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Abstract. The match-bound technique is a recent and elegant method
to prove the termination of rewrite systems using automata techniques.
To increase the applicability of the method we incorporate it into the
dependency pair framework. The key to this is the introduction of two
new enrichments which take the special properties of dependency pair
problems into account.

1 Introduction

The use of word automata for proving the termination of string rewrite sys-
tems was proposed by Geser, Hofbauer, and Waldmann [5]. In [8] tree automata
were used to cover left-linear term rewrite systems. We extended the latter
work to arbitrary term rewrite systems in [17] by considering so-called quasi-
deterministic tree automata. Variations and improvements of the basic method
for string rewrite systems are discussed in [6, 7]. The fact that the method has
been implemented in several different termination provers ([10, 16, 21–23]) is a
clear witness of the success of the automata based approach.

In this paper we integrate the method into the dependency pair frame-
work [11, 20]. To guarantee a successful integration we need to modularise the
method in order to be able to simplify dependency pair problems. We achieve
this by introducing two new enrichments which exploit the special properties of
dependency pair problems.

The remainder of the paper is organised as follows. In the next section we
recall basic definitions concerning the automata theory approach for proving
termination and the dependency pair framework. In Section 3 we introduce the
concept of e-DP-bounds which is based on two new enrichments that allow us
to simplify dependency pair problems. In Section 4 we consider right-hand sides
of forward closures to reduce the set of terms which have to be considered. To
simplify the discussion, we restrict ourselves to left-linear rewrite systems. The
extension to non-left-linear term rewrite systems is sketched in Section 5. Ex-
perimental data is presented in Section 6. Missing proofs can be found in the full
version, which is available from http://cl-informatik.uibk.ac.at/~mkorp/.



2 Preliminaries

We assume familiarity with term rewriting [2] and tree automata [3]. General
knowledge of the match-bound technique [5, 8] and dependency pairs [1, 11, 13,
15] will be helpful.

Match-Bounds

Let F be a signature, R a term rewrite system (TRS for short) over F , and
L ⊆ T (F) a set of ground terms. The set {t ∈ T (F) | s→∗R t for some s ∈ L} of
descendants of L is denoted by →∗R(L). Given a set N ⊆ N of natural numbers,
the signature F ×N is denoted by FN . Here function symbols (f, n) with f ∈ F
and n ∈ N have the same arity as f and are written as fn. The mappings
liftc : F → FN, base : FN → F , and height : FN → N are defined as liftc(f) = fc,
base(fi) = f , and height(fi) = i for all f ∈ F and c, i ∈ N. They are extended to
terms and to sets of terms in the obvious way. Let R be a TRS over the signature
F and e a function that maps every rewrite rule l→ r ∈ R to a nonempty subset
of FPos(l), where FPos(l) = {p ∈ Pos(l) | l(p) ∈ F}. The TRS e(R) over the
signature FN consists of all rewrite rules l′ → liftc(r) for which there exists a
rule l→ r ∈ R such that base(l′) = l and c = 1+min{height(l′(p)) | p ∈ e(l, r)}.
Let c ∈ N. The restriction of e(R) to the signature F{0,...,c} is denoted by ec(R).
We consider three concrete functions e in the following: top(l → r) = {ε},
roof(l → r) = {p ∈ FPos(l) | Var(r) ⊆ Var(l|p)}, and match(l → r) = FPos(l).
Let e ∈ {top, roof,match} and L a set of terms. The TRS R is called e-bounded
for L if there exists a c ∈ N such that the maximum height of function symbols
occurring in terms in →∗e(R)(lift0(L)) is at most c. If we want to precise the
bound c, we say that R is e-bounded for L by c. If we do not specify the set of
terms L then it is assumed that L = T (F).

Theorem 1 (Geser et al. [8]). If a left-linear TRS R is top-bounded, roof-boun-
ded, or both right-linear and match-bounded for a language L then R is termi-
nating on L. ut

In order to prove that a TRS R is e-bounded for some language L and
some e ∈ {top, roof,match}, the idea is to construct a tree automaton that is
compatible with e(R) and lift0(L). A tree automaton A = (F , Q,Qf , ∆) is said
to be compatible with some TRS R and some language L if L ⊆ L(A) and for
each rewrite rule l → r ∈ R and state substitution σ : Var(l) → Q such that
lσ →∗∆ q it holds that rσ →∗∆ q.

