
Beyond Dependency Graphs

Martin Korp and Aart Middeldorp

Institute of Computer Science
University of Innsbruck

Austria
{martin.korp,aart.middeldorp}@uibk.ac.at

Abstract. The dependency pair framework is a powerful technique for
proving termination of rewrite systems. One of the most frequently used
methods within this framework is the dependency graph processor. In
this paper we improve this processor by incorporating right-hand sides
of forward closures. In combination with tree automata completion we
obtain an efficient processor which can be used instead of the dependency
graph approximations that are in common use in termination provers.

1 Introduction

Proving termination of term rewrite systems is a very active research area. Sev-
eral tools exist that perform this task automatically. The most powerful ones
are based on the dependency pair framework. This framework combines a great
variety of termination techniques in a modular way by means of dependency pair
processors. In this paper we are concerned with the dependency graph proces-
sor. It is one of the most important processors as it enables the decomposition
of termination problems into smaller subproblems. The processor requires the
computation of an over-approximation of the dependency graph. In the literature
several such approximations are proposed. Arts and Giesl [1] gave an effective
algorithm based on abstraction and unification. Kusakari and Toyama [20, 21]
employed Huet and Lévy’s notion of ω-reduction to approximate dependency
graphs for AC-termination. Middeldorp [22] advocated the use of tree automata
techniques and in [23] improved the approximation of [1] by taking symmetry
into account. Giesl, Thiemann, and Schneider-Kamp [12] tightly coupled ab-
straction and unification, resulting in an improvement of [1] which is especially
suited for applicative systems.

In this paper we return to tree automata techniques. We show that tree au-
tomata completion is much more effective for approximating dependency graphs
than the method based on approximating the underlying rewrite system to en-
sure regularity preservation proposed in [22]. The dependency graph determines
whether dependency pairs can follow each other. It does not determine whether
dependency pairs follow each other infinitely often. We further show that by in-
corporating right-hand sides of forward closures [4, 9], a technique that recently
became popular in connection with the match-bound technique [8, 18], we can

eliminate arcs from the (real) dependency graph. Experimental results confirm
the competitiveness of the resulting improved dependency graph processor.

The remainder of the paper is organized as follows. In Section 2 we recall some
basic facts about dependency graphs and processors. In Section 3 we employ tree
automata completion to approximate dependency graphs. Incorporating right-
hand sides of forward closures is the topic of Section 4. In Section 5 we compare
our approach with existing approximations of dependency graphs. Dependency
graphs for innermost termination are briefly addressed in Section 6. In Section 7
we report on the extensive experiments that we conducted.

2 Preliminaries

Familiarity with term rewriting [2] and tree automata [3] is assumed. Knowledge
of the dependency pair framework [11, 25] and the match-bound technique [8,
18] will be helpful. Below we recall important definitions concerning the former
needed in the remainder of the paper. Throughout this paper we assume that
term rewrite systems are finite.

Let R be a term rewrite system (TRS for short) over a signature F . If
l → r ∈ R and t is a subterm of r with a defined root symbol that is not a
proper subterm of l then l] → t] is a dependency pair of R. Here l] and t]

denote the terms that are obtained by marking the root symbols of l and t.
In examples we use capital letters to represent marked function symbols. The
set of dependency pairs of R is denoted by DP(R). A DP problem is a triple
(P,R,G) where P and R are two TRSs and G ⊆ P × P is a directed graph. A
DP problem (P,R,G) is called finite if there are no infinite rewrite sequences
of the form s1

ε−→α1 t1 →∗R s2
ε−→α2 t2 →∗R · · · such that all terms t1, t2, . . . are

terminating with respect to R and (αi, αi+1) ∈ G for all i > 1. Such an infinite
sequence is said to be minimal. The main result underlying the dependency pair
approach states that a TRS R is terminating if and only if the DP problem
(DP(R),R,DP(R)×DP(R)) is finite. The latter is shown by applying functions
that take a DP problem as input and return a set of DP problems as output,
the so-called DP processors. These processors must have the property that a
DP problem is finite whenever all DP problems returned by the processor are
finite, which is known as soundness. To use DP processors for establishing non-
termination, they must additionally be complete which means that if one of the
DP problems returned by the processor is not finite then the original DP problem
is not finite.

Numerous DP processors have been developed. In this paper we are concerned
with the dependency graph processor. This is one of the most important pro-
cessors as it enables to decompose a DP problem into smaller subproblems. The
dependency graph processor determines which dependency pairs can follow each
other in infinite rewrite sequences. Following [25], we find it convenient to split
the processor into one which computes the graph and one which computes the
strongly connected components (SCCs). This separates the part that needs to be
approximated from the computable part and is important to properly describe

2

the experiments in Section 7 where we combine several graph approximations
before computing SCCs.

Definition 1. The dependency graph processor maps a DP problem (P,R,G)
to {(P,R,G ∩ DG(P,R))}. Here DG(P,R) is the dependency graph of P and
R, which has the rules in P as nodes and there is an arc from s → t to u → v
if and only if there exist substitutions σ and τ such that tσ →∗R uτ .

Example 2. Consider the DP problem (P,R,G) with R consisting of the rewrite
rules f(g(x), y) → g(h(x, y)) and h(g(x), y) → f(g(a), h(x, y)), P = DP(R) con-
sisting of

1 : F(g(x), y)→ H(x, y) 2 : H(g(x), y)→ F(g(a), h(x, y))
3 : H(g(x), y)→ H(x, y)

and G = P ×P. Because H(g(x), y) is an instance of H(x, y) and F(g(a), h(x, y))
is an instance of F(g(x), y), DG(P,R) has five arcs:

1 2 3

The dependency graph processor returns the new DP problem (P,R,DG(P,R)).

