Q), ~M1, {Q,P (sa)} `

∨L
¬P (sa) ∨ (¬P (s3a) ∧ (P (s2a) ∨ ¬Q)), ~M1, {Q,P (sa)} ` ∀L
∀x.¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)), ~M1, {Q,P (sa)} ` ∧L

M, ~M1, {Q,P (sa)} `
CL

~M1, {Q,P (sa)} `

P (sa), ~M1, {Q} `
⊥L

¬Q, ~M1, {Q} `
∨L

P (sa) ∨ ¬Q, ~M1, {Q} ` ∧L
¬P (s2a) ∧ (P (sa) ∨ ¬Q), ~M0, {Q} `

∨L
¬P (a) ∨ (¬P (s2a) ∧ (P (sa) ∨ ¬Q)), ~M0, {Q} ` ∀L
∀x.¬P (x) ∨ (¬P (s2x) ∧ (P (sx) ∨ ¬Q)), ~M0, {Q} ` ∧L

M, ~M0, {Q} ` CL
~M0, {Q} `

Q, ~M0, {} `
∧L

~M0 `

Figure 6.12: Translation of a nonclausal proof to LK.

sequent Mi+1, ~M i, P `, which we translate by recursion. This concludes the translation
of the extension rule.

Example 6.3. Consider the nonclausal proof given in Figure 6.5. We show its translation
to LK in Figure 6.12, where boxed sequents indicate words of the original proof. We use
F from Example 3.5 to define

~M0 = {F}
~M1 = ~M0 ∪ {¬P (s2a) ∧ (P (sa) ∨ ¬Q)}
~M2 = ~M1 ∪ {¬P (s3a) ∧ (P (s2a) ∨ ¬Q)}

83

Chapter 6 Proof Reconstruction

Listing 6.1: Example evaluation of a proof reconstruction method.

let conjecture = "m <= n ==> m..n = m INSERT (SUC m..n)" in
let premises = [NUMSEG_LREC; ADD1] in
MESON premises (parse_term conjecture)

Table 6.1: HOL Light evaluation datasets and number of contained problems.
HL-top HL-msn FS-top FS-msn

2499 1119 27112 44468

6.5 Evaluation
We implemented proof search tactics for HOL Light based on leanCoP, nanoCoP, and
Metis.2 For evaluation, we compare their performance with the MESON tactic integrated
into HOL Light. Similarly to [KUV15], we disable splitting for MESON. We use datasets
derived from toplevel (“top”) and MESON (“msn”) goals from core HOL Light (“HL”)
and Flyspeck (“FS”), as described in Section 3.9. Statistics for these datasets are shown
in Table 6.1.3 We use the Git version 08f4461 of HOL Light from March 2017, running
every tactic with a timeout of 10 seconds on each problem. We use the same hardware
as in Section 3.9.
A reconstruction problem consists of a conjecture and a set of premises that were

used to prove the conjecture. We evaluate a problem by feeding the conjecture and the
premises to a proof reconstruction method in HOL Light, as shown in Listing 6.1. If the
method can find and reconstruct a proof within a given time limit, the problem counts
as proven.
The results are shown in Table 6.2: Metis solves the largest number of problems

among all considered datasets. This may surprise, given that in Table 3.2 on the “FS-
top” dataset, our functional implementation of leanCoP proves more problems than
Metis. Apart from different preprocessing, this can be explained by different array access
performance: Array access is more than 30 times faster in native OCaml programs
compared to programs compiled in OCaml’s toplevel (as used in HOL Light). This
heavily disadvantages our connection provers in HOL Light, as fast unification via arrays
is critical for their performance, see Section 3.5.

6.6 Related Work
Coq includes a proof certifying version of the intuitionistic first-order automated theorem
prover JProver [SLKN01] and Matita includes a proof certifying version of an ordered
paramodulation prover [AT07]. A translation of connection tableaux proofs to expansion

2The source code can be retrieved at http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html.
3Note that Table 6.1 mentions a larger number of MESON goals than Table 3.1. This is because we
consider for this evaluation also those problems that are solved by the first-order export.

84

https://github.com/jrh13/hol-light/commit/08f4461
http://cl-informatik.uibk.ac.at/users/mfaerber/tactics.html

6.7 Conclusion

Table 6.2: Number of problems solved by various HOL Light tactics.
Prover HL-top HL-msn FS-top FS-msn
Metis 807 1029 4626 42829
MESON 736 900 4221 39227
leanCoP+cut 724 948 3714 39922
leanCoP−cut 717 844 3800 38528
nanoCoP+cut 538 802 2743 34213
nanoCoP−cut 550 811 2351 34769

trees which can be used for proof certification was studied in [Rei15]. The GAPT
framework provides translations for a multitude of calculi and automated theorem
provers [EHR+16]. An alternative approach to proof certification is the usage of verified
automated theorem provers [RM05].

6.7 Conclusion
We developed proof search tactics in HOL Light based on the ATPs Metis, leanCoP, and
nanoCoP. For this, we showed how to translate Metis proofs to HOL Light as well as
clausal and nonclausal connection proofs to LK. The tactics can be used directly by users
as proof search methods or as part of hammer systems to reconstruct proofs found by
stronger ATPs.

Further experiments could be conducted with different translations from higher-order
to first-order logic, as done for Isabelle [Bla12]. To ease the reconstruction of proofs
from different first-order provers, it would be worthwhile to define a common first-order
calculus that provers could translate their proofs to. This could be similar to the calculus
of Metis, but more abstract at the same time, as the calculus of Metis assumes clausality
and is closely linked to resolution. By providing a reconstruction method for proofs in this
common first-order calculus to proof assistants based on higher-order logic, reconstruction
of proofs from different ATPs could be simplified.

85

Chapter 7

Conclusion

In this thesis, we improved automatic proof search in proof assistants, focusing on premise
selection, automated theorem proving, and proof reconstruction. The greatest amount of
work in this thesis went into the improvement of automated theorem provers, which we
discussed in three chapters. We now summarise our work:

• Premise Selection: We gave new formulations of machine learning techniques
that were previously used to select premises, namely k-nearest neighbours and
Naive Bayes. We then researched the usability of decision trees and random
forests for premise selection. We evaluated existing online and offline approaches,
finding that lack of incremental learning and forgetting of previously learnt data,
respectively, made them unsuitable for premise selection. We therefore came up
with two methods to efficiently update random forest classifiers with new knowledge.
Furthermore, we evaluated different approaches to select samples and splitting
features for the construction of decision trees. Finally, we combined decision trees
with modified k-nearest neighbours to account for specificities of premise selection.
We showed that our random forests approach improves upon k-nearest neighbours,
both in terms of classification metrics such as AUC and Precision as well of number
of problems solved by an ATP using the selected premises.

• Connection Proof Search: We showed several techniques to efficiently implement
connection proof search in functional programming languages, which is important
for integration into interactive theorem provers. We generalised a consistent
Skolemisation method to nonclausal proof search, opening the possibility to do
machine learning in nonclausal provers. Furthermore, we experimented with clause
processing orders and developed a system to perform reproducible experiments
with ATPs. We showed that functional versions of leanCoP and nanoCoP preserve
the conciseness of their original Prolog implementations, while also considerably
improving upon their performance: On one dataset, our functional implementation
proves more than 50% more problems.