Dependency Pairs

The dependency pair method [1] is a powerful approach for proving termination
of TRSs. The dependency pair framework [12, 20] is a modular reformulation and
improvement of this approach. We present a simplified version which is sufficient
for our purposes.
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Let R be a TRS over a signature F . The signature F is extended with
symbols f ] for every symbol f ∈ {root(l) | l → r ∈ R}, where f ] has the same
arity as f , resulting in the signature F ]. If t ∈ T (F ,V) with root(t) defined
then t] denotes the term that is obtained from t by replacing its root symbol
with root(t)]. If l → r ∈ R and t is a subterm of r with a defined root symbol
that is not a proper subterm of l then the rule l] → t] is a dependency pair
of R. The set of dependency pairs of R is denoted by DP(R). A DP problem
is a pair of TRSs (P,R) such that symbols in {root(l), root(r) | l → r ∈ P}
do occur neither in R nor in proper subterms of the left and right-hand sides
of rules in P. The problem is said to be finite if there is no infinite sequence
s1

ε−→P t1 →∗R s2
ε−→P t2 →∗R · · · such that all terms t1, t2, . . . are terminating

with respect to R. Such an infinite sequence is said to be minimal. Here the
ε in ε−→P denotes that the application of the rule in P takes place at the root
position. The main result underlying the dependency pair approach states that
a TRS R is terminating if and only if the DP problem (DP(R),R) is finite.

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem
as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a set
returned by a DP processor are finite then the initial DP problem is finite. In
addition, to ensure that a DP processor can be used to prove non-termination it
must be complete which means that if one of the DP problems returned by the
DP processor is not finite then the original DP problem is not finite.

3 DP-Bounds

To prove finiteness of a DP problem (P,R) it must be shown that it admits no
minimal rewrite sequence. This is done by removing step by step those rewrite
rules in P which cannot be used infinitely often in any minimal rewrite sequence.
In each step a different DP processor can be applied. As soon as P is empty, we
can conclude that the DP problem (P,R) is finite.

It is easy to incorporate the match-bound technique into the DP framework
by defining a processor that checks for e-boundedness of P ∪R.

Theorem 2. The DP processor

(P,R) 7→


∅ if P ∪R is left-linear and either top-bounded,

roof-bounded, or both linear and match-bounded
for T (F)

{(P,R)} otherwise

where F is the signature of P ∪R, is sound and complete. ut

This DP processor either succeeds by proving that the combined TRS P∪R is
e-bounded or, when the e-boundedness of P∪R cannot be proved, it returns the
initial DP problem. Since the construction of a compatible tree automaton does
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not terminate for TRSs that are not e-bounded, the latter situation typically
does not happen. Hence the DP processor of Theorem 2 is applicable only at
the leaves of the DP search tree, which means that it can be used only as a last
option in a termination proving strategy. So it cannot cooperate with other DP
processors.

Below we address this problem by adapting the match-bound technique in
such a way that it can remove single rules of P. We introduce two new enrich-
ments top-DP(P, s → t,R) and match-DP(P, s → t,R) to achieve this. The
basic idea behind these TRSs is that every height increasing infinite sequence
descends from an infinite sequence of (P,R) in which the rule s → t, which is
to be removed from P, is used infinitely often.

To simplify the presentation we consider only left-linear TRSs. The extension
to non-left-linear TRSs is briefly discussed in Section 5.

Definition 3. Let S be a TRS over a signature F . The TRS e-DP(S) over the
signature FN consists of all rules l′ → liftc(r) such that base(l′)→ r ∈ S and

c = min ({height(l′(ε))} ∪ {1 + height(l′(p)) | p ∈ e(base(l′), r)})

Given a DP problem (P,R) and a rule s → t ∈ P, the TRS e-DP(P, s → t,R)
is defined as the union of e-DP((P \{s→ t})∪R) and e(s→ t). The restriction
of e-DP(P, s→ t,R) to the signature F{0,...,c} is denoted by e-DPc(P, s→ t,R).