Definition 3. The SCC processor transforms a DP problem (P,R,G) into
{(P1,R,G1), . . . , (Pn,R,Gn)}. Here P1, . . . ,Pn are the strongly connected com-
ponents of G and Gi = G ∩ (Pi × Pi) for every 1 6 i 6 n.

The following result is well-known [1, 11, 14, 25].

Theorem 4. The dependency graph and SCC processors are sound and com-
plete. ut

We continue the previous example.

Example 5. The SCC processor does not make progress on the DP problem
(P,R,DG(P,R)) since the three nodes form a single SCC in the graph.

3 Tree Automata Completion

We start by recalling some basic facts and notation. A tree automaton A =
(F , Q,Qf , ∆) consists of a signature F , a finite set of states Q, a set of final states
Qf ⊆ Q, and a set of transitions ∆ of the form f(q1, . . . , qn)→ q with f an n-ary
function symbol in F and q, q1, . . . , qn ∈ Q. The language L(A) of A is the set of
ground terms t ∈ T (F) such that t→∗∆ q for some q ∈ Qf . Let R be a TRS over
F . The set {t ∈ T (F) | s→∗R t for some s ∈ L} of descendants of a set L ⊆ T (F)
of ground terms is denoted by →∗R(L). We say that A is compatible with R and
L if L ⊆ L(A) and for each rewrite rule l → r ∈ R and state substitution
σ : Var(l) → Q such that lσ →∗∆ q it holds that rσ →∗∆ q. For left-linear R

3

it is known that →∗R(L) ⊆ L(A) whenever A is compatible with R and L [6].
To obtain a similar result for non-left-linear TRSs, in [16] quasi-deterministic
automata were introduced. Let A = (F , Q,Qf , ∆) be a tree automaton. We say
that a state p subsumes a state q if p is final when q is final and for all transitions
f(u1, . . . , q, . . . , un) → u ∈ ∆, the transition f(u1, . . . , p, . . . , un) → u belongs
to ∆. For a left-hand side l ∈ lhs(∆) of a transition, the set {q | l → q ∈ ∆}
of possible right-hand sides is denoted by Q(l). The automaton A is said to be
quasi-deterministic if for every l ∈ lhs(∆) there exists a state p ∈ Q(l) which
subsumes every other state in Q(l). In general, Q(l) may contain more than
one state that satisfies the above property. In the following we assume that
there is a unique designated state in Q(l), which we denote by pl. The set of all
designated states is denoted by Qd and the restriction of ∆ to transition rules
l → q that satisfy q = pl is denoted by ∆d. In [16] we showed that the tree
automaton induced by ∆d is deterministic and accepts the same language as A.
For non-left-linear TRSs R we modify the above definition of compatibility by
demanding that the tree automaton A is quasi-deterministic and for each rewrite
rule l → r ∈ R and state substitution σ : Var(l) → Qd with lσ →∗∆d

q it holds
that rσ →∗∆ q.

Theorem 6 ([6, 16]). Let R be a TRS, A a tree automaton, and L a set of
ground terms. If A is compatible with R and L then →∗R(L) ⊆ L(A). ut

For two TRSs P andR the dependency graph DG(P,R) contains an arc from
dependency pair α to dependency pair β if and only if there exist substitutions σ
and τ such that rhs(α)σ →∗R lhs(β)τ . Without loss of generality we may assume
that rhs(α)σ and lhs(β)τ are ground terms. Hence there is no arc from α to β
if and only if Σ(lhs(β)) ∩ →∗R(Σ(rhs(α))) = ∅. Here Σ(t) denotes the set of
ground instances of t with respect to the signature consisting of a fresh constant
together with all function symbols that appear in P∪Rminus the root symbols
of the left- and right-hand sides of P that do neither occur on positions below the
root in P nor inR.1 For an arbitrary term t and regular language L it is decidable
whether Σ(t)∩L = ∅—a result of Tison (see [22])—and hence we can check the
above condition by constructing a tree automaton that accepts →∗R(Σ(rhs(α))).
Since this set is in general not regular, we compute an over-approximation with
the help of tree automata completion starting from an automaton that accepts
Σ(ren(rhs(α))). Here ren is the function that linearizes its argument by replacing
all occurrences of variables with fresh variables, which is needed to ensure the
regularity of Σ(ren(rhs(α))).

Definition 7. Let P and R be two TRSs, L a language, and α, β ∈ P. We say
that β is unreachable from α with respect to L if there is a tree automaton A
compatible with R and L ∩Σ(ren(rhs(α))) such that Σ(lhs(β)) ∩ L(A) = ∅.

The language L in the above definition allows us to refine the set of starting
terms Σ(ren(rhs(α))) which are considered in the computation of an arc from α

1 The fresh constant # is added to the signature to ensure that Σ(t) cannot be empty.

4

to β. In Section 4 we make use of L to remove arcs from the (real) dependency
graph. In the remainder of this section we always have L = Σ(ren(rhs(α))).

Definition 8. The nodes of the c-dependency graph DGc(P,R) are the rewrite
rules of P and there is no arc from α to β if and only if β is unreachable from
α with respect to Σ(ren(rhs(α))).