• Internal Guidance: We devised a method to guide ATPs based on the given-
clause algorithm using positive and negative examples. For this, we generalised the
occurrence of training samples to monoids, and adapted a Naive Bayes classifier
to work with positive and negative examples. We then came up with a method to
influence the selection of given clauses using the modified Naive Bayes classifier, and
introduced several processing methods to match clauses to previously encountered

87

Chapter 7 Conclusion

ones. Finally, we implemented the method in the higher-order ATP Satallax, where
we could show a significant increase of problems proven.

• Monte Carlo Proof Search: We researched the usage of Monte Carlo Tree
Search (MCTS) to control which part of a proof search tree should be expanded.
To guide MCTS, we came up with several child probability and reward heuristics,
some of which learn from previous proofs. Furthermore, we explored using MCTS
as an advisor for a base prover. We implemented Monte Carlo Proof Search on
top of our functional implementation of leanCoP. It turned out that MCTS as an
advisor with non-learning heuristics for child probability and learning heuristics for
reward performed best. Our MCTS-guided base prover solved more problems in
the same time than the unguided base prover.

• Proof Reconstruction: We have defined translations from higher-order to first-
order statements as well as from various first-order to higher-order proofs. In
particular, we gave proof translations for the calculus of Metis and for nonclausal
as well as clausal connection tableaux calculi, for which we defined new versions
of the calculi suited towards proof reconstruction. This way, we integrated the
first-order ATPs Metis, leanCoP, and nanoCoP into the higher-order ITP HOL
Light. We showed that Metis is the method that most improves upon MESON, the
other most powerful ATP tactic available in HOL Light.

7.1 Future Work

The ongoing advances in machine learning and its successful application to automated
theorem proving suggest that more progress can be made in that direction. We give an
overview of future work to be done.

7.1.1 Machine Learning

There are several problems in automated theorem proving that could benefit from machine
learning methods to learn arbitrary functions on terms T . For example:

1. How likely is a prover to finish a proof from a given prover state? (T → R)
2. What are the features of a given conjecture? (T → Rn)
3. What are likely intermediate proof goals for a given conjecture? (T → T n)
4. What statements are likely true and useful given a set of definitions? (2T → T n)

Point 1 corresponds to reward heuristics as shown in Section 5.5. Point 2 corresponds to
term embeddings, which are a precondition for many premise selection methods shown
in Chapter 2. Points 3 and 4 correspond to conjecturing, which is likely necessary if
computers are ever to prove e.g. Kepler’s conjecture only from definitions. Conjecturing
was realised for example in the Hipster system [JRSC14].

Neural networks were successfully employed to learn term embeddings [WTWD17].
This suggests the extension of this approach to reward heuristics. However, the approach
is not directly applicable to conjecturing, as conjecturing requires the generation of terms.

88

7.1 Future Work

This suggests the research of more general machine learning techniques able to generate
meaningful arbitrary-sized terms. Datasets such as HolStep provide a rich resource to
evaluate such approaches [KCS17].
A substantial restriction of all methods presented in this thesis is their dependency

on consistent symbol names. That is, knowledge learnt about a symbol “+” is not
automatically transferred to a symbol “plus”, even if the two symbols occurred in similar
contexts. That means that knowledge learnt on one formalisation cannot be easily
transferred to another one. To remedy this, it seems useful to think of methods to
identify symbols by their context instead of their names, similarly to existing alignment
techniques [GK19].

The formalisation of machine learning methods has received little attention so far, with
the exception of [Ben16]. Premise selection methods, such as k-nearest neighbours [ZZ05]
or Naive Bayes could be formalised, as [DGL97] shows interesting properties about these
methods. A formalisation will increase the confidence in aforementioned methods as well
as advance the infrastructure to formalise probability-based machine learning methods.

7.1.2 Automated Theorem Proving
In our opinion, nonclausal proof search offers exciting possibilities. Operating on a
formula much closer to the original than its clausal form provides more information about
the context in which terms appear. Using such information might allow internal guidance
methods to more effectively steer proof search than in the clausal setting.
To further deepen our understanding of nonclausal proof search and to potentially

also simplify and speed up the provers, mechanically checkable proofs of their properties
would be useful. Such a formalisation could be carried out similarly to previous projects,
such as the formalisation of a resolution prover [SBTW18].
If a nonclausal prover can be made to outperform its clausal counterpart, one might

adapt other calculi and provers to the nonclausal setting, for example the superposition
calculus underlying the provers Vampire and E. This would pave the road towards a
nonclausal state-of-the-art theorem prover.
Much of our research in the intersection of machine learning and theorem proving

has greatly benefited from connection provers such as leanCoP. Their compactness and
flexibility allowed for various integrations of machine learning techniques into proof search,
while preserving soundness. The functional versions of leanCoP and nanoCoP developed
as part of this thesis provide a stable and performant basis for future experiments. We
believe that connection provers are natural candidates for future research on learning
proof search.

89

Bibliography

[ABD08] Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors. IJCAR,
volume 5195 of LNCS. Springer, 2008. doi:10.1007/978-3-540-71070-7.

[AGPV13] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. Multi-
label learning with millions of labels: recommending advertiser bid phrases
for web pages. In Daniel Schwabe, Virgílio A. F. Almeida, Hartmut Glaser,
Ricardo A. Baeza-Yates, and Sue B. Moon, editors, WWW, pages 13–24.
ACM, 2013. doi:10.1145/2488388.2488391.

[AHK+14] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef
Urban. Premise selection for mathematics by corpus analysis and kernel
methods. J. Autom. Reasoning, 52(2):191–213, 2014. doi:10.1007/s10817-
013-9286-5.

[AKU12] Jesse Alama, Daniel Kühlwein, and Josef Urban. Automated and human
proofs in general mathematics: An initial comparison. In Nikolaj Bjørner
and Andrei Voronkov, editors, LPAR-18, volume 7180 of LNCS, pages 37–45.
Springer, 2012. doi:10.1007/978-3-642-28717-6_6.

[And89] Peter B. Andrews. On connections and higher-order logic. J. Autom.
Reasoning, 5(3):257–291, 1989. doi:10.1007/BF00248320.

[AS92] Owen L. Astrachan and Mark E. Stickel. Caching and lemmaizing in model
elimination theorem provers. In Deepak Kapur, editor, CADE-11, volume 607
of LNCS, pages 224–238. Springer, 1992. doi:10.1007/3-540-55602-8_168.

[AT07] Andrea Asperti and Enrico Tassi. Higher order proof reconstruction from
paramodulation-based refutations: The unit equality case. In Manuel Kauers,
Manfred Kerber, Robert Miner, and Wolfgang Windsteiger, editors, MKM,
volume 4573 of LNCS, pages 146–160. Springer, 2007. doi:10.1007/978-3-
540-73086-6_14.

[BB11] Julian Backes and Chad E. Brown. Analytic tableaux for higher-order logic
with choice. J. Autom. Reasoning, 47(4):451–479, 2011. doi:10.1007/s10817-
011-9233-2.

[BBP11] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson.
Extending Sledgehammer with SMT solvers. In Bjørner and Sofronie-
Stokkermans [BS11], pages 116–130. doi:10.1007/978-3-642-22438-6_11.

