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Introduction

Monte Carlo Tree Search
I Combines tree search with random sampling
I Applied to many games, frequently to Go

Question
If we see first-order theorem proving as a game, can we use MCTS
to guide a first-order automated theorem prover?



Idea

(a) Iterative deepening
without restricted
backtracking.

(b) Iterative deepening
with restricted
backtracking.

(c) Monte Carlo.



Monte Carlo Tree Search



Case Study: Bicycle Routing

Figure 1: Junction near the Czech border: Which way to go?
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Monte Carlo Tree Search (MCTS)

1. Pick state s based on:
I previous reward (exploitation)
I number of traversals (exploration)
I exploration constant: the higher, the more exploration

2. Play random game from s to state s ′.
3. Calculate reward of s ′.
4. Update rewards of all ancestors of s ′.

I How to represent states?
I Which states to start random games from?
I How to play random games?
I How to calculate reward of a state?



State Representation

I State: tableau tree
I Successor state: tableau tree that closes a goal

(p ∨ q ∨ r) ∧ (¬p ∨ s) ∧ (¬p ∨ t ∨ u) ∧ ¬s ∧ (¬q ∨ t) ∧ (¬q ∨ s)

p ∨ q ∨ r

rq

t¬q

p

s

¬s

¬p



Heuristics



Random Playout Start States

Which states qualify to be start states of random playouts?

Default Policy
Random playout can only be started from a node if for all successor
states of ancestors, at least one playout was performed.

Restricted Backtracking Policies
If a random playout started from a node s reaches a state s ′ that

1. closes one of the goals of s
2. closes all goals of s originating from the same clause

then one may start playouts from s ′.



Transition Heuristics

Given a state s, with what probability to choose a successor state s ′?

1. Equal probability
2. Inverse number of opened subgoals (clause size)
3. Bayesian probability



Bayesian Probability

Rate successor states by their usefulness in similar situations à la
(FE)MaLeCoP

Order vs. Value
I (FE)MaLeCoP: only probability-induced order is used
I MCTS: use probability as visit frequency

I problem: dimension (extremely small values)
I solution: normalisation of probabilities



Reward Heuristics

What is the reward of a final state? (i.e. which proof attempts are
promising?)

1. Random
2. Ratio of closed and opened goals
3. Size of goal formulae
4. Machine-learnt refutability estimate



Machine-learnt Refutability Estimate

How likely can we solve goals G = {g1, . . . , gn}?

Single goal refutability
I p(g): how often goal g (and all its recursive subgoals) was

closed
I n(g): how often closing g failed

The more data (p + n) we have about a goal, the higher its
influence.

Multiple goals refutability

1− 1
|G |

∑
g∈G

n(g)
p(g) + n(g) · σ(p(g) + n(g))



Discrimination

How to measure success of reward function?

Discrimination
Ratio of:

I average reward on branch where proof was found and
I average reward on all explored states



Implementation



Implementation

monteCoP
leanCoP + MCTS = monteCoP

ATP advisor
Play n random games from current ATP state, then process
successor states in order of reward

I Only conventional ATP: n = 0
I Only MCTS: n =∞



Evaluation



Dataset

MPTP2078
I 2078 problems from Mizar Mathematical Library
I Consistent symbols/premises across problems

Learning setup

1. Run leanCoP on all problems, collecting training data
2. Use training data in subsequent monteCoP runs



MCTS iterations per inference
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Exploration constant
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Best configuration

Prover Timeout [s] Solved problems

leanCoP 10s 509
monteCoP 10s 538
leanCoP + monteCoP 10s+10s 598
leanCoP 20s 531



Conclusion

Summary
I MCTS used for tableaux proof search
I Reduce search space by starting simulations from deeper nodes
I Bias random simulations by number of opened subgoals
I Estimate quality of states with machine learning techniques
I Usage as advisor gives best results

Future Work
Stronger ML methods for quality estimate: neural networks
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