Example 4. Consider the DP problem (P,R) with R consisting of the rewrite
rules f(g(x), y)→ g(h(x, y)) and h(x, y)→ f(x, g(y)), and P = DP(R) consisting
of F(g(x), y) → H(x, y) and H(x, y) → F(x, g(y)). Let s → t be the first of the
two dependency pairs. Then match-DP(R) contains the rules

f0(g0(x), y)→ g0(h0(x, y)) h0(x, y)→ f0(x, g0(y))
f0(g1(x), y)→ g0(h0(x, y)) h1(x, y)→ f1(x, g1(y))
f2(g0(x), y)→ g1(h1(x, y)) · · ·

match-DP(P \ {s→ t}) contains

H0(x, y)→ F0(x, g0(y)) H1(x, y)→ F1(x, g1(y))
H2(x, y)→ F2(x, g2(y)) · · ·

and match(s→ t) contains

F0(g0(x), y)→ H1(x, y) F1(g0(x), y)→ H1(x, y)
F0(g1(x), y)→ H1(x, y) · · ·

The union of these three infinite TRSs constitutes match-DP(P, s→ t,R). If we
replace match(s→ t) by match-DP({s→ t}), which consists of the rules

F0(g0(x), y)→ H0(x, y) F1(g0(x), y)→ H1(x, y)
F0(g1(x), y)→ H0(x, y) · · ·

we obtain the TRS match-DP(P ∪R).
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The idea now is to use the enrichment e-DP(P, s→ t,R) to simplify the DP
problem (P,R) into (P \ {s → t},R). For that we need the property defined
below.

Definition 5. Let (P,R) be a DP problem and let s → t ∈ P. We call (P,R)
e-DP-bounded for s → t and a set of terms L if there exists a c ∈ N such that
the height of function symbols occurring in terms in →∗e-DP(P,s→t,R)(lift0(L)) is
at most c.

Moreover, we need to ensure that every restriction of e-DP(P, s→ t,R) to a
finite signature does not admit minimal rewrite sequences with infinitely many
ε−→e(s→t) rewrite steps. For e = top this is shown below. Note that if we would
use e-DP(P∪R) instead of e-DP(P, s→ t,R) then this property would not hold
because every rewrite sequence in P ∪R can be simulated by an e-DP0(P ∪R)-
sequence.

Lemma 6. Let (P,R) be a DP problem, let s→ t ∈ P, and let c > 0. The TRS
top-DPc(P, s → t,R) does not admit rewrite sequences with infinitely many
ε−→top(s→t) rewrite steps.

Proof. Assume to the contrary that there is such an infinite rewrite sequence

s1
ε−→top(s→t) t1 →∗top-DP((P\{s→t})∪R) s2

ε−→top(s→t) t2 →∗top-DP((P\{s→t})∪R) · · ·

Because the root symbols in P do not appear anywhere else in P or R, we know
that only rewrite rules from top-DP(P \ {s → t}) and top(s → t) are applied
at root positions. Every rewrite rule l → r in top-DP(P \ {s → t}) has the
property that height(l(ε)) = height(r(ε)). Hence height(ti(ε)) = height(si+1(ε))
for all i > 1. By definition, for every l → r ∈ top(s→ t) we have height(r(ε)) =
height(l(ε)) + 1 and thus height(ti(ε)) = height(si(ε)) + 1 for all i > 1. It follows
that height(tc+1(ε)) > c+ 1, contradicting the assumption. ut

Theorem 7. Let (P,R) be a DP problem and let s → t ∈ P such that (P,R)
is top-DP-bounded for s → t and a set of terms L. If P ∪ R is left-linear then
(P,R) is finite for L if and only if (P \ {s→ t},R) is finite for L.