The c in the above definition refers to the fact that a compatible tree au-
tomaton is constructed by tree automata completion.

Lemma 9. Let P and R be two TRSs. Then DGc(P,R) ⊇ DG(P,R).

Proof. Easy consequence of Theorem 6. ut

The general idea of tree automata completion [6, 7, 16] is to look for violations
of the compatibility requirement: lσ →∗∆ q (lσ →∗∆d

q) but not rσ →∗∆ q for some
rewrite rule l→ r ∈ R, state substitution σ : Var(l)→ Q (σ : Var(l)→ Qd), and
state q. This triggers the addition of new states and transitions to the current
automaton to ensure rσ →∗∆ q. There are several ways to do this, ranging from
establishing a completely new path rσ →∗∆ q to adding as few as possible new
transitions by reusing transitions from the current automaton. After rσ →∗∆ q
has been established, we look for further compatibility violations. This process
is repeated until a compatible tree automaton is obtained, which may never
happen if new states are kept being added.

Example 10. We continue with our example. A tree automaton A, with final
state 2, that accepts Σ(H(x, y)) is easily constructed:

a→ 1 f(1, 1)→ 1 g(1)→ 1 h(1, 1)→ 1 H(1, 1)→ 2

Because →∗R(Σ(H(x, y))) = Σ(H(x, y)), the automaton is already compatible
with R and Σ(H(x, y)), so completion is trivial here. As H(g(a), a) is accepted
by A, DGc(P,R) contains arcs from 1 and 3 to 2 and 3. Similarly, we can
construct a tree automaton B with final state 2 that is compatible with R and
Σ(F(g(a), h(x, y))):

a→ 1 f(1, 1)→ 1 F(3, 4)→ 2 g(1)→ 4 h(1, 1)→ 1
a→ 2 f(1, 1)→ 4 g(1)→ 1 g(2)→ 3 h(1, 1)→ 4

Because F(g(a), h(a, a)) is accepted by B, we obtain an arc from 2 to 1. Further
arcs do not exist.

It can be argued that the use of tree automata techniques for the DP prob-
lem of Example 2 is a waste of resources because the dependency graph can
also be computed by just taking the root symbols of the dependency pairs into
consideration. However, in the next section we show that this radically changes
when taking right-hand sides of forward closures into account.

5

4 Incorporating Forward Closures

Given a DP problem (P,R,G) and α, β ∈ P, an arc from α to β in the de-
pendency graph DG(P,R) is an indication that β may follow α in an infinite
sequence in P ∪R but not a sufficient condition because if the problem is finite
there are no infinite sequences whatsoever. What we would like to determine is
whether β can follow α infinitely many times in a minimal sequence. With the
existing approximations of the dependency graph, only local connections can be
tested. In this section we show that by using right-hand sides of forward closures,
we can sometimes delete arcs from the dependency graph which cannot occur
infinitely many times in minimal sequences.

When proving the termination of a TRS R that is non-overlapping or right-
linear it is sufficient to restrict attention to the set of right-hand sides of forward
closures [4, 9]. This set is defined as the closure of the right-hand sides of the
rules in R under narrowing. Formally, given a set L of terms, RFC(L,R) is the
least extension of L such that t[r]pσ ∈ RFC(L,R) whenever t ∈ RFC(L,R) and
there exist a non-variable position p and a fresh variant l→ r of a rewrite rule in
R with σ a most general unifier of t|p and l. In the sequel we write RFC(t,R) for
RFC({t},R). Furthermore, we restrict our attention to right-linear TRSs because
we cannot cope with non-right-linear TRSs during the construction of the set of
right-hand sides of forward closures [8].

Dershowitz [4] showed that a right-linear TRS R is terminating if and only
if R is terminating on RFC(rhs(R),R). In [17, 18] we showed how to extend this
result to the dependency pairs setting.

Lemma 11. Let P and R be two right-linear TRSs and let α ∈ P. Then P ∪R
admits a minimal rewrite sequence with infinitely many α steps if and only if it
admits such a sequence starting from a term in RFC(rhs(α),P ∪R). ut

A careful inspection of the complicated proof of Lemma 11 given in [18]
reveals that the statement can be adapted to our needs. We say that dependency
pair β directly follows dependency pair α in a minimal sequence s1

ε−→α1 t1 →∗R
s2

ε−→α2 t2 →∗R · · · if αi = α and αi+1 = β for some i > 1.

Lemma 12. Let P and R be two right-linear TRSs and let α, β ∈ P. The TRS
P∪R admits a minimal rewrite sequence in which infinitely many β steps directly
follow α steps if and only if it admits such a sequence starting from a term in
RFC(rhs(α),P ∪R). ut

Definition 13. Let P and R be two TRSs. The improved dependency graph of
P and R, denoted by IDG(P,R), has the rules in P as nodes and there is an arc
from s → t to u → v if and only if there exist substitutions σ and τ such that
tσ →∗R uτ and tσ ∈ Σ#(RFC(t,P ∪R)). Here Σ# is the operation that replaces
all variables by the fresh constant #.

Note that the use of Σ# in the above definition is essential. If we would
replace Σ# by Σ then Σ(RFC(t,P ∪R)) ⊇ Σ(t) because t ∈ RFC(t,P ∪R) and
hence IDG(P,R) = DG(P,R). According to the following lemma the improved
dependency graph can be used whenever the participating TRSs are right-linear.