91

http://dx.doi.org/10.1007/978-3-540-71070-7
http://dx.doi.org/10.1145/2488388.2488391
http://dx.doi.org/10.1007/s10817-013-9286-5
http://dx.doi.org/10.1007/s10817-013-9286-5
http://dx.doi.org/10.1007/978-3-642-28717-6_6
http://dx.doi.org/10.1007/BF00248320
http://dx.doi.org/10.1007/3-540-55602-8_168
http://dx.doi.org/10.1007/978-3-540-73086-6_14
http://dx.doi.org/10.1007/978-3-540-73086-6_14
http://dx.doi.org/10.1007/s10817-011-9233-2
http://dx.doi.org/10.1007/s10817-011-9233-2
http://dx.doi.org/10.1007/978-3-642-22438-6_11

BIBLIOGRAPHY

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2004. ISBN
978-3-642-05880-6. doi:10.1007/978-3-662-07964-5.

[BDKV14] Armin Biere, Ioan Dragan, Laura Kovács, and Andrei Voronkov. Exper-
imenting with SAT solvers in Vampire. In Alexander F. Gelbukh, Félix
Castro-Espinoza, and Sofía N. Galicia-Haro, editors, MICAI 2014. Part I,
volume 8856 of LNCS, pages 431–442. Springer, 2014. doi:10.1007/978-3-
319-13647-9_39.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - A
functional language with dependent types. In Berghofer et al. [BNUW09],
pages 73–78. doi:10.1007/978-3-642-03359-9_6.

[Ben16] Alexander Bentkamp. An Isabelle formalization of the expressiveness of
deep learning. Master’s thesis, Universität des Saarlandes, 2016. URL
http://matryoshka.gforge.inria.fr/pubs/bentkamp_msc_thesis.pdf.

[Ber08] Yves Bertot. A short presentation of Coq. In Mohamed et al. [MMT08],
pages 12–16. doi:10.1007/978-3-540-71067-7_3.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. J. Log. Comput., 4(3):217–247,
1994. doi:10.1093/logcom/4.3.217.

[BGK+16] Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel
Kühlwein, and Josef Urban. A learning-based fact selector for Isabelle/HOL.
J. Autom. Reasoning, 57(3):219–244, 2016. doi:10.1007/s10817-016-9362-8.

[BHS93] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. The even more liber-
alized δ-rule in free variable semantic tableaux. In Georg Gottlob, Alexander
Leitsch, and Daniele Mundici, editors, Kurt Gödel Colloquium, volume 713
of LNCS, pages 108–119. Springer, 1993. doi:10.1007/BFb0022559.

[Bib83] Wolfgang Bibel. Matings in matrices. Commun. ACM, 26(11):844–852, 1983.
doi:10.1145/182.183.

[Bib91] Wolfgang Bibel. Perspectives on automated deduction. In Robert S. Boyer,
editor, Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated
Reasoning Series, pages 77–104. Kluwer Academic Publishers, 1991.

[Bib17] Wolfgang Bibel. A vision for automated deduction rooted in the connection
method. In Renate A. Schmidt and Cláudia Nalon, editors, TABLEAUX,
volume 10501 of LNCS, pages 3–21. Springer, 2017. doi:10.1007/978-3-319-
66902-1_1.

[Bie08] Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.

92

http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-319-13647-9_39
http://dx.doi.org/10.1007/978-3-319-13647-9_39
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://matryoshka.gforge.inria.fr/pubs/bentkamp_msc_thesis.pdf
http://dx.doi.org/10.1007/978-3-540-71067-7_3
http://dx.doi.org/10.1093/logcom/4.3.217
http://dx.doi.org/10.1007/s10817-016-9362-8
http://dx.doi.org/10.1007/BFb0022559
http://dx.doi.org/10.1145/182.183
http://dx.doi.org/10.1007/978-3-319-66902-1_1
http://dx.doi.org/10.1007/978-3-319-66902-1_1

BIBLIOGRAPHY

[Bla12] Jasmin Christian Blanchette. Automatic proofs and refutations for higher-
order logic. PhD thesis, Technical University Munich, 2012. URL http:
//nbn-resolving.de/urn:nbn:de:bvb:91-diss-20120628-1097834-1-6.

[BM98] Robert S. Boyer and J Strother Moore. A computational logic handbook.
Academic Press international series in formal methods. Academic Press, 2nd
edition, 1998. ISBN 978-0-12-122955-9.

[BM11] Kai Brünnler and George Metcalfe, editors. TABLEAUX, volume 6793 of
LNCS. Springer, 2011. doi:10.1007/978-3-642-22119-4.

[BNUW09] Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors. TPHOLs, volume 5674 of LNCS. Springer, 2009. doi:10.1007/978-3-
642-03359-9.

[BP95] Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableau-based deduc-
tion. J. Autom. Reasoning, 15(3):339–358, 1995. doi:10.1007/BF00881804.

[BPW+12] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez
Liebana, Spyridon Samothrakis, and Simon Colton. A survey of Monte
Carlo tree search methods. IEEE Trans. Comput. Intellig. and AI in Games,
4(1):1–43, 2012. doi:10.1109/TCIAIG.2012.2186810.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
doi:10.1007/BF00058655.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
doi:10.1023/A:1010933404324.

[Bro12] Chad E. Brown. Satallax: An automatic higher-order prover. In Bernhard
Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR, volume 7364 of
LNCS, pages 111–117. Springer, 2012. doi:10.1007/978-3-642-31365-3_11.

[Bro13] Chad E. Brown. Reducing higher-order theorem proving to a sequence of
SAT problems. J. Autom. Reasoning, 51(1):57–77, 2013. doi:10.1007/s10817-
013-9283-8.

[BS11] Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors. CADE-23,
volume 6803 of LNCS. Springer, 2011. doi:10.1007/978-3-642-22438-6.

[Bun94] Alan Bundy, editor. CADE-12, volume 814 of LNCS. Springer, 1994.
doi:10.1007/3-540-58156-1.

[CCRR99] Andrew J. Carlson, Chad M. Cumby, Jeff L. Rosen, and Dan Roth. SNoW
user guide. Technical Report UIUCDCS-R-99-2101, University of Illinois at
Urbana-Champaign, May 1999. URL http://cogcomp.org/papers/CCRR99.
pdf.

93

http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20120628-1097834-1-6
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20120628-1097834-1-6
http://dx.doi.org/10.1007/978-3-642-22119-4
http://dx.doi.org/10.1007/978-3-642-03359-9
http://dx.doi.org/10.1007/978-3-642-03359-9
http://dx.doi.org/10.1007/BF00881804
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-3-642-31365-3_11
http://dx.doi.org/10.1007/s10817-013-9283-8
http://dx.doi.org/10.1007/s10817-013-9283-8
http://dx.doi.org/10.1007/978-3-642-22438-6
http://dx.doi.org/10.1007/3-540-58156-1
http://cogcomp.org/papers/CCRR99.pdf
http://cogcomp.org/papers/CCRR99.pdf

BIBLIOGRAPHY

[CH67] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern
classification. IEEE Trans. Information Theory, 13(1):21–27, 1967.
doi:10.1109/TIT.1967.1053964.

[CN06] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison
of supervised learning algorithms. In William W. Cohen and Andrew
Moore, editors, ICML, volume 148 of ACM, pages 161–168. ACM, 2006.
doi:10.1145/1143844.1143865.

[CS14] Scott Chacon and Ben Straub. Pro Git. Apress, 2nd edition, 2014. ISBN
978-1-4842-0077-3. URL https://git-scm.com/book/en/v2.