Proof. The only-if direction is trivial. For the if direction, suppose that the DP
problem (P \ {s → t},R) is finite for L. If (P,R) is not finite for L then there
exists a minimal rewrite sequence

s1
ε−→s→t t1 →∗(P\{s→t})∪R s2

ε−→s→t t2 →∗(P\{s→t})∪R s3
ε−→s→t · · ·

with s1 ∈ L. Due to left-linearity, this sequence can be lifted to an infinite
top-DP(P, s → t,R) rewrite sequence starting from lift0(s1). Since the original
sequence contains infinitely many ε−→s→t rewrite steps the lifted sequence contains
infinitely many ε−→top(s→t) rewrite steps. Moreover, because (P,R) is top-DP-
bounded for L, there is a c > 0 such that the height of every function symbol
occurring in a term in the lifted sequence is at most c. Hence the employed
rules must come from top-DPc(P, s→ t,R) and therefore top-DPc(P, s→ t,R)
contains an infinite rewrite sequence consisting of infinitely many ε−→top(s→t)
rewrite steps. This however is excluded by Lemma 6. ut
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If we restrict Lemma 6 to minimal rewrite sequences, it also holds for e =
match provided P and R are non-duplicating. The proof is considerably more
complicated and omitted for reasons of space.

Lemma 8. Let (P,R) be a DP problem, let s→ t ∈ P, and let c > 0. If P∪R is
non-duplicating then the TRS match-DPc(P, s→ t,R) does not admit minimal
rewrite sequences with infinitely many ε−→match(s→t) rewrite steps. ut

Theorem 9. Let (P,R) be a DP problem and let s → t ∈ P such that (P,R)
is match-DP-bounded for s → t and a set of terms L. If P ∪ R is linear then
(P,R) is finite for L if and only if (P \ {s→ t},R) is finite for L.

Proof. Similarly to the proof of Theorem 7, using Lemma 8 instead of Lemma 6.
Note that in the presence of left-linearity, the non-duplicating requirement in
Lemma 8 is equivalent to linearity. ut

We conjecture that Lemma 6 also holds for e = roof. A positive solution is
important as roof-bounds are strictly more powerful than top-bounds [8, 17].

Theorem 10. The DP processor

(P,R) 7→


{(P \ {s→ t},R)} if (P,R) is left-linear and top-DP-bounded

or linear and match-DP-bounded for s→ t
and T (F)

{(P,R)} otherwise

where F is the signature of P ∪R, is sound and complete.

Proof. Immediate consequence of Theorems 7 and 9. ut

Example 11. We show that the DP problem (P,R) of Example 4 over the sig-
nature F = {a, f, g, h,F,H} is match-DP-bounded for F(g(x), y) → H(x, y) by
constructing a compatible tree automaton. As starting point we consider the
initial tree automaton

a0 → 1 f0(1, 1)→ 1 g0(1)→ 1
h0(1, 1)→ 1 F0(1, 1)→ 2 H0(1, 1)→ 2

which accepts the set of all ground terms that have F0 or H0 as root symbol
and a0, f0, g0, and h0 below the root. Since F0(g0(x), y) →match(s→t) H1(x, y)
and F0(g0(1), 1) →∗ 2, we add the transition H1(1, 1) → 2. Next we consider
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) with H1(1, 1) → 2. By adding the
transitions F1(1, 3) → 2 and g1(1) → 3 this compatibility violation is solved.
After that the rewrite rule F1(g0(x), y) →match(s→t) H1(x, y) and the deriva-
tion F1(g0(1), 3) →∗ 2 give rise to the transition H1(1, 3) → 2. Finally we have
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) and H1(1, 3) → 2. In order to ensure
F1(1, g1(3)) →∗ 2 we reuse the transition F1(1, 3) → 2 and add the new transi-
tion g1(3)→ 3. After that step, the obtained tree automaton is compatible with
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match-DP(P, s→ t,R). Hence the DP problem (P,R) is match-DP-bounded for
F(g(x), y)→ H(x, y) by 1. Applying the DP processor of Theorem 10 yields the
new DP problem ({H(x, y)→ F(x, g(y))},R), which is easily (and automatically
by numerous DP processors) shown to be finite. We note that the DP processor
of Theorem 2 fails on (P,R).