6

Lemma 14. Let P and R be right-linear TRSs and α, β ∈ P. If there is a
minimal sequence in P ∪ R in which infinitely many β steps directly follow α
steps, then IDG(P,R) admits an arc from α to β.

Proof. Assume that there is a minimal rewrite sequence

s1
ε−→P t1 →∗R s2

ε−→P t2 →∗R s3
ε−→P · · ·

in which infinitely many β steps directly follow α steps. According to Lemma 12
we may assume without loss of generality that s1 ∈ RFC(rhs(α),P ∪ R). Let
i > 1 such that si

ε−→α ti →∗R si+1
ε−→β ti+1. Because RFC(rhs(α),P∪R) is closed

under rewriting with respect to P and R we know that ti ∈ RFC(rhs(α),P ∪R).
We have ti = rhs(α)σ and si+1 = lhs(β)τ for some substitutions σ and τ . From
ti ∈ RFC(rhs(α),P ∪ R) we infer that tiθ ∈ Σ#(RFC(rhs(α),P ∪ R)) for the
substitution θ that replaces every variable by #. Due to the fact that rewriting
is closed under substitutions we have tiθ →∗R si+1θ. Hence IDG(P,R) contains
an arc from α to β. ut

The following example shows that it is essential to include P in the construc-
tion of the set Σ#(RFC(t,P ∪R)) in the definition of IDG(P,R).

Example 15. Consider the TRS R consisting of the rewrite rules f(x) → g(x),
g(a)→ h(b), and h(x)→ f(a) and the TRS P = DP(R) consisting of

F(x)→ G(x) G(a)→ H(b) H(x)→ F(a)

The DP problem (P,R,P × P) is not finite because it admits the loop

F(a) ε−→P G(a) ε−→P H(b) ε−→P F(a)

Let t = G(x). We have RFC(t,R) = {t} and hence Σ#(RFC(t,R)) = {G(#)}.
If we now replace Σ#(RFC(t,P ∪ R)) by Σ#(RFC(t,R)) in Definition 13, we
would conclude that IDG(P,R) does not contain an arc from F(x) → G(x) to
G(a) → H(b) because G(#) is a normal form which is different from G(a). But
this makes the resulting DP problem (P,R, IDG(P,R)) finite.

Theorem 16. The improved dependency graph processor

(P,R,G) 7→

{
{(P,R,G ∩ IDG(P,R))} if P ∪R is right-linear
{(P,R,G ∩ DG(P,R))} otherwise

is sound and complete.

Proof. Soundness is an easy consequence of Lemma 14 and Theorem 4. Com-
pleteness follows from the inclusions G ∩ DG(P,R) ⊆ G ⊇ G ∩ IDG(P,R). ut

Example 17. We consider again the DP problem (P,R,G) of Example 2. Let s =
H(x, y) and t = F(g(a), h(x, y)). We first compute RFC(s,P ∪R) and RFC(t,P ∪
R). The former set consists of H(x, y) together will all terms in RFC(t,P ∪ R).

7

Each term contained in the latter set is an instance of F(g(a), x) or H(a, x). It
follows that each term in Σ#(RFC(s,P ∪ R)) is a ground instance of F(g(a), x)
or H(a, x) or equal to H(#,#). Similarly, each term in Σ#(RFC(t,P ∪ R)) is a
ground instance of F(g(a), x) or H(a, x). Hence IDG(P,R) contains an arc from
2 to 1. Further arcs do not exist because there are no substitution τ and term
u ∈ Σ#(RFC(s,P ∪ R)) such that u →∗R H(g(x), y)τ . So IDG(P,R) looks as
follows:

1 2 3

Therefore the improved dependency graph processor produces the new DP prob-
lem (P,R, IDG(P,R)). Since the above graph does not admit any SCCs, the SCC
processor yields the finite DP problem (P,R,∅). Consequently, R is terminat-
ing.

Similar to DG(P,R), IDG(P,R) is not computable in general. We over-
approximate IDG(P,R) by using tree automata completion as described in Sec-
tion 3.

Definition 18. Let P and R be two TRSs. The nodes of the c-improved depen-
dency graph IDGc(P,R) are the rewrite rules of P and there is no arc from α to
β if and only if β is unreachable from α with respect to Σ#(RFC(rhs(α),P ∪R)).

Lemma 19. Let P and R be two TRSs. Then IDGc(P,R) ⊇ IDG(P,R).

Proof. Assume to the contrary that the claim does not hold. Then there are
rules s → t and u → v in P such that there is an arc from s → t to u → v
in IDG(P,R) but not in IDGc(P,R). By Definition 13 there are substitutions
σ and τ such that tσ ∈ L with L = Σ#(RFC(t,P ∪ R)) and tσ →∗R uτ . Since
IDGc(P,R) does not admit an arc from s→ t to u→ v, there is a tree automaton
A compatible with R and L∩Σ(ren(t)) such that Σ(u)∩L(A) = ∅. Theorem 6
yields →∗R(L ∩ Σ(ren(t))) ⊆ L(A). From tσ ∈ L ∩ Σ(ren(t)) and tσ →∗R uτ we
infer that uτ ∈ L(A), contradicting Σ(u) ∩ L(A) = ∅. ut

To compute IDGc(P,R) we have to construct an intermediate tree automa-
ton that accepts RFC(rhs(α),P ∪ R). This can be done by using tree automata
completion as described in in [8, 16]. We continue our leading example.