[DFGS99] Jörg Denzinger, Matthias Fuchs, Christoph Goller, and Stephan Schulz.
Learning from Previous Proof Experience. Technical Report AR99-4, Institut
für Informatik, Technische Universität München, 1999.

[DGL97] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of
Pattern Recognition, volume 31 of Applications of Mathematics. Springer,
corrected 2nd edition, 1997.

[DKS97] Jörg Denzinger, Martin Kronenburg, and Stephan Schulz. DISCOUNT - A
distributed and learning equational prover. J. Autom. Reasoning, 18(2):189–
198, 1997. doi:10.1023/A:1005879229581.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-
3_24.

[EHR+16] Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner,
and Sebastian Zivota. System description: GAPT 2.0. In Olivetti and
Tiwari [OT16], pages 293–301. doi:10.1007/978-3-319-40229-1_20.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of LNCS,
pages 502–518. Springer, 2003. doi:10.1007/978-3-540-24605-3_37.

[FB16] Michael Färber and Chad E. Brown. Internal guidance for Satallax. In
Olivetti and Tiwari [OT16], pages 349–361. doi:10.1007/978-3-319-40229-
1_24.

[FK15a] Michael Färber and Cezary Kaliszyk. Metis-based paramodulation tactic for
HOL Light. In Gottlob et al. [GSV15], pages 127–136. doi:10.29007/z9mz.

[FK15b] Michael Färber and Cezary Kaliszyk. Random forests for premise selection.
In Carsten Lutz and Silvio Ranise, editors, FroCoS, volume 9322 of LNCS,
pages 325–340. Springer, 2015. doi:10.1007/978-3-319-24246-0_20.

94

http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1145/1143844.1143865
https://git-scm.com/book/en/v2
http://dx.doi.org/10.1023/A:1005879229581
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-40229-1_20
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-40229-1_24
http://dx.doi.org/10.1007/978-3-319-40229-1_24
http://dx.doi.org/10.29007/z9mz
http://dx.doi.org/10.1007/978-3-319-24246-0_20

BIBLIOGRAPHY

[FKU17] Michael Färber, Cezary Kaliszyk, and Josef Urban. Monte Carlo tableau
proof search. In Leonardo de Moura, editor, CADE-26, volume 10395 of
LNCS, pages 563–579. Springer, 2017. doi:10.1007/978-3-319-63046-5_34.

[FKU18] Michael Färber, Cezary Kaliszyk, and Josef Urban. Machine learning guid-
ance and proof certification for connection tableaux. CoRR, abs/1805.03107,
May 2018. URL http://arxiv.org/abs/1805.03107.

[GA99] Martin Giese and Wolfgang Ahrendt. Hilbert’s epsilon-terms in automated
theorem proving. In Neil V. Murray, editor, TABLEAUX, volume 1617 of
LNCS, pages 171–185. Springer, 1999. doi:10.1007/3-540-48754-9_17.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. A machine-checked proof of the odd
order theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, ITP, volume 7998 of LNCS, pages 163–179. Springer,
2013. doi:10.1007/978-3-642-39634-2_14.

[Gal00] Didier Galmiche. Connection methods in linear logic and proof nets con-
struction. Theor. Comput. Sci., 232(1-2):231–272, 2000. doi:10.1016/S0304-
3975(99)00176-0.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. I.
Mathematische Zeitschrift, 39(1):176–210, 1935. ISSN 1432-1823.
doi:10.1007/BF01201353.

[GK19] Thibault Gauthier and Cezary Kaliszyk. Aligning concepts across
proof assistant libraries. J. Symb. Comput., 90:89–123, 2019.
doi:10.1016/j.jsc.2018.04.005.

[Gor00] Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction,
Essays in Honour of Robin Milner, pages 169–186. The MIT Press, 2000.

[Gra13] Stéphane Graham-Lengrand. Psyche: A proof-search engine based on
sequent calculus with an LCF-style architecture. In Didier Galmiche and
Dominique Larchey-Wendling, editors, TABLEAUX, volume 8123 of LNCS,
pages 149–156. Springer, 2013. doi:10.1007/978-3-642-40537-2_14.

[Gre86] Steven Greenbaum. Input transformations and resolution implementation
techniques for theorem-proving in first-order logic. PhD thesis, University of
Illinois at Urbana-Champaign, 1986.

[GS07] Sylvain Gelly and David Silver. Combining online and offline knowledge in
UCT. In Zoubin Ghahramani, editor, ICML, volume 227 of ACM, pages
273–280. ACM, 2007. doi:10.1145/1273496.1273531.

95

http://dx.doi.org/10.1007/978-3-319-63046-5_34
http://arxiv.org/abs/1805.03107
http://dx.doi.org/10.1007/3-540-48754-9_17
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1016/S0304-3975(99)00176-0
http://dx.doi.org/10.1016/S0304-3975(99)00176-0
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1016/j.jsc.2018.04.005
http://dx.doi.org/10.1007/978-3-642-40537-2_14
http://dx.doi.org/10.1145/1273496.1273531

BIBLIOGRAPHY

[GSV15] Georg Gottlob, Geoff Sutcliffe, and Andrei Voronkov, editors. GCAI, vol-
ume 36 of EPiC Series in Computing. EasyChair, 2015.

[HAB+17] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harri-
son, Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin,
Thang Tat Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua,
Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam
Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A
formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5, 2017.
doi:10.1017/fmp.2017.1.

[Häh01] Reiner Hähnle. Tableaux and related methods. In Robinson and Voronkov
[RV01], pages 100–178. ISBN 0-444-50813-9.

[Har96] John Harrison. Optimizing proof search in model elimination. In Michael A.
McRobbie and John K. Slaney, editors, CADE-13, volume 1104 of LNCS,
pages 313–327. Springer, 1996. doi:10.1007/3-540-61511-3_97.

[Har09] John Harrison. HOL Light: An overview. In Berghofer et al. [BNUW09],
pages 60–66. doi:10.1007/978-3-642-03359-9_4.

[HB39] David Hilbert and Paul Bernays. Grundlagen der Mathematik. II, volume 50
of Die Grundlehren der mathematischen Wissenschaften. Springer, 1939.
ISBN 978-3-540-05110-7.

[Hin82] Jaakko Hintikka. Game-theoretical semantics: insights and
prospects. Notre Dame Journal of Formal Logic, 23(2):219–241,
1982. doi:10.1305/ndjfl/1093883627.

[HRSV16] Kryštof Hoder, Giles Reger, Martin Suda, and Andrei Voronkov. Selecting
the selection. In Olivetti and Tiwari [OT16], pages 313–329. doi:10.1007/978-
3-319-40229-1_22.

[Hur03] Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In
Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application
of Strategies/Tactics in Higher Order Logics (STRATA), number NASA/CP-
2003-212448 in NASA Technical Reports, pages 56–68, September 2003. URL
http://www.gilith.com/research/papers.

[HV11] Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory
reasoning. In Bjørner and Sofronie-Stokkermans [BS11], pages 299–314.
doi:10.1007/978-3-642-22438-6_23.