To ensure that the TRS e-DP(P, s → t,R) can assist to prove finiteness
of the DP problem (P,R), it is crucial that every minimal rewrite sequence in
(P,R) with infinitely many ε−→s→t rewrite steps can be simulated by an infinite
height increasing sequence in e-DP(P, s→ t,R). To this end it is important that
rewrite rules in e-DP((P \{s→ t})∪R) do not propagate the minimal height of
the contracted redex unless the height of the root symbol of the redex is minimal.
This is the reason for the slightly complicated definition of c in Definition 3. The
following example shows what goes wrong if we would simplify the definition.

Example 12. Consider the DP problem (P,R) with R consisting of the rewrite
rules f(x) → g(x) and g(a(x)) → f(a(x)) and P = DP(R) consisting of F(x) →
G(x) and G(a(x)) → F(a(x)). The DP problem (P,R) is not finite because the
term G(a(x)) admits a minimal rewrite sequence. If we change the definition of
c in Definition 3 to

c = min {height(l′(p)) | p ∈ e(base(l′), r)}

then for s→ t = F(x)→ G(y) we have

F0(a0(x))→match(s→t) G1(a0(x))→match-DP(P\{s→t}) F0(a0(x))

and it would follow that (P,R) is match-DP-bounded for F(x)→ G(x). However,
removing this rule from P would leave a finite DP problem and hence we would
falsely conclude termination of the original TRS R.

4 Forward Closures

When proving the termination of a TRS R that is non-overlapping [9] or right-
linear [4] it is sufficient to restrict attention to the set RFCrhs(R)(R) of right-
hand sides of forward closures. This set is defined as the closure of the right-hand
sides of the rules in R under variable renaming and narrowing. More formally,
RFCL(R) is the least extension of L such that

– t[r]pσ ∈ RFCL(R) whenever t ∈ RFCL(R) and there exist a position p ∈
FPos(t) and a fresh variant l → r of a rewrite rule in R with σ a most
general unifier of t|p and l,

– tσ ∈ RFCL(R) whenever t ∈ RFCL(R) and σ is a variable renaming.

Dershowitz [4] obtained the following result.

Theorem 13. A right-linear TRS R is terminating if and only if R is termi-
nating on RFCrhs(R)(R). ut
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In our setting we can benefit from the properties of DP problems.

Lemma 14. Let (P,R) be a DP problem. If P and R are right-linear then
(P,R) is finite if and only if it is finite on RFCrhs(P)(P ∪R).

Proof. Easy consequence of Theorem 13 and the definition of DP problems. ut

Lemma 14 can be used in connection with the DP processor of Theorem 2.
For the DP processor of Theorem 10 we can do better.

Lemma 15. Let (P,R) be a DP problem and s → t ∈ P. If P and R are
right-linear then (P,R) admits a minimal rewrite sequence with infinitely many
ε−→s→t rewrite steps if and only if it admits such a sequence starting from a term

in RFC{t}(P ∪R). ut

In general RFCL(P∪R) is not computable. We can however over-approximate
RFCL(P ∪R) by using tree automata as described in [8] and [17].

5 Raise-DP-Bounds

The reason why e-DP-bounds can be used only for DP problems (P,R) consist-
ing of left-linear TRSs P and R is that without left-linearity, rewrite sequences
in (P,R) cannot be lifted to sequences in e-DP(P, s → t,R), cf. the proof of
Theorem 7. As described in [17] one can solve that problem by using raise rules.

Definition 16. Let F be a signature. The TRS raise(F) over the signature FN
consists of all rules fi(x1, . . . , xn) → fi+1(x1, . . . , xn) with f an n-ary function
symbol in F , i ∈ N, and x1, . . . , xn pairwise different variables. For terms s, t ∈
T (FN,V) we write s 6 t if s→∗raise(F) t and s ↑ t for the least term u with s 6 u
and t 6 u. Furthermore, this notion is extended to ↑S for finite nonempty sets
S ⊂ T (FN,V) in the obvious way.

The raise rules are used below to modify the rewrite relation associated to
e-DP(P, s→ t,R) in such a way that non-left-linear rules are handled properly.