Example 20. We construct IDGc(P,R) for the DP problem (P,R,G) of Exam-
ple 17. Let s = H(x, y). A tree automaton A that is compatible with R and
Σ#(RFC(s,P ∪R)) ∩Σ(s) consists of the transitions

#→ 1 g(3)→ 4 f(4, 5)→ 5 h(1, 1)→ 5 H(1, 1)→ 2
a→ 3 g(6)→ 5 h(3, 5)→ 6 H(3, 5)→ 2

with final state 2. Since A does not accept any ground instance of the term
H(g(x), y) we conclude that the rules 2 and 3 are unreachable from 1 and 3.
It remains to check whether there is any outgoing arc from rule 2. Let t =

8

F(g(a), h(x, y)) be the right-hand side of 2. Similar as before we can construct a
tree automaton B with final state 5 and consisting of the transitions

#→ 1 g(2)→ 3 f(3, 4)→ 4 h(1, 1)→ 4
a→ 2 g(6)→ 4 F(3, 4)→ 5 h(2, 4)→ 6

which is compatible with R and Σ#(RFC(t,P ∪ R)) ∩ Σ(t). Since the instance
F(g(a), h(#,#)) of F(g(x), y) is accepted by B, IDGc(P,R) contains an arc from
2 to 1. Further arcs do not exist. Hence IDGc(P,R) coincides with IDG(P,R).

5 Comparison

In the literature several over-approximations of the dependency graph are de-
scribed [1, 12, 21–23]. In this section we compare the tree automata approach
to approximate the processors of Definition 1 and Theorem 16 developed in
the preceding sections with the earlier tree automata approach of [22] as well
as the approximation used in tools like AProVE [10] and TTT2 [19], which is a
combination of ideas of [12] and [23]. We start by formally defining the latter.

Definition 21. Let P and R be two TRSs. The nodes of the estimated de-
pendency graph DGe(P,R) are the rewrite rules of P and there is an arc from
s → t to u → v if and only if tcap(R, t) and u as well as t and tcap(R−1, u)
are unifiable. Here R−1 = {r → l | l → r ∈ R} and the function tcap(R, t)
is defined as f(tcap(R, t1), . . . , tcap(R, tn)) if t = f(t1, . . . , tn) and the term
f(tcap(R, t1), . . . , tcap(R, tn)) does not unify with any left-hand side of R. Oth-
erwise tcap(R, t) is a fresh variable.

The approach described in [22] to approximate dependency graphs based
on tree automata techniques relies on regularity preservation rather than com-
pletion. Below we recall the relevant definitions. An approximation mapping is
a mapping φ from TRSs to TRSs such that →R ⊆ →∗φ(R). We say that φ is
regularity preserving if ←∗φ(R)(L) = {s ∈ T (F) | s→∗φ(R) t for some t ∈ L} is
regular for all R and regular L. Here F is the signature of R.

The three approximation mappings s, nv, g are defined as follows: s(R) =
{ren(l) → x | l→ r ∈ R and x is a fresh variable}, nv(R) = {ren(l) → ren(r) |
l→ r ∈ R}, and g(R) is defined as any left-linear TRS that is obtained from R
by linearizing the left-hand sides and renaming the variables in the right-hand
sides that occur at a depth greater than 1 in the corresponding left-hand sides.
These mappings are known to be regularity preserving [5, 24].

Definition 22. Let P and R be two TRSs and let φ be an approximation map-
ping. The nodes of the φ-approximated dependency graph DGφ(P,R) are the
rewrite rules of P and there is an arc from s → t to u → v if and only if both
Σ(t) ∩←∗φ(R)(Σ(ren(u))) 6= ∅ and Σ(u) ∩←∗φ(R−1)(Σ(ren(t))) 6= ∅.

Lemma 23 ([12, 22, 23]). For TRSs P and R, DGe(P,R) ⊇ DG(P,R) and
DGs(P,R) ⊇ DGnv(P,R) ⊇ DGg(P,R) ⊇ DG(P,R). ut

9

From Examples 2 and 20 it is obvious that neither DGe(P,R) nor DGg(P,R)
subsumes IDGc(P,R). The converse depends very much on the approximation
strategy that is used; it can always happen that the completion procedure
does not terminate or that the over-approximation is too inexact. Neverthe-
less, there are problems where DGe(P,R) and DGs(P,R) are properly contained
in IDGc(P,R). An example is provided by the TRS consisting of the rules
f(x, x) → f(a, g(x, b)), f(a, g(x, x)) → f(a, a), and g(a, b) → b. The following
example shows that neither DGe(P,R) nor DGg(P,R) subsumes DGc(P,R).

Example 24. Consider the TRSs R and P with R consisting of the rewrite rules
p(p(p(x))) → p(p(x)), f(x) → g(p(p(p(a)))), and g(p(p(s(x)))) → f(x) and P =
DP(R) consisting of

1 : F(x)→ G(p(p(p(a)))) 3 : F(x)→ P(p(a)) 5 : G(p(p(s(x))))→ F(x)
2 : F(x)→ P(p(p(a))) 4 : F(x)→ P(a)

First we compute DGe(P,R). It is clear that DGe(P,R) contains arcs from 5
to 1, 2, 3, and 4. Furthermore, it contains an arc from 1 to 5 because the term
tcap(R,G(p(p(p(a))))) = G(y) unifies with G(p(p(s(x)))) and G(p(p(p(a)))) uni-
fies with tcap(R−1,G(p(p(s(x))))) = G(y). Further arcs do not exist and hence
DGe(P,R) looks as follows:

51 4

2 3

Next we compute DGg(P,R). Similarly as DGe(P,R), DGg(P,R) has arcs from
5 to 1, 2, 3, and 4. Furthermore DGg(P,R) contains an arc from 1 to 5 be-
cause G(p(p(p(a)))) →g(R) G(p(p(s(a)))) ∈ Σ(G(p(p(s(x))))) by applying the
rewrite rule p(p(p(x))) → p(p(y)) and G(p(p(s(x)))) →g(R−1) G(p(p(p(a)))) ∈
{G(p(p(p(a))))} using the rule p(p(x))→ p(p(p(y))). Hence DGg(P,R) coincides
with DGe(P,R). The graph DGc(P,R)

51 4

2 3

does not contain an arc from 1 to 5 because 5 is unreachable from 1. This is
certified by the following tree automaton A:

a→ 1 p(1)→ 2 p(2)→ 3 p(2)→ 4 p(3)→ 4 G(4)→ 5

with 5 as the only final state. Note that G(p(p(p(a)))) ∈ L(A), →∗R(L(A)) =
L(A), and Σ(G(p(p(s(x))))) ∩ L(A) = ∅.

Concerning the converse direction, there are TRSs like f(a, b, x) → f(x, x, x)
such that DGe(P,R) and DGnv(P,R) are properly contained in DGc(P,R). We
assume that this also holds for DGs(P,R) although we did not succeed in finding
an example.

10

6 Innermost Termination

In this section we sketch how the ideas presented in Sections 3 and 4 can be
extended to innermost termination. Let P and R be two TRSs and G ⊆ P × P
a directed graph. A minimal innermost rewrite sequence is an infinite rewrite
sequence of the form s1

i−→P t1
i−→∗R s2

i−→P t2
i−→∗R · · · such that si

ε−→ ti and
(αi, αi+1) ∈ G for all i > 1. Here i−→ denotes the innermost rewrite relation of
P∪R. A DP problem (P,R,G) is called innermost finite if there are no minimal
innermost rewrite sequences.

Definition 25. Let P and R be two TRSs. The innermost dependency graph
of P and R, denoted by DGi(P,R), has the rules in P as nodes and there is an
arc from s → t to u → v if and only if there exist substitutions σ and τ such
that tσ i−→∗R uτ and sσ and uτ are normal forms with respect to R.

By incorporating right-hand sides of forward closures, arcs of the innermost
dependency graph can sometimes be eliminated. The only complication is that
innermost rewriting is not closed under substitutions. To overcome this problem,
we add a fresh unary function symbol besides the constant # to the signature
and assume that Σ#(RFC(t,P ∪ R)) denotes the set of ground terms that are
obtained from terms in RFC(t,P ∪ R) by instantiating the variables by terms
built from # and this unary function symbol.

Definition 26. Let P and R be two TRSs. The improved innermost depen-
dency graph of P and R, denoted by IDGi(P,R), has the rules in P as nodes
and there is an arc from s→ t to u→ v if and only if there exist substitutions σ
and τ such that tσ i−→∗R uτ , tσ ∈ Σ#(RFC(t,P ∪R)), and sσ and uτ are normal
forms with respect to R.

The following result corresponds to Lemma 14.

Lemma 27. Let P and R be right-linear TRSs and α, β ∈ P. If there is a
minimal innermost sequence in P ∪R in which infinitely many β steps directly
follow α steps then IDGi(P,R) admits an arc from α to β. ut

We approximate (improved) innermost dependency graphs as discussed in
Section 3. In order to make use of the fact that sσ and uτ are normal forms with
respect to R, we restrict Σ(ren(t)) and Σ#(RFC(t,P ∪ R)) to the normalized
instances (i.e., ground instances that are obtained by substituting normal forms
for the variables) of ren(t), denoted by NF(ren(t),R). This is possible because
sσ →P tσ and σ is normalized as sσ is a normal form.

Definition 28. Let P and R be two TRSs. The nodes of the c-innermost de-
pendency graph DGi

c(P,R) are the rewrite rules of P and there is no arc from
α to β if and only if β is unreachable from α with respect to NF(ren(rhs(α)),R).
The nodes of the c-improved innermost dependency graph IDGi

c(P,R) are the
rewrite rules of P and there is no arc from α to β if and only if β is unreachable
from α with respect to Σ#(RFC(rhs(α),P ∪R)) ∩ NF(ren(rhs(α)),R).

11

Lemma 29. Let P and R be two TRSs. Then DGi
c(P,R) ⊇ DGi(P,R) and

IDGi
c(P,R) ⊇ IDGi(P,R).

Proof. Straightforward adaption of the proofs of Lemmata 9 and 19. ut

7 Experimental Results

The techniques described in the preceding sections are integrated in the termi-
nation prover TTT2. There are various ways to implement the (improved) depen-
dency graph processors, ranging from checking single arcs to computing SCCs in
between in order to reduce the number of arcs that have to be checked. The fol-
lowing procedure turned out to be the most efficient. For every term t ∈ rhs(P),
TTT2 constructs a tree automaton At that is compatible with R and `(t). Here
`(t) = Σ#(RFC(t,P∪R))∩Σ(ren(t)) if P∪R is right-linear and `(t) = Σ(ren(t))
otherwise. During that process it is checked if there is a term u ∈ lhs(P) and a
substitution σ such that uσ ∈ L(At). As soon as this condition evaluates to true,
we add an arc from s → t to u → v for all terms s and v such that s → t and
u → v are rules in P. This procedure is repeated until for all t ∈ rhs(P), either
At is compatible with R and `(t) or an arc was added from s→ t to u→ v for
all terms s and rules u→ v ∈ P such that root(t) = root(u).

