
Safe, Fast, Concurrent Proof Checking
for the lambda-Pi Calculus Modulo Rewriting

Michael Färber

2022-01-18

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 1 / 21

Section 1

Dedukti

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 2 / 21

Dedukti

Dedukti is a proof checker based on the λΠ-calculus modulo rewriting.
It checks proofs from systems such as Coq, HOL Light, Isabelle, . . .
Proofs can become quite large and take long to check.

Question
How can we check Dedukti proofs faster, while keeping a small kernel?

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 3 / 21

https://deducteam.github.io/

Dedukti: Theories

Concepts
Theory: a sequence of commands
Command: introduces a constant or adds a rewrite rule

A Theory About Implication
prop : Type (1)
imp : prop → prop → prop (2)
prf : prop → Type (3)
prf (imp x y) ↪→ prf x → prf y (4)

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 4 / 21

Dedukti: Checking

parse infer check parse infer check · · ·

1 Parsing:
[x, y] prf (imp x y) --> prf x -> prf y becomes
prf (imp x y) ↪→ prf x → prf y .

2 Type Inference: prf (imp x y) : A
3 Type Checking: prf x → prf y : A?

✓

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 5 / 21

Dedukti: Checking

parse infer check parse infer check · · ·

1 Parsing:
[x, y] prf (imp x y) --> prf x -> prf y becomes
prf (imp x y) ↪→ prf x → prf y .

2 Type Inference: prf (imp x y) : A
3 Type Checking: prf x → prf y : A?

✓

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 5 / 21

Dedukti: Checking

parse infer check parse infer check · · ·

1 Parsing:
[x, y] prf (imp x y) --> prf x -> prf y becomes
prf (imp x y) ↪→ prf x → prf y .

2 Type Inference: prf (imp x y) : Type
3 Type Checking: prf x → prf y : Type?

✓

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 5 / 21

Dedukti: Checking

parse infer check parse infer check · · ·

1 Parsing:
[x, y] prf (imp x y) --> prf x -> prf y becomes
prf (imp x y) ↪→ prf x → prf y .

2 Type Inference: prf (imp x y) : Type
3 Type Checking: prf x → prf y : Type? ✓

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 5 / 21

Dedukti: Concurrency

Dedukti checks multiple theories concurrently (one process per theory).
For each theory, it processes only one command at a time.
Can we somehow process multiple commands concurrently?

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 6 / 21

Programming Languages

OCaml
Dedukti is implemented in OCaml
Multicore support not (yet) available

Rust
Functional systems programming language
Memory- and thread-safe (unlike C)
Focus on performance and concurrency

Goal
Reimplement core of Dedukti in Rust
Process multiple commands concurrently, using threads

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 7 / 21

Section 2

Concurrent Proof Checking

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 8 / 21

Sequential Proof Checking

parse infer check parse infer check · · ·

Most time is spent in parsing and type checking
(69% for HOL Light and 85% for Isabelle/HOL corpora)

Concurrency
Delegate parsing to an own thread
Delegate type checking to multiple threads

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 9 / 21

Concurrent Parsing

Parse commands in a thread and send them via a channel to main thread:

parse parse · · ·Parse
thread

infer check infer check · · ·Main
thread

Best-case improvement: Reduce proof checking time by parsing time

In practice: channel overhead too large to make it pay off

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 10 / 21

Concurrent Type Checking

Launch a thread for every type checking task:

parse infer parse infer · · ·Main
thread

check

check

...

Check
thread

Check
thread

...

Best-case improvement: Reduce proof checking time by type checking time

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 11 / 21

Section 3

Terms

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 12 / 21

Terms

Terms are the central data structure in Dedukti:

t := c | x |
application︷︸︸︷

t u |
abstraction︷ ︸︸ ︷

λx : t. u | Πx : t. u,

where t and u are terms, c is a constant, x is a variable

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 13 / 21

Pointer Types

Rust requires use of pointers to obtain inductive types (such as terms).

Thread-safe

Fast Shared

ArcBox

Rc

&

Figure 1: Three commonly used pointer types.

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 14 / 21

Three Types of Terms

Terms using different pointer types have different downsides:

Box-terms take linear time to duplicate.
Rc-terms cannot be used across threads.
Arc-terms are slow.

Task Mode Term pointer

Parsing Any Box
Type checking Sequential Rc
Type checking Concurrent Arc

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 15 / 21

Increasing Term Performance: Unboxing

Omit pointers around constants and variables (do not have subterms)
Reduces runtime by 20% when using Rc-terms and 29% when using
Arc-terms.

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 16 / 21

Section 4

Implementation

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 17 / 21

Kontroli

Kontroli is a minimal concurrent proof checker for the λΠ-calculus modulo.

https://github.com/01mf02/kontroli-rs

Program Kernel

Dedukti 3470 LOC
Kontroli 663 LOC

Kontroli supports only a subset of Dedukti’s features
Large enough to verify HOL-based theories

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 18 / 21

https://github.com/01mf02/kontroli-rs

Evaluation

0 100 200 300 400

DK

DK∩p
KO

KO∩p
DKt=∞
KOp=1
KOc=1
KOc=2
KOc=4
KOc=8
KO\c

344

77
220

21
307

247
282

182
147
146

89

Runtime [s]

HOL Light

0 100 200 300 400 500

415

195
306

43
414

336
355

223
153

120
87

Runtime [s]

Isabelle/HOL

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 19 / 21

Section 5

Conclusion

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 20 / 21

Conclusion

Terms using Box, Rc, and Arc nicely fit parsing, sequential type
checking, and parallel type checking.
Fewer pointers in the term type greatly benefit performance.
Parsing is one of the largest bottlenecks in Dedukti.
Concurrent parsing increases runtime, due to channel overhead.
Concurrent type checking significantly reduces runtime (up to 6.6x for
8 threads).

A small & safe proof checker with fast concurrency is possible!

Thank you for your attention!

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 21 / 21

Conclusion

Terms using Box, Rc, and Arc nicely fit parsing, sequential type
checking, and parallel type checking.
Fewer pointers in the term type greatly benefit performance.
Parsing is one of the largest bottlenecks in Dedukti.
Concurrent parsing increases runtime, due to channel overhead.
Concurrent type checking significantly reduces runtime (up to 6.6x for
8 threads).

A small & safe proof checker with fast concurrency is possible!

Thank you for your attention!

Michael Färber Safe, Fast, Concurrent Proof Checking 2022-01-18 21 / 21

	Dedukti
	Concurrent Proof Checking
	Terms
	Implementation
	Conclusion