Definition 17. Let (P,R) be a DP problem over a signature F . We define the
relation >−→e-DP(P,s→t,R) on T (FN,V) as follows: s >−→e-DP(P,s→t,R) t if and only
if there exist a rewrite rule l → r ∈ e-DP(P, s → t,R), a position p ∈ Pos(s),
a context C, and terms s1, . . . , sn such that l = C[x1, . . . , xn] with all variables
displayed, s|p = C[s1, . . . , sn], base(si) = base(sj) whenever xi = xj, and t =
s[rθ]p. Here the substitution θ is defined as follows: θ(x) = ↑{si | xi = x} if
x ∈ {x1, . . . , xn} and θ(x) = x otherwise.

Definition 18. Let (P,R) be a DP problem and let s → t ∈ P. We say that
(P,R) is e-raise-DP-bounded for s → t and a set of terms L if there ex-
ists a c ∈ N such that the height of function symbols occurring in terms in
>−→∗e-DP(P,s→t,R)(lift0(L)) is at most c.
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For left-linear TRSs e-raise-DP-boundedness coincides with e-DP-bounded-
ness. The following result is a straightforward adaption of Theorem 10.

Theorem 19. The DP processor

(P,R) 7→


{(P \ {s→ t},R)} if (P,R) is top-raise-DP-bounded or non-

duplicating and match-raise-DP-bounded
for s→ t and T (F)

{(P,R)} otherwise

where F is the signature of P ∪R, is sound and complete. ut

In [17] we showed that deterministic tree automata—a common approach to
handle non-linearity with automata techniques (cf. [3, 18, 19])—are unsuitable.
The problem with deterministic automata is that during the construction of a
compatible tree automaton A, it can happen that A becomes non-deterministic.
Making A deterministic could lead to the removal of transitions that were added
in earlier stages to ensure compatibility. However as soon as we add those transi-
tions again, they are removed since they cause A to be non-deterministic. In [17]
we introduced quasi-deterministic tree automata to solve this problem. This
carries over to the present setting without any problems.

6 Experiments

The techniques described in the preceding sections are implemented in TTT2 [21].
TTT2 is written in OCaml1 and consists of about 25000 lines of code. About 20%
is used to implement the match-bound technique.

An important criterion for the success of e(-raise)-DP-bounds is the choice
of the rewrite rule from P that should be removed from the DP problem (P,R)
under consideration. To find a suitable rule, TTT2 simply starts the construction
of a (quasi-)compatible tree automaton for each s → t ∈ P in parallel. As
soon as one of the processes terminates the procedure stops and returns the
corresponding rule.

Below we report on the experiments we performed with TTT2 on the 1321
TRSs in version 4.0 of the Termination Problem Data Base that fulfill the vari-
able condition, i.e., Var(r) ⊆ Var(l) for each rewrite rule l → r ∈ R.2 All tests
were performed on a workstation equipped with an Intel R© PentiumTM M pro-
cessor running at a CPU rate of 2 GHz and 1 GB of system memory. Our results
are summarized in Table 1.

We list the number of successful termination attempts, the average system
time needed to prove termination (measured in milliseconds), and the number
of timeouts. For all experiments we used a 60 seconds time limit. Besides the
recursive SCC algorithm [14] and the improved estimated dependency graph
processor [12], we use the following four DP processors:
1
http://caml.inria.fr/

2
http://www.lri.fr/~marche/tpdb
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Table 1. Summary

no RFC RFC
no ur ur no ur ur

sp spb spd spb spd spb spd spb spd

# successes 497 558 587 584 612 574 588 605 615
average time 105 95 228 96 246 114 189 130 197
# timeouts 12 763 734 737 709 747 733 716 706

s the subterm criterion of [15],
p polynomial orderings with 0/1 coefficients [13],
b the DP processor of Theorem 2 extended to non-left-linear TRSs,
d the DP processor of Theorem 10 for left-linear TRSs and the one of Theorem 19

for non-left-linear TRSs.

For the latter two, if the DP problem is non-duplicating we take e = match. For
duplicating problems we take e = roof for b and e = top for d.