[ISA+16] Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén,
François Chollet, and Josef Urban. DeepMath - deep sequence mod-
els for premise selection. In Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors,

96

http://dx.doi.org/10.1017/fmp.2017.1
http://dx.doi.org/10.1007/3-540-61511-3_97
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://dx.doi.org/10.1305/ndjfl/1093883627
http://dx.doi.org/10.1007/978-3-319-40229-1_22
http://dx.doi.org/10.1007/978-3-319-40229-1_22
http://www.gilith.com/research/papers
http://dx.doi.org/10.1007/978-3-642-22438-6_23

BIBLIOGRAPHY

NIPS, pages 2235–2243, 2016. URL http://papers.nips.cc/paper/
6280-deepmath-deep-sequence-models-for-premise-selection.

[Jon73] Karen Spärck Jones. Index term weighting. Information Storage and
Retrieval, 9(11):619–633, 1973. doi:10.1016/0020-0271(73)90043-0.

[JRSC14] Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hip-
ster: Integrating theory exploration in a proof assistant. In Stephen M.
Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef Ur-
ban, editors, CICM, volume 8543 of LNCS, pages 108–122. Springer, 2014.
doi:10.1007/978-3-319-08434-3_9.

[JU17] Jan Jakubův and Josef Urban. ENIGMA: efficient learning-based inference
guiding machine. In Herman Geuvers, Matthew England, Osman Hasan,
Florian Rabe, and Olaf Teschke, editors, CICM, volume 10383 of LNCS,
pages 292–302. Springer, 2017. doi:10.1007/978-3-319-62075-6_20.

[KAE+10] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
formal verification of an operating-system kernel. Commun. ACM, 53(6):107–
115, 2010. doi:10.1145/1743546.1743574.

[KBKU13] Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef
Urban. MaSh: Machine learning for Sledgehammer. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie, editors, ITP, volume 7998
of LNCS, pages 35–50. Springer, 2013. doi:10.1007/978-3-642-39634-2_6.

[KCS17] Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A
machine learning dataset for higher-order logic theorem proving. CoRR,
abs/1703.00426, 2017. URL http://arxiv.org/abs/1703.00426.

[Kep11] Johannes Kepler. Strena seu de nive sexangula. Godefridum Tambach,
Francofurti ad Moenum, 1611. ISBN 978-1-58988-053-5.

[KMNO14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. CakeML: a verified implementation of ML. In Suresh Jagan-
nathan and Peter Sewell, editors, POPL, pages 179–192. ACM, 2014.
doi:10.1145/2535838.2535841.

[Kor13] Konstantin Korovin. Inst-Gen - A modular approach to instantiation-based
automated reasoning. In Andrei Voronkov and Christoph Weidenbach,
editors, Programming Logics - Essays in Memory of Harald Ganzinger,
volume 7797 of LNCS, pages 239–270. Springer, 2013. doi:10.1007/978-3-
642-37651-1_10.

97

http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
http://dx.doi.org/10.1016/0020-0271(73)90043-0
http://dx.doi.org/10.1007/978-3-319-08434-3_9
http://dx.doi.org/10.1007/978-3-319-62075-6_20
http://dx.doi.org/10.1145/1743546.1743574
http://dx.doi.org/10.1007/978-3-642-39634-2_6
http://arxiv.org/abs/1703.00426
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/978-3-642-37651-1_10
http://dx.doi.org/10.1007/978-3-642-37651-1_10

BIBLIOGRAPHY

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo plan-
ning. In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou,
editors, ECML, volume 4212 of LNCS, pages 282–293. Springer, 2006.
doi:10.1007/11871842_29.

[KSUV15] Cezary Kaliszyk, Stephan Schulz, Josef Urban, and Jiří Vyskočil. System
description: E.T. 0.1. In Amy P. Felty and Aart Middeldorp, editors, CADE-
25, volume 9195 of LNCS, pages 389–398. Springer, 2015. doi:10.1007/978-
3-319-21401-6_27.

[KU14] Cezary Kaliszyk and Josef Urban. Learning-assisted automated rea-
soning with Flyspeck. J. Autom. Reasoning, 53(2):173–213, 2014.
doi:10.1007/s10817-014-9303-3.

[KU15a] Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly efficient machine
learning connection prover. In Martin Davis, Ansgar Fehnker, Annabelle
McIver, and Andrei Voronkov, editors, LPAR-20, volume 9450 of LNCS,
pages 88–96. Springer, 2015. doi:10.1007/978-3-662-48899-7_7.

[KU15b] Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP ser-
vice for HOL Light. Mathematics in Computer Science, 9(1):5–22, 2015.
doi:10.1007/s11786-014-0182-0.

[KU15c] Cezary Kaliszyk and Josef Urban. Learning-assisted theorem prov-
ing with millions of lemmas. J. Symb. Comput., 69:109–128, 2015.
doi:10.1016/j.jsc.2014.09.032.

[KU15d] Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom.
Reasoning, 55(3):245–256, 2015. doi:10.1007/s10817-015-9330-8.

[KUV15] Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Certified connection
tableaux proofs for HOL Light and TPTP. In Xavier Leroy and Alwen Tiu,
editors, CPP, pages 59–66. ACM, 2015. doi:10.1145/2676724.2693176.

[KV13] Laura Kovács and Andrei Voronkov. First-order theorem proving and
Vampire. In Natasha Sharygina and Helmut Veith, editors, CAV, volume
8044 of LNCS, pages 1–35. Springer, 2013. doi:10.1007/978-3-642-39799-8_1.

[Kü14] Daniel A. Kühlwein. Machine Learning for Automated Reasoning. PhD
thesis, Radboud Universiteit Nijmegen, 2014.

[Lan30] Edmund Landau. Grundlagen der Analysis. Akademische Verlagsgesellschaft,
Leipzig, 1930. URL http://www.cs.ru.nl/~freek/aut/grundlagen-1.0.tar.gz.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In J. Gregory Morrisett
and Simon L. Peyton Jones, editors, POPL, pages 42–54. ACM, 2006.
doi:10.1145/1111037.1111042.

98

http://dx.doi.org/10.1007/11871842_29
http://dx.doi.org/10.1007/978-3-319-21401-6_27
http://dx.doi.org/10.1007/978-3-319-21401-6_27
http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/978-3-662-48899-7_7
http://dx.doi.org/10.1007/s11786-014-0182-0
http://dx.doi.org/10.1016/j.jsc.2014.09.032
http://dx.doi.org/10.1007/s10817-015-9330-8
http://dx.doi.org/10.1145/2676724.2693176
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://www.cs.ru.nl/~freek/aut/grundlagen-1.0.tar.gz
http://dx.doi.org/10.1145/1111037.1111042

BIBLIOGRAPHY

[LISK17] Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk.
Deep network guided proof search. In Thomas Eiter and David Sands, editors,
LPAR-21, volume 46 of EPiC Series in Computing, pages 85–105. EasyChair,
2017. URL http://www.easychair.org/publications/paper/340345.

[Lov68] Donald W. Loveland. Mechanical theorem-proving by model elimination. J.
ACM, 15(2):236–251, 1968. doi:10.1145/321450.321456.

[Lov16] Donald W. Loveland. Mark Stickel: His earliest work. J. Autom. Reasoning,
56(2):99–112, 2016. doi:10.1007/s10817-015-9342-4.

[LRT14] Balaji Lakshminarayanan, Daniel M. Roy, and Yee Whye Teh. Mondrian
forests: Efficient online random forests. In Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger,
editors, NIPS, pages 3140–3148, 2014. URL http://papers.nips.cc/paper/
5234-mondrian-forests-efficient-online-random-forests.