Another important point is the strategy used to solve compatibility viola-
tions. In TTT2 we establish paths as described in [16]. A disadvantage of this
strategy is that it can happen that the completion procedure does not terminate
because new states are kept being added. Hence we have to set a time limit on
the involved processors to avoid that the termination proving process does not
proceed beyond the calculation of (improved) dependency graphs. Alternatively
one could follow the approach described in [6]. However, our experiments showed
that the former approach produces better over-approximations.

Below we report on the experiments we performed with TTT2 on the 1331
TRSs in the full termination category in version 5.0 of the Termination Problem
Data Base2 that satisfy the variable condition, i.e., Var(r) ⊆ Var(l) for each
rewrite rule l → r ∈ R. We used a workstation equipped with an Intel® Pen-
tium�M processor running at a CPU rate of 2 GHz and 1 GB of system memory.
For all experiments we used a 60 seconds time limit.3

For the results in Tables 1 and 2 we used the following (improved) dependency
graph processors:

t A simple and fast approximation of the dependency graph processor of The-
orem 4 using root comparisons to estimate the dependency graph; an arc is
added from α to β if the root symbols of rhs(α) and lhs(β) coincide.

2
http://www.termination-portal.org

3 Full experimental data, also covering the results on innermost termination in
Section 6, can be found at http://cl-informatik.uibk.ac.at/software/ttt2/

experiments/bdg.

12

Table 1. Dependency graph approximations I (without poly)

without usable rules with usable rules
t e c r ∗ t e c r ∗

arcs removed 55 68 68 72 73 55 67 68 73 74
SCCs 4416 4529 4218 3786 4161 4416 4532 4179 3680 4114
rules 24404 22198 20519 19369 21196 24404 22233 20306 19033 21093

successes 25 60 67 176 183 25 58 67 191 195
average time 105 190 411 365 211 133 224 491 434 242
timeouts 2 2 60 78 2 2 2 60 81 2

Table 2. Dependency graph approximations I (with poly)

without usable rules with usable rules
t e c r ∗ t e c r ∗

successes 454 494 493 528 548 454 491 492 529 548
average time 265 194 329 139 198 262 196 352 134 191
timeouts 14 14 71 89 14 14 14 70 91 14

e The dependency graph processor with the estimation DGe(P,R) described
in Section 5. This is the default dependency graph processor in TTT2 and
AProVE.

c The dependency graph processor with DGc(P,R) of Definition 8.
r The improved dependency graph processor of Theorem 16 with IDGc(P,R)

(DGc(P,R)) for (non-)right-linear P ∪R.

After applying the above processors we use the SCC processor. In Table 2 this
is additionally followed by the reduction pair processor instantiated by linear
polynomial interpretations with 0/1 coefficients (poly for short) [13].

In the top half of Table 1 we list the average number of removed arcs (as
percentage of the complete graph), the number of SCCs, and the number of
rewrite rules in the computed SCCs. In the bottom half we list the number of
successful termination attempts, the average wall-clock time needed to compute
the graphs (measured in milliseconds), and the number of timeouts. In Table 2
polynomial interpretations are in effect and the average time now refers to the
time to prove termination.

The power of the new processors is apparent, although the difference with
e decreases when other DP processors are in place. An obvious disadvantage of
the new processors is the large number of timeouts. As explained earlier, this
is mostly due to the unbounded number of new states to resolve compatibility
violations during tree automata completion. Modern termination tools use a
variety of techniques to prove finiteness of DP problems. So it is in general more
important that the graph approximations used in the (improved) dependency
graph processor terminate quickly rather than that they are powerful. Since the
processors c and r seem to be quite fast when they terminate, an obvious idea is to

13

Table 3. Dependency graph approximations II (without poly)

without usable rules with usable rules
c s nv g c s nv g

arcs removed 68 63 61 48 68 63 62 48
SCCs 4218 2294 1828 96 4179 2323 1925 270
rules 20519 6754 5046 140 20306 6631 5133 448

successes 67 54 67 42 67 57 64 51
average time 411 3640 3463 6734 491 3114 3817 1966
timeouts 60 263 372 1197 60 251 349 1068

Table 4. Dependency graph approximations II (with poly)

without usable rules with usable rules
c s nv g c s nv g

successes 493 443 427 78 492 446 425 146
average time 329 2603 2143 5745 352 2396 2378 1180
timeouts 71 264 375 1197 70 252 348 1069

equip each computation of a compatible tree automaton with a small time limit.
Another natural idea is to limit the number of allowed compatibility violations.
For instance, by reducing this number to 5 we can still prove termination of 141
TRSs with processor r while the number of timeouts is reduced from 78 to 21.
Another strategy is to combine different graph approximations. This is shown in
the columns of Tables 1 and 2 labeled ∗, which denotes the composition of t, e, c
and r with a time limit of 500 milliseconds each for the latter three. We remark
that the timeouts in the t and ∗ columns are solely due to the SCC processor.

A widely used approach to increase the power of DP processors is to consider
only those rewrite rules ofR which are usable [13, 15]. When incorporating usable
rules into the processors mentioned above, we obtain the results in the second
half of Tables 1 and 2. It is interesting to observe that r (and by extension ∗)
is the only processor that benefits from usable rules. This is due to the right-
linearity condition in Definition 16, which obviates the addition of projection
rules to DP problems.