A widely used approach to increase the power of DP processors is to consider
only those rewrite rules of R which are usable [13, 15]. Since in general usable
rules (ur in Table 1) do not preserve the minimality of rewrite sequences for
duplicating TRSs [13], it must be guaranteed that the DP processors of Theo-
rem 2, 10 and 19 do not rely on the minimality of infinite rewrite sequences. For
the DP processor of Theorem 2 this is obviously the case, since e(-raise)-bounds
take all infinite rewrite sequences into account. For the DP processor of Theo-
rem 10 with e = top this follows from Lemma 6. For e = match there is also no
problem since e = match can only be used for non-duplicating systems and it
is known that usable rules can be used without restrictions for non-duplication
systems ([11, Example 29] and [15, Theorem 23]).

The advantage of the DP processors of Theorems 10 and 19 over the naive
one of Theorem 2 is clear, although the difference decreases when usable rules
and RFC are in effect. There are two TRSs that could not be proved terminating
by any tool participating in last year’s termination competition3 but which can
now be handled by TTT2 due to the results of this paper: secret05-teparla3
and secret06-matchbox-gen-25.

Example 20. The TRS secret06-matchbox-gen-25 (R in the following) con-
sists of the following rewrite rules:

c(c(z, x, a), a, y)→ f(f(c(y, a, f(c(z, y, x)))))
f(f(c(a, y, z)))→ b(y, b(z, z))

b(a, f(b(b(z, y), a)))→ z

3
http://www.lri.fr/~marche/termination-competition/2007
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The dependency graph contains one strongly connected component, consisting
of the dependency pairs

1 : C(c(z, x, a), a, y)→ C(y, a, f(c(z, y, x)))
2 : C(c(z, x, a), a, y)→ C(z, y, x)

Hence termination of R is reduced to finiteness of the DP problem ({1, 2},R).
This problem is top-DP-bounded for rule 1; the compatible tree automaton com-
puted by TTT2 consists of the following transitions:

a0 → 1 c0(2, 2, 2)→ 4 C0(1, 5, 1)→ 3 f1(13)→ 1, 10, 14
a1 → 6 c1(1, 1, 1)→ 10 C0(2, 1, 5)→ 3 f1(17)→ 4

b0(1, 1)→ 1 c1(1, 2, 1)→ 14 C1(5, 6, 8)→ 3 f1(20)→ 21
b1(1, 1)→ 9 c1(1, 5, 1)→ 7 f0(1)→ 1 f1(22)→ 23
b1(1, 9)→ 1 c1(1, 6, 11)→ 12 f0(4)→ 5 f1(23)→ 12

b1(6, 18)→ 1, 10, 14 c1(1, 11, 1)→ 20 f1(7)→ 8 f1(24)→ 25
b1(6, 19)→ 4 c1(1, 15, 1)→ 24 f1(10)→ 11 f1(26)→ 27

b1(11, 11)→ 18 c1(2, 6, 15)→ 16 f1(12)→ 13 f1(27)→ 16
b1(15, 15)→ 19 c1(11, 6, 21)→ 22 f1(14)→ 15 1→ 2, 9
c0(1, 1, 1)→ 1 c1(15, 6, 25)→ 26 f1(16)→ 17 6→ 1

Hence the DP processor of Theorem 10 is applicable. This results in the new
DP problem ({2},R), which is proved finite by the subterm criterion with the
simple projection π(C) = 1.

7 Conclusion

In this paper we showed how the match-bound technique can be incorporated
into the dependency pair framework. We introduced two new enrichments which
take care of the special properties of DP problems. We also showed how to
strengthen the method by taking right-hand sides of forward closures into ac-
count. Experimental results demonstrated the usefulness of our approach.

An important open question is whether we can use the roof enrichment in
this setting. To ensure soundness of roof(-raise)-DP-bounds, it has to be proved
that no restriction of roof-DP(P, s→ t,R) to a finite signature admits a minimal
rewrite sequence with infinitely many ε−→roof(s→t) ( >−→roof(s→t)) rewrite steps. We
conjecture that this claim holds for arbitrary P and R. We anticipate that a
positive solution would make additional termination proofs possible.
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