[LS73] Donald W. Loveland and Mark E. Stickel. A hole in goal trees: Some
guidance from resolution theory. In Nils J. Nilsson, editor, IJCAI, pages
153–161. William Kaufmann, 1973. URL http://ijcai.org/Proceedings/73/
Papers/018.pdf.

[LS01] Reinhold Letz and Gernot Stenz. Model elimination and connection tableau
procedures. In Robinson and Voronkov [RV01], pages 2015–2114. ISBN
0-444-50813-9.

[LSBB92] Reinhold Letz, Johann Schumann, Stefan Bayerl, and Wolfgang Bibel.
SETHEO: A high-performance theorem prover. J. Autom. Reasoning,
8(2):183–212, 1992. doi:10.1007/BF00244282.

[McC97] William McCune. Solution of the Robbins problem. J. Autom. Reasoning,
19(3):263–276, 1997. doi:10.1023/A:1005843212881.

[McC03] William McCune. OTTER 3.3 reference manual. Technical Report
ANL/MCS-TM-263, Argonne National Laboratory, October 2003.

[Meg07] Norman D. Megill. Metamath: A Computer Language for Pure Mathematics.
Lulu Press, 2007. ISBN 978-1-4116-3724-5. URL http://us.metamath.org/
downloads/metamath.pdf.

[ML84] Per Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof
Theory. Lecture Notes. Bibliopolis, Naples, 1984. ISBN 88-7088-105-9. Notes
by Giovanni Sambin.

[MMT08] Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors.
TPHOLs, volume 5170 of LNCS. Springer, 2008. doi:10.1007/978-3-540-
71067-7.

99

http://www.easychair.org/publications/paper/340345
http://dx.doi.org/10.1145/321450.321456
http://dx.doi.org/10.1007/s10817-015-9342-4
http://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests
http://papers.nips.cc/paper/5234-mondrian-forests-efficient-online-random-forests
http://ijcai.org/Proceedings/73/Papers/018.pdf
http://ijcai.org/Proceedings/73/Papers/018.pdf
http://dx.doi.org/10.1007/BF00244282
http://dx.doi.org/10.1023/A:1005843212881
http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf
http://dx.doi.org/10.1007/978-3-540-71067-7
http://dx.doi.org/10.1007/978-3-540-71067-7

BIBLIOGRAPHY

[MP08] Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-
order clauses. J. Autom. Reasoning, 40(1):35–60, 2008. doi:10.1007/s10817-
007-9085-y.

[MP09] Jia Meng and Lawrence C. Paulson. Lightweight relevance filtering for
machine-generated resolution problems. J. Applied Logic, 7(1):41–57, 2009.
doi:10.1016/j.jal.2007.07.004.

[MR05] Roman Matuszewski and Piotr Rudnicki. Mizar: the first 30 years.
Mechanized Mathematics and Its Applications, 4(1), 2005. URL http:
//mizar.org/people/romat/MatRud2005.pdf.

[NK09] Adam Naumowicz and Artur Korniłowicz. A brief overview of Mizar. In
Berghofer et al. [BNUW09], pages 67–72. doi:10.1007/978-3-642-03359-9_5.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002. ISBN 3-540-43376-7. doi:10.1007/3-540-45949-9.

[OB03] Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem
proving. J. Symb. Comput., 36(1-2):139–161, 2003. doi:10.1016/S0747-
7171(03)00037-3.

[OR01] Nikunj C. Oza and Stuart J. Russell. Online bagging and boosting. In
Thomas S. Richardson and Tommi S. Jaakkola, editors, AISTATS. Society
for Artificial Intelligence and Statistics, 2001. URL http://www.gatsby.ucl.
ac.uk/aistats/aistats2001/files/oza149.ps.

[OT16] Nicola Olivetti and Ashish Tiwari, editors. IJCAR, volume 9706 of LNCS.
Springer, 2016. doi:10.1007/978-3-319-40229-1.

[Ott05] Jens Otten. Clausal connection-based theorem proving in intuitionistic
first-order logic. In Bernhard Beckert, editor, TABLEAUX, volume 3702 of
LNCS, pages 245–261. Springer, 2005. doi:10.1007/11554554_19.

[Ott08] Jens Otten. leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem
proving in classical and intuitionistic logic (system descriptions). In Armando
et al. [ABD08], pages 283–291. doi:10.1007/978-3-540-71070-7_23.

[Ott10] Jens Otten. Restricting backtracking in connection calculi. AI Commun.,
23(2-3):159–182, 2010. doi:10.3233/AIC-2010-0464.

[Ott11] Jens Otten. A non-clausal connection calculus. In Brünnler and Metcalfe
[BM11], pages 226–241. doi:10.1007/978-3-642-22119-4_18.

[Ott14] Jens Otten. Mleancop: A connection prover for first-order modal logic. In
Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, IJCAR,
volume 8562 of LNCS, pages 269–276. Springer, 2014. doi:10.1007/978-3-
319-08587-6_20.

100

http://dx.doi.org/10.1007/s10817-007-9085-y
http://dx.doi.org/10.1007/s10817-007-9085-y
http://dx.doi.org/10.1016/j.jal.2007.07.004
http://mizar.org/people/romat/MatRud2005.pdf
http://mizar.org/people/romat/MatRud2005.pdf
http://dx.doi.org/10.1007/978-3-642-03359-9_5
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1016/S0747-7171(03)00037-3
http://dx.doi.org/10.1016/S0747-7171(03)00037-3
http://www.gatsby.ucl.ac.uk/aistats/aistats2001/files/oza149.ps
http://www.gatsby.ucl.ac.uk/aistats/aistats2001/files/oza149.ps
http://dx.doi.org/10.1007/978-3-319-40229-1
http://dx.doi.org/10.1007/11554554_19
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dx.doi.org/10.3233/AIC-2010-0464
http://dx.doi.org/10.1007/978-3-642-22119-4_18
http://dx.doi.org/10.1007/978-3-319-08587-6_20
http://dx.doi.org/10.1007/978-3-319-08587-6_20

BIBLIOGRAPHY

[Ott16] Jens Otten. nanoCoP: A non-clausal connection prover. In Olivetti and
Tiwari [OT16], pages 302–312. doi:10.1007/978-3-319-40229-1_21.

[Pau88] Lawrence C. Paulson. Isabelle: The next seven hundred theorem provers.
In Ewing L. Lusk and Ross A. Overbeek, editors, CADE-9, volume 310 of
LNCS, pages 772–773. Springer, 1988. doi:10.1007/BFb0012891.

[Pau99] Lawrence C. Paulson. A generic tableau prover and its integration with
Isabelle. J. UCS, 5(3):73–87, 1999. doi:10.3217/jucs-005-03-0073.

[Pau10] Lawrence C. Paulson. Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In Re-
nate A. Schmidt, Stephan Schulz, and Boris Konev, editors, PAAR, vol-
ume 9 of EPiC Series in Computing, pages 1–10. EasyChair, 2010. URL
http://www.easychair.org/publications/paper/52675.

[PG86] David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. J. Symb. Comput., 2(3):293–304, 1986. doi:10.1016/S0747-
7171(86)80028-1.

[PKB07] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimiza-
tion. Swarm Intelligence, 1(1):33–57, 2007. doi:10.1007/s11721-007-0002-0.