We also implemented the approximations based on tree automata and regu-
larity preservation described in Section 5. The results are summarized in Tables 3
and 4. It is apparent that these approximations are too time-consuming to be of
any use in automatic termination provers.

One advantage of more powerful (improved) dependency graph approxima-
tions is that termination proofs can get much simpler. This is implicitly illus-
trated in the experiments when polynomial interpretations are in effect; using
r produces the fastest termination proofs. This positive effect is also preserved
if more DP processors are in effect. By incorporating the new approximations

14

into the strategy of TTT2 used in the termination competition of 2008,4 TTT2 can
additionally prove termination of the TRS TRCSR/ExProp7 Luc06 C.trs: Using
r, the number of arcs in the computed (improved) dependency graph is reduced
from 159 to 30, resulting in a decrease of the number of SCCs from 7 to 2.
This gives a speedup of about 500 milliseconds. In 2008, TTT2 could not prove
termination of this TRS because it exceeded its internal time limit of 5 seconds.

We conclude this section with the following small example.

Example 30. The TRS Endrullis/quadruple1 (R in the following) consists of
the following rewrite rule:

p(p(b(a(x)), y), p(z, u))→ p(p(b(z), a(a(b(y)))), p(u, x))

To prove termination of R using dependency pairs, we transform R into the
initial DP problem (P,R,G) where P = DP(R) consists of the rewrite rules

1 : P(p(b(a(x)), y), p(z, u))→ P(p(b(z), a(a(b(y)))), p(u, x))
2 : P(p(b(a(x)), y), p(z, u))→ P(b(z), a(a(b(y))))
3 : P(p(b(a(x)), y), p(z, u))→ P(u, x)

and G = P × P. Applying the improved dependency graph processor produces
the new DP problem (P,R, IDGc(P,R)) where IDGc(P,R) looks as follows:

312

After deploying the SCC processor we are left with the single DP problem
({3},R, {(3, 3)}) which can easily shown to be finite by various DP processors.
Using poly, TTT2 needs about 14 milliseconds to prove termination of R. If we
use DGe(P,R) instead of IDGc(P,R), we do not make any progress by applying
the SCC processor and thus termination of R cannot be shown that easily. This
is reflected in the latest edition of the termination competition (2008): AProVE
combined a variety of processors to infer termination within 24.31 seconds, Jam-
box5 proved termination of R within 8.11 seconds by using linear matrix inter-
pretations up to dimension 3, and TTT2 used RFC match-bounds [18] to prove
termination within 143 milliseconds.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS,
236(1-2):133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

4
http://termcomp.uibk.ac.at

5
http://joerg.endrullis.de

15

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available from www.

grappa.univ-lille3.fr/tata, 2002.
4. N. Dershowitz. Termination of linear rewriting systems (preliminary version). In

Proc. 8th ICALP, volume 115 of LNCS, pages 448–458, 1981.
5. I. Durand and A. Middeldorp. Decidable call-by-need computations in term rewrit-

ing. I&C, 196(2):95–126, 2005.
6. T. Genet. Decidable approximations of sets of descendants and sets of normal

forms. In Proc. 9th RTA, volume 1379 of LNCS, pages 151–165, 1998.
7. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Finding finite automata

that certify termination of string rewriting systems. IJFCS, 16(3):471–486, 2005.
8. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that

certify termination of left-linear term rewriting systems. I&C, 205(4):512–534,
2007.

9. O. Geupel. Overlap closures and termination of term rewriting systems. Report
MIP-8922, Universität Passau, 1989.

10. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. 3rd IJCAR, volume 4130
of LNAI, pages 281–286, 2006.

11. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. 11th LPAR,
volume 3425 of LNAI, pages 301–331, 2004.

12. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. 5th FroCoS, volume 3717 of LNAI, pages
216–231, 2005.

13. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. JAR, 37(3):155–203, 2006.

14. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. I&C,
199(1-2):172–199, 2005.

15. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. I&C, 205(4):474–511, 2007.

16. M. Korp and A. Middeldorp. Proving termination of rewrite systems using bounds.
In Proc. 18th RTA, volume 4533 of LNCS, pages 273–287, 2007.

17. M. Korp and A. Middeldorp. Match-bounds with dependency pairs for proving
termination of rewrite systems. In Proc. 2nd LATA, volume 5196 of LNCS, pages
321–332, 2008.

18. M. Korp and A. Middeldorp. Match-bounds revisited. I&C, 2009. To appear.
19. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool

2. In Proc. 20th RTA, volume 5595 of LNCS, pages 295–304, 2009.
20. K. Kusakari. Termination, AC-Termination and Dependency Pairs of Term

Rewriting Systems. PhD thesis, JAIST, 2000.
21. K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs.

Research Report IS-RR-98-0026F, School of Information Science, JAIST, 1998.
22. A. Middeldorp. Approximating dependency graphs using tree automata techniques.

In Proc. 1st IJCAR, volume 2083 of LNAI, pages 593–610, 2001.
23. A. Middeldorp. Approximations for strategies and termination. In Proc. 2nd WRS,

volume 70 of ENTCS, pages 1–20, 2002.
24. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting

systems. I&C, 178(2):499–514, 2002.
25. R. Thiemann. The DP Framework for Proving Termination of Term Rewriting.

PhD thesis, RWTH Aachen, 2007. Available as technical report AIB-2007-17.

16

