
Monte Carlo Tableaux Prover

Michael Färber, Cezary Kaliszyk, Josef Urban

11.8.2017

Introduction

Monte Carlo Tree Search

Heuristics

Implementation

Evaluation

Introduction

Introduction

Monte Carlo Tree Search
I Combines tree search with random sampling
I Applied to many games, frequently to Go

Question
If we see first-order theorem proving as a game, can we use MCTS
to guide a first-order automated theorem prover?

Idea

(a) Iterative deepening
without restricted
backtracking.

(b) Iterative deepening
with restricted
backtracking.

(c) Monte Carlo.

Monte Carlo Tree Search

Case Study: Bicycle Routing

Figure 1: Junction near the Czech border: Which way to go?

MCTS example

MCTS example

112km

MCTS example

112km

112km

MCTS example

112km

112km

170km

170km

MCTS example

112km

112km

170km

170km

MCTS example

112km

112km

170km

170km

MCTS example

112km

112km

170km

170km

160km

160km

MCTS example

112km

112km

170km

170km

160km

160km

MCTS example

112km+160km
2

112km

170km

170km

160km

160km

Monte Carlo Tree Search (MCTS)

1. Pick state s based on:
I previous reward (exploitation)
I number of traversals (exploration)
I exploration constant: the higher, the more exploration

2. Play random game from s to state s ′.
3. Calculate reward of s ′.
4. Update rewards of all ancestors of s ′.

I How to represent states?
I Which states to start random games from?
I How to play random games?
I How to calculate reward of a state?

State Representation

I State: tableau tree
I Successor state: tableau tree that closes a goal

(p ∨ q ∨ r) ∧ (¬p ∨ s) ∧ (¬p ∨ t ∨ u) ∧ ¬s ∧ (¬q ∨ t) ∧ (¬q ∨ s)

p ∨ q ∨ r

rq

t¬q

p

s

¬s

¬p

Heuristics

Random Playout Start States

Which states qualify to be start states of random playouts?

Default Policy
Random playout can only be started from a node if for all successor
states of ancestors, at least one playout was performed.

Restricted Backtracking Policies
If a random playout started from a node s reaches a state s ′ that

1. closes one of the goals of s
2. closes all goals of s originating from the same clause

then one may start playouts from s ′.

Transition Heuristics

Given a state s, with what probability to choose a successor state s ′?

1. Equal probability
2. Inverse number of opened subgoals (clause size)
3. Bayesian probability

Bayesian Probability

Rate successor states by their usefulness in similar situations à la
(FE)MaLeCoP

Order vs. Value
I (FE)MaLeCoP: only probability-induced order is used
I MCTS: use probability as visit frequency

I problem: dimension (extremely small values)
I solution: normalisation of probabilities

Reward Heuristics

What is the reward of a final state? (i.e. which proof attempts are
promising?)

1. Random
2. Ratio of closed and opened goals
3. Size of goal formulae
4. Machine-learnt refutability estimate

Machine-learnt Refutability Estimate

How likely can we solve goals G = {g1, . . . , gn}?

Single goal refutability
I p(g): how often goal g (and all its recursive subgoals) was

closed
I n(g): how often closing g failed

The more data (p + n) we have about a goal, the higher its
influence.

Multiple goals refutability

1− 1
|G |

∑
g∈G

n(g)
p(g) + n(g) · σ(p(g) + n(g))

Discrimination

How to measure success of reward function?

Discrimination
Ratio of:

I average reward on branch where proof was found and
I average reward on all explored states

Implementation

Implementation

monteCoP
leanCoP + MCTS = monteCoP

ATP advisor
Play n random games from current ATP state, then process
successor states in order of reward

I Only conventional ATP: n = 0
I Only MCTS: n =∞

Evaluation

Dataset

MPTP2078
I 2078 problems from Mizar Mathematical Library
I Consistent symbols/premises across problems

Learning setup

1. Run leanCoP on all problems, collecting training data
2. Use training data in subsequent monteCoP runs

MCTS iterations per inference

0 20 40 60 80 100 120 140
450

460

470

480

490

500

MCTS iterations

Pr
ob

lem
s
so
lv
ed

Smoothed data
Real data

Exploration constant

0 1 2 3 4 5

200

300

400

Exploration constant

Pr
ob

lem
s
so
lv
ed

Machine-learnt heuristic
Open/closed goals ratio

Best configuration

Prover Timeout [s] Solved problems

leanCoP 10s 509
monteCoP 10s 538
leanCoP + monteCoP 10s+10s 598
leanCoP 20s 531

Conclusion

Summary
I MCTS used for tableaux proof search
I Reduce search space by starting simulations from deeper nodes
I Bias random simulations by number of opened subgoals
I Estimate quality of states with machine learning techniques
I Usage as advisor gives best results

Future Work
Stronger ML methods for quality estimate: neural networks

	Introduction
	Monte Carlo Tree Search
	Heuristics
	Implementation
	Evaluation