[Pla90] David A. Plaisted. A sequent-style model elimination strategy and
a positive refinement. J. Autom. Reasoning, 6(4):389–402, 1990.
doi:10.1007/BF00244355.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theor. Comput. Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

[PS07] Lawrence C. Paulson and Kong Woei Susanto. Source-level proof reconstruc-
tion for interactive theorem proving. In Klaus Schneider and Jens Brandt,
editors, TPHOLs, volume 4732 of LNCS, pages 232–245. Springer, 2007.
doi:10.1007/978-3-540-74591-4_18.

[QED94] QED. The QED manifesto. In Bundy [Bun94], pages 238–251. doi:10.1007/3-
540-58156-1_17.

[Rei15] Giselle Reis. Importing SMT and connection proofs as expansion trees.
In Cezary Kaliszyk and Andrei Paskevich, editors, PxTP, volume 186 of
EPTCS, pages 3–10, 2015. doi:10.4204/EPTCS.186.3.

[RM05] Tom Ridge and James Margetson. A mechanically verified, sound and
complete theorem prover for first order logic. In Joe Hurd and Thomas F.
Melham, editors, TPHOLs, volume 3603 of LNCS, pages 294–309. Springer,
2005. doi:10.1007/11541868_19.

101

http://dx.doi.org/10.1007/978-3-319-40229-1_21
http://dx.doi.org/10.1007/BFb0012891
http://dx.doi.org/10.3217/jucs-005-03-0073
http://www.easychair.org/publications/paper/52675
http://dx.doi.org/10.1016/S0747-7171(86)80028-1
http://dx.doi.org/10.1016/S0747-7171(86)80028-1
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1007/BF00244355
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1007/978-3-540-74591-4_18
http://dx.doi.org/10.1007/3-540-58156-1_17
http://dx.doi.org/10.1007/3-540-58156-1_17
http://dx.doi.org/10.4204/EPTCS.186.3
http://dx.doi.org/10.1007/11541868_19

BIBLIOGRAPHY

[RO08] Thomas Raths and Jens Otten. randoCoP: Randomizing the proof search
order in the connection calculus. In Boris Konev, Renate A. Schmidt, and
Stephan Schulz, editors, PAAR, volume 373 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008. URL http://ceur-ws.org/Vol-373/paper-08.pdf.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965. doi:10.1145/321250.321253.

[ROK07] Thomas Raths, Jens Otten, and Christoph Kreitz. The ILTP problem
library for intuitionistic logic. J. Autom. Reasoning, 38(1-3):261–271, 2007.
doi:10.1007/s10817-006-9060-z.

[Ros11] Christopher D. Rosin. Nested rollout policy adaptation for Monte Carlo
tree search. In Toby Walsh, editor, IJCAI, pages 649–654. IJCAI/AAAI,
2011. doi:10.5591/978-1-57735-516-8/IJCAI11-115.

[RS04] Laura Elena Raileanu and Kilian Stoffel. Theoretical comparison between
the Gini index and information gain criteria. Ann. Math. Artif. Intell.,
41(1):77–93, 2004. doi:10.1023/B:AMAI.0000018580.96245.c6.

[RSV01] I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term indexing. In
Robinson and Voronkov [RV01], pages 1853–1964. ISBN 0-444-50813-9.

[RV01] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press, 2001. ISBN 0-444-50813-
9.

[SB10] Geoff Sutcliffe and Christoph Benzmüller. Automated reasoning in higher-
order logic using the TPTP THF infrastructure. J. Formalized Reasoning,
3(1):1–27, 2010. doi:10.6092/issn.1972-5787/1710.

[SBP13] Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson. LEO-II
and Satallax on the Sledgehammer test bench. J. Applied Logic, 11(1):91–102,
2013. doi:10.1016/j.jal.2012.12.002.

[SBTW18] Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel, and Uwe
Waldmann. Formalization of Bachmair and Ganzinger’s ordered resolution
prover. Archive of Formal Proofs, 2018, 2018. URL https://www.isa-afp.
org/entries/Ordered_Resolution_Prover.html.

[Sch94] Johann Schumann. DELTA - A bottom-up preprocessor for top-down
theorem provers - system abstract. In Bundy [Bun94], pages 774–777.
doi:10.1007/3-540-58156-1_58.

[Sch00] Stephan Schulz. Learning search control knowledge for equational deduction,
volume 230 of DISKI. Infix Akademische Verlagsgesellschaft, 2000. ISBN
978-3-89838-230-4. URL http://d-nb.info/95899126X.

102

http://ceur-ws.org/Vol-373/paper-08.pdf
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/s10817-006-9060-z
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-115
http://dx.doi.org/10.1023/B:AMAI.0000018580.96245.c6
http://dx.doi.org/10.6092/issn.1972-5787/1710
http://dx.doi.org/10.1016/j.jal.2012.12.002
https://www.isa-afp.org/entries/Ordered_Resolution_Prover.html
https://www.isa-afp.org/entries/Ordered_Resolution_Prover.html
http://dx.doi.org/10.1007/3-540-58156-1_58
http://d-nb.info/95899126X

BIBLIOGRAPHY

[Sch01] Stephan Schulz. Learning search control knowledge for equational theorem
proving. In Franz Baader, Gerhard Brewka, and Thomas Eiter, editors, KI,
volume 2174 of LNCS, pages 320–334. Springer, 2001. doi:10.1007/3-540-
45422-5_23.

[Sch13] Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart
Middeldorp, and Andrei Voronkov, editors, LPAR-19, volume 8312 of LNCS,
pages 735–743. Springer, 2013. doi:10.1007/978-3-642-45221-5_49.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-
davyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016. doi:10.1038/nature16961.

[SLKN01] Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin. JProver:
Integrating connection-based theorem proving into interactive proof assis-
tants. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors,
IJCAR, volume 2083 of LNCS, pages 421–426. Springer, 2001. doi:10.1007/3-
540-45744-5_34.

[SLS+09] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst
Bischof. On-line random forests. In ICCV Workshops, pages 1393–1400,
2009. doi:10.1109/ICCVW.2009.5457447.

[SMS16] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make.
Free Software Foundation, 2016. URL https://www.gnu.org/software/make/
manual/.

[SN08] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Mohamed
et al. [MMT08], pages 28–32. doi:10.1007/978-3-540-71067-7_6.

[Sti88] Mark E. Stickel. A Prolog technology theorem prover: Implementation by
an extended Prolog compiler. J. Autom. Reasoning, 4(4):353–380, 1988.
doi:10.1007/BF00297245.

[Sut09a] Geoff Sutcliffe. The 4th IJCAR automated theorem proving system compe-
tition - CASC-J4. AI Commun., 22(1):59–72, 2009. doi:10.3233/AIC-2009-
0441.

[Sut09b] Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J.
Autom. Reasoning, 43(4):337–362, 2009. doi:10.1007/s10817-009-9143-8.

[Sut11] Geoff Sutcliffe. The 5th IJCAR automated theorem proving system compe-
tition - CASC-J5. AI Commun., 24(1):75–89, 2011. doi:10.3233/AIC-2010-
0483.

103

http://dx.doi.org/10.1007/3-540-45422-5_23
http://dx.doi.org/10.1007/3-540-45422-5_23
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1007/3-540-45744-5_34
http://dx.doi.org/10.1007/3-540-45744-5_34
http://dx.doi.org/10.1109/ICCVW.2009.5457447
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/BF00297245
http://dx.doi.org/10.3233/AIC-2009-0441
http://dx.doi.org/10.3233/AIC-2009-0441
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.3233/AIC-2010-0483
http://dx.doi.org/10.3233/AIC-2010-0483

BIBLIOGRAPHY

[Sut16a] Geoff Sutcliffe. The 8th IJCAR automated theorem proving system com-
petition - CASC-J8. AI Commun., 29(5):607–619, 2016. doi:10.3233/AIC-
160709.

[Sut16b] Geoff Sutcliffe. The CADE ATP system competition - CASC. AI Magazine,
37(2):99–101, 2016. URL http://www.aaai.org/ojs/index.php/aimagazine/
article/view/2620.

[SWTU12] Maarten P. D. Schadd, Mark H. M. Winands, Mandy J. W. Tak, and Jos
W. H. M. Uiterwijk. Single-player Monte-Carlo tree search for SameGame.
Knowl.-Based Syst., 34:3–11, 2012. doi:10.1016/j.knosys.2011.08.008.

[TK07] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An
overview. IJDWM, 3(3):1–13, 2007. doi:10.4018/jdwm.2007070101.

[Tse83] Gregory S. Tseitin. On the complexity of derivation in propositional calculus.
In Jörg H. Siekmann and Graham Wrightson, editors, Automation of Reason-
ing: 2: Classical Papers on Computational Logic 1967–1970, pages 466–483.
Springer, 1983. ISBN 978-3-642-81955-1. doi:10.1007/978-3-642-81955-1_28.

[UHV10] Josef Urban, Kryštof Hoder, and Andrei Voronkov. Evaluation of automated
theorem proving on the Mizar Mathematical Library. In Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors, ICMS,
volume 6327 of LNCS, pages 155–166. Springer, 2010. doi:10.1007/978-3-
642-15582-6_30.

[Urb04] Josef Urban. MPTP - motivation, implementation, first experiments. J.
Autom. Reasoning, 33(3-4):319–339, 2004. doi:10.1007/s10817-004-6245-1.

[Urb15] Josef Urban. BliStr: The blind strategymaker. In Gottlob et al. [GSV15],
pages 312–319. doi:10.29007/8n7m.

[USPV08] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiří Vyskočil. MaLARea
SG1- machine learner for automated reasoning with semantic guidance. In
Armando et al. [ABD08], pages 441–456. doi:10.1007/978-3-540-71070-7_37.

[UVv11] Josef Urban, Jiří Vyskočil, and Petr Štěpánek. MaLeCoP machine learn-
ing connection prover. In Brünnler and Metcalfe [BM11], pages 263–277.
doi:10.1007/978-3-642-22119-4_21.

[vBJ77] L.S. van Benthem Jutting. Checking Landau’s "Grundlagen" in the Au-
tomath system. PhD thesis, Technische Universiteit Eindhoven, 1977.
doi:10.6100/IR23183.

[Ver96] Robert Veroff. Using hints to increase the effectiveness of an automated
reasoning program: Case studies. J. Autom. Reasoning, 16(3):223–239, 1996.
doi:10.1007/BF00252178.

104

http://dx.doi.org/10.3233/AIC-160709
http://dx.doi.org/10.3233/AIC-160709
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2620
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2620
http://dx.doi.org/10.1016/j.knosys.2011.08.008
http://dx.doi.org/10.4018/jdwm.2007070101
http://dx.doi.org/10.1007/978-3-642-81955-1_28
http://dx.doi.org/10.1007/978-3-642-15582-6_30
http://dx.doi.org/10.1007/978-3-642-15582-6_30
http://dx.doi.org/10.1007/s10817-004-6245-1
http://dx.doi.org/10.29007/8n7m
http://dx.doi.org/10.1007/978-3-540-71070-7_37
http://dx.doi.org/10.1007/978-3-642-22119-4_21
http://dx.doi.org/10.6100/IR23183
http://dx.doi.org/10.1007/BF00252178

BIBLIOGRAPHY

[Vor14] Andrei Voronkov. AVATAR: the architecture for first-order theorem provers.
In Armin Biere and Roderick Bloem, editors, CAV, volume 8559 of LNCS,
pages 696–710. Springer, 2014. doi:10.1007/978-3-319-08867-9_46.

[Wha16] Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-
order logic. CoRR, abs/1608.02644, 2016. URL http://arxiv.org/abs/1608.
02644.

[Wie02] Freek Wiedijk. A new implementation of automath. J. Autom. Reasoning,
29(3-4):365–387, 2002. doi:10.1023/A:1021983302516.

[WPN08] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle
framework. In Mohamed et al. [MMT08], pages 33–38. doi:10.1007/978-3-
540-71067-7_7.

[WTWD17] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise
selection for theorem proving by deep graph embedding. In Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, edi-
tors, NIPS, pages 2783–2793, 2017. URL http://papers.nips.cc/paper/
6871-premise-selection-for-theorem-proving-by-deep-graph-embedding.

[ZZ05] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algo-
rithm for multi-label classification. In Xiaohua Hu, Qing Liu, Andrzej
Skowron, Tsau Young Lin, Ronald R. Yager, and Bo Zhang, editors, Inter-
national Conference on Granular Computing, pages 718–721. IEEE, 2005.
doi:10.1109/GRC.2005.1547385.

[ZZ14] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learn-
ing algorithms. IEEE Trans. Knowl. Data Eng., 26(8):1819–1837, 2014.
doi:10.1109/TKDE.2013.39.

105

http://dx.doi.org/10.1007/978-3-319-08867-9_46
http://arxiv.org/abs/1608.02644
http://arxiv.org/abs/1608.02644
http://dx.doi.org/10.1023/A:1021983302516
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding
http://dx.doi.org/10.1109/GRC.2005.1547385
http://dx.doi.org/10.1109/TKDE.2013.39

	Introduction
	Introduction
	Interactive Theorem Provers
	Automated Theorem Provers
	Hammers
	Contributions
	Outline

	Premise Selection
	Introduction
	k-nearest neighbours
	Naive Bayes
	Decision Trees
	Feature Selection
	Incremental Learning
	Querying

	Random Forests
	Sample Selection
	Incremental Learning
	Querying

	Evaluation
	Related Work
	Conclusion

	Connection Proof Search
	Introduction
	Connection Calculi
	Problem Preprocessing
	Consistent Skolemisation
	Connection Search
	Proof Search
	Prolog
	Lazy Lists and Streams
	Continuations
	Stacks

	Clause Processing Order
	Extension Clause Anomaly
	Evaluation
	Reproducible Experiments
	Conclusion

	Internal Guidance
	Introduction
	Naive Bayes with Monoid Occurrences
	Features
	Training Data Recording
	Clause Processing
	Clause Ranking
	Parameter Tuning
	Offline Tuning
	Particle Swarm Optimisation

	Implementation
	Machine Learning
	Strategies

	Evaluation
	Related Work
	Conclusion

	Monte Carlo Proof Search
	Introduction
	Monte Carlo Tree Search
	Child Selection Policy
	Child Probability
	Reward
	Expansion Policy
	Implementation
	Evaluation
	Conclusion

	Proof Reconstruction
	Introduction
	Translation to First-Order Logic
	Metis
	Connection Proofs
	Connection Calculi for Proof Translation
	Connection Proof Translation
	Clausal Proof Translation
	Nonclausal Proof Translation

	Evaluation
	Related Work
	Conclusion

	Conclusion
	Future Work
	Machine Learning
	Automated Theorem Proving

	Bibliography

